
Evaluating Classifiers

Charles Elkan
elkan@cs.ucsd.edu

January 18, 2011

In a real-world application of supervised learning, we have a training set of
examples with labels, and a test set of examples with unknown labels. The whole
point is to make predictions for the test examples.

However, in research or experimentation we want to measure the performance
achieved by a learning algorithm. To do this we use a test set consisting of exam-
ples with known labels. We train the classifier on the training set, apply it to the
test set, and then measure performance by comparing the predicted labels with the
true labels (which were not available to the training algorithm).

Sometimes we have a training set and a test set given already. Other times, we
just have one database of labeled training examples. In this case, we have to divide
the database ourselves into separate training and test subsets. A common rule of
thumb is to use 70% of the database for training and 30% for testing. Dividing
the database into training and test subsets is usually done randomly, in order to
guarantee that both subsets are random samples from the same distribution. It can
be reasonable to do stratified sampling, which means to ensure that each class is
present in the exact same proportion in the training and test subsets.

It is absolutely vital to measure the performance of a classifier on an inde-
pendent test set. Every training algorithm looks for patterns in the training data,
i.e. correlations between the features and the class. Some of the patterns discov-
ered may be spurious, i.e. they are valid in the training data due to randomness in
how the training data was selected from the population, but they are not valid, or
not as strong, in the whole population. A classifier that relies on these spurious
patterns will have higher accuracy on the training examples than it will on the
whole population. Only accuracy measured on an independent test set is a fair
estimate of accuracy on the whole population. The phenomenon of relying on

1



patterns that are strong only in the training data is called overfitting. In practice it
is an omnipresent danger.

Most training algorithms have some settings for which the user can choose
values. Fork nearest neighbor classification, an important setting is the integer
k, for example. When training a naive Bayes classifier, the settings include the
degree of smoothingλ and the number of bins to use when discretizing continuous
features, and possibly more. It is natural to run a training algorithm multiple times,
and to measure the accuracy of the classifier learned with different settings. A set
of labeled examples used in this way to pick settings for an algorithm is called a
validation set. If you use a validation set, it is important to have a final test set that
is independent of both the training set and the validation set.

1 Measures of classification success

When evaluating a classifier, there are different ways of measuring its perfor-
mance. For supervised learning with two possible classes, all measures of perfor-
mance are based on four numbers obtained from applying the classifier to the test
set. These numbers are called true positivestp, false positivesfp, true negatives
tn, and false negativesfn. They are counts that are entries in a 2×2 table as
follows:

predicted
positive negative

positive tp fn
truth

negative fp tn

A table like the one above is called a confusion matrix. The terminology true
positive, etc., is standard, but whether columns correspond to predicted and rows
to actual, or vice versa, is not standard.

The entries in a confusion matrix are counts, i.e. integers. The total of the four
entriestp + tn + fp + fn = n, the number of test examples. Depending on the
application, many different summary statistics are computed from these entries.
In particular:

• accuracya = (tp + tn)/n,

• precisionp = tp/(tp + fp), and

2



• recallr = tp/(tp + fn).

Assuming thatn is known, three of the counts in a confusion matrix can vary
independently. Hence, no single number, and no pair of numbers, can characterize
completely the performance of a classifier. When writing a report, it is best to
give the full confusion matrix explicitly, so that readers can calculate whatever
performance measurements they are most interested in.

2 Classification with a rare class

In many domains one class of examples is much more common than the other
class. For example, maybe only 1% of patients actually have a certain rare disease,
and nowadays only 10% of email messages are actually not spam. The base rate
accuracy is the accuracy obtained by predicting that every example has whatever
label is most common in the training set. With 99% of examples in one class, it is
trivial to achieve 99% accuracy and it can be very difficult to achieve any higher
accuracy.

However, for many applications of supervised learning, a classifier can be very
useful even if its overall accuracy is less than the base rate. Consider for example
a scenario with 97% negative examples, and the following confusion matrix:

tp = 15 fn = 15
fp = 25 tn = 945

This classifier has accuracya = 960/1000 = 96% which is less than the base
rate 97%. But, it has precisionp = 15/(15 + 25) = 37.5% and recallr =
15/(15 + 15) = 50%. These levels of precision and recall are non-trivial and may
be very useful in the application domain.

A common way that a classifier is used is to produce a list of candidate test
examples for further investigation. For example, a search engine may produce a
fixed number of web pages that a classifier predicts are most likely to be relevant
to a query. The confusion matrix above means that if the classifier provides a
list of 40 candidates, 37.5% of them are genuinely positive and 50% of genuine
positives do appear on the list. In contrast, randomly choosing 40 candidates from
1000 would yield only 3% of positives on average, and 97% of actual positives
would be missed.

3



3 Cross-validation

Often we have a fixed database of labeled examples available, and we are faced
with a dilemma: we would like to use all the examples for training, but we would
also like to use many examples as an independent test set. Cross-validation is a
procedure for overcoming this dilemma. It is the following algorithm.

Input: Training setS, integer constantk
Procedure:

partitionS into k disjoint equal-sized subsetsS1, . . . , Sk

for i = 1 to i = k
let T = S \ Si

run learning algorithm withT as training set
test the resulting classifier onSi obtainingtpi, fpi, tni, fni

computetp =
∑

i tpi, fp =
∑

i fpi, tn =
∑

i tni, fn =
∑

i fni

The output of cross-validation is a confusion matrix based on using each labeled
example as a test example exactly once. Whenever an example is used for testing a
classifier, it has not been used for training that classifier. Hence, the confusion ma-
trix obtained by cross-validation is intuitively a fair indicator of the performance
of the learning algorithm on independent test examples.

If n labeled examples are available, the largest possible number of folds isk =
n. This special case is called leave-one-out cross-validation (LOOCV). However,
the time complexity of cross-validation isk times that of running the training
algorithm once, so often LOOCV is computationally infeasible. In recent research
the most common choice fork is 10.

Note that cross-validation does not produce any single final classifier, and the
confusion matrix it provides is not the performance of any specific single classi-
fier. Instead, this matrix is an estimate of the average performance of a classifier
learned from a training set of size(k − 1)n/k wheren is the size ofS. The com-
mon procedure is to create a final classifier by training on all ofS, and then to
use the confusion matrix obtained from cross-validation as an informal estimate
of the performance of this classifier. This estimate is likely to be conservative in
the sense that the final classifier may have slightly better performance since it is
based on a slightly larger training set.

The results of cross-validation can be misleading. For example, if each exam-
ple is duplicated in the training set and we use a nearest-neighbor classifier, then
LOOCV will show a zero error rate. Cross-validation with other values ofk will

4



also yield misleadingly low error estimates. For a detailed discussion of additional
pitfalls to avoid in connection with cross-validation, see [Forman and Scholz, 2010].

4 Systematic choice of algorithm parameters

Consider a supervised learning algorithm with one or more settable parameters.
How should we choose values for these? Usually, we define a finite set of al-
ternative values for each parameter. Then, the simplest approach is to run the
algorithm with the same training data for each combination of parameter values.
We measure performance each time on the same validation set [Hsu et al., 2010].

This simple approach likely overfits the validation set. The parameter settings
that give highest accuracy (for any definition of accuracy) on the validation set are
likely not the settings that perform best on future test data. To get a fair estimate
of future accuracy, we need to test the single classifier with the chosen parameter
settings on a completely independent test set.

To combine the approach above with cross-validation, one option is nested
cross-validation. A drawback of nested cross-validation is its computational cost.
If the inner and outer cross-validation both use ten folds, then the number of times
a classifier must be trained is ?.

Trying every combination of parameter settings is called grid search. Finding
the best settings is an optimization task. Grid search is the most naive possible
optimization method. More efficient optimization algorithms typically use gradi-
ents (multidimensional derivatives), but these are typically not useful for selecting
parameter settings for two reasons. First, the accuracy achieved by an algorithm
is not a continuous function of many settings, in particular discrete settings such
ask in kNN. Second, often there are alternative combinations of settings each of
which is a local optimum.

For the reasons just explained, grid search is still used almost always in prac-
tice. However, better alternatives may exist. In particular, combinatorial search
methods that sample alternative sets of settings, and then sample new sets based
on recombining the best sets found so far, are promising. So-called genetic algo-
rithms are search methods of this type, but not the only ones. A method called the
Nelder-Mead algorithm (see Wikipedia), which is available in Matlab under the
namefminsearch can be useful for finding algorithm settings much faster than
with grid search.

5



5 Making optimal decisions

In any application of machine learning, there are many metrics of performance
that can be measured on test data. Examples include log likelihood, mean squared
error, 0/1 accuracy, area under the ROC curve, and more. The ultimate quantity to
measure and optimize has to be domain-dependent and application-specific. For
many tasks, this ultimate quantity is monetary benefit.

Decision theory provides methods for defining and maximizing expected ben-
efit, where expected benefit is the product of the probability of an outcome and
the benefit if that outcome occurs. In general, benefit is revenue minus expense.
The assignment description below provides an example of a decision-theoretic
analysis.

6 Evaluating probabilistic classifiers

• Definition of base rate.

• Meaning of predicted conditional probabilities.

• Meaning of well-calibrated.

• Overlapping distributions of conditional probabilities.

• Measuring the accuracy of conditional probabilities: mean squared error.

• Overfitting: deteriorating performance on test data combined with improv-
ing performance on training data.

• Training to maximize one objective versus measuring another: log likeli-
hood versus mean squared error.



CSE 250B Quiz 5, February 4, 2010

For each statement below, clearly write “True” if it is mostly true, or “False” if
it is mostly false. Then write one or two sentences explaining why or how the
statement is true or false.

Both statements below are based on the same scenario, which is inspired by the
second project assignment. You are training logistic regression classifiers without
regularization. The classifier to predictp(visit = 1|x) is trained onn1 examples,
while the classifier to predictp(buy = 1|x, visit = 1) is trained onn2 < n1

examples. You have a small numberd � n2 of informative features.

1. [2 points] The classifier to predictp(visit = 1|x) is likely to show worse
overfitting than the classifier to predictp(buy = 1|x, visit = 1).

2. [2 points] If you had twice as many informative features, both classifiers
would be more likely to overfit.

References

[Forman and Scholz, 2010] Forman, G. and Scholz, M. (2010). Apples to ap-
ples in cross-validation studies: Pitfalls in classifier performance measurement.
ACM SIGKDD Explorations, 12(1):49–57.

[Hsu et al., 2010] Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2010). A practi-
cal guide to support vector classification. Available athttp://www.csie.
ntu.edu.tw/˜cjlin/ .


