Bases de Datos Geográficas II

Sistemas de Información Geográficos Empresariales

Relaciones Topológicas

- La topología se define matemáticamente como la rama que estudia las propiedades de los cuerpos o figuras geométricas que se mantienen invariantes bajo una transformación contínua.
- Informalmente, esas propiedades son las no cambian cuando se realiza una deformación "elástica" sobre las figuras.
 - Ej. Dos países limítrofes en un mapa plano en papel deben seguir siéndolo en un globo terráqueo.
- En GIS, se focaliza en las reglas y propiedades que deben cumplir los elementos de una misma capa o de varias para considerarse bien definidos.
 - Ejs. Las líneas que definen un polígono debe ser cerradas; las líneas de una capa de calles deben coincidir con los límites de los polígonos de una capa de manzanas.

Clasificación de Operaciones Espaciales

- Podemos clasificar las operaciones espaciales en 4 grupos:
 - Teoría de conjuntos: Unión, Intersección, Diferencia, etc.
 - Ej. La intersección de dos polígonos produce un polígono, o una línea, o un punto, o vacío.
 - Topológicas: Toca, Superpone, etc.
 - Ej. La frontera de Uruguay toca la frontera de Argentina (Uruguay y Argentina son polígonos)
 - Métricas: Área, Distancia, etc.
 - Ej. La distancia entre Montevideo y Atlántida es de 45 km.
 - Direccionales: Norte, Sur, Sureste, etc.
 - Ej. La ciudad de Rocha se encuentra al Noreste de Punta de Este.

Frontera, Interior, Exterior

- La frontera de una geometría 0D es vacío.
- La frontera de una geometría 1D es una geometría 0D o vacío
- La frontera de una geometría 2D es una geometría 1D
- El interior de una geometría está compuesto por los puntos que de la misma que no pertenecen a su frontera.
- El exterior de una geometría está compuesto por los puntos que no pertenecen ni a su interior ni a su frontera.
- La intersección de una geometría con vacío es vacío.

Equals

$$a.Equals(b) \Leftrightarrow a \subseteq b \land b \subseteq a$$

- a y b son dos geometrías.
- Dos geometrías son iguales si se contienen mutuamente, es decir, representan el mismo conjunto de puntos.
- No se distinguen puntos interiores de puntos frontera.
- No se considera el orden de los puntos

Disjoint

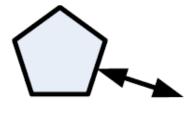
a.Disjoint(b)
$$\Leftrightarrow$$
 a \cap b = \emptyset

- a y b son dos geometrías.
- Dos geometrías son disjuntas si su intersección es vacía, es decir, no tienen ningún punto en común.
- No se distinguen puntos interiores de puntos frontera.

Touches

a. Touch (b)
$$\Leftrightarrow$$
 (I(a) \cap I(b) = \emptyset) \land (a \cap b) \neq \emptyset

- a y b son dos geometrías.
- Una geometría "toca" a otra si tienen algún punto en común que está en la frontera de ambas o que es interior en una y frontera en la otra.
- Este predicado también se llama Meets en otros modelos.
- Se aplica a dimensiones: 0/1, 0/2, 1/1, 1/2, 2/2

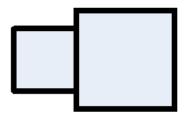


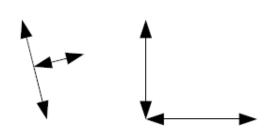
Touches

Polygon/LineString

Polygon/Point

LineString/Point

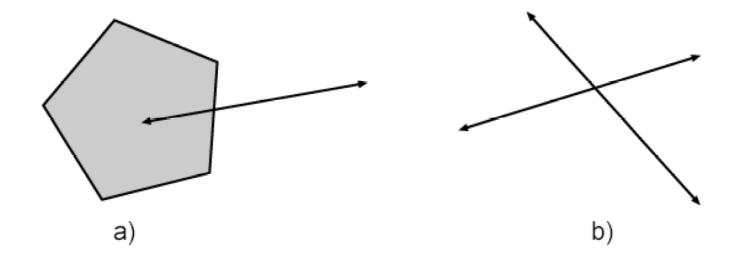




Polygon/Polygon

LineString/LineString

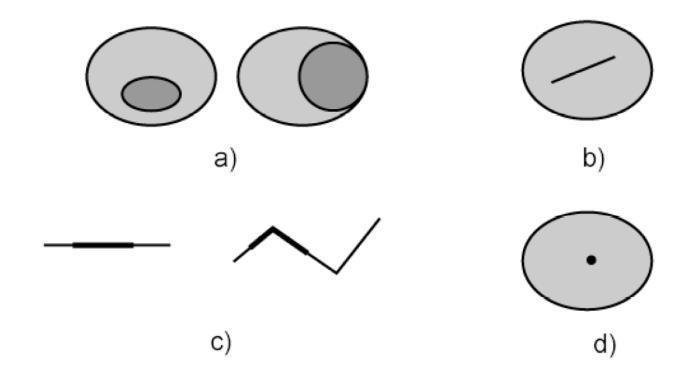
Crosses


a.Cross(b)
$$\Leftrightarrow$$
 [I(a) \cap I(b) $\neq\emptyset$ \wedge (a \cap b \neq a) \wedge (a \cap b \neq b)]

- a y b son dos geometrías.
- Una geometría "cruza" a otra si tienen algún punto en común en sus interiores y ninguna está contenida en la otra.
- Se aplica a dimensiones: 0/1, 0/2, 1/1, 1/2

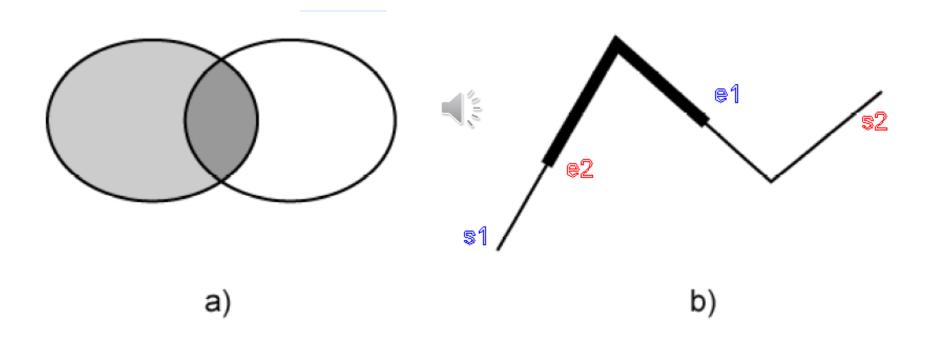
Crosses

Within


a.Within(b)
$$\Leftrightarrow$$
 (a \cap b=a) \wedge (I(a) \cap E(b)= \emptyset)

- a y b son dos geometrías.
- Una geometría a está "dentro" de otra b si no hay puntos de a que estén en el exterior de b.
- Este predicado también se llama *Inside* en otros modelos.
- Se aplica a todas la combinaciones de dimensiones.

Overlaps


```
a.Overlaps(b) \Leftrightarrow ( dim(I(a)) = dim(I(b)) = dim(I(a) \cap I(b)))
 \wedge (a \cap b \neq a) \wedge (a \cap b \neq b)
```

- a y b son dos geometrías.
- Una geometría se "superpone" con otra si tienen la misma dimensión, una intersección no vacía de esa misma dimensión y ninguna contiene a la otra.
- Se aplica a dimensiones: 0/0 (no punto/punto),
 1/1, 2/2

Overlaps

Contains e Intersects

Contains

a.Contains(b) ⇔ b.Within(a)

Intersects

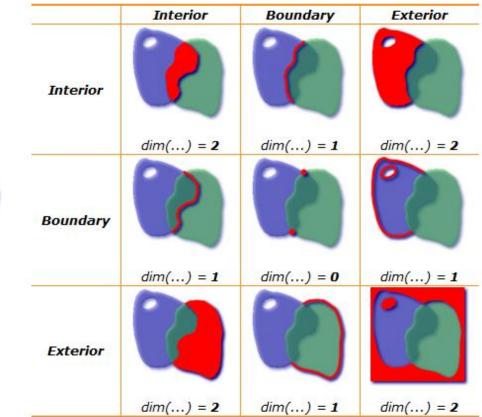
a.Intersects(b) ⇔ ! a.Disjoint(b)

- Modelo de las 9 Intersecciones (9IM)
 - Se define una matriz binaria 3x3 para un par de figuras geométricas A y B de la siguiente manera, en base a los conjuntos frontera, interior y exterior

$$\mathfrak{I}_{9}(A,B) = \begin{pmatrix} A \cap B & A \cap \partial B & A \cap B^{-} \\ \partial A \cap B & \partial A \cap \partial B & \partial A \cap B^{-} \\ A^{-} \cap B & A^{-} \cap \partial B & A^{-} \cap B^{-} \end{pmatrix}$$

- Esto nos permite caracterizar las operaciones topológicas según la intersección sea vacía o no.
 - Ej. disjoint=((0 0 1) (0 0 1) (1 1 1))

- Modelo dimensionalmente extendido de las nueve intersecciones (DE-9IM)
 - A veces no alcanza con saber que dos geometrías se intersecan.
 Por ejemplo, queremos saber si dos líneas se intersecan en un punto o en un segmento.
 - Para esto se extiende la matriz anterior con la dimensión de la intersección en lugar de un valor binario.


- Los valores de cada celda pueden ser 0, 1, 2, T, F, *. T es cualquier valor en {0,1,2}, F indica que la intersección es vacía, * es cualquier valor anterior.
- Si solo consideramos los valores F y T, tenemos una matriz 9IM (sin dimensiones).
- El valor * en una celda se utiliza para indicar que esa intersección no debe calcularse.

Ejemplos:

1) Dos líneas abiertas que se intersecan en 1 o más puntos interiores:

$$M=((0 F 1)(F F 0)(1 0 2))$$

2) Dos líneas cerradas que se intersecan en 1 o más puntos interiores:

$$M = ((0 F 1)(F F F)(1 F 2))$$

3) Una línea cerrada y otra abierta que se intersecan en1 o más puntos interiores:

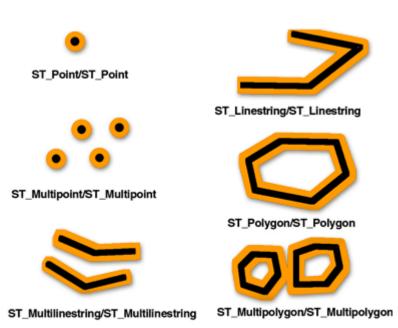
$$M=((0 F 1)(F F F)(1 0 2)) \circ M=((0 F 1)(F F 0)(1 F 2))$$

Si generalizamos las matrices anteriores, y buscamos la matriz de dos líneas que se intersecan en 1 o más puntos interiores, sin importar si son cerradas o abiertas, llegamos a esta matriz:

$$M=((0 F 1)(F F *)(1 * 2))$$

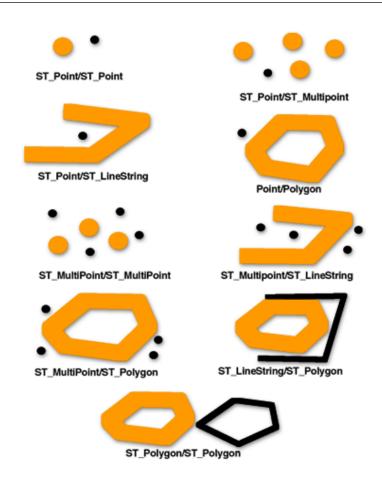
Como la intersección de exteriores en cualquier caso va a tener dimensión 2, podemos simplificarla en:

$$M=((0 F 1)(F F *)(1 * *))$$


Puedo simplificar aún mas la matriz?

$$M = ((0 * *)(* * *)(* * *))$$

Equals



Equ	l(b)	B(b)	E(b)
I(a)	Т	F	F
B(a)	F	Т	F
E(a)	F	F	Т

Disjoint

Dis	l(b)	B(b)	E(b)
l(a)	F	F	*
B(a)	F	F	*
E(a)	*	*	*

Touches

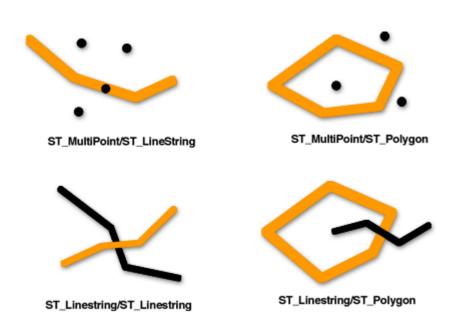
ST_MultiPoint/ST_Linestring

ST_MultiPoint/ST_Polygon

ST_Point/ST_Polygon

ST_Linestring/ST_Polygon

Tou1	l(b)	B(b)	E(b)
I(a)	F	Т	*
B(a)	*	*	*
E(a)	*	*	*


Tou2	l(b)	B(b)	E(b)
I(a)	F	*	*
B(a)	Т	*	*
E(a)	*	*	*

Tou3	l(b)	B(b)	E(b)
I(a)	F	*	*
B(a)	*	Т	*
E(a)	*	*	*

Crosses

Cro	l(b)	B(b)	E(b)
l(a)	Т	*	Т
B(a)	*	*	*
E(a)	*	*	*

Cro1	l(b)	B(b)	E(b)
l(a)	0	*	*
B(a)	*	*	*
E(a)	*	*	*

Cro: Dim 0/1, 0/2, 1/2 Cro1: Dim 1/1

Crosses

Cro:

MultiPoint/LineString

MultiPoint/MultiLineString

MultiPoint/Polygon

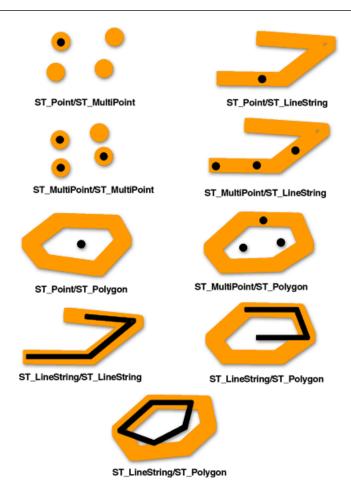
MultiPoint/MultiPolygon

LineString/Polygon

LineString/MultiPolygon

Cro0:

LineString/LineString


LineString/MultiLineString

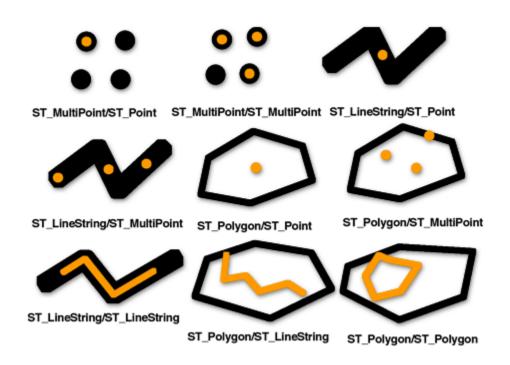
MultiLineString/MultiLineString

Within

Wit	l(b)	B(b)	E(b)
l(a)	Т	*	F
B(a)	*	*	F
E(a)	*	*	*

Overlaps

ST_Polygon/ST_Polygon


ST_MultiPoint/ST_MultiPoint

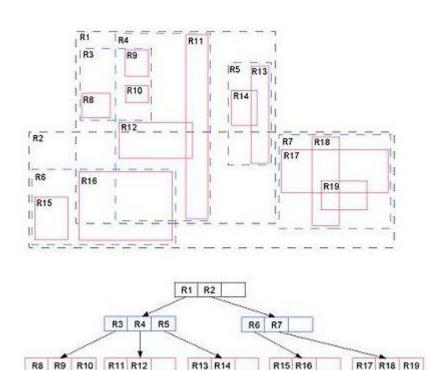
Ove	l(b)	B(b)	E(b)
I(a)	Т	*	Т
B(a)	*	*	*
E(a)	Т	*	*

Contains

Con	l(b)	B(b)	E(b)
I(a)	Т	*	*
B(a)	*	*	*
E(a)	F	F	*

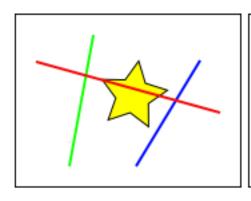
Concepto de índice:

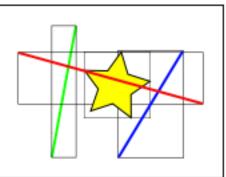
- Estructura de datos física de acceso que se define en base a uno o más campos de un archivo. En un DBMS, se definen índices sobre tablas (en lugar de archivos).
- Hacen más eficiente el acceso a registros en operaciones donde intervienen campos indizados.
- Clasificación según campos: índices primarios, índices de agrupamiento, índices secundarios.
- En los DBMS se utilizan comúnmente árboles B y B+.
- Los árboles B son apropiados para tipos de datos que pueden ser ordenados sobre un eje.
 - Ej. 1 < 5 (enteros), 'Brasilia' < 'Montevideo' (strings)</p>
 - Ej. Cómo defino Point(1,0) < Point(0,1)?</p>

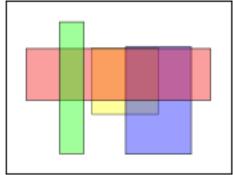


Árboles R

- Balanceados
- Cada nodo es un rectángulo
- Nodo hijo dentro de nodo padre (WITHIN)
- Superposición es posible entre rectángulos (OVERLAP)
- Idea: construyo un rectángulo por cada objeto geográfico. El rectángulo es el Minimum Orthogonal Bounding Rectangle (MBR), también llamado Bounding Box. Luego construyo rectángulos que contienen completamente a los anteriores y así sucesivamente.







- Paradigma Filtrar-Refinar para procesar consultas
 - Filtrar: Encontrar un superconjunto del conjunto solución, más chico que el superconjunto total. Se utilizan operadores y tipos de datos aproximados. (OVERLAP y MBR)
 - Refinar: Encontrar conjunto solución. Se utilizan los operadores y tipos de datos exactos de la consulta.
 - Ej. Seleccionar la línea que cruza la estrella.

- Filtrar: Encuentro líneas L tales que OVERLAP(MBR(E), MBR(L))
- Refinar: Entre los L encontrados, aplico CROSSES(E,L) para llegar a la solución.
- Ventaja de utilizar índices espaciales: En el primer paso, trabajo exclusivamente con geometrías del árbol (rectángulos) y una sola operación. Solamente en el segundo paso leo la geometría exacta del objeto geográfico y aplico la operación espacial exacta.
- Alguna implementaciones de SDBMS utilizan Árboles de Búsqueda Generalizados (Generalized Search Trees, GiST) para implementar Árboles R. Ej. PostGIS.

OGC Geography Markup Language (GML)

- GML es una gramática escrita como XML Schema que permite almacenar y transportar información geoespacial.
 - xmlns:gml="http://www.opengis.net/gml"
- Codificación estándar para modelos OGC (por ejemplo, para SFS).
- Posee un conjunto de esquemas (.xsd) para diferentes aplicaciones (llamados application schemas):
 - Objetos geográficos, Sistemas de Referencia Coordenados (CRS),
 - Topologías, Información Temporal y Objetos Dinámicos, Unidades de Medida, Direcciones, Observaciones, Coberturas, etc.

OGC Geography Markup Language (GML)

Ejs. LinesString y Polygon

```
<gml:LineString>
      <gml:posList> 45.256 -110.45 46.46 -109.48 43.84 -109.86 /gml:posList>
</gml:LineString>
<gml:Polygon>
      <gml:exterior>
           <gml:LinearRing>
           <gml:posList> 45.256 -110.45 46.46 -109.48 43.84 -109.86 45.256 -
110.45 </gml:posList>
           </gml:LinearRing>
      </gml:exterior>
</gml:Polygon>
```


Implementaciones de SFS-SQL

- Libres:
 - PostgreSQL/PostGIS (desde: 2001)
 - MySQL Spatial Extensions (desde: 2003)
- Algunas comerciales:
 - Oracle Spatial (desde: 1998)
 - ESRI ArcSDE (desde: 1996)
 - SQL Server (desde: 2008)

- Extiende el DBMS PostgreSQL.
- Incluye todos los tipos OGC SFS-SQL
- Agrega representación EWKT, EWKB que incluyen SRID en la geometría.
- Agrega algunas geometrías OGC SQL-MM (curvas con interpolación no lineal).
- Agrega tipo Geography: solo coordenadas geográficas. Ventaja: exactitud global (no hay proyecciones). Desventaja: Operaciones complejas (menos performance).
- Utiliza Feature Tables con GID y geometría (No hay Geometry Tables).
- Utiliza índices GiST (árboles de búsqueda generalizados)

- Creación de una base de datos geográfica
 - Se utiliza el template postgis o se corren los script SQL lwpostgis.sql (crea tipos y funciones geo-espaciales) y spatial_ref_sys.sql (crea la tabla del mismo nombre).
- Creación de una capa geográfica a partir de un shapefile
 - Se utiliza el programa shp2pgsql
 - Ej. shp2pgsql -s 32721 -l departam_shp departamento geodb > "departamento.sql"
 - En este caso se crea la tabla departamento de la base geodb a partir del shapefile departam_shp. Se especifica el SRID 32721 y la creación de índice espacial (sobre el campo geometry).

- Creación de una capa geográfica desde cero
 - Se crea una tabla sin la columna geográfica
 - Se utiliza la función AddGeometryTable que crea la columna y la registra en la tabla Geometry_Columns.

CREATE TABLE calles (id integer, nombre varchar);

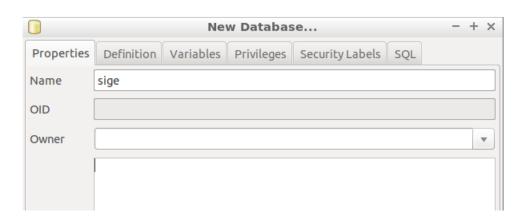
SELECT AddGeometryColumn('calles', 'the_geom', 32721, 'LINESTRING', 2);

CREATE TABLE hoteles (id integer, nombre varchar, lat real, lon real);

SELECT AddGeometryColumn('hoteles', 'the_geom', 32721, 'POINT', 2);

- Insertar una geometría a partir de coordenadas
 - Creamos la geometría de cada registro a partir de los valores de los campos lat y lon de la tabla:

UPDATE hoteles

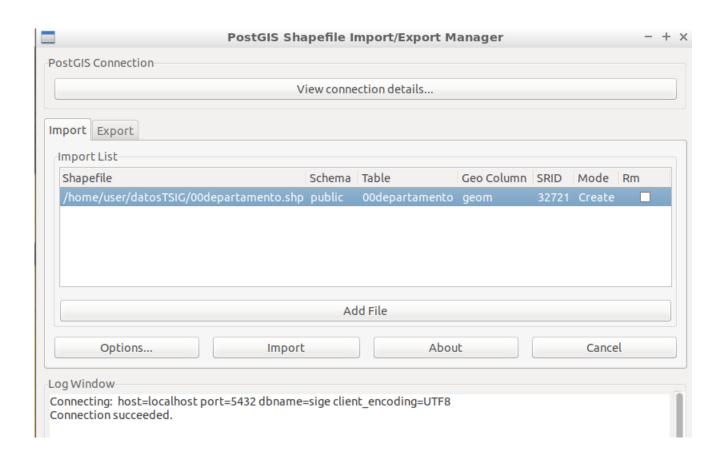

SET the_geom = GeomFromText('POINT(' || Ion || ' ' || Iat || ')',32721);

- Transformación a GML
 - Función AsGML(Geometry) permite obtener la representación en GML de un objeto geográfico.
 - SELECT AsGML(the_geom) from calles;

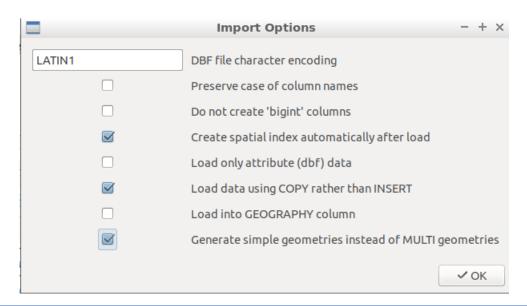
- Crear una base de datos geográfica con PgAdmin
 - Clic derecho en **Databases** y seleccionar **New Database.** Le damos un nombre a la bd (sige) y aceptamos. Se crea una bd vacía.

Clic derecho en la bd sige y seleccionar New Object | New extensión. Seleccionamos de la lista la extensión postgis y aceptamos. En este punto la bd sige ya es una bd geográfica.

		New Extension	- + ×
Definition	SQL		
postgis			▼
		Definition SQL postgis	Definition SQL



- Importar un shapefile con la UI de shp2pgsql
 - Ingresamos los parámetros de conexión a la bd (ej. host=localhost, port=5432, dbname=sige) en View connection details.
 - Agregamos uno o más shapefiles con Add File.
 - Modificamos algunos parámetros en la tabla donde se muestran los shapefiles (ej. SRID=32731)



• En **Options**, modificamos los otros parámetros que sean necesarios. Por ejemplo, si el *encoding* del *dbf* del sh*ap*efile es *LATIN1*, lo escribimos en el campo de texto correspondiente. También se puede indicar que se generen geometrías simples (ej. POLYGON) en lugar de múltiples (ej. MULTIPOLYGON) si representan mejor las geometrías del *shapefile*.

Referencias

Simple Features Standard

http://www.opengeospatial.org/standards/sfs

PostGIS

http://postgis.net/docs/manual-1.5/

