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Abstract. The problem of mining sequential patterns was recently in-
troduced in [3]. We are given a database of sequences, where each se-
quence is a list of transactions ordered by transaction-time, and each
transaction is a set of items. The problem is to discover all sequential
patterns with a user-speci�ed minimum support, where the support of
a pattern is the number of data-sequences that contain the pattern. An
example of a sequential pattern is \5% of customers bought `Foundation'
and `Ringworld' in one transaction, followed by `Second Foundation' in
a later transaction". We generalize the problem as follows. First, we add
time constraints that specify a minimum and/or maximum time period
between adjacent elements in a pattern. Second, we relax the restric-
tion that the items in an element of a sequential pattern must come
from the same transaction, instead allowing the items to be present in
a set of transactions whose transaction-times are within a user-speci�ed
time window. Third, given a user-de�ned taxonomy (is-a hierarchy) on
items, we allow sequential patterns to include items across all levels of
the taxonomy.
We present GSP, a new algorithm that discovers these generalized se-
quential patterns. Empirical evaluation using synthetic and real-life data
indicates that GSP is much faster than the AprioriAll algorithm pre-
sented in [3]. GSP scales linearly with the number of data-sequences,
and has very good scale-up properties with respect to the average data-
sequence size.

1 Introduction

Data mining, also known as knowledge discovery in databases, has been recog-
nized as a promising new area for database research. This area can be de�ned
as e�ciently discovering interesting rules from large databases.

A new data mining problem, discovering sequential patterns, was introduced
in [3]. The input data is a set of sequences, called data-sequences. Each data-
sequence is a list of transactions, where each transaction is a sets of literals, called
items. Typically there is a transaction-time associated with each transaction. A
sequential pattern also consists of a list of sets of items. The problem is to �nd all
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sequential patterns with a user-speci�ed minimum support, where the support of
a sequential pattern is the percentage of data-sequences that contain the pattern.

For example, in the database of a book-club, each data-sequence may corre-
spond to all book selections of a customer, and each transaction to the books
selected by the customer in one order. A sequential pattern might be \5% of
customers bought `Foundation', then `Foundation and Empire', and then `Sec-
ond Foundation' ". The data-sequence corresponding to a customer who bought
some other books in between these books still contains this sequential pattern;
the data-sequence may also have other books in the same transaction as one of
the books in the pattern. Elements of a sequential pattern can be sets of items,
for example, \ `Foundation' and `Ringworld', followed by `Foundation and Em-
pire' and `Ringworld Engineers', followed by `Second Foundation'". However,
all the items in an element of a sequential pattern must be present in a single
transaction for the data-sequence to support the pattern.

This problem was motivated by applications in the retailing industry, includ-
ing attached mailing, add-on sales, and customer satisfaction. But the results
apply to many scienti�c and business domains. For instance, in the medical do-
main, a data-sequence may correspond to the symptoms or diseases of a patient,
with a transaction corresponding to the symptoms exhibited or diseases diag-
nosed during a visit to the doctor. The patterns discovered using this data could
be used in disease research to help identify symptoms/diseases that precede cer-
tain diseases.

However, the above problem de�nition as introduced in [3] has the following
limitations:

1. Absence of time constraints. Users often want to specify maximum
and/or minimum time gaps between adjacent elements of the sequential
pattern. For example, a book club probably does not care if someone bought
\Foundation", followed by \Foundation and Empire" three years later; they
may want to specify that a customer should support a sequential pattern only
if adjacent elements occur within a speci�ed time interval, say three months.
(So for a customer to support this pattern, the customer should have bought
\Foundation and Empire" within three months of buying \Foundation".)

2. Rigid de�nition of a transaction. For many applications, it does not
matter if items in an element of a sequential pattern were present in two
di�erent transactions, as long as the transaction-times of those transactions
are within some small time window. That is, each element of the pattern can
be contained in the union of the items bought in a set of transactions, as long
as the di�erence between the maximum and minimum transaction-times is
less than the size of a sliding time window. For example, if the book-club
speci�es a time window of a week, a customer who ordered the \Foundation"
on Monday, \Ringworld" on Saturday, and then \Foundation and Empire"
and \Ringworld Engineers" in a single order a few weeks later would still
support the pattern \ `Foundation' and `Ringworld', followed by `Foundation
and Empire' and `Ringworld Engineers' ".

3. Absence of taxonomies. Many datasets have a user-de�ned taxonomy
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(is-a hierarchy) over the items in the data, and users want to �nd pat-
terns that include items across di�erent levels of the taxonomy. An example
of a taxonomy is given in Figure 1. With this taxonomy, a customer who
bought \Foundation" followed by \Perfect Spy" would support the patterns
\ `Foundation' followed by `Perfect Spy' ", \ `Asimov' followed by `Perfect
Spy' ", \ `Science Fiction' followed by `Le Carre' ", etc.

In this paper, we generalize the problem de�nition given in [3] to incorporate
time constraints, sliding time windows, and taxonomies in sequential patterns.
We present GSP (Generalized Sequential Patterns), a new algorithm that dis-
covers all such sequential patterns. Empirical evaluation shows that GSP scales
linearly with the number of data-sequences, and has very good scale-up proper-
ties with respect to the number of transactions per data-sequence and number
of items per transaction.

1.1 Related Work

In addition to introducing the problem of sequential patterns, [3] presented three
algorithms for solving this problem, but these algorithms do not handle time
constraints, sliding windows, or taxonomies. Two of these algorithms were de-
signed to �nd only maximal sequential patterns; however, many applications
require all patterns and their supports. The third algorithm, AprioriAll, �nds
all patterns; its performance was better than or comparable to the other two
algorithms. Briey, AprioriAll is a three-phase algorithm. It �rst �nds all item-
sets with minimum support (frequent itemsets), transforms the database so that
each transaction is replaced by the set of all frequent itemsets contained in the
transaction, and then �nds sequential patterns. There are two problems with this
approach. First, it is computationally expensive to do the data transformation
on-the-y during each pass while �nding sequential patterns. The alternative, to
transform the database once and store the transformed database, will be infea-
sible or unrealistic for many applications since it nearly doubles the disk space
requirement which could be prohibitive for large databases. Second, while it is
possible to extend this algorithm to handle time constraints and taxonomies,
it does not appear feasible to incorporate sliding windows. For the cases that
the extended AprioriAll can handle, our empirical evaluation shows that GSP is
upto 20 times faster.

Somewhat related to our work is the problem of mining association rules
[1]. Association rules are rules about what items are bought together within



a transaction, and are thus intra-transaction patterns, unlike inter-transaction
sequential patterns. The problem of �nding association rules when there is a
user-de�ned taxonomy on items has been addressed in [6] [4].

The problem of discovering similarities in a database of genetic sequences,
presented in [8], is relevant. However, the patterns they wish to discover are sub-
sequences made up of consecutive characters separated by a variable number of
noise characters. A sequence in our problem consists of list of sets of characters
(items), rather than being simply a list of characters. In addition, we are inter-
ested in �nding all sequences with minimum support rather than some frequent
patterns.

A problem of discovering frequent episodes in a sequence of events was pre-
sented in [5]. Their patterns are arbitrary DAG (directed acyclic graphs), where
each vertex corresponds to a single event (or item) and an edge from event A
to event B denotes that A occurred before B. They move a time window across
the input sequence, and �nd all patterns that occur in some user-speci�ed per-
centage of windows. Their algorithm is designed for counting the number of
occurrences of a pattern when moving a window across a single sequence, while
we are interested in �nding patterns that occur in many di�erent data-sequences.

1.2 Organization of the Paper

We give a formal description of the problem of mining generalized sequential pat-
terns in Section 2. In Section 3, we describe GSP, an algorithm for �nding such
patterns. We empirically compared the performance of GSP with the AprioriAll
algorithm [3], studied the scale-up properties of GSP, and examined the perfor-
mance impact of time constraints and sliding windows. Due to space limitations,
we could not include the details of these experiments which are reported in [7].
However, we include the gist of the main results in Section 4. We conclude with
a summary in Section 5.

2 Problem Statement

De�nitions Let I = fi1; i2; : : : ; img be a set of literals, called items. Let T
be a directed acyclic graph on the literals. An edge in T represents an is-a

relationship, and T represents a set of taxonomies. If there is an edge in T from
p to c, we call p a parent of c and c a child of p. (p represents a generalization of
c.) We model the taxonomy as a DAG rather than a tree to allow for multiple
taxonomies. We call bx an ancestor of x (and x a descendant of bx) if there is an
edge from bx to x in transitive-closure(T ).

An itemset is a non-empty set of items. A sequence is an ordered list of
itemsets. We denote a sequence s by h s1s2:::sn i, where sj is an itemset. We
also call sj an element of the sequence. We denote an element of a sequence by
(x1; x2; :::; xm), where xj is an item. An item can occur only once in an element
of a sequence, but can occur multiple times in di�erent elements. An itemset is



considered to be a sequence with a single element. We assume without loss of
generality that items in an element of a sequence are in lexicographic order.

A sequence h a1a2:::an i is a subsequence of another sequence h b1b2:::bm i if
there exist integers i1 < i2 < ::: < in such that a1 � bi1 , a2 � bi2 , ..., an � bin .
For example, the sequence h (3) (4 5) (8) i is a subsequence of h (7) (3, 8) (9) (4,
5, 6) (8) i, since (3) � (3, 8), (4, 5) � (4, 5, 6) and (8) � (8). However, the
sequence h (3) (5) i is not a subsequence of h (3, 5) i (and vice versa).

Input We are given a database D of sequences called data-sequences. Each
data-sequence is a list of transactions, ordered by increasing transaction-time.
A transaction has the following �elds: sequence-id, transaction-id, transaction-
time, and the items present in the transaction. While we expect the items in a
transaction to be leaves in T , we do not require this.

For simplicity, we assume that no data-sequence has more than one trans-
action with the same transaction-time, and use the transaction-time as the
transaction-identi�er. We do not consider quantities of items in a transaction.

Support The support count (or simply support) for a sequence is de�ned as the
fraction of total data-sequences that \contain" this sequence. (Although the word
\contains" is not strictly accurate once we incorporate taxonomies, it captures
the spirt of when a data-sequence contributes to the support of a sequential
pattern.) We now de�ne when a data-sequence contains a sequence, starting
with the de�nition as in [3], and then adding taxonomies, sliding windows, and
time constraints :

� as in [3]: In the absence of taxonomies, sliding windows and time con-
straints, a data-sequence contains a sequence s if s is a subsequence of the
data-sequence.

� plus taxonomies: We say that a transaction T contains an item x 2 I if
x is in T or x is an ancestor of some item in T . We say that a transaction
T contains an itemset y � I if T contains every item in y. A data-sequence
d = h d1:::dm i contains a sequence s = h s1:::sn i if there exist integers i1 <
i2 < ::: < in such that s1 is contained in di1 , s2 is contained in di2, ..., sn
is contained in din . If there is no taxonomy, this degenerates into a simple
subsequence test.

� plus sliding windows: The sliding window generalization relaxes the def-
inition of when a data-sequence contributes to the support of a sequence
by allowing a set of transactions to contain an element of a sequence, as
long as the di�erence in transaction-times between the transactions in the
set is less than the user-speci�ed window-size. Formally, a data-sequence
d = h d1:::dm i contains a sequence s = h s1:::sn i if there exist integers
l1 � u1 < l2 � u2 < ::: < ln � un such that

1. si is contained in [ui
k=li

dk, 1 � i � n, and

2. transaction-time(dui)� transaction-time(dli) � window-size, 1 � i � n.



� plus time constraints: Time constraints restrict the time gap between
sets of transactions that contain consecutive elements of the sequence.
Given user-speci�ed window-size, max-gap and min-gap, a data-sequence
d = h d1:::dm i contains a sequence s = h s1:::sn i if there exist integers
l1 � u1 < l2 � u2 < ::: < ln � un such that

1. si is contained in [uik=lidk, 1 � i � n,

2. transaction-time(dui)� transaction-time(dli) � window-size, 1 � i � n,

3. transaction-time(dli ) � transaction-time(dui�1) > min-gap, 2 � i � n,
and

4. transaction-time(dui)� transaction-time(dli�1 ) � max-gap, 2 � i � n.

The �rst two conditions are the same as in the earlier de�nition of when a
data-sequence contains a pattern. The third condition speci�es the minimum
time-gap constraint, and the last the maximum time-gap constraint.
We will refer to transaction-time(dli) as start-time(si), and transaction-
time(dui) as end-time(si). In other-words, start-time(si) and end-time(si)
correspond to the �rst and last transaction-times of the set of transactions
that contain si.

Note that if there is no taxonomy, min-gap = 0, max-gap = 1 and
window-size = 0 we get the notion of sequential patterns as introduced in [3],
where there are no time constraints and items in an element come from a single
transaction.

2.1 Problem De�nition

Given a database D of data-sequences, a taxonomy T , user-speci�ed min-gap and
max-gap time constraints, and a user-speci�ed sliding-window size, the problem
of mining sequential patterns is to �nd all sequences whose support is greater
than the user-speci�ed minimum support. Each such sequence represents a se-

quential pattern, also called a frequent sequence.
Given a frequent sequence s = h s1:::sn i, it is often useful to know the \sup-

port relationship" between the elements of the sequence. That is, what fraction
of the data-sequences that support h s1:::si i support the entire sequence s. Since
h s1:::si i must also be a frequent sequence, this relationship can easily be com-
puted.

2.2 Example

Consider the data-sequences shown in Figure 2. For simplicity, we have assumed
that the transaction-times are integers; they could represent, for instance, the
number of days after January 1, 1995. We have used an abbreviated version of
the taxonomy given in Figure 1. Assume that the minimum support has been
set to 2 data-sequences.

With the [3] problem de�nition, the only 2-element sequential patterns is:

h (Ringworld) (Ringworld Engineers) i



Database D
Sequence-Id Transaction Items

Time
C1 1 Ringworld
C1 2 Foundation
C1 15 Ringworld Engineers, Second Foundation
C2 1 Foundation, Ringworld
C2 20 Foundation and Empire
C2 50 Ringworld Engineers
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Fig. 2. Example

Setting a sliding-window of 7 days adds the pattern

h (Foundation, Ringworld) (Ringworld Engineers) i

since C1 now supports this pattern. (\Foundation" and \Ringworld" are present
within a period of 7 days in data-sequence C1.)

Further setting a max-gap of 30 days results in both the patterns being
dropped, since they are no longer supported by customer C2.

If we only add the taxonomy, but no sliding-window or time constraints, one
of the patterns added is:

h (Foundation) (Asimov) i

Observe that this pattern is not simply a replacement of an item with its ancestor
in an existing pattern.

3 Algorithm \GSP"

The basic structure of the GSP algorithm for �nding sequential patterns is as
follows. The algorithm makes multiple passes over the data. The �rst pass de-
termines the support of each item, that is, the number of data-sequences that
include the item. At the end of the �rst pass, the algorithm knows which items
are frequent, that is, have minimum support. Each such item yields a 1-element
frequent sequence consisting of that item. Each subsequent pass starts with a
seed set: the frequent sequences found in the previous pass. The seed set is used
to generate new potentially frequent sequences, called candidate sequences. Each
candidate sequence has one more item than a seed sequence; so all the candidate
sequences in a pass will have the same number of items. The support for these
candidate sequences is found during the pass over the data. At the end of the



pass, the algorithm determines which of the candidate sequences are actually
frequent. These frequent candidates become the seed for the next pass. The al-
gorithm terminates when there are no frequent sequences at the end of a pass,
or when there are no candidate sequences generated.

We need to specify two key details:

1. Candidate generation: how candidates sequences are generated before the
pass begins. We want to generate as few candidates as possible while main-
taining completeness.

2. Counting candidates: how the support count for the candidate sequences is
determined.

Candidate generation is discussed in Section 3.1, and candidate counting in Sec-
tion 3.2. We incorporate time constraints and sliding windows in this discussion,
but do not consider taxonomies. Extensions required to handle taxonomies are
described in Section 3.3.

Our algorithm is not a main-memory algorithm. If the candidates do not �t
in memory, the algorithm generates only as many candidates as will �t in mem-
ory and the data is scanned to count the support of these candidates. Frequent
sequences resulting from these candidates are written to disk, while those candi-
dates without minimum support are deleted. This procedure is repeated until all
the candidates have been counted. Further details about memory management
can be found in [7].

3.1 Candidate Generation

We refer to a sequence with k items as a k-sequence. (If an item occurs multiple
times in di�erent elements of a sequence, each occurrence contributes to the
value of k.) Let Lk denote the set of all frequent k-sequences, and Ck the set of
candidate k-sequences.

Given Lk�1, the set of all frequent (k�1)-sequences, we want to generate a
superset of the set of all frequent k-sequences. We �rst de�ne the notion of a
contiguous subsequence.

De�nition Given a sequence s = h s1s2:::sn i and a subsequence c, c is a con-

tiguous subsequence of s if any of the following conditions hold:

1. c is derived from s by dropping an item from either s1 or sn.

2. c is derived from s by dropping an item from an element si which has at
least 2 items.

3. c is a contiguous subsequence of c0, and c0 is a contiguous subsequence of s.

For example, consider the sequence s = h (1, 2) (3, 4) (5) (6) i. The sequences
h (2) (3, 4) (5) i, h (1, 2) (3) (5) (6) i and h (3) (5) i are some of the contiguous
subsequences of s. However, h (1, 2) (3, 4) (6) i and h (1) (5) (6) i are not.

We show in [7] that any data-sequence that contains a sequence s will also
contain any contiguous subsequence of s. If there is no max-gap constraint,
the data-sequence will contain all subsequences of s (including non-contiguous
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Fig. 3. Candidate Generation: Example

subsequences). This property provides the basis for the candidate generation
procedure.

Candidates are generated in two steps:

1. Join Phase. We generate candidate sequences by joining Lk�1 with Lk�1.
A sequence s1 joins with s2 if the subsequence obtained by dropping the �rst
item of s1 is the same as the subsequence obtained by dropping the last item
of s2. The candidate sequence generated by joining s1 with s2 is the sequence
s1 extended with the last item in s2. The added item becomes a separate
element if it was a separate element in s2, and part of the last element of
s1 otherwise. When joining L1 with L1, we need to add the item in s2 both
as part of an itemset and as a separate element, since both h (x) (y) i and
h (x y) i give the same sequence h (y) i upon deleting the �rst item. (Observe
that s1 and s2 are contiguous subsequences of the new candidate sequence.)

2. Prune Phase.We delete candidate sequences that have a contiguous (k�1)-
subsequence whose support count is less than the minimum support. If there
is no max-gap constraint, we also delete candidate sequences that have any
subsequence without minimum support.

The above procedure is reminiscent of the candidate generation procedure
for �nding association rules [2]; however details are quite di�erent. A proof of
correctness of this procedure is given in [7].

Example Figure 3 shows L3, and C4 after the join and prune phases. In
the join phase, the sequence h (1, 2) (3) i joins with h (2) (3, 4) i to generate
h (1, 2) (3, 4) i and with h (2) (3) (5) i to generate h (1, 2) (3) (5) i. The remain-
ing sequences do not join with any sequence in L3. For instance, h (1, 2) (4) i does
not join with any sequence since there is no sequence of the form h (2) (4 x) i or
h (2) (4) (x) i. In the prune phase, h (1, 2) (3) (5) i is dropped since its contiguous
subsequence h (1) (3) (5) i is not in L3.

3.2 Counting Candidates

While making a pass, we read one data-sequence at a time and increment the
support count of candidates contained in the data-sequence. Thus, given a set
of candidate sequences C and a data-sequence d, we need to �nd all sequences
in C that are contained in d. We use two techniques to solve this problem:



1. We use a hash-tree data structure to reduce the number of candidates in C

that are checked for a data-sequence.

2. We transform the representation of the data-sequence d so that we can e�-
ciently �nd whether a speci�c candidate is a subsequence of d.

3.2.1 Reducing the number of candidates that need to be checked

We adapt the hash-tree data structure of [2] for this purpose. A node of the
hash-tree either contains a list of sequences (a leaf node) or a hash table (an
interior node). In an interior node, each non-empty bucket of the hash table
points to another node. The root of the hash-tree is de�ned to be at depth 1.
An interior node at depth p points to nodes at depth p+1.

Adding candidate sequences to the hash-tree. When we add a sequence
s, we start from the root and go down the tree until we reach a leaf. At an
interior node at depth p, we decide which branch to follow by applying a hash
function to the pth item of the sequence. Note that we apply the hash function
to the pth item, not the pth element. All nodes are initially created as leaf nodes.
When the number of sequences in a leaf node exceeds a threshold, the leaf node
is converted to an interior node.

Finding the candidates contained in a data-sequence. Starting from the
root node, we �nd all the candidates contained in a data-sequence d. We apply
the following procedure, based on the type of node we are at:

� Interior node, if it is the root: We apply the hash function to each item in
d, and recursively apply this procedure to the node in the corresponding
bucket. For any sequence s contained in the data-sequence d, the �rst item
of s must be in d. By hashing on every item in d, we ensure that we only
ignore sequences that start with an item not in d.

� Interior node, if it is not the root: Assume we reached this node by hash-
ing on an item x whose transaction-time is t. We apply the hash func-
tion to each item in d whose transaction-time is in [t�window-size; t+
max(window-size;max-gap)] and recursively apply this procedure to the
node in the corresponding bucket.
To see why this returns the desired set of candidates, consider a candidate
sequence s with two consecutive items x and y. Let x be contained in a trans-
action in d whose transaction-time is t. For d to contain s, the transaction-
time corresponding to y must be in [t�window-size; t+window-size] if y is
part of the same element as x, or in the interval (t; t+max-gap] if y is part of
the next element. Hence if we reached this node by hashing on an item x with
transaction-time t, y must be contained in a transaction whose transaction-
time is in the interval [t�window-size; t+max(window-size;max-gap)] for the
data-sequence to support the sequence. Thus we only need to apply the hash
function to the items in d whose transaction-times are in the above interval,
and check the corresponding nodes.



� Leaf node: For each sequence s in the leaf, we check whether d contains s,
and add s to the answer set if necessary. (We will discuss below exactly how
to �nd whether d contains a speci�c candidate sequence.) Since we check
each sequence contained in this node, we don't miss any sequences.

3.2.2 Checking whether a data-sequence contains a speci�c sequence

Let d be a data-sequence, and let s = h s1:::sn i be a candidate sequence. We
�rst describe the algorithm for checking if d contains s, assuming existence of
a procedure that �nds the �rst occurrence of an element of s in d after a given
time, and then describe this procedure.

Contains test: The algorithm for checking if the data-sequence d contains a
candidate sequence s alternates between two phases. The algorithm starts in the
forward phase from the �rst element.

� Forward phase: The algorithm �nds successive elements of s in d as long
as the di�erence between the end-time of the element just found and the
start-time of the previous element is less than max-gap. (Recall that for an
element si, start-time(si) and end-time(si) correspond to the �rst and last
transaction-times of the set of transactions that contain si.) If the di�erence
is more than max-gap, the algorithm switches to the backward phase. If an
element is not found, the data-sequence does not contain s.

� Backward phase: The algorithm backtracks and \pulls up" previous ele-
ments. If si is the current element and end-time(si) = t, the algorithm �nds
the �rst set of transactions containing si�1 whose transaction-times are after
t�max-gap. The start-time for si�1 (after si�1 is pulled up) could be after
the end-time for si. Pulling up si�1 may necessitate pulling up si�2 because
the max-gap constraint between si�1 and si�2 may no longer be satis�ed.
The algorithmmoves backwards until either the max-gap constraint between
the element just pulled up and the previous element is satis�ed, or the �rst
element has been pulled up. The algorithm then switches to the forward
phase, �nding elements of s in d starting from the element after the last
element pulled up. If any element cannot be pulled up (that is, there is no
subsequent set of transactions which contain the element), the data-sequence
does not contain s.

This procedure is repeated, switching between the backward and forward phases,
until all the elements are found. Though the algorithm moves back and forth
among the elements of s, it terminates because for any element si, the algo-
rithm always checks whether a later set of transactions contains si; thus the
transaction-times for an element always increase.

Example Consider the data-sequence shown in Figure 4. Consider the case
when max-gap is 30, min-gap is 5, and window-size is 0. For the candidate-
sequence h (1, 2) (3) (4) i, we would �rst �nd (1, 2) at transaction-time 10, and
then �nd (3) at time 45. Since the gap between these two elements (35 days)



Transaction-Time Items
10 1, 2
25 4, 6
45 3
50 1, 2
65 3
90 2, 4
95 6

Fig. 4. Example Data-Sequence

Item Times
1 ! 10 ! 50 ! NULL
2 ! 10 ! 50 ! 90 ! NULL
3 ! 45 ! 65 ! NULL
4 ! 25 ! 90 ! NULL
5 ! NULL
6 ! 25 ! 95 ! NULL
7 ! NULL

Fig. 5. Alternate Representation

is more than max-gap, we \pull up" (1, 2). We search for the �rst occurrence
of (1, 2) after time 15, because end-time((3)) = 45 and max-gap is 30, and so
even if (1, 2) occurs at some time before 15, it still will not satisfy the max-gap
constraint. We �nd (1, 2) at time 50. Since this is the �rst element, we do not
have to check to see if the max-gap constraint between (1, 2) and the element
before that is satis�ed. We now move forward. Since (3) no longer occurs more
than 5 days after (1, 2), we search for the next occurrence of (3) after time 55.
We �nd (3) at time 65. Since the max-gap constraint between (3) and (1, 2) is
satis�ed, we continue to move forward and �nd (4) at time 90. The max-gap
constraint between (4) and (3) is satis�ed; so we are done.

Finding a single element: To describe the procedure for �nding the �rst
occurrence of an element in a data sequence, we �rst discuss how to e�ciently
�nd a single item. A straightforward approach would be to scan consecutive
transactions of the data-sequence until we �nd the item. A faster alternative is
to transform the representation of d as follows.

Create an array that has as many elements as the number of items in the
database. For each item in the data-sequence d, store in this array a list of
transaction-times of the transactions of d that contain the item. To �nd the
�rst occurrence of an item after time t, the procedure simply traverses the
list corresponding to the item till it �nds a transaction-time greater than t.
Assuming that the dataset has 7 items, Figure 5 shows the tranformed repre-
sentation of the data-sequence in Figure 4. This transformation has a one-time
overhead of O(total-number-of-items-in-dataset) over the whole execution (to al-
locate and initialize the array), plus an overhead of O(no-of-items-in-d) for each
data-sequence.

Now, to �nd the �rst occurrence of an element after time t, the algorithm
makes one pass through the items in the element and �nds the �rst transaction-
time greater than t for each item. If the di�erence between the start-time and
end-time is less than or equal to the window-size, we are done. Otherwise, t is
set to the end-time minus the window-size, and the procedure is repeated.2

2 An alternate approach would be to \pull up" previous items as soon as we �nd that
the transaction-time for an item is too high. Such a procedure would be similar to
the algorithm that does the contains test for a sequence.



Example Consider the data-sequence shown in Figure 4. Assume window-size
is set to 7 days, and we have to �nd the �rst occurrence of the element (2, 6)
after time t = 20.We �nd 2 at time 50, and 6 at time 25. Since end-time((2,6))�
start-time((2,6)) > 7, we set t to 43 (= end-time((2,6)) � window-size) and try
again. Item 2 remains at time 50, while item 6 is found at time 95. The time gap
is still greater than the window-size, so we set t to 88, and repeat the procedure.
We now �nd item 2 at time 90, while item 6 remains at time 95. Since the time
gap between 90 and 95 is less than the window size, we are done.

3.3 Taxonomies

The ideas presented in [6] for discovering association rules with taxonomies carry
over to the current problem. The basic approach is to replace each data-sequence
d with an \extended-sequence" d0, where each transaction d0i of d

0 contains the
items in the corresponding transaction di of d, as well as all the ancestors of
each item in di. For example, with the taxonomy shown in Figure 1, a data-
sequence h (Foundation, Ringworld) (Second Foundation) i would be replaced
with the extended-sequence h (Foundation, Ringworld, Asimov, Niven, Science
Fiction) (Second Foundation, Asimov, Science Fiction) i. We now run GSP on
these \extended-sequences".

There are two optimizations that improve performance considerably. The �rst
is to pre-compute the ancestors of each item and drop ancestors which are not
in any of the candidates being counted before making a pass over the data. For
instance, if \Ringworld", \Second Foundation" and \Niven" are not in any of the
candidates being counted in the current pass, we would replace the data-sequence
h (Foundation, Ringworld) (Second Foundation) i with the extended-sequence
h (Foundation, Asimov, Science Fiction) (Asimov, Science Fiction) i (instead of
the extended-sequence h (Foundation, Ringworld, Asimov, Niven, Science Fic-
tion) (Second Foundation, Asimov, Science Fiction) i). The second optimization
is to not count sequential patterns with an element that contains both an item
x and its ancestor y, since the support for that will always be the same as the
support for the sequential pattern without y. (Any transaction that contains x
will also contain y.)

A related issue is that incorporating taxonomies can result in many redun-
dant sequential patterns. For example, let the support of \Asimov" be 20%,
the support of \Foundation" 10% and the support of the pattern h (Asimov)
(Ringworld) i 15%. Given this information, we would \expect" the support of
the pattern h (Foundation) (Ringworld) i to be 7.5%, since half the \Asimov"s
are \Foundation"s. If the actual support of h (Foundation) (Ringworld) i is close
to 7.5%, the pattern can be considered \redundant". The interest measure intro-
duced in [6] also carries over and can be used to prune such redundant patterns.
The essential idea is that given a user-speci�ed interest-level I, we display pat-
terns that have no ancestors, or patterns whose actual support is at least I times
their expected support (based on the support of their ancestors).



4 Performance Evaluation

We compared the performance of GSP to the AprioriAll algorithm given in
[3], using both synthetic and real-life datasets. Due to lack of space, we only
summarize the main results in this section. Details of the experiments, including
performance graphs and detailed explanations of the results, can be found in [7].

Comparison of GSP and AprioriAll. On the synthetic datasets, GSP was
between 30% to 5 times faster than AprioriAll, with the performance gap often
increasing at low levels of minimum support. The results were similar on the
three customer datasets, with GSP running 2 to 20 times faster than AprioriAll.
There are two main reasons why GSP does better than AprioriAll.

1. GSP counts fewer candidates than AprioriAll.

2. AprioriAll has to �rst �nd which frequent itemsets are present in each ele-
ment of a data-sequence during the data transformation, and then �nd which
candidate sequences are present in it. This is typically somewhat slower than
directly �nding the candidate sequences.

Scaleup. GSP scales linearly with the number of data-sequences. For a constant
database size, the execution time of GSP increases with the number of items in
the data-sequence, but only gradually.

E�ects of Time Constraints and Sliding Windows. To see the e�ect of
the sliding window and time constraints on performance, we ran GSP on the
three customer datasets, with and without the min-gap,max-gap, sliding-window
constraints. The sliding-windowwas set to 1 day, so that the e�ect on the number
of sequential patterns would be small. Similarly, the max-gap was set to more
than the total time-span of the transactions in the dataset, and the min-gap was
set to 1 day. We found that the min-gap constraint comes for \free"; there was
no performance degradation due to specifying a min-gap constraint. However,
there was a performance penalty of 5% to 30% for using the max-gap constraint
or sliding windows.

5 Summary

We are given a database of sequences, where each sequence is a list of transac-
tions ordered by transaction-time, and each transaction is a set of items. The
problem of mining sequential patterns introduced in [3] is to discover all sequen-
tial patterns with a user-speci�ed minimum support, where the support of a
pattern is the number of data-sequences that contain the pattern.

We addressed some critical limitations of the earlier work in order to make
sequential patterns useful for real applications. In particular, we generalized the
de�nition of sequential patterns to admit max-gap and min-gap time constraints
between adjacent elements of a sequential pattern. We also relaxed the restriction
that all the items in an element of a sequential pattern must come from the same



transaction, and allowed a user-speci�ed window-size within which the items can
be present. Finally, if a user-de�ned taxonomy over the items in the database is
available, the sequential patterns may include items across di�erent levels of the
taxonomy.

We presented GSP, a new algorithm that discovers these generalized sequen-
tial patterns. It is a complete algorithm in that it guarantees �nding all rules that
have a user-speci�ed minimumsupport. Empirical evaluation using synthetic and
real-life data indicates that GSP is much faster than the AprioriAll algorithm
presented in [3]. GSP scales linearly with the number of data-sequences, and has
very good scale-up properties with respect to the average data-sequence size.

The GSP algorithm has been implemented as part of the Quest data mining
prototype at IBM Research, and is incorporated in the IBM data mining prod-
uct. It runs on several platforms, including AIX and MVS at �les, DB2/CS and
DB2/MVS. It has also been parallelized for the SP/2 shared-nothing multipro-
cessor.
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