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A Survey of Discretization Techniques:
Taxonomy and Empirical Analysis
in Supervised Learning

Salvador Garcia, Julian Luengo, José Antonio Saez, Victoria Lépez, and Francisco Herrera

Abstract—Discretization is an essential preprocessing technique used in many knowledge discovery and data mining tasks. lts main
goal is to transform a set of continuous attributes into discrete ones, by associating categorical values to intervals and thus
transforming quantitative data into qualitative data. In this manner, symbolic data mining algorithms can be applied over continuous
data and the representation of information is simplified, making it more concise and specific. The literature provides numerous
proposals of discretization and some attempts to categorize them into a taxonomy can be found. However, in previous papers, there is
a lack of consensus in the definition of the properties and no formal categorization has been established yet, which may be confusing
for practitioners. Furthermore, only a small set of discretizers have been widely considered, while many other methods have gone
unnoticed. With the intention of alleviating these problems, this paper provides a survey of discretization methods proposed in the
literature from a theoretical and empirical perspective. From the theoretical perspective, we develop a taxonomy based on the main
properties pointed out in previous research, unifying the notation and including all the known methods up to date. Empirically, we
conduct an experimental study in supervised classification involving the most representative and newest discretizers, different types of
classifiers, and a large number of data sets. The results of their performances measured in terms of accuracy, number of intervals, and
inconsistency have been verified by means of nonparametric statistical tests. Additionally, a set of discretizers are highlighted as the
best performing ones.

Index Terms—Discretization, continuous attributes, decision trees, taxonomy, data preprocessing, data mining, classification
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INTRODUCTION

KNOWLEDGE extraction and data mining (DM) are im-
portant methodologies to be performed over different
databases which contain data relevant to a real application
[1], [2]. Both processes often require some previous tasks
such as problem comprehension, data comprehension or
data preprocessing in order to guarantee the successful
application of a DM algorithm to real data [3], [4]. Data
preprocessing [5] is a crucial research topic in the DM field
and it includes several processes of data transformation,
cleaning and data reduction. Discretization, as one of the
basic data reduction techniques, has received increasing
research attention in recent years [6] and has become one of
the preprocessing techniques most broadly used in DM.
The discretization process transforms quantitative data
into qualitative data, that is, numerical attributes into
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discrete or nominal attributes with a finite number of
intervals, obtaining a nonoverlapping partition of a con-
tinuous domain. An association between each interval with
a numerical discrete value is then established. In practice,
discretization can be viewed as a data reduction method
since it maps data from a huge spectrum of numeric values
to a greatly reduced subset of discrete values. Once the
discretization is performed, the data can be treated as
nominal data during any induction or deduction DM
process. Many existing DM algorithms are designed to
only learn in categorical data, using nominal attributes,
while real-world applications usually involve continuous
features. Those numerical features have to be discretized
before using such algorithms.

In supervised learning, and specifically classification, the
topic of this survey, we can define the discretization as
follows: Assuming a data set consisting of N examples and
C target classes, a discretization algorithm would discretize
the continuous attribute A in this data set into m discrete
intervals D = {[dy, d1], (d1,da], ..., (dm-1,dn]}, where dy is
the minimal value, d,, is the maximal value and d; < d;;,
for i =0,1,...,m — 1. Such a discrete result D is called a
discretization scheme on attribute A and P = {d;,ds, ...,
dn—1} is the set of cut points of attribute A.

The necessity of using discretization on data can be
caused by several factors. Many DM algorithms are
primarily oriented to handle nominal attributes [7], [6],
[8], or may even only deal with discrete attributes. For
instance, three of the 10 methods considered as the top 10 in
DM [9] require an embedded or an external discretization
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Fig. 1. Comparison network of discretizers. Later, the methods will be defined in Table 1.

of data: C4.5 [10], Apriori [11] and Naive Bayes [12], [13].
Even with algorithms that are able to deal with continuous
data, learning is less efficient and effective [14], [15], [4].
Other advantages derived from discretization are the
reduction and the simplification of data, making the
learning faster and yielding more accurate, compact and
shorter results; and noise possibly present in the data is
reduced. For both researchers and practitioners, discrete
attributes are easier to understand, use, and explain [6].
Nevertheless, any discretization process generally leads to a
loss of information, making the minimization of such
information loss the main goal of a discretizer.

Obtaining the optimal discretization is NP-complete [15].
A vast number of discretization techniques can be found in
the literature. It is obvious that when dealing with a concrete
problem or data set, the choice of a discretizer will condition
the success of the posterior learning task in accuracy,
simplicity of the model, etc. Different heuristic approaches
have been proposed for discretization, for example, ap-
proaches based on information entropy [16], [7], statistical x*
test [17], [18], likelihood [19], [20], rough sets [21], [22], etc.
Other criteria have been used in order to provide a
classification of discretizers, such as univariate /multivariate,
supervised /unsupervised, top-down/bottoum-up, global/
local, static/dynamic, and more. All these criteria are the
basis of the taxonomies already proposed and they will be
deeply elaborated upon in this paper. The identification of
the best discretizer for each situation is a very difficult task to
carry out, but performing exhaustive experiments consider-
ing a representative set of learners and discretizers could
help to decide the best choice.

Some reviews of discretization techniques can be found
in the literature [7], [6], [23], [8]. However, the character-
istics of the methods are not studied completely, many

discretizers, even classic ones, are not mentioned, and the
notation used for categorization is not unified. For example,
in [7], the static/dynamic distinction is different from that
used in [6] and the global/local property is usually
confused with the univariate/multivariate property [24],
[25], [26]. Subsequent papers include one notation or other,
depending on the initial discretization study referenced by
them: [7], [24] or [6].

In spite of the wealth of literature, and apart from the
absence of a complete categorization of discretizers using a
unified notation, it can be observed that, there are few
attempts to empirically compare them. In this way, the
algorithms proposed are usually compared with a subset of
the complete family of discretizers and, in most of the
studies, no rigorous empirical analysis has been carried out.
Furthermore, many new methods have been proposed in
recent years and they are going unnoticed with respect to the
discretizers reviewed in well-known surveys [7], [6]. Fig. 1
illustrates a comparison network where each node corre-
sponds to a discretization algorithm and a directed vertex
between two nodes indicates that the algorithm of the start
node has been compared with the algorithm of the end node.
The direction of the arrows is always from the newest
method to the oldest, but it does not influence the results.
The size of the node is correlated with the number of input
and output vertices. We can see that most of the discretizers
are represented by small nodes and that the graph is far from
being complete, which has prompted the present paper. The
most compared techniques are EqualWidth, EqualFre-
quency, MDLP [16], ID3 [10], ChiMerge [17], 1R [27], D2
[28], and Chi2 [18].

These reasons motivate the global purpose of this paper,
which can be divided into three main objectives:
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e To propose a complete taxonomy based on the main
properties observed in the discretization methods.
The taxonomy will allow us to characterize their
advantages and drawbacks in order to choose a
discretizer from a theoretical point of view.

e To make an empirical study analyzing the most
representative and newest discretizers in terms of
the number of intervals obtained and inconsistency
level of the data.

e Finally, to relate the best discretizers for a set of
representative DM models using two metrics to
measure the predictive classification success.

The experimental study will include a statistical analysis
based on nonparametric tests. We will conduct experiments
involving a total of 30 discretizers; six classification
methods belonging to lazy, rules, decision trees, and
Bayesian learning families; and 40 data sets. The experi-
mental evaluation does not correspond to an exhaustive
search for the best parameters for each discretizer, given the
data at hand. Then, its main focus is to properly relate a
subset of best performing discretizers to each classic
classifier using a general configuration for them.

This paper is organized as follows: The related and
advanced work on discretization is provided in Section 2.
Section 3 presents the discretizers reviewed, their proper-
ties, and the taxonomy proposed. Section 4 describes the
experimental framework, examines the results obtained in
the empirical study and presents a discussion of them.
Section 5 concludes the paper. Finally, we must point out
that the paper has an associated web site http://sci2s.
ugr.es/discretization which collects additional information
regarding discretizers involved in the experiments such as
implementations and detailed experimental results.

2 RELATED AND ADVANCED WORK

Research in improving and analyzing discretization is
common and in high demand currently. Discretization is a
promising technique to obtain the hoped results, depending
on the DM task, which justifies its relationship to other
methods and problems. This section provides a brief
summary of topics closely related to discretization from a
theoretical and practical point of view and describes other
works and future trends which have been studied in the last
few years.

e  Discretization specific analysis: Susmaga proposed an
analysis method for discretizers based on binariza-
tion of continuous attributes and rough sets mea-
sures [29]. He emphasized that his analysis method is
useful for detecting redundancy in discretization and
the set of cut points which can be removed without
decreasing the performance. Also, it can be applied
to improve existing discretization approaches.

e  Optimal multisplitting: Elomaa and Rousu character-
ized some fundamental properties for using some
classic evaluation functions in supervised univariate
discretization. They analyzed entropy, information
gain, gain ratio, training set error, gini index, and
normalized distance measure, concluding that they
are suitable for use in the optimal multisplitting of

an attribute [30]. They also developed an optimal
algorithm for performing this multisplitting process
and devised two techniques [31], [32] to speed it up.

e  Discretization of continuous labels: Two possible
approaches have been used in the conversion of a
continuous supervised learning (regression pro-
blem) into a nominal supervised learning (classifica-
tion problem). The first one is simply to use
regression tree algorithms, such as CART [33].
The second consists of applying discretization to
the output attribute, either statically [34] or in a
dynamic fashion [35].

e  Fuzzy discretization: Extensive research has been
carried out around the definition of linguistic terms
that divide the domain attribute into fuzzy regions
[36]. Fuzzy discretization is characterized by mem-
bership value, group or interval number, and affinity
corresponding to an attribute value, unlike crisp
discretization which only considers the interval
number [37].

e  Cost-sensitive discretization: The objective of cost-
based discretization is to take into account the cost
of making errors instead of just minimizing the total
sum of errors [38]. It is related to problems of
imbalanced or cost-sensitive classification [39], [40].

e  Semi-supervised discretization: A first attempt to
discretize data in semi-supervised classification
problems has been devised in [41], showing that it
is asymptotically equivalent to the supervised
approach.

The research mentioned in this section is out of the scope
of this survey. We point out that the main objective of this
paper is to give a wide overview of the discretization
methods found in the literature and to conduct an exhaustive
experimental comparison of the most relevant discretizers
without considering external and advanced factors such as
those mentioned above or derived problems from classic
supervised classification.

3 DISCRETIZATION: BACKGROUND AND
TECHNIQUES

This section presents a taxonomy of discretization methods
and the criteria used for building it. First, in Section 3.1, the
main characteristics which will define the categories of
the taxonomy will be outlined. Then, in Section 3.2, we
enumerate the discretization methods proposed in the
literature we will consider by using their complete and
abbreviated name together with the associated reference.
Finally, we present the taxonomy.

3.1 Common Properties of Discretization Methods

This section provides a framework for the discussion of the
discretizers presented in the next section. The issues
discussed include several properties involved in the
structure of the taxonomy, since they are exclusive to the
operation of the discretizer. Other, less critical issues such
as parametric properties or stopping conditions will be
presented although they are not involved in the taxonomy.
Finally, some criteria will also be pointed out in order to
compare discretization methods.
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3.1.1 Main Characteristics of a Discretizer

In [6], [7], [8], various axes have been described in order to
make a categorization of discretization methods. We
review and explain them in this section, emphasizing the
main aspects and relations found among them and
unifying the notation. The taxonomy proposed will be
based on these characteristics:

Static versus Dynamic: This characteristic refers to the
moment and independence which the discretizer
operates in relation with the learner. A dynamic
discretizer acts when the learner is building the
model, thus they can only access partial information
(local property, see later) embedded in the learner
itself, yielding compact and accurate results in
conjuntion with the associated learner. Otherwise,
a static discretizer proceeds prior to the learning task
and it is independent from the learning algorithm
[6]. Almost all known discretizers are static, due to
the fact that most of the dynamic discretizers are
really subparts or stages of DM algorithms when
dealing with numerical data [42]. Some examples of
well-known dynamic techniques are ID3 discretizer
[10] and ITFP [43].

Univariate versus Multivariate: Multivariate techni-
ques, also known as 2D discretization [44], simulta-
neously consider all attributes to define the initial set
of cut points or to decide the best cut point
altogether. They can also discretize one attribute at
a time when studying the interactions with other
attributes, exploiting high order relationships. By
contrast, univariate discretizers only work with a
single attribute at a time, once an order among
attributes has been established, and the resulting
discretization scheme in each attribute remains
unchanged in later stages. Interest has recently arisen
in developing multivariate discretizers since they are
very influential in deductive learning [45], [46] and
in complex classification problems where high
interactions among multiple attributes exist, which
univariate discretizers might obviate [47], [48].
Supervised versus Unsupervised: Unsupervised discre-
tizers do not consider the class label whereas
supervised ones do. The manner in which the latter
consider the class attribute depends on the interac-
tion between input attributes and class labels, and
the heuristic measures used to determine the best cut
points (entropy, interdependence, etc.). Most dis-
cretizers proposed in the literature are supervised
and theoretically, using class information, should
automatically determine the best number of intervals
for each attribute. If a discretizer is unsupervised, it
does not mean that it cannot be applied over
supervised tasks. However, a supervised discretizer
can only be applied over supervised DM problems.
Representative unsupervised discretizers are Equal-
Width and EqualFrequency [49], PKID and FFD [12],
and MVD [45].

Splitting versus Merging: This refers to the procedure
used to create or define new intervals. Splitting
methods establish a cut point among all the possible

boundary points and divide the domain into two
intervals. By contrast, merging methods start with a
predefined partition and remove a candidate cut
point to mix both adjacent intervals. These proper-
ties are highly related to Top-Down and Bottom-up,
respectively, (explained in the next section). The idea
behind them is very similar, except that top-down or
bottom-up discretizers assume that the process is
incremental (described later), according to a hier-
archical discretization construction. In fact, there can
be discretizers whose operation is based on splitting
or merging more than one interval at a time [50],
[51]. Also, some discretizers can be considered hybrid
due to the fact that they can alternate splits with
merges in running time [52], [53].

Global versus Local: To make a decision, a discretizer
can either require all available data in the attribute or
use only partial information.. A discretizer is said to
be local when it only makes the partition decision
based on local information. Examples of widely used
local techniques are MDLP [16] and ID3 [10]. Few
discretizers are local, except some based on top-down
partition and all the dynamic techniques. In a top-
down process, some algorithms follow the divide-
and-conquer scheme and when a split is found, the
data are recursively divided, restricting access to
partial data. Regarding dynamic discretizers, they
find the cut points in internal operations of a DM
algorithm, so they never gain access to the full data set.
Direct versus Incremental: Direct discretizers divide
the range into k intervals simultaneously, requiring
an additional criterion to determine the value of k.
They do not only include one-step discretization
methods, but also discretizers which perform sev-
eral stages in their operation, selecting more than a
single cut point at every step. By contrast, incre-
mental methods begin with a simple discretization
and pass through an improvement process, requir-
ing an additional criterion to know when to stop it.
At each step, they find the best candidate boundary
to be used as a cut point and afterwards the rest of
the decisions are made accordingly. Incremental
discretizers are also known as hierarchical discreti-
zers [23]. Both types of discretizers are widespread
in the literature, although there is usually a more
defined relationship between incremental and su-
pervised ones.

Evaluation measure: This is the metric used by the
discretizer to compare two candidate schemes and
decide which is more suitable to be used. We
consider five main families of evaluation measures:

- Information: This family includes entropy as the
most used evaluation measure in discretization
(MDLP [16], ID3 [10], FUSINTER [54]) and other
derived information theory measures such as
the Gini index [55].

- Statistical: Statistical evaluation involves the
measurement of dependency/correlation
among attributes (Zeta [56], ChiMerge [17],
Chi2 [18]), probability and Bayesian properties
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[19] (MODL [20]), interdependency [57], con-
tingency coefficient [58], etc.

- Rough sets: This group is composed of methods
that evaluate the discretization schemes by
using rough set measures and properties [21],
such as lower and upper approximations, class
separability, etc.

- Wrapper: This collection comprises methods that
rely on the error provided by a classifier that is
run for each evaluation. The classifier can be a
very simple one, such as a majority class voting
classifier (Valley [59]) or general classifiers such
as Naive Bayes (NBlterative [60]).

- Binning: This category refers to the absence of an
evaluation measure. It is the simplest method to
discretize an attribute by creating a specified
number of bins. Each bin is defined a priori and
allocates a specified number of values per
attribute. Widely used binning methods are
EqualWidth and EqualFrequency.

3.1.2 Other Properties

We can remark other properties related to discretization.
They also influence the operation and results obtained by a
discretizer, but to a lower degree than the characteristics
explained above. Furthermore, some of them present a large
variety of categorizations and may harm the interpretability
of the taxonomy.

o  Parametric versus Nonparametric: This property refers
to the automatic determination of the number of
intervals for each attribute by the discretizer. A
nonparametric discretizer computes the appropriate
number of intervals for each attribute considering a
tradeoff between the loss of information or consis-
tency and obtaining the lowest number of them. A
parametric discretizer requires a maximum number
of intervals desired to be fixed by the user. Examples
of nonparametric discretizers are MDLP [16] and
CAIM [57]. Examples of parametric ones are
ChiMerge [17] and CADD [52].

e  Top-Down versus Bottom Up: This property is only
observed in incremental discretizers. Top-Down
methods begin with an empty discretization. Its
improvement process is simply to add a new
cutpoint to the discretization. On the other hand,
Bottom-Up methods begin with a discretization that
contains all the possible cutpoints. Its improvement
process consists of iteratively merging two intervals,
removing a cut point. A classic Top-Down method is
MDLP [16] and a well-known Bottom-Up method is
ChiMerge [17].

e  Stopping condition: This is related to the mechanism
used to stop the discretization process and must be
specified in nonparametric approaches. Well-known
stopping criteria are the Minimum Description
Length measure [16], confidence thresholds [17], or
inconsistency ratios [24].

e Disjoint versus Nondisjoint: Disjoint methods discre-
tize the value range of the attribute into disassociated
intervals, without overlapping, whereas nondisjoint

methods dicsretize the value range into intervals that
can overlap. The methods reviewed in this paper are
disjoint, while fuzzy discretization is usually non-
disjoint [36].

e  Ordinal versus Nominal: Ordinal discretization trans-
forms quantitative data intro ordinal qualitative data
whereas nominal discretization transforms it into
nominal qualitative data, discarding the information
about order. Ordinal discretizers are less common,
not usually considered classic discretizers [113].

3.1.3 Criteria to Compare Discretization Methods
When comparing discretization methods, there are a
number of criteria that can be used to evaluate the relative
strengths and weaknesses of each algorithm. These include
the number of intervals, inconsistency, predictive classifica-
tion rate, and time requirements

e  Number of intervals: A desirable feature for practical
discretization is that discretized attributes have as few
values as possible, since a large number of intervals
may make the learning slow and ineffective. [28].

e Inconsistency: A supervision-based measure used to
compute the number of unavoidable errors pro-
duced in the data set. An unavoidable error is one
associated with two examples with the same values
for input attributes and different class labels. In
general, data sets with continuous attributes are
consistent, but when a discretization scheme is
applied over the data, an inconsistent data set may
be obtained. The desired inconsistency level that a
discretizer should obtain is 0.0.

e  Predictive classification rate: A successful algorithm
will often be able to discretize the training set
without significantly reducing the prediction cap-
ability of learners in test data which are prepared to
treat numerical data.

o Time requirements: A static discretization process is
carried out just once on a training set, so it does not
seem to be a very important evaluation method.
However, if the discretization phase takes too long it
can become impractical for real applications. In
dynamic discretization, the operation is repeated
many times as the learner requires, so it should be
performed efficiently.

3.2 Discretization Methods and Taxonomy

At the time of writing, more than 80 discretization methods
have been proposed in the literature. This section is devoted
to enumerating and designating them according to a
standard followed in this paper. We have used 30 discretizers
in the experimental study, those that we have identified as
the most relevant ones. For more details on their descriptions,
the reader can visit the URL associated to the KEEL project.'
Additionally, implementations of these algorithms in Java
can be found in KEEL software [114], [115].

Table 1 presents an enumeration of discretizers reviewed
in this paper. The complete name, abbreviation, and
reference are provided for each one. This paper does not
collect the descriptions of the discretizers due to space

1. http:/ /www keel.es.
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TABLE 1
Discretizers
Complete name Abbr. name ‘ Reference H Complete name Abbr. name ‘ Reference ‘
Equal Width Discretizer EqualWidth [61] Self Organizing Map Discretizer SOM-Disc [62]
Equal Frequency Discretizer EqualFrequency [61] Optimal Class-Dependent Discretizer OCDD [26]
No name specified Chou91 [63] No name specified Butterworth04 [64]
Adaptive Quantizer AQ [65] No name specified Zhang04 [22]
Discretizer 2 D2 [28] Khiops Khiops [66]
ChiMerge ChiMerge [17] Class-Attribute Interdependence Maximization CAIM [57]
One-Rule Discretizer 1R [27] Extended Chi2 Extended Chi2 [67]
Iterative Dichotomizer 3 Discretizer 1D3 [10] Heterogeneity Discretizer Heter-Disc [68]
Minimum Description Length Principle MDLP [16] Unsupervised Correlation Preserving Discretizer ucCrD [44]
Valley Valley [59], [69] No name specified Multi-MDL [47]
Class-Attribute Dependent Discretizer CADD [52] Difference Similitude Set Theory Discretizer DSST [70]
ReliefF Discretizer ReliefF [71] Multivariate Interdependent Discretizer MIDCA [72]
Class-driven Statistical Discretizer StatDisc [14] MODL MODL [20]
No name specified NBlterative [60] Information Theoretic Fuzzy Partitioning ITFP [43]
Boolean Reasoning Discretizer BRDisc [21] No name specified Wul6 [73]
Minimum Description Length Discretizer MDL-Disc [74] Fast Independent Component Analysis FastICA [75]
Bayesian Discretizer Bayesian [19] Linear Program Relaxation LP-Relaxation [76]
No name specified Friedman96 [77] Hellinger-Based Discretizer HellingerBD [50]
Cluster Analysis Discretizer ClusterAnalysis [24] Distribution Index-Based Discretizer DIBD [78]
Zeta Zeta [56] Wrapper Estimation of Distribution Algorithm WEDA [53]
Distance-based Discretizer Distance [79] Clustering + Rought Sets Discretizer Cluster-RS-Disc [25]
Finite Mixture Model Discretizer FMM [80] Interval Distance Discretizer IDD [51]
Chi2 Chi2 [18] Class-Attribute Contingency Coefficient CACC [58]
No name specified FischerExt [81] Rectified Chi2 Rectified Chi2 [82]
Contextual Merit Numerical Feature Discretizer CM-NFD [83] Ameva Ameva [84]
Concurrent Merger ConMerge [85] Unification Unification [55]
Knowledge EXplorer Discretizer KEX-Disc [86] Multiple Scanning Discretizer MultipleScan [87]
LVQ-based Discretization LVQ-Disc [88] Optimal Flexible Frequency Discretizer OFFD [89]
No name specified Multi-Bayesian [90] Proportional Discretizer PKID [12]
No name specified A* [91] Fixed Frequency Discretizer FFD [12]
FUSINTER FUSINTER [54] Discretization Class intervals Reduce DCR [92]
Cluster-based Discretizer Cluster-Disc [93] MVD-CG MVD-CG [94]
Entropy-based Discretization According to EDA-DB [95] Approximate Equal Frequency Discretizer AEFD [96]
Distribution of Boundary points
No name specified Clarke00 [97] No name specified Jiang09 [96]
Relative Unsupervised Discretizer RUDE [98] Random Forest Discretizer RFDisc [99]
Multivariate Discretization MVD [45] Supervised Multivariate Discretizer SMD [100]
Modified Learning from Examples Module MODLEM [101] Clustering Based Discretization CBD [46]
Modified Chi2 Modified Chi2 [102] Improved MDLP Improved MDLP [103]
HyperCluster Finder HCF [104] Imfor-Disc Imfor-Disc [105]
Entropy-based Discretization with EDIC [49] Clustering ME-MDL Cluster ME-MDL [106]
Inconsistency Checking
Unparametrized Supervised Discretizer UsSD [107] Effective Bottom-up Discretizer EBDA [108]
Rough Set Discretizer RS-Disc [109] Contextual Discretizer Contextual-Disc [110]
Rough Set Genetic Algorithm Discretizer RS-GA-Disc [111] Hypercube Division Discretizer HDD [48]
Genetic Algorithm Discretizer GA-Disc [112]

restrictions. Instead, we recommend that readers consult
the original references to understand the complete opera-
tion of the discretizers of interest. Discretizers used in the
experimental study are depicted in bold. The ID3 discretizer
used in the study is a static version of the well-known
discretizer embedded in C4.5.

The properties studied above can be used to categorize the
discretizers proposed in the literature. The seven character-
istics studied allows us to present the taxonomy of discretiza-
tion methods following an established order. All techniques
enumerated in Table 1 are collected in the taxonomy drawn in
Fig. 2. It illustrates the categorization following a hierarchy
based on this order: static/dynamic, univariate/multivari-
ate, supervised/unsupervised, splitting/merging/hybrid,
global/local, direct/incremental, and evaluation measure.
The rationale behind the choice of this order is to achieve a
clear representation of the taxonomy.

The proposed taxonomy assists us in the organization of
many discretization methods so that we can classify them
into categories and analyze their behavior. Also, we can
highlight other aspects in which the taxonomy can be
useful. For example, it provides a snapshot of existing
methods and relations or similarities among them. It also
depicts the size of the families, the work done in each one,
and what currently is missing. Finally, it provides a general
overview on the state-of-the art in discretization for
researchers/practitioners who are starting in this topic or
need to discretize data in real applications.

4 EXPERIMENTAL FRAMEWORK, EMPIRICAL STUDY,
AND ANALYSIS OF RESULTS
This section presents the experimental framework followed

in this paper, together with the results collected and
discussions on them. Section 4.1 will describe the complete
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Fig. 2. Discretization taxonomy.

experimental set up. Then, we offer the study and analysis
of the results obtained over the data sets used in Section 4.2.

4.1 Experimental Set Up

The goal of this section is to show all the properties and
issues related to the experimental study. We specify the
data sets, validation procedure, classifiers used, parameters
of the classifiers and discretizers, and performance metrics.
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The statistical tests used to contrast the results are also
briefly commented at the end of this section.

The performance of discretization algorithms is analyzed
by using 40 data sets taken from the UCI Machine Learning
Database Repository [116] and KEEL data set repository
[115].> The main characteristics of these data sets are

2. http:/ /www keel.es/datasets.php.
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TABLE 2
Summary Description for Classification Data Sets
Data Set #Ex. #Atts. #Num. #Nom. #CI.
abalone 4174 8 7 1 28
appendicitis 106 7 7 0 2
australian 690 14 8 6 2
autos 205 25 15 10 6
balance 625 4 4 0 3
banana 5,300 2 2 0 2
bands 539 19 19 0 2
bupa 345 6 6 0 2
cleveland 303 13 13 0 5
contraceptive 1,473 9 0 3
crx 690 15 6 9 2
dermatology 366 34 34 0 6
ecoli 336 7 7 0 8
flare-solar 1066 9 9 0 2
glass 214 9 9 0 7
haberman 306 3 3 0 2
hayes 160 4 4 0 3
heart 270 13 13 0 2
hepatitis 155 19 19 0 2
iris 150 4 4 0 3
mammographic 961 5 5 0 2
movement 360 90 90 0 15
newthyroid 215 5 5 0 3
pageblocks 5472 10 10 0 5
penbased 10,992 16 16 0 10
phoneme 5,404 5 5 0 2
pima 768 8 8 0 2
saheart 462 9 8 1 2
satimage 6,435 36 36 0 7
segment 2,310 19 19 0 7
sonar 208 60 60 0 2
spambase 4,597 57 57 0 2
specfheart 267 44 44 0 2
tae 151 5 5 0 3
titanic 2,201 3 3 0 2
vehicle 846 18 18 0 4
vowel 990 13 13 0 11
wine 178 13 13 0 3
wisconsin 699 9 9 0 2
yeast 1484 8 8 0 10

summarized in Table 2. For each data set, the name, number
of examples, number of attributes (numeric and nominal),
and number of classes are defined.

In this study, six classifiers have been used in order to
find differences in performance among the discretizers. The
classifiers are:

e (4.5 [10]: A well-known decision tree, considered
one of the top 10 DM algorithms [9].

e  DataSqueezer [117]: This learner belongs to the family
of inductive rule extraction. In spite of its relative
simplicity, DataSqueezer is a very effective learner.
The rules generated by the algorithm are compact
and comprehensible, but accuracy is to some extent
degraded in order to achieve this goal.

e KNN: One of the simplest and most effective
methods based on similarities among a set of objects.
It is also considered one of the top 10 DM algorithms
[9] and it can handle nominal attributes using proper

TABLE 3

Parameters of the Discretizers and Classifiers
Method Parameters
C4.5 pruned tree, confidence = 0.25, 2 examples per leaf
DataSqueezer pruning and generalization threshold = 0.05
KNN K =3, HVDM distance
PUBLIC 25 nodes between prune
Ripper k=2, grow set = 0.66

1R 6 examples of the same class per interval

CADD confidence threshold = 0.01

Chi2 inconsistency threshold = 0.02

ChiMerge confidence threshold = 0.05

FDD frequency size = 30

FUSINTER a=0975 =1

HDD coefficient = 0.8

IDD neighborhood = 3, windows size = 3, nominal distance
MODL optimized process type

UCPD intervals = [3, 6], KNN map type, neighborhood = 6,

minimum support = 25, merged threshold = 0.5,

scaling factor = 0.5, use discrete

distance functions such as HVDM [118]. It belongs to
the lazy learning family [119], [120].

e Naive Bayes: This is another of the top 10 DM
algorithms [9]. Its aim is to construct a rule which
will allow us to assign future objects to a class,
assuming independence of attributes when prob-
abilities are established.

e PUBLIC [121]: It is an advanced decision tree that
integrates the pruning phase with the building stage
of the tree in order to avoid the expansion of
branches that would be pruned afterwards.

e  Ripper [122]: This is a widely used rule induction
method based on a separate and conquer strategy. It
incorporates diverse mechanisms to avoid over-
fitting and to handle numeric and nominal attributes
simultaneously. The models obtained are in the form
of decision lists.

The data sets considered are partitioned using the 10-
fold cross-validation (10-fcv) procedure. The parameters of
the discretizers and classifiers are those recommended by
their respective authors. They are specified in Table 3 for
those methods which require them. We assume that the
choice of the values of parameters is optimally chosen by
their own authors. Nevertheless, in discretizers that require
the input of the number of intervals as a parameter, we use
a rule of thumb which is dependent on the number of
instances in the data set. It consists in dividing the number
of instances by 100 and taking the maximum value between
this result and the number of classes. All discretizers and
classifiers are run one time in each partition because they
are nonstochastic.

Two performance measures are widely used because of
their simplicity and successful application when multiclass
classification problems are dealt. We refer to accuracy and
Cohen’s kappa [123] measures, which will be adopted to
measure the efficacy discretizers in terms of the general-
ization classification rate.

e  Accuracy: is the number of successful hits relative to
the total number of classifications. It has been by far
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the most commonly used metric for assessing the
performance of classifiers for years [2], [124].

o  Cohen’s kappa: is an alternative to accuracy, a method,
known for decades, which compensates for random
hits [123]. Its original purpose was to measure the
degree of agreement or disagreement between two
people observing the same phenomenon. Cohen’s
kappa can be adapted to classification tasks and its
use is recommended because it takes random
successes into consideration as a standard, in the
same way as the AUC measure [125].

An easy way of computing Cohen’s kappa is to
make use of the resulting confusion matrix in a
classification task. Specifically, the Cohen’s kappa
measure can be obtained using the following
expression:

C C
NZi:l Yii — Zi:l YiY.i
C
N? — Zi:l YiY.i

where y;; is the cell count in the main diagonal of the
resulting confusion matrix, N is the number of
examples, C is the number of class values, and y;,y;.
are the columns’ and rows’ total counts of the
confusion matrix, respectively. Cohen’s kappa
ranges from —1 (total disagreement) through 0
(random classification) to 1 (perfect agreement).
Being a scalar, it is less expressive than ROC curves
when applied to binary classification. However, for
multiclass problems, kappa is a very useful, yet
simple, meter for measuring the accuracy of the
classifier while compensating for random successes.

kappa =

)

The empirical study involves 30 discretization methods
from those listed in Table 1. We want to outline that the
implementations are only based on the descriptions and
specifications given by the respective authors in their
papers.

Statistical analysis will be carried out by means of
nonparametric statistical tests. In [126], [127], [128], authors
recommend a set of simple, safe, and robust nonparametric
tests for statistical comparisons of classifiers. The Wilcoxon
test [129] will be used in order to conduct pairwise
comparisons among all discretizers considered in the study.
More information about these statistical procedures speci-
fically designed for use in the field of Machine Learning can
be found at the SCI2S thematic public website on Statistical
Inference in Computational Intelligence and Data Mining.>

4.2 Analysis and Empirical Results

Table 4 presents the average results corresponding to the
number of intervals and inconsistency rate in training and
test data by all the discretizers over the 40 data sets. Similarly,
Tables 5 and 6 collect the average results associated with
accuracy and kappa measures for each classifier considered.
For each metric, the discretizers are ordered from the best to
the worst. In Tables 5 and 6, we highlight those discretizers
whose performance is within 5 percent of the range between
the best and the worst method in each measure, that is,
valueyes; — (0.05 - (valuepesy — valueyorst)). They should be

3. http://sci2s.ugr.es/sicidm/.

TABLE 4
Average Results Collected from Intrinsic Properties of the
Discretizers: Number of Intervals Obtained and Inconsistency
Rate in Training and Test Data

Number Int. Incons. Train Incons. Tst

Heter-Disc 8.3125 D3 0.0504 D3 0.0349
MVD 18.4575 PKID 0.0581 PKID 0.0358
Distance 23.2125 Modified Chi2 0.0693 FFD 0.0377
uCrD 35.0225 FFD 0.0693 HDD 0.0405
MDLP 36.6600 HDD 0.0755 Modified Chi2 0.0409
Chi2 46.6350 UsD 0.0874 UsD 0.0512
FUSINTER 59.9850 ClusterAnalysis | 0.0958 Khiops 0.0599
DIBD 64.4025 Khiops 0.1157 ClusterAnalysis 0.0623
CADD 67.7100 EqualWidth 0.1222 EqualWidth 0.0627
ChiMerge 69.5625 EqualFrequency | 0.1355 EqualFrequency | 0.0652
CAIM 72.5125 Chi2 0.1360 Chi2 0.0653
Zeta 75.9325 Bayesian 0.1642 FUSINTER 0.0854
Ameva 78.8425 MODL 0.1716 MODL 0.0970
Khiops 130.3000 FUSINTER 0.1735 HellingerBD 0.1054
IR 162.1925 HellingerBD 0.1975 Bayesian 0.1139
EqualWidth 171.7200 IDD 0.2061 ucrD 0.1383
Extended Chi2 205.2650 ChiMerge 0.2504 ChiMerge 0.1432
HellingerBD 244.6925 UCPD 0.2605 IDD 0.1570
EqualFrequency 267.7250 CAIM 0.2810 CAIM 0.1589
PKID 295.9550 Extended Chi2 0.3048 Extended Chi2 0.1762
MODL 335.8700 Ameva 0.3050 Ameva 0.1932
FFD 342.6050 1R 0.3112 CACC 0.2047
IDD 349.1250 CACC 0.3118 IR 0.2441
Modified Chi2 353.6000 MDLP 0.3783 Zeta 0.2454
CACC 505.5775 Zeta 0.3913 MDLP 0.2501
ClusterAnalysis | 1116.1800 MVD 0.4237 DIBD 0.2757
UusD 1276.1775 Distance 0.4274 Distance 0.2987
Bayesian 1336.0175 DIBD 0.4367 MVD 0.3171
1D3 1858.3000 CADD 0.6532 CADD 0.5688
HDD 2202.5275 Heter-Disc 0.6749 Heter-Disc 0.5708

considered as outstanding methods in each category,
regardless of their specific position in the table.

All detailed results for each data set, discretizer and
classifier (including average and standard deviations), can
be found at the URL http://sci2s.ugr.es/discretization. In
the interest of compactness, we will include and analyze
summarized results in the paper.

The Wilcoxon test [129], [126], [127] is adopted in this
study considering a level of significance equal to o = 0.05.
Tables 7, 8, and 9 show a summary of all possible
comparisons involved in the Wilcoxon test among all
discretizers and measures, for number of intervals and
inconsistency rate, accuracy and kappa, respectively.
Again, the individual comparisons between all possible
discretizers are exhibited in the aforementioned URL
mentioned above, where a detailed report of statistical
results can be found for each measure and classifier. The
tables in this paper (Tables 7, 8, and 9) summarize, for each
method in the rows, the number of discretizers out-
performed by using the Wilcoxon test under the column
represented by the “+” symbol. The column with the “+”
symbol indicates the number of wins and ties obtained by
the method in the row. The maximum value for each
column is highlighted by a shaded cell.

Finally, to illustrate the magnitude of the differences in
average results and the relationship between the number of
intervals yielded by each discretizer and the accuracy
obtained for each classifier, Fig. 3 depicts a confrontation
between the average number of intervals and accuracy
reflected by an X-Y axis graphic, for each classifier. It also
helps us to see the differences in the behavior of discretiza-
tion when it is used over distinct classifiers.
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TABLE 5
Average Results of Accuracy Considering the Six Classifiers
C4.5 DataSqueezer KNN Naive Bayes PUBLIC Ripper
FUSINTER 0.7588 Distance 0.5666 PKID 0.7699 PKID 0.7587 FUSINTER 0.7448 Modified Chi2 0.7241
ChiMerge 0.7494 CAIM 0.5547 FFD 0.7594 Modified Chi2 0.7578 CAIM 0.7420 Chi2 0.7196
Zeta 0.7488 Ameva 0.5518 Modified Chi2 0.7573 FUSINTER 0.7576 ChiMerge 0.7390 PKID 0.7097
CAIM 0.7484 MDLP 0.5475 EqualFrequency 0.7557 ChiMerge 0.7543 MDLP 0.7334 MODL 0.7089
UCPD 0.7447 Zeta 0.5475 Khiops 0.7512 FFD 0.7535 Distance 0.7305 FUSINTER 0.7078
Distance 0.7446 ChiMerge 0.5472 EqualWidth 0.7472 CAIM 0.7535 Zeta 0.7301 Khiops 0.6999
MDLP 0.7444 CACC 0.5430 FUSINTER 0.7440 EqualWidth 0.7517 Chi2 0.7278 FFD 0.6970
Chi2 0.7442 Heter-Disc 0.5374 ChiMerge 0.7389 Zeta 0.7507 UCPD 0.7254 EqualWidth 0.6899
Modified Chi2 0.7396 DIBD 0.5322 CAIM 0.7381 EqualFrequency 0.7491 Modified Chi2 0.7250 EqualFrequency 0.6890
Ameva 0.7351 UCPD 0.5172 MODL 0.7372 MODL 0.7479 Khiops 0.7200 CAIM 0.6870
Khiops 0.7312 MVD 0.5147 HellingerBD 0.7327 Chi2 0.7476 Ameva 0.7168 HellingerBD 0.6816
MODL 0.7310 FUSINTER 0.5126 Chi2 0.7267 Khiops 0.7455 HellingerBD 0.7119 UsD 0.6807
EqualFrequency | 0.7304 Bayesian 0.4915 usDb 0.7228 usDh 0.7428 EqualFrequency | 0.7110 ChiMerge 0.6804
EqualWidth 0.7252 Extended Chi2 0.4913 Ameva 0.7220 1D3 0.7381 MODL 0.7103 1D3 0.6787
HellingerBD 0.7240 || Chi2 04874 || D3 07172 || Ameva 07375 || cacc 07069 || Zeta 0.6786
CACC 0.7203 HellingerBD 0.4868 ClusterAnalysis 0.7132 Distance 0.7372 DIBD 0.7002 HDD 0.6700
Extended Chi2 0.7172 MODL 0.4812 Zeta 0.7126 MDLP 0.7369 EqualWidth 0.6998 Ameva 0.6665
DIBD 0.7141 CADD 0.4780 HDD 0.7104 ClusterAnalysis 0.7363 Extended Chi2 0.6974 UCPD 0.6651
FFD 0.7091 EqualFrequency | 0.4711 ucCPD 0.7090 HellingerBD 0.7363 HDD 0.6789 CACC 0.6562
PKID 0.7079 IR 0.4702 MDLP 0.7002 HDD 0.7360 FFD 0.6770 Extended Chi2 0.6545
HDD 0.6941 EqualWidth 0.4680 Distance 0.6888 uCPD 0.7227 PKID 0.6758 Bayesian 0.6521
USD 0.6835 IDD 0.4679 IDD 0.6860 Extended Chi2 0.7180 USD 0.6698 ClusterAnalysis 0.6464
ClusterAnalysis | 0.6813 usD 0.4651 Bayesian 0.6844 CACC 0.7176 Bayesian 0.6551 MDLP 0.6439
1D3 0.6720 Khiops 0.4567 CACC 0.6813 Bayesian 0.7167 ClusterAnalysis 0.6477 Distance 0.6402
1R 0.6695 Modified Chi2 0.4526 DIBD 0.6731 DIBD 0.7036 1D3 0.6406 IDD 0.6219
Bayesian 0.6675 HDD 0.4308 1R 0.6721 IDD 0.6966 MVD 0.6401 Heter-Disc 0.6084
IDD 0.6606 ClusterAnalysis 0.4282 Extended Chi2 0.6695 1R 0.6774 IDD 0.6352 1R 0.6058
MVD 0.6499 PKID 0.3942 MVD 0.6062 MVD 0.6501 1R 0.6332 DIBD 0.5953
Heter-Disc 0.6443 1D3 0.3896 Heter-Disc 0.5524 Heter-Disc 0.6307 Heter-Disc 0.6317 MVD 0.5921
CADD 0.5689 FFD 0.3848 CADD 0.5064 CADD 0.5669 CADD 0.5584 CADD 0.4130
Once the results are presented in the mentioned tables result and adds another discretizer, Distance, which
and graphics, we can stress some interesting properties outperforms 16 of the 29 methods. All methods
observed from them, and we can point out the best emphasized are supervised, incremental (except
. . . . Zeta) and use statistical and information measures
performing discretizers: o .
as evaluators. Splitting/Merging and Local/Global
e Regarding the number of intervals, the discretizers properties have no effect on decision trees.
which divide the numerical attributes in fewer e Considering rule induction (DataSqueezer and Rip-
intervals are Heter-Disc, MV D, and Distance, whereas per), the best performing discretizers are Distance,
discretizers which require a large number of cut Modified Chi2, Chi2, PKID, and MODL in average
points are HDD, ID3, and Bayesian. The Wilcoxon accuracy and CACC, Ameva, CAIM, and FUSINTER
test confirms that Heter-Disc is the discretizer that in average kappa. In this case, the results are very
obtains the least intervals outperforming the rest. irregular due to the fact that the Wilcoxon test
e The inconsistency rate both in training data and test emphasizes the ChiMerge as the best performing
data follows a similar trend for all discretizers, discretizer for DataSqueezer instead of Distance and
considering that the inconsistency obtained in test incorporates Zeta in the subset. With Ripper, the
data is always lower than in training data. ID3 is the Wilcoxon test confirms the results obtained by
discretizer that obtains the lowest average incon- averaging accuracy and kappa. It is difficult to
sistency rate in training and test data, albeit the discern a common set of properties that define the
Wilcoxon test cannot find significant differences best performing discretizers due to the fact that rule
between it and the other two discretizers: FFD and induction methods differ in their operation to a
PKID. We can observe a close relationship between greater extent than decision trees. However, we can
the number of intervals produced and the incon- remark that, in the subset of best methods, incre-
sistency rate, where discretizers that compute fewer mental and supervised discretizers predominate in
cut points are usually those which have a high the statistical evaluation.
inconsistency rate. They risk the consistency of the e Lazyand Bayesian learning can be analyzed together,
data in order to simplify the result, although due to the fact that the HVDM distance used in KNNis
the consistency is not usually correlated with the highly related to the computation of Bayesian prob-
accuracy, as we will see below. abilities considering attribute independence [118].
e In decision trees (C4.5 and PUBLIC), a subset of With respect to lazy and Bayesian learning, KNN and

discretizers can be stressed as the best performing
ones. Considering average accuracy, FUSINTER,
ChiMerge, and CAIM stand out from the rest.
Considering average kappa, Zeta and MDLP are also
added to this subset. The Wilcoxon test confirms this

Naive Bayes, the subset of remarkable discretizers is
formed by PKID, FFD, Modified Chi2, FUSINTER,
ChiMerge, CAIM, EqualWidth, and Zeta, when average
accuracy is used; and Chi2, Khiops, EqualFrequency and
MODL must be added when average kappa is
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TABLE 6
Average Results of Kappa Considering the Six Classifiers

C4.5 DataSqueezer KNN Naive Bayes PUBLIC Ripper

FUSINTER 0.5550 CACC 0.2719 PKID 0.5784 PKID 0.5762 CAIM 0.5279 Modified Chi2 0.5180
ChiMerge 0.5433 Ameva 0.2712 FFD 0.5617 Modified Chi2 0.5742 FUSINTER 0.5204 Chi2 0.5163
CAIM 0.5427 CAIM 0.2618 Modified Chi2 0.5492 FUSINTER 0.5737 ChiMerge 0.5158 MODL 0.5123
Zeta 0.5379 ChiMerge 0.2501 Khiops 0.5457 FFD 0.5710 MDLP 0.5118 FUSINTER 0.5073
MDLP 0.5305 FUSINTER 0.2421 EqualFrequency | 0.5438 ChiMerge 0.5650 Distance 0.5074 Khiops 0.4939
UCPD 0.5299 UCPD 0.2324 EqualWidth 0.5338 Chi2 0.5620 Zeta 0.5010 PKID 0.4915
Ameva 0.5297 Zeta 0.2189 CAIM 0.5260 CAIM 0.5616 Ameva 0.4986 EqualFrequency | 0.4892
Chi2 0.5290 UsD 0.2174 FUSINTER 0.5242 EqualWidth 0.5593 Chi2 0.4899 ChiMerge 0.4878
Distance 0.5288 Distance 0.2099 ChiMerge 0.5232 Khiops 0.5570 ucCrD 0.4888 EqualWidth 0.4875
Modified Chi2 0.5163 Khiops 0.2038 MODL 0.5205 EqualFrequency | 0.5564 Khiops 0.4846 CAIM 0.4870
MODL 0.5131 HDD 0.2030 HellingerBD 0.5111 MODL 0.5564 CACC 0.4746 Ameva 0.4810
EqualFrequency | 0.5108 EqualFrequency | 0.2016 Chi2 0.5100 usD 0.5458 HellingerBD 0.4736 FFD 0.4809
Khiops 0.5078 HellingerBD 0.1965 Ameva 0.5041 Zeta 0.5457 Modified Chi2 0.4697 Zeta 0.4769
HellingerBD 0.4984 Bayesian 0.1941 UsD 0.4943 Ameva 0.5456 MODL 0.4620 HellingerBD 0.4729
CACC 0.4961 MODL 0.1918 HDD 0.4878 1D3 0.5403 EqualFrequency | 0.4535 usbD 0.4560
EqualWidth 0.4909 MDLP 0.1875 ClusterAnalysis 0.4863 HDD 0.5394 DIBD 0.4431 UCPD 0.4552
Extended Chi2 0.4766 PKID 0.1846 Zeta 0.4831 MDLP 0.5389 EqualWidth 0.4386 CACC 0.4504
DIBD 0.4759 1D3 0.1818 1D3 0.4769 Distance 0.5368 Extended Chi2 0.4358 MDLP 0.4449
FFD 0.4605 EqualWidth 0.1801 UCPD 0.4763 HellingerBD 0.5353 HDD 0.4048 Distance 0.4429
PKID 0.4526 Modified Chi2 0.1788 MDLP 0.4656 ClusterAnalysis 0.5252 FFD 0.3969 HDD 0.4403
HDD 0.4287 DIBD 0.1778 Distance 0.4470 UCPD 0.5194 PKID 0.3883 1D3 0.4359
usb 0.4282 Chi2 0.1743 CACC 0.4367 CACC 0.5128 usb 0.3845 Extended Chi2 0.4290
ClusterAnalysis | 0.4044 IDD 0.1648 IDD 0.4329 Extended Chi2 0.4910 MVD 0.3461 ClusterAnalysis 0.4252
D3 0.3803 FFD 0.1635 Extended Chi2 0.4226 Bayesian 0.4757 ClusterAnalysis 0.3453 Bayesian 0.3987
IDD 0.3803 ClusterAnalysis | 0.1613 Bayesian 0.4201 DIBD 0.4731 Bayesian 0.3419 DIBD 0.3759
MVD 0.3759 Extended Chi2 0.1465 DIBD 0.4167 IDD 0.4618 1D3 0.3241 IDD 0.3650
Bayesian 0.3716 MVD 0.1312 IR 0.3940 IR 0.3980 IDD 0.3066 MVD 0.3446
1R 0.3574 1R 0.1147 MVD 0.3429 MVD 0.3977 1R 0.3004 1R 0.3371
Heter-Disc 0.2709 Heter-Disc 0.1024 Heter-Disc 0.2172 Heter-Disc 0.2583 Heter-Disc 0.2570 Heter-Disc 0.2402
CADD 0.1524 CADD 0.0260 CADD 0.1669 CADD 0.1729 CADD 0.1489 CADD 0.1602

considered. The statistical report by Wilcoxon informs
us of the existence of two outstanding methods: PKID
for KNN, which outperforms 27/29 and FUSINTER
for Naive Bayes. Here, supervised and unsupervised,
direct and incremental, binning, and statistical/
information evaluation are characteristics present in
the best perfoming methods. However, we can see
that all of them are global, thus identifying a trend
toward binning methods.

In general, accuracy and kappa performance regis-
tered by discretizers do not differ too much. The
behavior in both evaluation metrics are quite similar,
taking into account that the differences in kappa are
usually lower due to the compensation of random
success offered by it. Surprisingly, in DataSqueezer,
accuracy and kappa offer the greatest differences in
behavior, but they are motivated by the fact that this
method focuses on obtaining simple rule sets,
leaving precision in the background.

It is obvious that there is a direct dependence
between discretization and the classifier used. We
have pointed out that a similar behavior in decision
trees and lazy/bayesian learning can be detected,
whereas in rule induction learning, the operation of
the algorithm conditions the effectiveness of the
discretizer. Knowing a subset of suitable discretizers
for each type of discretizer is a good starting point to
understand and propose improvements in the area.
Another interesting remark can be made about the
relationship between accuracy and the number of
intervals yielded by a discretizer. Fig. 3 supports the
hypothesis that there is no direct correlation between
them. A discretizer that computes few cut points

On

does not have to obtain poor results in accuracy and
vice versa. Figs. 3a, 3c, 3d, and 3e point out that there
is a minimum limit in the number of intervals to
guarantee accurate models, given by the cut points
computed by Distance. Fig. 3b shows how DataS-
queezer is worse as the number of intervals increases,
but this is an inherent behavior of the classifier.
Finally, we can stress a subset of global best
discretizers considering a tradeoff between the
number of intervals and accuracy obtained. In this
subset, we can include FUSINTER, Distance, Chi2,
MDLP, and UCPD.

the other hand, an analysis centered on the 30

discretizers studied is given as follows:

Many classic discretizers are usually the best
performing ones. This is the case of ChiMerge,
MDLP, Zeta, Distance, and Chi2.

Other classic discretizers are not as good as they
should be, considering that they have been improved
over the years: EqualWidth, EqualFrequency, 1R, ID3
(the static version is much worse than the dynamic
inserted in C4.5 operation), CADD, Bayesian, and
ClusterAnalysis.

Slight modifications of classic methods have greatly
enhanced their results, such as, for example,
FUSINTER, Modified Chi2, PKID, and FFD; but in
other cases, the extensions have diminished their
performance: USD, Extended Chi2.

Promising techniques that have been evaluated under
unfavorable circumstances are MVD and UCP, which
are unsupervised methods useful for application to
other DM problems apart from classification.
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TABLE 7 TABLE 8
Wilcoxon Test Results in Number of Intervals Wilcoxon Test Results in Accuracy
and Inconsistencies

C45 Data Squeezer KNN Naive Bayes | PUBLIC Ripper
+ x|+ + + x|+ o |+ x|+ =
N. Intervals Incons. Tra Incons. Tst m T 123 3 2 1o 1 3 T 21 1
+ :l: + :l: _l’_ :l: Ameva 14 29 17 29 8 26 9 29 13 29 9 29
Bayesian 1 9 5 26 2 12 2 11 0 11 2 17
1R 10 21 3 17 2 20 CACC 9 28 16 29 2 18 5 28 9 29 4 26
CADD 0 1 1 22 0 1 0 1 0 6 0 0
Ameva 13 21 6 16 4 21 CAIM 16 29 16 29 11 28 10 29 16 29 11 28
Bayesian 2 4 10 29 7 29 Chi2 1329 [ 4 2 6 279 29 [11 2 [19 29
ChiMerge 17 29 18 29 13 28 10 29 17 29 9 28
CACC 7 22 4 17 4 21 ClusterAnalysis 1 10 0 12 5 24 6 27 1 11 2 20
CADD 21 28 0 1 0 1 DIBD 6 21| 8 29 2 9 2 8 9 23| 1 5
Distance 13 29 16 29 2 17 7 26 13 28 2 13
CAIM 14 23 6 19 6 20 EqualFrequency 10 27 3 21 18 29 9 29 10 26 11 27
Ch12 15 26 9 20 9 20 EqualWidth 7 20 2 18 11 28 8 29 6 20 9 27
- Extended Chi2 9 27 4 26 3 19 3 17 6 25 2 25
ChiMerge 15 23 6 20 6 23 FFD 5 15| 0 5 20 28| 8 29 1 13|10 27
ClusterAnalySiS 1 4 15 29 9 29 FUSINTER 21 29 9 29 12 28 15 29 20 29 11 29
HDD 1 18 0 14 4 23 5 28 0 24 7 26
DIBD 21 27 2 7 2 8 HellingerBD 10 27 | 4 22 7 2| 7 28 10 26| 6 26
. Heter-Disc 0 9 9 29 0 2 0 3 0 11 1 10
DIStance 26 28 2 6 2 6 D3 1 10 0 5 5 22 4 28 0 11 5 26
EqualFrequency 7 12 12 26 11 29 DD 1 1038 3 4 212 14 0 12]1 16
" Khiops 12 27 3 18 18 29 9 29 9 27 11 29
EqualWldth 11 18 16 26 13 29 MDLP 14 29 | 14 29 3 2] 8 29 15 29 2 16
EXtended Chlz 14 27 2 14 2 18 Modified Chi2 11 27 3 21 17 28 10 29 9 29 23 29
MODL 12 28 5 23 14 28 9 29 10 28 17 29
FFD 5 8 21 29 16 29 MVD 1 15 5 29 108 |1 7 0 191 13
PKID 5 15 0 6 27 29 9 29 1 13 15 29
FUSINTER 14 22 11 23 8 29 UCPD 14 29 7 26 4 17 2 15 14 28 3 19
HDD 0 2 18 29 14 29 USD 1 133 19 6 23| 6 29 1 19| 7 25
R Zeta 14 29 17 29 4 20 9 29 14 29 7 27
HellingerBD 9 15 8 21 7 26
Heter-Disc 29 29 0 1 0 1 TABLE 9
D3 0 1 23 29 16 29 Wilcoxon Test Results in Kappa
IDD 5 11 8 28 6 29 C4.5 Data Squeezer KNN Naive Bayes | PUBLIC Ripper
Khiops 9 15 |15 27 [ 12 29 SO RS I U S U S NS
1R 1 11 0 15 2 16 2 8 1 13 1 11
MDLP 22 27 3 9 3 11 Ameva 15 29| 24 29 11 2 | 11| 29 |16 (29| 9 | 2
Modified Chi2 7 13 17 26 15 29 Bayesian 1 811 # |2 1012 8 |1 ]2 17
CACC 11 28 25 29 3 16 7 25 13 29 4 26
MODL 5 14 12 24 7 29 CADD 0 1]o0 3 0o 1] o0 1 0 2]0 o
CAIM 17 29 22 29 13 28 11 29 21 29 11 28
MVD 23 28 2 13 2 13 Chi2 14 29 2 24 11 27 10 29 13 29 19 29
PKID 5 8 22 29 16 29 ChiMerge 19 29| 2 29 13 28|11 29 [18 29[ 9 28
ClusterAnalysis 2 10 2 21 5 23 6 22 1 11 2 20
UCPD 17 25 6 17 5 20 DIBD 8 20 1 24 2 10 2 7 7 18 1 5
USD 2 4 18 29 15 29 Distance 16 29 1 26 2 16 7 28 16 29 2 13
EqualFrequency | 11 25 3 25 18 29 | 10 29 10 23 | 11 27
Zeta 12 23 3 9 3 13 EqualWidth 7 20| 2 23 4 27| 8 28 6 18] 9 27
Extended Chi2 10 27 1 20 2 17 3 16 6 23 2 25
FFD 6 14 1 19 23 28 12 29 2 14 10 27
FUSINTER 21 29 16 29 14 28 18 29 19 29 11 29
o Recent proposed methods that have been demon- HDD 2 75 B |5 26 5 |1 2|7 %
ey . . Helli BD 11 23 4 23 9 26 7 21 11 24 6 26
strated to be competitive compared with classic e e T
methods and even outperforming them in some D3 1 8|2 2 4 20[6 2 o 10]5 2
. . IDD 1 9 1 23 2 18 2 15 1 11 1 16
scenarios are Khiops, CAIM, MODL, Ameva, and Khiop: P o T TE e T E T e = s
CACC. However, recent proposals that have re- MDLP 16 29 | 1 24 6 2|8 29 |19 29 2 16
ported bad results in general are Heter-Disc, ﬁgﬁ‘;‘fd Chi2 12 Z 1 2 i i; E ;Z 1"1 ii fi iz
HellingerBD, DIBD, IDD, and HDD. MVD 1 12| 0 19 1 10 | 1 6 1 16| 1 13
e Finally, this study involves a higher number of data ol I S S L
sets than the quantity considered in previous works UsD i 1|9 3 |6 |6 B |3 15|7 2
and the conclusions achieved are impartial toward an Zeta S z 5 1816 7 |WIB]7 ¥
specific discretizer. However, we have to stress some
coincidences with the conclusions of these previous that CAIM is one of the simplest discretizers and its
works. For example in [102], the authors propose an effectiveness has also been shown in this study.

improved version of Chi2 in terms of accuracy,

removing the user Parameter choice. We check and 5  ©oNcLUDING REMARKS AND GLOBAL
measure the actual improvement. In [12], the authors GUIDELINES

develop an intense theoretical and analytical study
concerning Naive Bayes and propose PKID and FFD The present paper offers an exhaustive survey of the
according to their conclusions. In this paper, we discretization methods proposed in the literature. Basic
corroborate that PKID is the best suitable method for and advanced properties, existing work, and related fields
Naive Bayes and even for KNN. Finally, we may note have been studied. Based on the main characteristics
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Fig. 3. Accuracy versus number of intervals.

studied, we have designed a taxonomy of discretization
methods. Furthermore, the most important discretizers
(classic and recent) have been empirically analyzed over a
vast number of classification data sets. In order to strength-
en the study, statistical analysis based on nonparametric
tests has been added supporting the conclusions drawn.
Several remarks and guidelines can be suggested:

A researcher/practitioner interested in applying a
discretization method should be aware of the
properties that define them in order to choose the
most appropriate in each case. The taxonomy
developed and the empirical study can help to make
this decision.
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In the proposal of a new discretizer, the best
approaches and those which fit with the basic
properties of the new proposal should be used in
the comparison study. In order to do this, the
taxonomy and the analysis of results can guide a
future proposal in the correct way.

This paper assists nonexperts in discretization to
differentiate among methods, making an appropriate
decision about their application and understanding
their behavior.

It is important to know the main advantages of
each discretizer. In this paper, many discretizers
have been empirically analyzed but we cannot give
a single conclusion about which is the best
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performing one. This depends upon the problem
tackled and the data mining method used, but the
results offered here could help to limit the set of
candidates.

e The empirical study allows us to stress several
methods among the whole set:

- FUSINTER, ChiMerge, CAIM, and Modified Chi2
offer excellent performances considering all
types of classifiers.

- PKID, FFD are suitable methods for lazy and
Bayesian learning and CACC, Distance, and
MODL are good choices in rule induction
learning.

- FUSINTER, Distance, Chi2, MDLP, and UCPD
obtain a satisfactory tradeoff between the
number of intervals produced and accuracy.

It would be desirable that a researcher/practitioner who
wants to decide which discretization scheme to apply to
his/her data needs to know how the experiments of this
paper or data will benefit and guide him/her. As future
work, we propose the analysis of each property studied in
the taxonomy with respect to some data characteristics,
such as number of labels, dimensions or dynamic range of
original attributes. Following this trend, we expect to find
the most suitable discretizer taking into consideration some
basic characteristic of the data sets.
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