6 Test Management

This chapter describes ways to organize test teams, which qualifications are
important, the tasks of a test manager, and which supporting processes must
be present for efficient testing.

6.1 Test Organization

6.1.1 Test Teams

Testing activities are necessary during the entire software product life cycle
(see chapter 3). They should be well coordinated with the development
activities. The easiest solution is to let the developer perform the testing.

However, because there is a tendency to be blind to our own errors,
it is much more efficient to let different people perform testing and
development and to organize testing as independently as possible from
development.

Independent testing provides the following benefits:

Independent testers are unbiased and thus find additional and different
defects than developers find.

An independent tester can verify (implicit) assumptions made by
developers during specification and implementation of the system.

But there may also be drawbacks to independent testing:

Too much isolation may impair the necessary communication between
testers and developers.

Independent testing may become a bottleneck if there is a lack of nec-
essary resources.

Developers may lose a sense of responsibility for quality because they
may think, “the testers will find the —=problems anyway”

Benefits
of independent testing

Possible drawbacks of

independent testing

169

170

Models of independent
testing

When to choose
which model

Hint

6 Test Management

The following models or options for independence are possible:

1. The development team is responsible for testing, but developers test
each other’s programs, i.e., a developer tests the program of a colleague.

2. There are testers within the development team; these testers do all the
test work for their team.

3. One or more dedicated testing teams exist within the project team
(these teams are not responsible for development tasks). Typically,
team members from the business or IT department work as independ-
ent testers.

4. Independent test specialists are used for specific testing tasks (such as
performance test, usability test, security test, or for showing conform-
ance to standards and regulatory rules).

5. A separate organization (testing department, external testing facility,
test laboratory) takes over the testing (or important parts of it, such as
the system test).

For each of these models, it is advantageous to have testing consultants
available. These consultants can support several projects and can offer
methodical assistance in areas such as training, coaching, test automation,
etc. Which of the previously mentioned models is appropriate depends
on—among other things—the current test level.

Component Testing

Testing should be close to development. Although often used, it is defi-
nitely the worst choice to allow developers to test their own programs.
Independent testing such as in model 1 is easy to organize and would cer-
tainly improve quality. Testing such as in model 2 is useful, if a sufficient
number of testers relative to the number of developers can be made avail-
able. However, with both testing models, there is the risk that the partici-
pating people essentially consider themselves developers and thus will
neglect their testing responsibilities.

To prevent this, the following measures are recommended:

Project or test management should set testing standards and rules, and require
test logs from the developers.

To provide support for applying systematic testing methods, testing specialists
should, at least temporarily, be called in as coaches.

6.1 TestOrganization

Integration Testing

When the same team that developed the components also performs inte-
gration and integration testing, this testing can be organized as for compo-
nent testing (models 1, 2).

If components originating from several teams are integrated, then
either a mixed integration team with representatives from the involved
development groups or an independent integration team should be
responsible. The individual development team may have their own view
about their own component and therefore may overlook faults. Depending
on the size of the development project and the number of components,
models 3, 4, and 5 should be considered here.

System Testing

The final product shall be considered from the point of view of the cus-
tomer and the end user. Therefore, independence from the development
team is crucial. This leaves only models 3, 4, and 5.

In the VSR project, each development team is responsible for component testing.
These teams are organized according to the previously mentioned models 1 and
2. In parallel to these development teams, an independent testing group is estab-
lished. This testing group is responsible for integration and system testing. Figure
6-1 shows the organization.

Two or three employees from each responsible user department (sales, mar-
keting, etc.) are made available for the functional or business-process-based test-
ing of every subsystem (ContractBase, DreamCar, etc.). These people are familiar
with the business processes to be supported by the particular subsystem and
know the requirements “their” test object should fulfill from the users’ point of
view. They are experienced PC users, but not IT experts. It is their task to
support the test specialists in specifying business-related functional test cases
and to perform these tests. When the testing activities are started, they have
received training in basic testing procedures (test process, specification, execu-
tion, and logging).

Additionally, test personnel consists of three to five IT and test specialists,
responsible for integration activities, nonfunctional tests, test automation, and
support of test tools (“technical test”). A test manager, responsible for test plan-
ning and test control, is in charge of the test team. The manager’s tasks also com-
prise coaching of the test personnel, especially instructing the staff on testing the
business requirements.

Example:
Organization of the
VSR tests

—Test logging

171

172

Figure 6-1
VSR project organization

Roles and qualification
profiles

6 Test Management

Project
Management

Development

Development

Development

Integration &

ContractBase| | DreamCar | | EasyFinance System Test
I
Functional Test Iz
Test
ContractBase| | DreamCar | |EasyFinance VSR
Employee Employee Employee Test
Sales Marketing Bank Specialists

6.1.2 Tasks and Qualifications

Specialists with knowledge covering the full scope of activities in the test
process should be available. The following roles should be assigned, ideally
to specifically qualified employees:

Test manager (test leader): Test planning and test control expert(s),
possessing knowledge and experience in the fields of software testing,
quality management, project management, and personnel manage-
ment. Typical tasks may include the following:
Writing and coordinating the test policy for the organization
Developing the test approach and test plan as described in section 6.2.2
Representing the testing perspective in the project
Procuring testing resources
Selecting and introducing suitable test strategies and methods, in-
troducing or improving testing tools, organizing tools training, de-
ciding about test environment and test automation
Introducing or optimizing supporting processes (e.g., problem
management, configuration management) in order to be able to
trace back changes and securing reproducibility of the tests
Introducing, using, and evaluating metrics defined in the test plan
Regularly adapting test plans based on test results and test progress
Identifying suitable metrics for measuring test progress, and evalu-
ating the quality of the testing and the product
Writing and communicating test reports

6.1 TestOrganization

Test designer (test analyst): Expert(s) in test methods and test specifi-
cation, having knowledge and experience in the fields of software test-
ing, software engineering, and (formal) specification methods. Typical
tasks may include the following:

Reviewing requirements, specifications, and models for testability

and in order to design test cases

Creating test specifications

Preparing and acquiring test data
Test automator: Test automation expert(s) with knowledge of testing
basics, programming experience, and deep knowledge of the testing
tools and script languages. Automates tests as required, making use of
the test tools available for the project.
Test administrator: Expert(s) for installing and operating the test
environment (system administrator knowledge). Sets up and supports
the test environment (often coordinating with general system adminis-
tration and network management).
Tester:' Expert(s) for executing tests and reporting failures (IT basics,
basic knowledge of testing, using the test tools, understanding the test
object). Typical tasks are as follows:

Reviewing test plans and test cases

Using test tools and test monitoring tools (for example, to measure

performance)

Executing and logging tests, including evaluating and documenting

the results and detected deficiencies

In this context, what does the Certified Tester training offer? The basic
Certified Tester training (Foundation Level) qualifies for the “tester” role
(without covering the required IT basics). This means that a Certified
Tester knows why discipline and structured work are necessary. Under the
supervision of a test manager, a Certified Tester can manually execute and
document tests. He or she is familiar with basic techniques for test speci-
fication and test management. Every software developer should also know
these foundations of software testing to be able to adequately execute the
testing tasks required by organizational models 1 and 2. Before someone is
able to fulfill the role of a test designer or test manager, appropriate expe-
rience as a tester should be gathered. The second educational level
(Advanced Level) offers training for the tasks of the designer and manager.

1. The term tester is often also used as generic term for all the previously mentioned roles.

Certified Tester

173

174

Social competence is
important

Multidisciplinary team

Specialized software test
service providers

6 Test Management

To be successful, in addition to technical and test-specific skills, a tester
needs social skills:

Ability to work in a team, and political and diplomatic aptitude
Skepticism (willingness to question apparent facts)

Persistence and poise

Accuracy and creativity

Ability to get quickly acquainted with (complex fields of) application

Especially in system testing, it is often necessary to extend the test team by
adding IT specialists, at least temporarily, to perform work for the test
team. For example, these might be database administrators, database
designers, or network specialists. Professional specialists from the applica-
tion field of the software system currently being tested or the business are
often indispensable. Managing such a multidisciplinary test team can be
difficult even for experienced test managers.

If appropriate resources are not available within the company, test
activities can be given to external software testing service providers. This
is similar to letting an external software house develop software. Based on
their experience and their use of predefined solutions and procedures,
these test specialists are able to provide an optimal test for the project.
They can also provide missing specialist skills from each of the previously
mentioned qualification profiles for the project.

6.2 Planning

Testing should not be the only measure for quality assurance (QA). It
should be used in combination with other quality assurance measures.
Therefore, an overall plan for quality assurance is needed that should be
documented in the quality assurance plan.

6.2.1 Quality Assurance Plan

Guidelines for structuring the quality assurance plan can be found in IEEE
standard 730-2002 [IEEE 730-2002]. The following subjects shall be con-
sidered (additional sections may be added as required. Some of the mate-
rial may also appear in other documents).

6.2

Contents of a Software Quality Assurance Plan as defined
in IEEE 730-2002:*

1.

10.

12.
13.
14.
15.
16.

a.

¥ ® N oy R D

Purpose

Reference documents

Management

Documentation

Standards, practices, conventions, and metrics
Software reviews

Test

Problem reporting and corrective action
Tools, techniques, and methodologies

Media control

Supplier control

Records collection, maintenance, and retention
Training

Risk management

Glossary

SQA Plan Change Procedure and History

Planning

IEEE Standard 730 in its new form from 2013 [IEEE 730-2013] has a new title,
Standard for Software Quality Assurance Processes, and does not contain a standard
layout for a software quality assurance plan anymore.

During quality assurance planning, the role the tests play as special, ana-
lytical measures of quality control is roughly defined. The details are then
determined during test planning and documented in the test plan.

6.2.2 TestPlan

A task as extensive as testing requires careful planning. This planning and
test preparation starts as early as possible in the software project. The test
policy of the organization and the objectives, risks, and constraints of the
project as well as the criticality of the product influence the test plan.

The test manager might participate in the following planning activities:

Defining the overall approach to and strategy for testing (see section
6.4)

Deciding about the test environment and test automation
Defining the test levels and their interaction, and integrating the test-
ing activities with other project activities

Test planning activities

175

176

6 Test Management

Deciding how to evaluate the test results

Selecting metrics for monitoring and controlling test work, as well as
defining test exit criteria

Determining how much test documentation shall be prepared and
determining templates

Writing the test plan and deciding on what, who, when, and how much
testing

Estimating test effort and test costs; (re)estimating and (re)planning
the testing tasks during later testing work

The results are documented in the test plan. IEEE Standard 829-1998
[IEEE 829] provides a template.

Test Plan according to IEEE 829-1998

1. Test plan identifier
2. Introduction
3. Test items
4. Features to be tested
5. Features not to be tested
6. Approach
7. Item pass/fail criteria (test exit criteria)
8. Suspension criteria and resumption requirements
9. Test deliverables
10. Testing tasks
11. Environmental needs
12. Responsibilities
13. Staffing and training needs
14. Schedule
15. Risk and contingencies
16. Approvals

This structure® works well in practice. The sections listed will be found in
real test plans in many projects in the same, or slightly modified, form. The

A detailed description of the listed points in IEEE 829-1998 can be found in Appendix

A. The new standard [IEEE 829-2008] shows an outline for a master test plan and a
level test plan. IEEE Standard 1012 ([IEEE 1012]) gives another reference structure for
a verification and validation plan. This standard can be used for planning the test strat-
egy for more complex projects.

6.2 Planning

new edition of IEEE 829-2008 [IEEE 829-2008] differentiates between
“Master Test Plan” and “Level Test Plan” The overall test plan (“Master Test
Plan”) is required for every project. The different level test plans are
optional, depending on the criticality of the product developed. An exist-
ing test plan according to IEEE 829-1998 can be changed into the structure
of the master test plan in IEEE 829-2008 using mapping or a cross-refer-
ence listing. The new standard also has a different approach: There is an
explicit requirement for tailoring the test documentation depending on
product risks and organizational needs. The standard encourages putting
some information from the plans into tools or, if necessary, other plans.

When preparing for an exam using the Foundation syllabus version
2015, IEEE Standard 829-2008, not 1998, should be studied!

Test planning is a continuous activity for the test manager throughout
all phases of the development project. The test plan and related plans must
be updated regularly, based on feedback from test activities and reacting to
changing project risks.

6.2.3 Prioritizing Tests

Even with good planning and control, it is possible that the time and
budget for the total test, or for a certain test level, are not sufficient for exe-
cuting all planned test cases. In this case, it is necessary to select test cases
in a suitable way. Even with a reduced number of executable test cases, it
must be assured that as many as possible critical faults are found. This
means test cases must be prioritized.

Test cases should be prioritized so that if any test ends prematurely,
the best possible test result at that point of time is achieved.

Prioritization also ensures that the most important test cases are exe-
cuted first. This way important problems can be found early.

The criteria for prioritization, and thus for determining the order of exe-
cution of the test cases, are outlined next. Which criteria are used depends
on the project, the application area, and the customer requirements.

The following criteria for prioritization of test cases may be used:

The usage frequency of a function or the probability of failure in soft-
ware use. If certain functions of the system are used often and they
contain a fault, then the probability of this fault leading to a failure is
high. Thus, test cases for this function should have a higher priority
than test cases for a less-often-used function.

Prioritization rule

The most important test
cases first

Criteria for prioritization

177

178

6 Test Management

Failure risk. Risk is the combination (mathematical product) of sever-
ity and failure probability. The severity is the expected damage. Such
risks may be, for example, that the business of the customer using the
software is impaired, thus leading to financial losses for the customer.
Tests that may find failures with a high risk get higher priority than
tests that may find failures with low risks (see also section 6.4.3).

The visibility of a failure for the end user is a further criterion for pri-
oritization of test cases. This is especially important in interactive sys-
tems. For example, a user of a city information service will feel unsafe if
there are problems in the user interface and will lose confidence in the
remaining information output.

Test cases can be chosen depending on the priority of the require-
ments. The different functions delivered by a system have different
importance for the customer. The customer may be able to accept the
loss of some of the functionality if it behaves wrongly. For other parts,
this may not be possible.

Besides the functional requirements, the quality characteristics may
have differing importance for the customer. Correct implementation
of the important quality characteristics must be tested. Test cases for
verifying conformance to required quality characteristics get a high
priority.

Prioritization can also be done from the perspective of development or
system architecture. Components that lead to severe consequences
when they fail (for example, a crash of the system) should be tested
especially intensively.

Complexity of the individual components and system parts can be
used to prioritize test cases. Complex program parts should be tested
more intensively because developers probably introduced more faults.
However, it may happen that program parts seen as easy contain many
faults because development was not done with the necessary care.
Therefore, prioritization in this area should be based on experience
data from earlier projects run within the organization.

Failures having a high project risk should be found early. These are
failures that require considerable correction work that in turn requires
special resources and leads to considerable delays of the project (see
section 6.4.3).

In the test plan, the test manager defines adequate priority criteria and
priority classes for the project. Every test case in the test plan should get a

6.2 Planning

priority class using these criteria. This helps in deciding which test cases
can be left out if resource problems occur.

Where many faults were found before, more are present. This phe-
nomenon occurs often in projects. To react appropriately, it must be pos-
sible to change test case priority. In the next test cycle (see section 6.5),
additional test cases should be executed for such defect-prone test objects.

Without prioritizing test cases, it is not possible to adequately allocate
limited test resources. Concentration of resources on high-priority test
cases is a MUST.

6.2.4 Test Entry and Exit Criteria

Defining clear test entry and exit criteria is an important part of test plan-
ning. They define when testing can be started and stopped (totally or

within a test level).
Here are typical criteria, or checkpoints, that need to be fulfilled

before executing the planned tests:

The test environment is ready.

The test tools are ready for use in the test environment.
Test objects are installed in the test environment.

The necessary test data is available.

These criteria are preconditions for starting test execution. They prevent
the test team from wasting time trying to run tests that are not ready.

Exit criteria are used to make sure test work is not stopped by chance
or prematurely. They prevent tests from ending too early, for example,
because of time pressure or because of resource shortages. But they also
prevent testing from being too extensive. Here are some typical exit crite-
ria and corresponding metrics or indicators:

Achieved test coverage: Tests run, covered requirements, code cover-
age, etc.

Product quality: Defect density, defect severity, failure rate, and relia-
bility of the test object

Residual risk: Tests not executed, defects not repaired, incomplete cov-
erage of requirements or code, etc.

Economic constraints: Allowed cost, project risks, release deadlines,
and market chances

The test manager defines the project-specific test exit criteria in the test
plan. During test execution, these criteria are then regularly measured and

179

Where there are many
defects, there are probably
more

Test start criteria

Exit criteria

180

Costs due to product
deficiencies

6 Test Management

evaluated and serve as the basis for decisions by test and project manage-
ment.

6.3 Cost and Economy Aspects

Testing can be very costly and can constitute a significant cost factor in
software development. How much effort is adequate for testing a specific
software product? When is the test cost higher than the possible benefit?

To answer these questions, one must understand the potential defect
costs due to lack of checking and testing. Then, one has to compare defect
costs and testing costs.

6.3.1 Costs of Defects

If testing activities are reduced or cut out completely, there will be more
undetected faults and deficiencies in the product. These remain in the
product and may lead to the following costs:

Direct defect costs: Costs that arise for the customer due to failures
during operation of the software product (and that the vendor may
have to pay for). Examples are costs due to calculation mistakes (data
loss, wrong orders, damage of hardware or parts of the technical instal-
lation, damage to personnel); costs because of the failure of software-
controlled machines, installations, or business processes; and costs due
to installation of new versions, which might also require training
employees. Very few people think of these costs, but they can be huge.
The impact from just the time it takes to install a new version at all cus-
tomer sites can be enormous.

Indirect defect costs: Costs or loss of sales for the vendor that occur
because the customer is dissatisfied with the product. Some examples
include penalties or reduction of payment for failure to meet contrac-
tual requirements, increased costs for the customer hotline and sup-
port, bad publicity, even legal costs such as loss of license (for example,
for safety critical software).

Costs for defect correction: Costs paid to vendors for fault correction.
For example, time needed for failure analysis, correction, retest and
regression test, redistribution and reinstallation, new customer and
user training, delay of new products due to tying up the developers
with maintenance of the existing product, decreasing competitiveness.

	6 Test Management
	6.1 Test Organization
	6.1.1 Test Teams
	6.1.2 Tasks and Qualifications

	6.2 Planning
	6.2.1 Quality Assurance Plan
	6.2.2 Test Plan
	6.2.3 Prioritizing Tests
	6.2.4 Test Entry and Exit Criteria

	6.3 Cost and Economy Aspects
	6.3.1 Costs of Defects

