Esquema de Soluciones

Lo siguiente es un esquema de las soluciones, en el parcial se pretendía justificar todo al detalle.

Ejercicio 1

- a. Ver teórico.
- b. La intersección de S con π es una circunferencia de centro el origen y radio $\sqrt{2}$, consideramos una base ortonormal $\mathcal{B} = \{(1/\sqrt{2}, 1/\sqrt{2}, 0), (1/\sqrt{6}, -1/\sqrt{6}, -2/\sqrt{6}), (1/\sqrt{3}, -1/\sqrt{3}, 1/\sqrt{3})\}$ de \mathbb{R}^3 tal que los primeros dos vectores generan el plano π . En estas coordenadas obtenemos una parametrización de la circunferencia: $\alpha: [0, 2\pi] \to \mathbb{R}^3$ tal que $\alpha(t) = \sqrt{2}\cos(t)(1/\sqrt{2}, 1/\sqrt{2}, 0) + \sqrt{2}\sin(t)(1/\sqrt{6}, -1/\sqrt{6}, -2/\sqrt{6})$. Notar que $\alpha(0) = (1/\sqrt{2}, 1/\sqrt{2}, 0), \ \alpha(2\pi) = (1/\sqrt{2}, 1/\sqrt{2}, 0) \ y \ \alpha'(t) \neq (0, 0, 0)$, por lo que la parametrización recorre toda la curva.
- c. $\kappa = 1/\sqrt{2}$ pues la curva es una circunferencia de radio $\sqrt{2}$ y $\tau = 0$ pues la curva es plana.

Ejercicio 2

- a. Ver el teorema de Green generalizado.
- b. $\int_{\gamma_1} F \cdot ds = 4$ pues γ_1 da dos vueltas en sentido antihorario respecto a S_1 . $\int_{\gamma_2} F \cdot ds = 0$ pues el campo es irrotacional y se puede aplicar Green en el interior de la curva. $\int_{\gamma_3} F \cdot ds = -2$ pues por la parte a. esta integral es opuesta a la integral en S_1 .

Ejercicio 3

- a. $U = \mathbb{R}^3 \setminus \{(0,0,z) : z \in \mathbb{R}\}$. U no es simplemente conexo, basta considerarse la circunferencia de ecuación: $z = 0, x^2 + y^2 = 1$. La misma no se puede deformar a un punto pues rodea a la recta $\{(0,0,z) : z \in \mathbb{R}\}$.
- b. \widetilde{F} es irrotacional, basta realizar los cálculos.
- c. F es de gradientes en U, encontramos especificamente un potencial escalar: $f_c(x, y, z) = \frac{1}{2} \ln(x^2 + y^2) + \frac{z^2}{2} + c$, notar que efectivamente f está definido en U. Recordamos además que todos los potenciales escalares en un conexo difieren en una constante.
- d. Por la parte anterior, podemos utilizar la regla de Barrow, con lo que $\int_{\gamma} F \cdot ds = f(Q) f(P)$.

Ejercicio 4

- a. Tomamos una parametrización de S_r , entonces $\int_{S_r} F \cdot ds = \int_a^b \underbrace{\langle F(\alpha(t)), \alpha'(t) \rangle}_{F(\alpha(t)) = \alpha'(t)} dt = 0$.
 - Para calcular $\int_{\gamma} F \cdot ds$ separamos γ en 4 curvas, dos de ellas son arcos de circunferencias (γ_2 y γ_4) y las otras dos son segmentos contenidos en semirrectas que pasan por el origen (γ_1 y γ_3). En las curvas γ_2 y γ_4 la circulación es 0, y en las curvas γ_1 y γ_3 la circulación es opuesta y por tanto se cancela. En resumen $\int_{\gamma} F \cdot ds = 0$.
- b. Vamos a suponer que existe $(x_0, y_0) \in \mathbb{R}^2$ tal que $Q_x P_y(x_0, y_0) > 0$. Por continuidad de rot(X), existe un entorno U de (x_0, y_0) tal que rot(X)(x, y) > 0 para todo $(x, y) \in U$. Luego al aplicar Green en ese entorno tendríamos que para toda curva cerrada contenida en U, su integral debe ser positiva, sin embargo podemos notar que en cualquier entorno U podemos considerar una curva de la forma de γ (suficientemente pequeña) si $(x_0, y_0) \neq (0, 0)$ y una curva S_r (suficientemente pequeña) si $(x_0, y_0) = (0, 0)$, y en estos casos la integral sobre estas curvas es nula.