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Before the meeting the reviewers prepare, the results are written in a 
protocol, and someone other than the author records the findings. In 
practice there is a wide variation from informal to formal walkthroughs.

Objectives The main objectives of a walkthrough are mutual learning, develop-
ment of an understanding of the review object, and error detection.

Inspection

Formal process The inspection is the most formal review. It follows a formal, prescribed 
process. Every person involved, usually people who work directly with the 
author, has a defined role. Rules define the process. The reviewers use 
checklists containing criteria for checking the different aspects.

The goals are finding unclear items and possible defects, measuring 
review object quality, and improving the quality of the inspection process 
and the development process. The concrete objectives of each individual 
inspection are determined during planning. The inspectors (reviewers) 
prepare for only a specific number of aspects that will be examined. Before 
the inspection begins, the inspection object is formally checked with 
respect to entry criteria and reviewability. The inspectors prepare them-
selves using procedures or standards and checklists.

Traditionally, this method of reviewing has been called design in-
spection or code or software inspection. The name points to the docu-
ments that are subject to the inspection (see [Fagan 76]). However, in-
spections can be used for any document in which formal evaluation 
criteria exist.

Inspection meeting A moderator leads the meeting. The inspection meeting follows this 
agenda:

■ The moderator first presents the participants and their roles as well as a 
short introduction to the topic of the inspection object.

■ The moderator asks the participants if they are adequately prepared. In 
addition, the moderator might ask how much time the reviewer used to 
prepare and how many and how severe were the issues found.

■ The group may review the checklists chosen for the inspection in order 
to make sure everyone is well prepared for the meeting.

■ Issues of a general nature concerning the whole inspection object are 
discussed first and written into the protocol.
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■ A reviewer presents6 the contents of the inspection object quickly and 
logically. If it’s considered useful, passages can also be read aloud.

■ The reviewers ask questions during this procedure, and the selected 
aspects of the inspection are thoroughly discussed. The author answers 
questions. The moderator makes sure that a list of issues is written. If 
author and reviewer disagree about an issue, a decision is made at the 
end of the meeting.

■ The moderator must intervene if the discussion is getting out of con-
trol. The moderator also makes sure the meeting covers all aspects to 
be evaluated as well as the whole document. The moderator makes sure 
the recorder writes down all the issues and ambiguities that are 
detected.

■ At the end of the meeting, all recorded items are reviewed for com-
pleteness.

■ Discussions are conducted to resolve disagreements, for example, 
whether or not something can be classified a defect. If no resolution is 
reached, this is written in the protocol. There should be no discussion 
on how to solve the issues. Any discussion should be limited in time.

■ Finally, the reviewers judge the inspection object as a whole.
■ They decide if it must be reworked or not. In inspections, follow-up 

and reinspection are formally regulated.

Additional assessment of the 

development and inspection 

process

In an inspection, data are also collected for general quality assessment of 
the development process and the inspection process. Therefore, an inspec-
tion also serves to optimize the development process, in addition to assess-
ing the inspected documents. The collected data are analyzed in order to 
find causes for weaknesses in the development process. After process 
improvement, comparing the collected data before the change to the cur-
rent data checks the improvement effect.

ObjectiveThe main objective of inspection is defect detection or, more precisely, 
the detection of defects causes and defects.

Technical Review

Does the review object fulfill 

its purpose?

In a technical review, the focus is compliance of the document with the spec-
ification, fitness for its intended purpose, and compliance to standards. 

6. Often, reviewers are called inspectors. [IEEE 1028] calls the presenting reviewer the 
reader.
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During preparation, the reviewers check the review object with respect to 
the specified review criteria.

Technical experts as 

reviewers

The reviewers must be technically qualified. Some of them should not 
be project participants in order to avoid “project blindness.” Management 
does not participate. Basis for the review is only the “official” specification 
and the specified criteria for the review. The reviewers write down their 
comments and pass them to the moderator before the review meeting.7
The moderator (who ideally is properly trained) sorts these findings based 
on their presumed importance. During the review meeting, only selected 
remarks are discussed.

High preparation effort Most of the effort is in preparation. The author does not normally 
attend the meeting. During the meeting, the recorder notes all the issues 
and prepares the final documentation of the results.

The review result must be approved unanimously by all involved 
reviewers and signed by everyone. Disagreement should be noted in the 
protocol. It is not the job of the review participants to decide on the con-
sequences of the result; that is the responsibility of management. If the 
review is highly formalized, entry and exit criteria of the individual review 
steps may also be defined.

In practice, very different versions of the technical review are found, 
from a very informal to a strictly defined, formal process.

Objective Discussion is expressly requested during a technical review. Alterna-
tive approaches should be considered and decisions made. The specialists 
may solve the technical issues. The conformity of the review object with its 
specifications and applicable standards can be assessed. Technical reviews 
can, of course, reveal errors and defects.

Informal Review

The informal review is a light version of a review. However, it more or less 
follows the general procedure for reviews (see section 4.1.3) in a simplified 
way. In most cases, the author initiates an informal review. Planning is 
restricted to choosing reviewers and asking them to deliver their remarks 
at a certain point in time. Often, there is no meeting or exchange of the 
findings. In such cases, the review is just a simple author-reader-cycle. The 
informal review is a kind of cross reading by one or more colleagues. The 
results need not be explicitly documented; a list of remarks or the revised 

7. In [IEEE 1028], this also applies to inspection.
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document is in most cases enough. Pair programming, buddy testing, code 
swapping, and the like are types of informal review. The informal review 
is very common and highly accepted due to the minimal effort required.

ObjectiveAn informal review involves relatively little effort and low costs. 
Discussion and exchange of information among colleagues are welcome
“side effects” of the process.

Selection Criteria

Selecting the type of reviewThe type of review that should be used depends very much on how thor-
ough the review needs to be and the effort that can be spent. It also 
depends on the project environment; we cannot give specific recommen-
dations. The decision about what type of review is appropriate must be 
made on a case-by-case basis. Here are some questions and criteria that 
should help:

■ The form in which the results of the review should be presented can 
help select the review type. Is detailed documentation necessary, or is it 
good enough to present the results informally?

■ Will it be difficult or easy to find a date and time for the review? It can 
be difficult to bring together five or seven technical experts for one or 
more meetings.

■ Is it necessary to have technical knowledge from different disciplines?
■ What level (how deep) of technical knowledge is required for the 

review object? How much time will the reviewers need?
■ Is the preparation effort appropriate with respect to the benefit of the 

review (the expected result)?
■ How formally written is the review object? Is it possible to perform 

tool-supported analyses?
■ How much management support is available? Will management curtail 

reviews when the work is done under time pressure?

Testers as reviewersIt makes sense to use testers as reviewers. The reviewed documents are 
usually used as the test basis to design test cases. Testers know the docu-
ments early and they can design test cases early. By looking at documents 
from a testing point of view, testers may check new quality aspects, such as 
testability.
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Notes

As we said in the beginning of the chapter, there are no uniform descrip-
tions of the individual types of review. There is no clear boundary between 
the different review types, and the same terms are used with different 
meanings.

Company-specific reviews Generally, it can be said that the types of reviews are very much deter-
mined by the organization that uses them. Reviews are tailored to the spe-
cific needs and requirements of a project. This has a positive influence on 
their efficiency.

A cooperative collaboration between the people involved in software 
development can be considered beneficial to quality. If people examine each 
other’s work results, defects and ambiguities can be revealed. From this 
point of view, pair programming, as suggested in ➞Extreme Programming, 
can be regarded as a permanent “two-person-review” [Beck 00].

With distributed project teams, it might be hard to organize review 
meetings. These days, reviews can be in the form of structured discussion 
by Internet, videoconferencing, telephone conference calls, etc.

Success Factors

The following factors are crucial for review success and must be con-
sidered:

■ Reviews help improve the examined documents. Detecting issues, such 
as unclear points and deviations, is a wanted and required effect. The 
issues must be formulated in a neutral and objective way.

■ Human and psychological factors have a strong influence in a review. A 
review must be conducted in an atmosphere of trust. The participants 
must be sure that the outcome will not be used to evaluate them (for 
example, as a basis of their next job assessment). It’s important that the 
author of the reviewed document has a positive experience. 

■ Testers should be used as reviewers. They contribute to the review by 
finding (testing) issues. When they participate in reviews, testers learn 
about the product, which enables them to prepare tests earlier and in a 
better way.

■ The type and level of the examined document, and the state of knowl-
edge of the participating people, should be considered when choosing 
the type of review to use.

■ Checklists and guidelines should be used to help in detecting issues 
during reviews.
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■ Training is necessary, especially for more formal types of reviews, such 
as inspections.

■ Management can support a good review process by allocating enough 
resources (time and personnel) for document reviews in the software 
development process.

■ Continuous learning from executed reviews improves the review pro-
cess and thus is important.

4.2 Static Analysis
Analysis without executing 

the program

The objective of static analysis is, as with reviews, to reveal defects or 
defect-prone parts in a document. However, in static analysis, tools do the 
analysis. For example, even spell checkers can be regarded as a form of 
➞static analyzers because they find mistakes in documents and therefore 
contribute to quality improvement. 

The term static analysis points to the fact that this form of checking 
does not involve an execution of the checked objects (of a program). An 
additional objective is to derive measurements, or metrics, in order to 
measure and prove the quality of the object.

Formal documentsThe document to be analyzed must follow a certain formal structure 
in order to be checked by a tool. Static analysis makes sense only with the
support of tools. Formal documents can note, for example, the technical 
requirements, the software architecture, or the software design. An exam-
ple is the modeling of class diagrams in UML.8 Generated outputs in
HTML9 or XML10 can also be subjected to tool-supported static analysis.
Formal models developed during the design phases can also be analyzed 
and inconsistencies can be detected. Unfortunately, in practice, the pro-
gram code is often the one and only formal document in software devel-
opment that can be subjected to static analysis.

Developers typically use static analysis tools before or during compo-
nent or integration testing to check if guidelines or programming conven-
tions are adhered to. During integration testing, adherence to interface 
guidelines is analyzed.

Analysis tools often produce a long list of warnings and comments. In 
order to effectively and efficiently use the tools, the mass of generated 

8. Unified Modeling Language [URL: UML]
9. HyperText Markup Language [URL: HTML]
10. Extensible Markup Language [URL: XML]
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information must be handled intelligently; for example, by configuring the 
tool. Otherwise, the tools might be avoided.

Static analysis and reviews Static analysis and reviews are closely related. If a static analysis is per-
formed before the review, a number of defects and deviations can be found 
and the number of the aspects to be checked in the review clearly 
decreases. Due to the fact that static analysis is tool supported, there is 
much less effort involved than in a review.

Hint ■ If documents are formal enough to allow tool-supported static analysis, then it 
should definitely be performed before the document reviews because faults and 
deviations can be detected conveniently and cheaply and the reviews can be 
shortened.

■ Generally, static analysis should be used even if no review is planned. Each time 
a discrepancy is located and removed, the quality of the document increases.

Not all defects can be found using static testing, though. Some defects 
become apparent only when the program is executed (that means at run-
time) and cannot be recognized before. For example, if the value of the 
denominator in a division is stored in a variable, that variable can be 
assigned the value zero. This leads to a failure at runtime. In static analysis, 
this defect cannot easily be found, except for when the variable is assigned 
the value zero by a constant having zero as its value. 

All possible paths through the operations may be analyzed, and the 
operation can be flagged as potentially dangerous. On the other hand, 
some inconsistencies and defect-prone areas in a program are difficult to 
find by dynamic testing. Detecting violation of programming standards or 
use of forbidden error-prone program constructs is possible only with 
static analysis (or reviews).

The compiler is an 

analysis tool

All compilers carry out a static analysis of the program text by check-
ing that the correct syntax of the programming language is used. Most 
compilers provide additional information, which can be derived by static 
analysis (see section 4.2.1). In addition to compilers, there are other tools 
that are so-called analyzers. These are used for performing special analy-
ses or groups of analyses.

The following defects and dangerous constructions can be detected by 
static analysis:

■ Syntax violations
■ Deviations from conventions and standards
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■ ➞Control flow anomalies
■ ➞Data flow anomalies

Finding security problemsStatic analysis can be used to detect security problems. Many security holes 
occur because certain error-prone program constructs are used or neces-
sary checks are not done. Examples are lack of buffer overflow protection 
and failing to check that input data may be out of bounds. Tools can find 
such deficiencies because they often search and analyze certain patterns.

4.2.1 The Compiler as a Static Analysis Tool

Violation of the programming language syntax is detected by static analysis 
and reported as a fault or warning. Many compilers also generate further 
information and perform other checks: 

■ Generating a cross-reference list of the different program elements 
(e.g., variables, functions)

■ Checking for correct data type usage by data and variables in program-
ming languages with strict typing

■ Detecting undeclared variables
■ Detecting code that is not reachable (so-called ➞dead code)
■ Detecting overflow or underflow of field boundaries (with static 

addressing)
■ Checking interface consistency
■ Detecting the use of all labels as jump start or jump target

The information is usually provided in the form of lists. A result reported 
as “suspicious” by the tool is not always a fault. Therefore, further investi-
gation is necessary.

4.2.2 Examination of Compliance to Conventions 
and Standards

Compliance to conventions and standards can also be checked with tools. 
For example, tools can be used to check if a program follows programming 
regulations and standards. This way of checking takes little time and 
almost no personnel resources. In any case, only guidelines that can be ver-
ified by tools should be accepted in a project. Other regulations usually 
prove to be bureaucratic waste anyway. Furthermore, there often is an 
additional advantage: if the programmers know that the program code is 
checked for compliance to the programming guidelines, their willingness 
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to work according to the guidelines is much higher than without an auto-
matic test.

4.2.3 Execution of Data Flow Analysis

Checking the use of data ➞Data flow analysis is another means to reveal defects. Here, the usage of 
data on ➞paths through the program code is checked. It is not always pos-
sible to decide if an issue is a defect. Instead, we speak of ➞anomalies, or 
data flow anomalies. An anomaly is an inconsistency that can lead to fail-
ure but does not necessarily do so. An anomaly may be flagged as a risk.

An example of a data flow anomaly is code that reads (uses) variables 
without previous initialization or code that doesn’t use the value of a vari-
able at all. The analysis checks the usage of every single variable. The fol-
lowing three types of usage or states of variables are distinguished:

■ Defined (d): The variable is assigned a value.
■ Referenced (r): The value of the variable is read and/or used.
■ Undefined (u): The variable has no defined value.

Data flow anomalies We can distinguish three types of data flow anomalies:

■ ur-anomaly: An undefined value (u) of a variable is read on a program 
path (r).

■ du-anomaly: The variable is assigned a value (d) that becomes invalid/
undefined (u) without having been used in the meantime.

■ dd-anomaly: The variable receives a value for the second time (d) and 
the first value had not been used (d).

Example of anomalies We will use the following example (in C++) to explain the different anomalies. 
The following function is supposed to exchange the integer values of the para-
meters Max and Min with the help of the variable Help, if the value of the variable
Min is greater that the value of the variable Max: 

void exchange (int& Min, int& Max) {
int Help;

if (Min > Max) {
Max = Help;
Max = Min;
Help = Min;
}

}
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After the usage of the single variables is analyzed, the following anomalies can be 
detected:
■ ur-anomaly of the variable Help: The domain of the variable is limited to the 

function. The first usage of the variable is on the right side of an assignment. At 
this time, the variable still has an undefined value, which is referenced there. 
There was no initialization of the variable when it was declared (this anomaly 
is also recognized by usual compilers, if a high warning level is activated).

■ dd-anomaly of the variable Max: The variable is used twice consecutively on the 
left side of an assignment and therefore is assigned a value twice. Either the first 
assignment can be omitted or the programmer forgot that the first value (before 
the second assignment) has been used.

■ du-anomaly of the variable Help: In the last assignment of the function, the 
variable Help is assigned another value that cannot be used anywhere because 
the variable is valid only inside the function.

Data flow anomalies are 

usually not that obvious

In this example, the anomalies are obvious. But it must be considered that 
between the particular statements that cause these anomalies there could 
be an arbitrary number of other statements. The anomalies would not be 
as obvious anymore and could easily be missed by a manual check such as, 
for example, a review. A tool for analyzing data flow can, however, detect 
the anomalies.

Not every anomaly leads directly to an incorrect behavior. For exam-
ple, a du-anomaly does not always have direct effects; the program could 
still run properly. The question arises why this particular assignment is at 
this position in the program, just before the end of the block where the 
variable is valid. Usually, an exact examination of the program parts 
where trouble is indicated is worthwhile and further inconsistencies can 
be discovered.

4.2.4 Execution of Control Flow Analysis

Control flow graphIn figure 4-1, a program structure is represented as a control flow graph. 
In this directed graph, the statements of the program are represented with 
nodes. Sequences of statements are also represented with a single node 
because inside the sequence there can be no change in the course of pro-
gram execution. If the first statement of the sequence is executed, the 
others are also executed.

Changes in the course of program execution are made by decisions, 
such as, for example, in IF statements. If the calculated value of the condi-
tion is true, then the program continues in the part that begins with 
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THEN. If the condition is false, then the ELSE part is executed. Loops lead 
to previous statements, resulting in repeated execution of a part of the 
graph.

Control flow anomalies Due to the clarity of the control flow graph, the sequences through the 
program can easily be understood and possible anomalies can be detected. 
These anomalies could be jumps out of a loop body or a program structure 
that has several exits. They may not necessarily lead to failure, but they are 
not in accordance with the principles of structured programming. It is 
assumed that the graph is not generated manually but that it is generated 
by a tool that guarantees an exact mapping of the program text to the 
graph.

If parts of the graph or the whole graph are very complex and the rela-
tions, as well as the course of events, are not understandable, then the pro-
gram text should be revised, because complex sequence structures often 
bear a great risk of being wrong.

Excursion: 
Predecessor-successor 

table

In addition to graphs, a tool can generate predecessor-successor tables that show 
how every statement is related to the other statements. If a statement does not have 
a predecessor, then this statement is unreachable (so-called dead code). Thus a 
defect or at least an anomaly is detected. The only exceptions are the first and last 
statements of a program: They can legally have no predecessor or successor. For 
programs with several entrance and/or exit points, the same applies.

4.2.5 Determining Metrics

Measuring of quality 

characteristics

In addition to the previously mentioned analyses, static analysis tools pro-
vide measurement values. Quality characteristics can be measured with 
measurement values, or metrics. The measured values must be checked, 
though, to see if they meet the specified requirements [ISO 9126]. An over-
view of currently used metrics can be found in [Fenton 91].

The definition of metrics for certain characteristics of software is 
based on the intent to gain a quantitative measure of software whose 
nature is abstract. Therefore, a metric can only provide statements con-
cerning the one aspect that is examined, and the measurement values that 
are calculated are only interesting in comparison to numbers from other 
programs or program parts that are examined.

Cyclomatic number In the following, we’ll take a closer look at a certain metric: the 
➞cyclomatic number (McCabe number [McCabe 76]). The cyclomatic
number measures the structural complexity of program code. The basis of
this calculation is the control flow graph.
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For a control flow graph (G) of a program or a program part, the cyc-
lomatic number can be computed like this:11

v(G) = e - n + 2

v(G) = cyclomatic number of the graph G
e = number of edges of the control flow graph
n = number of nodes of the control flow graph

Example for computing 
the cyclomatic number

A program part is represented by the graph shown in figure 4-1. It is a function 
that can be called. Thus, the cyclomatic number can be calculated like this:

v (G) = e - n + 2 = 17 - 13 + 2 =6
e = number of edges in the graph = 17
n = number of nodes in the graph = 13 

Figure 4–1
Control flow graph for
 the calculation of
 the cyclomatic number 
(identical to figure 2–2)

The value of 6 is, according to McCabe, acceptable and in the middle of the range. 
He assumes that a value higher than 10 cannot be tolerated and rework of the 
program code has to take place.

11. The original formula is v(G) = e - n + 2p, where p is the number of connected program 
parts. We use p=1 because there is only one part that is analyzed.
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The cyclomatic number 

gives information about 

the testing effort

The cyclomatic number can be used to estimate the testability and the 
maintainability of a particular program part. The cyclomatic number spec-
ifies the number of independent paths in the program part.12 If 100% 
branch coverage (see section 5.2.2) is intended, then all these independent 
paths of the control flow graph have to be executed at least once. Therefore, 
the cyclomatic number provides important information concerning the 
volume of the test. 

Understanding a program is essential for its maintenance.
The higher the value of the cyclomatic number, the more difficult it is 

to understand the flow in a certain program part.

Excursion The cyclomatic number has been very much discussed since its publication. One of 
its drawbacks is that the complexity of the conditions, which lead to the selection of 
the control flow, is not taken into account. It does not matter for the calculation of the 
cyclomatic number whether a condition consists of several partial atomic conditions 
with logical operators or is a single condition. Many extensions and adaptations have 
been published concerning this.

4.3 Summary

■ Several pairs of eyes see more than a single pair of eyes. This is also true 
in software development. This is the main principle for the reviews that 
are performed for checking and for improving quality. Several people 
inspect the documents and discuss them in a meeting and the results 
are recorded.

■ A fundamental review process consists of the following activities: plan-
ning, kick-off, preparation, review meeting, rework, and follow-up. 
The roles of the participants are manager, moderator, author, reviewer, 
and recorder.

■ There are several types of reviews. Unfortunately, the terminology is 
defined differently in all literature and standards.

■ The walkthrough is an informal procedure where the author presents 
her document to the reviewers in the meeting. There is little prepara-
tion for the meeting. The walkthrough is especially suitable for small 
development teams, for discussing alternatives, and for educating peo-
ple in the team.

■ The inspection is the most formal review type. Preparation is done 
using checklists, there are defined entry and exit criteria, and a trained 

12. This means all complete linearly independent paths.
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moderator chairs the meeting. The objective of inspections is checking 
the quality of the document and improvement of development, the 
development process, and the inspection process itself.

■ In the technical review, the individual reviewers’ results must be given 
to the review leader prior to the meeting. The meeting is then prior-
itized by assumed importance of the individual issues. The evaluators 
usually have access to the specifications and other documentation only. 
The author can remain anonymous.

■ The informal review is not based on a formal procedure. The form in 
which the results have to be presented is not prescribed. Because this 
type of review can be performed with minimal effort, its acceptance is 
very high, and in practice it is commonly used.

■ Generally, the specific environment, i.e., the organization and project 
for which the review is used, determines the type of review to be used. 
Reviews are tailored to meet specific needs and requirements, which 
increases their efficiency. It is important to establish a cooperative and 
collaborative atmosphere among the people involved in the develop-
ment of the software.

■ In addition to the reviews, a lot of checks can be done for documents 
that have a formalized structure. These checks are called static analy-
ses. The test object is not executed during a static analysis.

■ The compiler is the most common analysis tool and reveals syntax 
errors in the program code. Usually, compilers provide even more 
checking and information.

■ Analysis tools that are dependent on programming language can also 
show violation of standards and other conventions.

■ Tools are available for detecting anomalies in the data and control flows 
of the program. Useful information about control and data flows is 
generated, which often points to parts that could contain defects.

■ Metrics are used to measure quality. One such metric is the cyclomatic 
number, which calculates the number of independent paths in the 
checked program. It is possible to gain information on the structure 
and the testing effort.

■ Generally, static analyses should be performed first, before a document 
is subjected to review. Static analyses provide a relatively inexpensive 
means to detect defects and thus make the reviews less expensive.
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5 Dynamic Analysis – 
Test Design Techniques

This chapter describes techniques for testing software by executing the test 
objects on a computer. It presents the different techniques, with examples, for 
specifying test cases and for defining test exit criteria.

These ➞test design techniques are divided into three categories: black 
box testing, white box testing, and experience-based testing.

Execution of the test object 

on a computer

Usually, testing of software is seen as the execution of the test object on a 
computer. For further clarification, the phrase ➞dynamic analysis is used. 
The test object (program) is fed with input data and executed. To do this, 
the program must be executable. In the lower test stages (component and 
integration testing), the test object cannot be run alone but must be 
embedded into a test harness or test bed to obtain an executable program 
(see figure 5-1).

A test bed is necessary The test object will usually call different parts of the program through 
predefined interfaces. These parts of the program are represented by 
placeholders called stubs when they are not yet implemented and there-
fore aren’t ready to be used or if they should be simulated for this particu-
lar test of the test object. Stubs simulate the input/output behavior of the 
part of the program that usually would be called by the test object.1

1. In contrast to stubs, with their rudimental functionality, the ➞dummy or ➞mock-up 
offers additional functionality, often near the final functionality for testing purposes. A 
mock-up usually has more functionality than a dummy.
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Figure 5–1
Test bed

Furthermore, the test bed must supply the test object with input data. In 
most cases, it is necessary to simulate a part of the program that is sup-
posed to call the test object. A test driver does this. Driver and stub com-
bined establish the test bed. Together, they constitute an executable pro-
gram with the test object itself.

The tester must often create the test bed, or the tester must expand or 
modify standard (generic) test beds, adjusting them to the interfaces of the 
test object. Test bed generators can be used as well (see section 7.1.4). An 
executable test object makes it possible to execute the dynamic test.

Systematic approach for 

determining the test cases

The objective of testing is to show that the implemented test object 
fulfills specified requirements as well as to find possible faults and failures. 
With as little cost as possible, as many requirements as possible should be 
checked and as many failures as possible should be found. This goal 
requires a systematic approach to test case design. Unstructured testing 
“from your gut feeling” does not guarantee that as many as possible, 
maybe even all, different situations supported by the test object are tested.

Step wise approach The following steps are necessary to execute the tests:

■ Determine conditions and preconditions for the test and the goals to be 
achieved.

■ Specify the individual test cases.
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■ Determine how to execute the tests (usually chaining together several 
test cases).

This work can be done very informally (i.e., undocumented) or in a formal 
way as described in this chapter. The degree of formality depends on sev-
eral factors, such as the application area of the system (for example, safety-
critical software), the maturity of the development and test process, time 
constraints, and knowledge and skill level of the project participants, just 
to mention a few.

Conditions, preconditions, 

and goals

At the beginning of this activity, the test basis is analyzed to determine 
what must be tested (for example, that a particular transaction is correctly 
executed). The test objectives are identified, for example, demonstrating 
that requirements are met. The failure risk should especially be taken into 
account. The tester identifies the necessary preconditions and conditions 
for the test, such as what data should be in a database.

TraceabilityThe traceability between specifications and test cases allows an analy-
sis of the impact of the effects of changed specifications on the test, that is, 
the necessity for creation of new test cases and removal or change of exist-
ing ones. Traceability also allows checking a set of test cases to see if it cov-
ers the requirements. Thus, coverage can be a criterion for test exit.

In practice, the number of test cases can soon reach hundreds or thou-
sands. Only traceability makes it possible to identify the test cases that are 
affected by specification changes.

➞Test case specificationPart of the specification of the individual test cases is determining test 
input data for the test object. They are determined using the methods 
described in this chapter. However, the preconditions for executing the 
test case, as well as the expected results and expected postconditions, are 
necessary for determining if there is a failure (for detailed descriptions, see 
[IEEE 829]).

Determining expected result 

and behavior

The expected results (output, change of internal states, etc.) should be 
determined and documented before the test cases are executed. Other-
wise, an incorrect result can easily be interpreted as correct, thus causing 
a failure to be overlooked.

Test case executionIt does not make much sense to execute an individual test case. Test 
cases should be grouped in such a way that a whole sequence of test cases 
is executed (test sequence, test suite or test scenario). Such a test sequence 
is documented in the ➞test procedure specifications or test instructions. 
This document commonly groups the test cases by topic or by test objec-
tives. Test priorities and technical and logical dependencies between the 
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tests and regression test cases should be visible. Finally, the test execution 
schedule (assigning tests to testers and determining the time for execu-
tion) is described in a ➞test schedule document.

To be able to execute a test sequence, a ➞test procedure or ➞test 
script is required. A test script contains instructions for automatically exe-
cuting the test sequence, usually in a programming language or a similar 
notation, the test script may contain the corresponding preconditions as 
well as instruction for comparing the actual and expected results. JUnit is 
an example of a framework that allows easy programming of test scripts in 
Java [URL: xunit].

Black box and white box 

 test design techniques

Several different approaches are available for designing tests. They 
can roughly be categorized into two groups: black box techniques2 and 
white box techniques3. To be more precise, they are collectively called test 
case design techniques because they are used to design the respective test 
cases.

In black box testing, the test object is seen as a black box. Test cases are 
derived from the specification of the test object; information about the 
inner structure is not necessary or available. The behavior of the test 
object is watched from the outside (the ➞Point of Observation, or PoO, is 
outside the test object). The operating sequence of the test object can only 
be influenced by choosing appropriate input test data or by setting appro-
priate preconditions. The ➞Point of Control (PoC) is also located outside 
of the test object. Test cases are designed using the specification or the 
requirements of the test object. Often, formal or informal models of the 
software or component specification are used. Test cases can be systemat-
ically derived from such models.

In white box testing, the program text (code) is used for test design. 
During test execution, the internal flow in the test object is analyzed (the 
Point of Observation is inside the test object). Direct intervention in the 
execution flow of the test object is possible in special situations, such as, 
for example, to execute negative tests or when the component’s interface is 
not capable of initiating the failure to be provoked (the Point of Control 
can be located inside the test object). Test cases are designed with the help 
of the program structure (program code or detailed specification) of the 
test object (see figure 5-2). The usual goal of white box techniques is to 

2. Black box techniques are also called requirements-based testing techniques
3. White box techniques are sometimes called glass box or open box techniques because it 

is impossible to see through a white box. However, these terms are not used often.
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achieve a specified coverage; for example, 80% of all statements of the test 
object shall be executed at least once. Extra test cases may be systemati-
cally derived to increase the degree of coverage.

PoC and PoO “outside”
the test object

PoC and/or PoO “inside”
the test object

Black box approach White box approach

Testobjekt

Testdaten

T
estausgaben

PoC

PoO
 Test object

Test input data

T
est output data

PoC

PoO

Testobjekt

Testdaten

T
estausgaben

PoC

PoOm1 (a,b,c) {
...
If (x > a)
...
}

Test object

Test input data

T
est output data

PoC

PoOm1 (a,b,c) {
...
If (x > a)
...
}

 

Figure 5–2
PoC and PoO at black box 
and white box techniques

White box testing is also called structural testing because it considers the 
structure (component hierarchy, control flow, data flow) of the test object. 
The black box testing techniques are also called functional, specification-
based, or behavioral testing techniques because the observation of the 
input/output behavior is the main focus [Beizer 95]. The functionality of 
the test object is the center of attention. 

White box testing can be applied at the lower levels of the testing, i.e., 
component and integration test. A system test oriented on the program 
text is normally not very useful. Black box testing is predominantly used 
for higher levels of testing even though it is reasonable in component tests. 
Any test designed before the code is written (test-first programming, test-
driven development) is essentially applying a black box technique.

Most test methods can clearly be assigned to one of the two categories. 
Some have elements of both and are sometimes called gray box techniques.

In the sections 5.1 and 5.2, black box and white box techniques are 
described in detail. 

Intuitive test case designIntuitive and experience-based testing is usually black box testing. It is 
described in a special section (section 5.3) because it is not a systematic 
technique. This test design technique uses the knowledge and skill of peo-
ple (testers, developers, users, stakeholders) to design test cases. It also 
uses knowledge about typical or probable faults and their distribution in 
the test object.
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5.1 Black Box Testing Techniques

In black box testing, the inner structure and design of the test object is 
unknown or not considered. The test cases are derived from the specifica-
tion, or they are already available as part of the specification (“specification 
by example”). Black box techniques are also called specification based 
because they are based on specifications (of requirements). A test with all 
possible input data combinations would be a complete test, but this is unre-
alistic due to the enormous number of combinations (see section 2.1.4). 
During test design, a reasonable subset of all possible test cases must be 
selected. There are several methods to do that, and they will be shown in 
the following sections.

5.1.1 Equivalence Class Partitioning

Input domains are divided 

into equivalence classes

The domain of possible input data for each input data element is divided 
into ➞equivalence classes (equivalence class partitioning). An equivalence 
class is a set of data values that the tester assumes are processed in the same 
way by the test object. Testing one representative of the equivalence class 
is considered sufficient because it is assumed that for any other input value 
of the same equivalence class, the test object will show the same reaction 
or behavior. Besides equivalence classes for correct input, those for incor-
rect input values must be tested as well.

Example for equivalence 
class partitioning

The example for the calculation of the dealer discount from section 2.2.2 is revis-
ited here to clarify the facts. Remember, the program will prescribe the dealer dis-
count. The following text is part of the description of the requirements: “For a 
sales price of less than $15,000, no discount shall be given. For a price up to 
$20,000, a 5% discount is given. Below $25,000, the discount is 7%, and from 
$25,000 onward, the discount is 8.5%.”

Four different equivalence classes with correct input values (called valid
equivalence classes, or vEC, in the table) can easily be derived for calculating the 
discount (see table 5-1).

Table 5–1
Valid equivalence classes 

 and representatives

 

Parameter Equivalence classes Representative

Sales price vEC1: 0  x < 15000
vEC2: 15000  x  20000
vEC3: 20000 < x < 25000
vEC4: x  25000

14500
16500
24750
31800

In section 2.2.2, the input values 14,500, 16,500, 24,750, 31,800 (see table 2-2) 
were chosen.
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Every value is a representative for one of the four equivalence classes. It is 
assumed that test execution with input values like, for example, 13400, 17000, 
22300, and 28900 does not lead to further insights and therefore does not find 
further failures. With this assumption, it is not necessary to execute those extra 
test cases. Note that tests with boundary values of the equivalence classes (for 
example, 15000) are discussed in section 5.1.2.

Equivalence classes with 

invalid values

Besides the correct input values, incorrect or invalid values must be tested. 
Equivalence classes for incorrect input values must be derived as well, and 
test cases with representatives of these classes must be executed. In the 
example we used earlier, there are the following two invalid equivalence 
classes4 (iEC).

Table 5–2
Invalid equivalence classes 

and representatives

 

Parameter Equivalence classes Representative

Sales price iEC1: x < 0
negative, i.e., wrong sales price
iEC2: x > 1000000
unrealistically high sales pricea

a. The value 1,000,000 is chosen arbitrarily. Discuss with the car manufacturer or 
dealer what is unrealistically high!

-4000

1500800

Systematic development 

of the test cases

The following describes how to systematically derive the test cases. For 
every input data element that should be tested (e.g., function/method 
parameter at component tests or input screen field at system tests), the 
domain of all possible input values is determined. This domain is the 
equivalence class containing all valid or allowed input values. Following 
the specification, the program must correctly process these values. The val-
ues outside of this domain are seen as equivalence classes with invalid 
input values. For these values as well, it must be tested how the test object 
behaves.

Further partitioning of the 

equivalence classes

The next step is refining the equivalence classes. If the test object’s 
specification tells us that some elements of equivalence classes are pro-
cessed differently, they should be assigned to a new (sub) equivalence 
class. The equivalence classes should be divided until each different 
requirement corresponds to an equivalence class. For every single equiva-
lence class, a representative value should be chosen for a test case.

4. A more correct term would be equivalence classes for invalid values instead of invalid 
equivalence class because the equivalence class itself is not invalid, only the values of 
this class, referring to the specified input.
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To complete the test cases, the tester must define the preconditions 
and the expected result for every test case.

Equivalence classes 

for output values

The same principle of dividing into equivalence classes can be used for 
the output data. However, identification of the individual test cases is more 
expensive because for every chosen output value, the corresponding input 
value combination causing this output must be determined. For the output 
values as well, the equivalence classes with incorrect values must not be 
left out.

Partitioning into equivalence classes and selecting the representatives 
should be done carefully. The probability of failure detection is highly 
dependent upon the quality of the partitioning as well as which test cases 
are executed. Usually, it is not trivial to produce the equivalence classes 
from the specification or from other documents.

Boundaries of the 

equivalence classes

The best test values are certainly those verifying the boundaries of the 
equivalence classes. There are often misunderstandings or inaccuracies in 
the requirements at these spots because our natural language is not precise 
enough to accurately define the limits of the equivalence classes. The col-
loquial phrase … less than $15000 … within the requirements may mean 
that the value 15000 is inside (EC: x <= 15000) or outside of the equiva-
lence class (EC: x < 15000). An additional test case with x = 15000 may 
detect a misinterpretation and therefore failure. Section 5.1.2 discusses the 
analysis of the boundary values for equivalence classes in detail.

Example: 
Equivalence class 

construction for integer 
input values

To clarify the procedure for building equivalence classes, all possible equivalence 
classes for an integer input value shall be identified. The following equivalence 
classes result for the integer parameter extras of the function 
calculate_price()::

Table 5–3
Equivalence classes 

 for integer input values

Parameter Equivalence classes

extras vEC1: [MIN_INT,…, MAX_INT] a

a. MIN_INT and MAX_INT each describe the minimum and maximum integer num-
ber that the computer can represent. These may vary depending on the hard-
ware.

iEC1: NaN (Not a Number)

Notice that the domain is limited on a computer by the computer’s maximum and 
minimum values, contrary to plain mathematics. Using values outside the com-
puter domain often leads to failures because such exceptions are not caught cor-
rectly.
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The equivalence class for incorrect values is derived from the following con-
sideration: Incorrect values are numbers that are greater or smaller than the range 
of the applicable interval or every nonnumeric value.5 If it is assumed that the 
program’s reaction on an incorrect value is always the same (e.g., an exception 
handling that delivers the error code NOT_VALID), then it is sufficient to map all 
possible incorrect values on one common equivalence class (named NaN for Not a 
Number here). Floating-point numbers are part of this equivalence class because 
it is expected that the program displays an error message to inputs such as 3.5. In 
this case, the equivalence class partitioning method does not require any further 
subdivision because the same reaction is expected for every wrong input. How-
ever, an experienced tester will always include a test case with a floating-point 
number in order to determine if the program rounds the number and then uses 
the corresponding integer number for its computation. The basis for this addi-
tional test case is thus experience-based testing (see section 5.3).

Because negative and positive values are usually handled differently, it is sen-
sible to further partition the valid equivalence class (cEV1). Zero is also an input, 
which often leads to failure.

Table 5–4
Equivalence classes and 

representative values for 

integer inputs

Parameter Equivalence classes Representatives

extras vEC1: [MIN_INT, …, 0[
a

a. ‘[‘ Specifies an open interval until just below the given value, but not including 
it. The definition [MIN_INT, ... , -1] is equivalent because we deal with integer 
numbers in this case.

vEC : [0, …, MAX_INT]

iEC1: NaN (Not a Number)

-123

654

“f”

The representative was chosen relatively arbitrarily from the three equivalence 
classes. Additionally, we should test the boundary values (see section 5.1.2) of the 
corresponding equivalence classes: MIN_INT, -1, 0, MAX_INT. For the equivalence 
classes of the invalid values, no boundary values can be given.

Thus, using equivalence partitioning and including the boundary values for 
the integer parameter extras results in the following seven values to be tested:

{”f”, MIN_INT, -123, -1, 0, 654, MAX_INT}.

For each of these inputs, the predicted outputs or reactions of the test object must 
be defined, in order to decide after running the test if there was a failure.

5. If, and which, incorrect values are found by the compiler depends on the chosen pro-
gramming language and the compiler and runtime system chosen. This may happen 
when calling the test driver. In our example we assume that the compiler does not rec-
ognize incorrect parameter values. Thus, their processing must be checked during 
dynamic testing.

2
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Equivalence classes of 

inputs, which are no basic 

data types

For the integer input data of the example, it is very easy to determine 
equivalence classes and the corresponding representative test values. 
Besides the basic data types, data structures and sets of objects can also 
occur. It must then be decided in each case with which representative val-
ues to execute the test case.

Example for input values 
to be selected from a set

The following example should clarify this: A potential customer can be a working 
person, a student, a trainee, or a retired person. If the test object needs to react 
differently to each kind of customer, then every possibility must be verified with 
an additional test case. If there is no requirement for different reactions for each 
person type, then one test case may be sufficient. 

If the test object is the component that calculates payment options 
(EasyFinance), then four different test cases must be provided. Financing will 
surely be calculated differently for the different customer groups. Details must be 
looked up in the requirements. Each calculation must be verified by a test to 
check the correctness of the calculations and to find failures.

For the test of the component that handles the online configuration of the car 
(VirtualShowRoom), it may be sufficient to choose only one representative for the 
customer, such as, for example, a working person. It is probably not relevant if a 
student or a retired person configures the car. The tester should, however, be 
aware that if she executes the test with the input working person only, she would 
not be able to tell anything about the correctness of the car configuration for any 
of the other person groups.

Hint for determining 
equivalence classes

The following hints can help determine equivalence classes:

■ For the inputs as well as for the outputs, identify the restrictions and conditions 
from the specification.

■ For every restriction or condition, partition into equivalence classes:
• If a continuous numerical domain is specified, then create one valid and two 

invalid equivalence classes.
• If a number of values should be entered, then create one valid (with all possi-

ble correct values) and two invalid equivalence classes (less and more than 
the correct number).

• If a set of values is specified where each value may possibly be treated differ-
ently, then create one valid equivalence class for each value of the set (con-
taining exactly this one value) and one additional invalid equivalence class 
(containing all possible other values).

• If there is a condition that must be fulfilled, then create one valid and one in-
valid equivalence class to test the condition fulfilled and not fulfilled.

■ If there is any doubt that the values of one equivalence class are treated equally, 
the equivalence class should be divided further into subclasses.
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Test Cases

Combination of the 

representatives

Usually, the test object has more than one input parameter. The equiva-
lence class technique results in at least two equivalence classes (one valid 
and one invalid) for each of these parameters of the test object. Therefore, 
there are at least two representative values that must be used as test input 
for each parameter.

In order to specify a test case, you must assign each parameter an 
input value. For this purpose, it must be decided which of the available 
values should be combined to form test cases. To guarantee that all test 
object reactions (modeled by the equivalence class division) are triggered, 
you must combine the input values (i.e., the representatives of the corre-
sponding equivalence classes), using the following rules:

Rules for test case design■ The representative values of all valid equivalence classes should be 
combined to test cases, meaning that all possible combinations of valid 
equivalence classes will be covered. Any of those combinations builds a 
valid test case or a positive test case.

Separate test of the 
invalid value

■ The representative value of an invalid equivalence class shall be com-
bined only with representatives of other valid equivalence classes. 
Thus, for every invalid equivalence class an additional negative test case
shall be specified.

Restriction of the number 
of test cases

The number of valid test cases is the product of the number of valid equiv-
alence classes per parameter. Because of this multiplicative combination, 
even a few parameters can generate hundreds of valid test cases. Since it is 
seldom possible to use that many test cases, more rules are necessary to 
reduce the number of valid test cases:

Rules for test case restriction■ Combine the test cases and sort them by frequency of occurrence (typ-
ical usage profile). Prioritize the test cases in this order. That way only 
the relevant test cases (or combinations appearing often) are tested.

■ Test cases including boundary values or boundary value combinations 
are preferred.

■ Combine every representative of one equivalence class with every 
representative of the other equivalence classes (i.e., pairwise combina-
tions6 instead of complete combinations).

6. See section 4.2.5 in [Bath 08]. The pairwise combination test method is described in 
this book in section 5.1.4. 
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■ Ensure that every representative of an equivalence class appears in at 
least one test case. This is a minimum criterion.

■ Representatives of invalid equivalence classes should not be combined 
with representatives of other invalid equivalence classes.

Test invalid values separately The representatives of invalid equivalence classes are not combined. An 
invalid value should only be combined with valid ones because an incor-
rect parameter value normally triggers an exception handling. This is usu-
ally independent of values of other parameters. If a test case combines 
more than one incorrect value, defect masking may result and only one of 
the possible exceptions is actually triggered and tested. When a failure 
appears, it is not obvious which of the incorrect values has triggered the 
effect. This leads to extra time and cost for failure analysis.7

Example: 
Test of the DreamCar price

calculation

In the following example, the function calculate_price() from the VSR-Subsys-
tem DreamCar serves as test object (specified in section 3.2.3). We must test if the 
function calculates the correct total price from its input values. We assume that 
the inner structure of the function is unknown. Only the functional specification 
of the function and the external interface are known. 

double calculate_price (
double baseprice, // base price of the vehicle
double specialprice, // special model addition
double extraprice, // price of the extras
int extras, // number of extras
double discount // dealer's discount
)

Step 1: 
Identifying the domain

The equivalence class technique is used to derive the required test cases from the 
input parameters. First, we identify the domain for every input parameter. This 
results in equivalence classes for valid and invalid values for each parameter (see 
table 5-5).

With this technique, at least one valid and one invalid equivalence class per 
parameter has been derived exclusively from the interface specifications (test data 
generators work in a similar way; see section 7.1.2).

 

7. It is sometimes useful to combine representatives of invalid equivalence classes to pro-
duce additional test cases, thus provoking further failures.



Parameter Equivalence classes

baseprice vEC11: [MIN_DOUBLE, … , MAX_DOUBLE]
iEC11: NaN

specialprice vEC21: [MIN_DOUBLE, … , MAX_DOUBLE]
iEC21: NaN

extraprice vEC31: [MIN_DOUBLE, … , MAX_DOUBLE]
iEC31: NaN

extras vEC41: [MIN_INT, … , MAX_INT]
iEC41: NaN

discount vEC51: [MIN_DOUBLE, … , MAX_DOUBLE]
iEC51: NaN
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Step 2: Refine the 

equivalence classes based 
on the specification

Table 5–5
Equivalence classes
 for integer input values

In order to further subdivide these equivalence classes, information about the 
functionality of this method is needed. The functional specification delivers this 
information (see section 3.2.3). From this specification the following statements 
relevant for testing can be found:
■ Parameters 1 to 3 are prices (of cars). Prices are not negative. The specification 

does not define any price limits.
■ The value extras controls the discount for the supplementary equipment (10% 

if extras  3 and 15% if extras  5). The parameter extras defines the number 
of chosen parts of supplementary equipment and therefore it cannot be nega-
tive.8 The specification does not define an upper limit for the number.

■ The parameter discount denotes a general discount and is given as a percentage 
between 0 and 100. Because the specification text defines the limits for the dis-
count for supplementary equipment as a percentage, the tester can assume that 
this parameter is entered as a percentage as well. Consultation with the client 
will otherwise clarify this matter.

These considerations are based not only on the functional specification. Rather, 
the analysis uncovers some “holes” in the specification. The tester fills these holes 
by making plausible assumptions based on application domain or general know-
ledge and her testing experience or by asking colleagues (testers or developers). If 
there is any doubt, consultation with the client is useful. The equivalence classes 
already defined before can be refined (partitioned into subclasses) during this 
analysis. The more detailed the equivalence classes are, the more precise the test. 
The class partition is complete when all conditions in the specification as well as 
conditions from the tester’s knowledge are incorporated.

 

8. Floating-point numbers are part of the equivalence class NaN. See table 5-5 for designing 
equivalence classes for integer number values.



Parameter Equivalence classes Representatives

baseprice vEC11: [0, … , MAX_DOUBLE] 20000.00

iEC11: [MIN_DOUBLE, … , 0[
a

a. 0[ means approaching, but not including zero.

iEC12: NaN
-1.00
”abc”

specialprice vEC21: [0, … , MAX_DOUBLE] 3450.00

iEC21: [MIN_DOUBLE, … , 0[
iEC22: NaN

-1.00
”abc”

extraprice vEC31: [0, … , MAX_DOUBLE] 6000.00

iEC31: [MIN_DOUBLE, … , 0[
iEC32: NaN

-1.00
”abc”

extras vEC41: [0, … , 2]
vEC42: [3, 4]
vEC43: [5, … , MAX_INT]

1
3
20

iEC41: [MIN_INT, … , 0[
iEC42: NaN

-1.00
”abc”

discount vEC51: [0, … , 100] 10.00

iEC51: [MIN_DOUBLE, … , 0[
iEC52: ]100, … , MAX_DOUBLE]
iEC53: NaN

-1.00
101.00
”abc”

Table 5–6
Further partitioning of the 
equivalence classes of the 
parameter of the function 
Calculate_price() with 

representatives
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The result: Altogether, 18 equivalence classes are produced, 7 for correct/valid 
parameter values and 11 for incorrect/invalid ones.

Step 3: 
Select representatives

To get input data, one representative value must be chosen for every equiva-
lence class. According to equivalence class theory, any value of an equivalence 
class can be used. In practice, perfect decomposition is seldom done. Due to an 
absence of detailed information, lack of time, or just lack of motivation, the 
decomposition is aborted at a certain level. Several equivalence classes might 
even (incorrectly) overlap.9 Therefore, one must remember that there could be 
values inside an equivalence class where the test object could react differently. 
Usage frequencies of different values may also be important.

Hence, in the example, the values for the valid equivalence classes are selected 
to represent plausible values and values that will probably often appear in prac-
tice. For invalid equivalence classes, possible values with low complexity are cho-
sen. The selected values are shown in table 5-6.

Step 4: 
Combine the test cases

The next step is to combine the values to test cases. Using the previously given 
rules, we get 1 × 1 × 1 × 3 × 1 = 3 valid test cases (by combining the representa-
tives of the valid equivalence classes) and 2 + 2 + 2 + 2 + 3 = 11 negative test cases 
(by separately testing representatives of every invalid class). In total, 14 test cases 
result from the 18 equivalence classes (table 5-7). 

9. The ideal case is that the identified classes (like equivalence classes in mathematics) are 
not overlapping (disjoint). This should be strived for, but it’s not guaranteed by the 
partitioning technique.



Parameter

Test 
case

baseprice special
price

extraprice extras discount  result

1 20000.00 3450.00 6000.00 1 10.00 27450.00

2 20000.00 3450.00 6000.00 3 10.00 26850.00

3 20000.00 3450.00 6000.00 20 10.00 26550.00

4 -1.00 3450.00 6000.00 1 10.00 NOT_VALID

5 ”abc” 3450.00 6000.00 1 10.00 NOT_VALID

6 20000.00 -1.00 6000.00 1 10.00 NOT_VALID

7 20000.00 ”abc” 6000.00 1 10.00 NOT_VALID

8 20000.00 3450.00 -1.00 1 10.00 NOT_VALID

9 20000.00 3450.00 ”abc” 1 10.00 NOT_VALID

10 20000.00 3450.00 6000.00 -1.00 10.00 NOT_VALID

11 20000.00 3450.00 6000.00 ”abc” 10.00 NOT_VALID

12 20000.00 3450.00 6000.00 1 -1.00 NOT_VALID

13 20000.00 3450.00 6000.00 1 101.00 NOT_VALID

14 20000.00 3450.00 6000.00 1 ”abc” NOT_VALID

Table 5–7
Further partitioning of the 

equivalence classes of the 

parameter test cases
of the function 

Calculate_price()
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For the valid equivalence classes, the same representative values were used to 
ensure that only the variance of one parameter triggers the reaction of the test 
object.

Because four out of five parameters have only one valid equivalence class, 
only a few valid test cases result. There is no reason to reduce the number of test 
cases any further.

After the test inputs have been chosen, the expected outcome must be identi-
fied for every test case. For the negative tests this is easy: The expected result is 
the corresponding error code or message. For the valid test cases, the expected 
outcome must be calculated (for example, by using a spreadsheet).

Definition of Test Exit Criteria

A test exit criterion for the test by equivalence class partitioning can be 
defined as the percentage of executed equivalence classes with respect to 
the total number of specified equivalence classes:

EC-coverage = (number of tested EC/total number of EC) × 100%

In the example, 18 equivalence classes have been defined, but only 15 have 
been executed in the chosen test cases. Then the equivalence class coverage 
is 83%.

EC-coverage = (15/18) × 100% = 83.33%
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Example: 
Equivalence class 

coverage

All 18 equivalence classes are contained with at least one representative each in 
these 14 test cases (table 5-7). Thus, executing all 14 test cases achieves 100% 
equivalence class coverage. If the last three test cases are left out, for example due 
to time limitations (i.e., only 11 instead of 14 test cases are executed), all three 
invalid equivalence classes for the parameter discount are not tested and the 
coverage will be 15/18 (for example, 83.33%).

Degree of coverage defines 

test comprehensiveness

The more thoroughly a test object should be tested, the higher you should 
plan the intended coverage. Before test execution, the predefined coverage 
serves as a criterion for deciding when the testing is sufficient, and after 
test execution, it serves as verification if the required test intensity has been 
achieved.

If, in the previous example, the intended coverage for equivalence 
classes is defined as 80%, then this can be achieved with only 14 of the 
18 tests. The test using equivalence class partitioning can be finished after 
14 test cases. Thus, test coverage is a measurable criterion for ending testing.

The previous example also shows how critical it is to identify the 
equivalence classes. If the equivalence classes have not been identified 
completely, then fewer representative values will be chosen for designing 
test cases, and fewer test cases will result. A high coverage is achieved, but 
it has been calculated based on an incorrect total number of equivalence 
classes. The supposed good result does not reflect the actual intensity of 
the testing. Test case identification using equivalence class partitioning is 
only as good as the analysis it is based on.

The Value of the Technique

Equivalence class partitioning is a systematic technique. It contributes to a 
test where specified conditions and restrictions are not overlooked. The 
technique also reduces the amount of unnecessary test cases. Unnecessary 
test cases are the ones that have data from the same equivalence classes and 
therefore result in equal behavior of the test object.

Equivalence classes cannot be determined only for inputs and out-
puts of methods and functions. They can also be prepared for internal 
values and states, time-dependent values (for example, before or after an 
event), and interface parameters. The method can thus be used in any 
test level.

However, only single input or output conditions are considered. Possi-
ble dependencies or interactions between conditions are ignored. If they 
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are considered, this is very expensive, but it can be done through further 
partitioning of the equivalence classes and by specifying appropriate com-
binations. This kind of combination testing is also called domain analysis. 

However, in combination with fault-oriented techniques, like bound-
ary value analysis, equivalence class partitioning is a powerful technique.

5.1.2 Boundary Value Analysis

A reasonable extension ➞Boundary value analysis delivers a very reasonable addition to the test 
cases that have been identified by equivalence class partitioning. Faults 
often appear at the boundaries of equivalence classes. This happens 
because boundaries are often not defined clearly or are misunderstood. A 
test with boundary values usually discovers failures. The technique can be 
applied only if the set of data in one equivalence class is ordered and has 
identifiable boundaries.

Boundary value analysis checks the borders of the equivalence classes. 
On every border, the exact boundary value and both nearest adjacent val-
ues (inside and outside the equivalence class) are tested. The minimal pos-
sible increment in both directions should be used. For floating-point data, 
this can be the defined tolerance. Therefore, three test cases result from 
every boundary. If the upper boundary of one equivalence class equals the 
lower boundary of the adjacent equivalence class, then the respective test 
cases coincide as well.

In many cases there does not exist a “real” boundary value because the 
boundary value belongs to an equivalence class. In such cases, it can be 
sufficient to test the boundary with two values: one value that is just inside 
the equivalence class and another value that is just outside the equivalence 
class.

Example: 
Boundary values for 
discount

For computing the discount on the sales price (table 5-1), four valid equivalence 
classes were determined and corresponding values chosen for testing the classes. 
Equivalence classes 3 and 4 are specified with vEC3: 20000 < x  25000 and 
vEC4: x  25000. For testing the common boundary of the two equivalence 
classes (25000), the values 24999 and 25000 are chosen (to simplify the situation, 
it is assumed that only whole dollars are possible). The value 24999 lies in vEC3 
and is the largest possible value in that equivalence class. The value 25000 is the 
least possible value in vEC4. The values 24998 and 25001 do not give any more 
information because they are further inside their corresponding equivalence 
classes. Thus, when are the values 24999 and 25000 sufficient and when should 
we additionally use the value 25001?
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Two or three tests It can help to look at the implementation. The program will probably contain 
the ➞instruction if (x < 25000)….10 Which test cases could find a wrong imple-
mentation of this condition? The test values 24999, 25000, and 25001 generate 
the truth-values true, false, and false for the IF statement and the corresponding 
program parts are executed. Test value 25001 does not seem to add any value 
because test value 25000 already generates the truth-value false (and thus the 
change to the neighbor equivalence class). Wrong implementation of the state-
ment if (x  25000) leads to the truth-values true, true, and false. Even here, a test 
with the value 25001 does not lead to any new results and can thus be omitted, 
because the test with value 25000 will lead to a failure and thus find the fault. 
Only a totally wrong implementation stating, for example, if (x <> 25000) and the 
truth-values true, false, and true can be found with test case value 25001. The 
values 24999 and 25000 deliver the expected results, that is, the same ones as with 
the correct implementation.

Hint Wrong implementation of the instruction in if (x > 25000) with false, false, 
and true and in if (x  25000) with false, true, and true results in two or three dif-
ferences between actual and expected result and can be found by test cases with 
the values 24999 and 25000.

To illustrate the facts, table 5-8 shows the different conditions and the truth-
values of the corresponding boundary values.

Table 5–8
Table with three boundary 

values to test the condition

Implemented 
condition

24999 25000 25001 Remark

X < 25000 (correct) True False False Expected result

X  25000 True True False 25000 finds the fault

X <> 25000 True False True 25001 find the fault

X > 25000 False False True 24999 and 25001 find the fault

X  25000 False True True  All three values find the fault

X == 25000 False True False 24999 and 25000 find the fault

It should be decided when a test with only two values is considered enough 
or when it is beneficial to test the boundary with three values. The wrong 
query in the example program, implemented as if (x <> 25000), can be 

10. If the programmer has written if (x  24999), there will be no semantic difference from 
if (x < 25000). However, the boundary values determined from analyzing the 
specification (24999, 25000, and 25001) do not test the implemented statement if 
(x  24999) completely. Incorrectly implementing if (x == 24999) would give the same 
result (true, false, false) for the three values. A code review could in this case find the 
discrepancy between specification and code.
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found in a code review because it does not check the boundary of a value 
area if (x < 25000) but instead checks whether two values are unequal. 
However, this fault can easily be overlooked. Only with a boundary value 
test with three values can all possible wrong implementations of boundary 
conditions be found.

Example: 
Integer input

A test involving an integer input value (see section 5.1.1) produces 5 new test 
cases, giving us a total of 12 test cases with the following input values:

{”f”,
MIN_INT-1, MIN_INT, MIN_INT+1,
-123,
-1, 0, 1,
654,
MAX_INT-1, MAX_INT, MAX_INT+1}

The test case with the input value -1 tests the maximum value of the equivalence 
class EC1: [MIN_INT, … 0[. This test case also verifies the smallest deviation from 
the lower boundary (0) of the equivalence class EC2: [0, …, MAX_INT]. Seen from 
EC2, the value lies outside this equivalence class. Note that values above the 
uppermost boundary as well as beneath the lowermost boundary cannot always 
be entered due to technical reasons.

Only test values for the input variable are given in this example. To complete 
the test cases for each of the 12 values, the expected behavior of the test object 
and the expected outcome must be specified using the test oracle. Additionally, 
the applicable pre- and postconditions are necessary.

Is the test cost justified? Here too we have to decide if the test cost is justified, and every boundary 
with the adjacent values must be tested with extra test cases. Test cases with val-
ues of equivalence classes that do not verify any boundary can be dropped. In the 
example, these are the test cases with the input values -123 and 654. It is assumed 
that test cases with values in the middle of an equivalence class do not deliver any 
new insight. This is because the maximum and the minimum values of the equiv-
alence class are already chosen in some test cases. In the example these values are 
MIN_INT +1, 1, and MAX_INT-1.

Boundaries do not exist 

for sets

For the example with the input data element customer given earlier, no 
boundaries for the input domain can be found. The input data type is dis-
crete, that is, a set of the four elements (working person, student, trainee, 
and retired person). Boundaries cannot be identified here. A possible 
order by age cannot be defined clearly.

Of course, boundary value analysis can also be applied for output 
equivalence classes.
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Test Cases

Analogous to the test case determination in equivalence class partition, the 
valid boundaries inside an equivalence class may be combined as test cases. 
The invalid boundaries must be verified separately and cannot be com-
bined with other invalid boundaries.

As described in the previous example, values from the middle of an 
equivalence class are, in principle, not necessary if the two boundary val-
ues in an equivalence class are used for test cases.

Example: Boundary values 
for calculate_price()

Table 5-9 lists the boundary values for the valid equivalence classes for verifica-
tion of the function calculate_price(). 

Parameter Lower boundary value [Equivalence class]
Upper boundary value

baseprice 0-a

a. The accuracy considered here depends on the problem (for example, a given 
tolerance) and the number representation of the computer.

,[0, 0+, ..., MAX_DOUBLE-, MAX_DOUBLE], MAX_DOUBLE+

specialprice Same values as baseprice

extraprice Same values as baseprice

-1, [0, 1, 2], 3
2, [3, 4], 5
4, [5, 6, …, MAX_INT-1, MAX_INT], MAX_INT+1

discount 0-,[0, 0+, ..., 100-, 100], 100+

 

Table 5–9
Boundaries of the parameters 

of the function 

calculate_price()

Considering only those boundaries that can be found inside equivalence classes, 
we get 4 + 4 + 4 + 9 + 4 = 25 boundary-based values. Of these, two (extras: 1, 3) 
are already tested in the original equivalence class partitioning in the example 
before (test cases 1 and 2 in table 5-7). Thus, the following 23 boundary values 
must be used for new test cases:

baseprice: 0.00, 0.0111, MAX_DOUBLE-0.01, MAX_DOUBLE
specialprice: 0.00, 0.01, MAX_DOUBLE-0.01, MAX_DOUBLE
extraprice: 0.00, 0.01, MAX_DOUBLE-0.01, MAX_DOUBLE
extras: 0, 2, 4, 5, 6, MAX_INT-1, MAX_INT
discount:  0.00, 0.01, 99.99, 100.00

As all values are valid boundaries, they can be combined into test cases 
(table 5-10).

11. For the test cases, 0.01 was assumed to be precise enough.
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The expected results of a boundary value test are often not clearly visible 
from the specification. The experienced tester must then define reasonable 
expected results for her test cases:
■ Test case 15 verifies all valid lower boundaries of equivalence classes of the pa-

rameters of calculate_price(). The test case doesn’t seem to be very realistic.12

This is because of the imprecise specification of the functionality, where no 
lower and upper boundaries are specified for the parameters (see below).13

■ Test case 16 is analogous to test case 15, but here we test the precision of the cal-
culation.14

■ Test case 17 combines the next boundaries from table 5-9. The expected result 
is rather speculative with a discount of 99.99%. A look into the specification of 
the method calculate_price() shows that the prices are added. Thus, it makes 
sense to check the maximal values individually. Test cases 18 to 20 do this. For 
the other parameters, we use the values from test case 1 (table 5-7). Further sen-
sible test cases result when the values of the other parameters are set to 0.00, in 
order to check if maximal values without further addition are handled correctly 
and without overflow.

■ Analogous to test cases 17 to 20, test cases for MAX_DOUBLE should be run.
■ For the still-not-tested boundary values (extras = 5, 6, MAX_INT-1, MAX_INT 

and discount = 100.00), more test cases are needed.

Boundary values outside the valid equivalence classes are not used here.

The example shows the detrimental effect of imprecise specifications on 
the test.15 If the tester communicates with the customer before deter-
mining the test cases, and the value ranges of the parameters can be 
specified more precisely, then the test will be less expensive. This is 
shown here.

12. Remark: A test with 0.00 for the base price is reasonable, but it should be done in sys-
tem testing because for this input value, calculate price() is not necessarily respon-
sible for processing it.

13. The dependence between the number of extras and extra price (if no extras are given, a 
price should not be displayed) cannot be checked through equivalence partitioning or 
boundary value analysis. This requires the use of cause-and-effect analysis (see section 
5.1.4 and [Myers 79]).

14. In order to exactly check the rounding precision, values like, for example, 0.005 are 
needed.

15. And definitely for programming, too.



Parameter

Testcase baseprice specialprice extraprice extras discount result

15 0.00 0.00 0.00 0 0.00 0.00

16 0.01 0.01 0.01 2 0.01 0.03

17 MAX_DOUBLE-0.01 MAX_DOUBLE-0.01 MAX_DOUBLE-0.01 4 99.99 >MAX_DOUBLE

18 MAX_DOUBLE-0.01 3450.00 6000.00 1 10.00 >MAX_DOUBLE

19 20000.00 MAX_DOUBLE-0.01 6000.00 1 10.00 >MAX_DOUBLE

20 20000.00 3450.00 MAX_DOUBLE-0.01 1 10.00 >MAX_DOUBLE

...

Table 5–10
Further test cases for the function calculate_price()s

16. The maximum price for extra items cannot be specified exactly because the depen-
dence between the number of extras and the total price cannot be considered. We used 
the value 25 × 750 = 18750. An extra price of 0 was not included as a further boundary 
value because the dependency of the number of extras and the total value of the extras 
cannot be checked with equivalence class partitioning or boundary value analysis.
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Early test planning— 

already during 

specification—pays off

The customer has given the following information:

■ The base price is between 10000 and 150000.
■ The extra price for a special model is between 800 and 3500.
■ There are a maximum of 25 possible extras, whose prices are between 

50 and 750.
■ The dealer discount is maximum 25%.

After specifying the equivalence classes, the following valid boundary 
values result for the parameters:

baseprice: 10000.00, 10000.01, 149999.99, 150000.00
specialprice: 800.00, 800.01, 3499.99, 3500.00

extraprice: 50.00, 50.01, 18749.99, 18750.0016

extras: 0, 1, 2, 3, 4, 5, 6, 24, 25
discount: 0.00, 0.01, 24.99, 25.00

All these values may be freely combined to test cases. One test case is 
needed for each value outside the equivalence classes. The following values 
must be considered:

baseprice: 9999.99, 150000.01
specialprice: 799.99, 3500.01
extraprice: 49.99, 18750.01
extras: -1, 26
discount: -0.01, 25.01
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Thus, we see that a more precise specification results in fewer test cases and 
clear prediction of the results.

Adding the boundary values for the machine (MAX_DOUBLE, MIN_DOUBLE, 
etc.) is a good idea. This will detect problems with hardware restrictions.

As discussed earlier, it must be decided if it is sufficient to test a 
boundary with two instead of three test data values. In the following hints, 
we assume that two test values are sufficient because there has been a code 
review and possible totally wrong value area checks have been found.

Hint for test case design 
by boundary analysis

■ For an input domain, the boundaries and the adjacent values outside the do-
main must be considered. Domain: [-1.0; +1.0], test data: -1.0, +1.0 and -1.001, 
+1.001.17

■ If an input file has a restricted number of data records (for example, between 1 
and 100), the test values should be 1, 100 and 0, 101.

■ If the output domains serve as the basis, then this is the way to proceed: The 
output of the test object is an integer value between 500 and 1000. Test outputs 
that should be achieved: 500, 1000, 499, 1001. Indeed, it can be difficult to iden-
tify the respective input test data to achieve exactly the required outputs. Gene-
rating the invalid outputs may even be impossible, but you may find defects by 
thinking about it.

■ If the permitted number of output values is to be tested, proceed just as with the 
number of input values: If outputs of 1 to 4 data values are allowed, the test out-
puts to produce are 1, 4 as well as 0 and 5 data values.

■ For ordered sets, the first element and the last element are of special interest for 
the test.

■ If complex data structures are given as input or output (for instance, an empty 
list or zero), tables can be considered as boundary values.

■ For numeric calculations, values that are close together, as well as values that 
are far apart, should be taken into consideration as boundary values.

■ For invalid equivalence classes, boundary value analysis is only useful when 
different exception handling for the test object is expected, depending on an 
equivalence class boundary.

■ Additionally, extremely large data structures, lists, tables, etc. should be chosen. 
For example, you should exceed buffer, file, or data storage boundaries, in order 
to check the behavior of the test object in extreme cases.

■ For lists and tables, empty and full lists and the first and last elements are of in-
terest because they often show failures due to incorrect programming (Off-by-
one problem).

17. The precision to be chosen depends on the specified problem.
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Definition of the Test Exit Criteria

Analogous to the test completion criterion for equivalence class partition, 
an intended coverage of the boundary values (BVs) can also be predefined 
and calculated after execution of the tests.

BV-Coverage = (number of tested BV / total number of BV) × 100%

Notice that the boundary values, as well as the corresponding adjacent val-
ues above and below the boundary, must be counted. However, only dif-
fering values are used for the calculation. Overlapping values of adjacent 
equivalence classes are counted as only one boundary value because only 
one test case with the respective input value is used.

The Value of the Technique

In combination with 

equivalence class 

partitioning

Boundary value analysis should be used together with equivalence class 
partitioning because faults can be found more often at the boundaries of 
the equivalence classes than far inside the classes. It makes sense to com-
bine both techniques, but the technique still allows enough freedom in 
selecting the concrete test data.

The technique requires a lot of creativity to define appropriate test 
data at the boundaries. This aspect is often ignored because the technique 
appears to be very easy, even though determining the relevant boundaries 
is not at all trivial.

5.1.3 State Transition Testing

Consider history In many systems, not only the current input but also the history of execu-
tion or events or inputs influences computation of the outputs and how the 
system will behave. History of system execution needs to be taken into 
account. To illustrate the dependence on history, ➞state diagrams are 
used. They are the basis for designing the test (➞state transition testing).

The system or test object starts from an initial state and can then 
comes into different states. Events trigger state changes or transitions. An 
event may be a function invocation. State transitions can involve actions. 
Besides the initial state, the other special state is the end state. ➞Finite 
state machines, state diagrams, and state transition tables model this 
behavior.

Definition of a finite state 

machine

A finite state machine is formally defined as follows: An abstract 
machine for which the number of states and input symbols are both finite 
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and fixed. A finite state machine consists of states (nodes), transitions 
(links), inputs (link weights), and outputs (link weights). There are a finite 
number of internal configurations, called states. The state of a system 
implicitly contains the information that has resulted from the earlier 
inputs and that is necessary to find the reaction of the system to new 
inputs.

Example: 
Stack

Figure 5-3 shows the popular example of a stack. The stack—for example, a dish 
stack in a heating device—can be in three different states: empty, filled, and full.

The stack is “empty” after initializing where the maximum height (Max) is 
defined (current height = 0). By adding an element to the stack (calling the func-
tion push), the state changes to “filled” and the current height is incremented. In 
this state further elements can be added (push, increment height) as well as with-
drawn (call of the function pop, decrement height). The uppermost element can 
also be displayed (call of the function top, height unchanged). Displaying does 
not alter the stack itself and therefore does not remove any element. If the current 
height is one less than the maximum (height = Max – 1) and one element is 
added to the stack (push), then the state of the stack changes from “filled” to 
“full.” No further element can be added. The condition (Max –1) is described as 
the guard for the transition between the initial and the resulting state. Appropri-
ate guards are illustrated in figure 5-3. If one element is removed (pop) from a 
stack in the “full” state, the state is changed back from “full” to “filled.” A transi-
tion from “filled” to “empty” happens only if the stack consists of just one ele-
ment, which is removed (pop). The stack can only be deleted in the “empty” state.

Figure 5–3
State diagram of a stack

empty filled full

Name

Start and end state

State transition

state

initialize

delete

push

pop [height = 1] pop

push
[height = Max-1]

top
pop [height > 1]

push [height < Max-1]

Legend:

push*
top
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Depending upon the specification, you can define which functions (push, pop, 
top, etc.) can be called for which state of the stack. You must still clarify what hap-
pens when an element is added to a “full” stack (push*). The function must work 
differently from the case of a just–“filled” stack. Thus, the functions must behave 
differently depending on the state of the stack. The state of the test object is a 
decisive element and must be taken into account when testing.18

A possible concrete test case Here is a possible test case with pre- and postconditions for a stack that may 
store text strings:

Precondition: Stack is initialized, state is “empty”
Input: Push (“hello”)
Expected reaction: The stack contains “hello”
Postcondition: State of the stack is “filled”

Further functions of the stack (showing the current level, showing the maximum 
level, enquiry if the stack is empty, etc.) are not considered in this example 
because they do not change the state of the stack.

The test object in state 

transition testing

In state transition testing, the test object can be a complete system with dif-
ferent system states as well as a class in an object-oriented system with dif-
ferent states. Whenever the input history leads to differing behavior, a state 
transition test must be applied.

Further test cases for the 
stack example

Different levels of test intensity can be defined for a state transition test. A mini-
mum requirement is to get to all possible states. In the stack example, these states 
are empty, filled, and full.19 With an assumed maximum height of 4, all three 
states are reached after calling the following functions:

Test case 1:20 initialize [empty], push [filled], push, push, push [full].
Yet, even not all the functions of the stack have been called in this test.

Another requirement for the test is to invoke all functions. With the same 
stack as before, the following sequence of function calls is sufficient for compli-
ance with this requirement:

Test case 2: initialize [empty], push [filled], top, pop [empty], delete.
However, in this sequence, not all the states have been reached.

18. Calling top and pop in the state “empty” have not been specified in the diagram (fig 5-3). 
This was done on purpose. They will first be taken into account in the extended state 
transition tree (see figure 5-5).

19. To keep the test effort small, the maximum height of the stack should be not too high 
because the push function must be called a corresponding number of times to get to 
the “full” state.

20. The following test cases are simplified to make them easy to understand.



5.1 Black Box Testing Techniques 131

Test criteriaA state transition test should execute all specified functions of a state at 
least once. Compliance between the specified and the actual behavior of 
the test object can thus be checked.

Design a transition treeTo identify the necessary test cases, the finite state machine is trans-
formed into a so-called transition tree, which includes certain sequences 
of transitions ([Chow 78]). The cyclic state transition diagram with poten-
tially infinite sequences of states changes to a transition tree, which corre-
sponds to a representative number of states without cycles. With this 
translation, all states must be reached and all transitions of the transition 
diagram must appear.

The transition tree is built from a transition diagram this way:

1. The initial or start state is the root of the tree.
2. For every possible transition from the initial state to a following state 

in the state transition diagram, the transition tree receives a branch 
from its root to a node, representing this next state.

3. The process for step 2 is repeated for every leaf in the tree (every newly 
added node) until one of the following two end conditions is fulfilled:
• The corresponding state is already included in the tree on the way 

from the root to the node. This end condition corresponds to one 
execution of a cycle in the transition diagram.

• The corresponding state is a final state and therefore has no further 
transitions to be considered.

For the stack, the resulting transition tree is shown in figure 5-4.
Eight different paths can be recognized from the root to each of the 

end nodes (leaves). Each path represents a test case, that is, a sequence of 
function calls. Thereby, every state is reached at least once, and every pos-
sible function is called in each state according to the specification of the 
state transition diagram.

However, the transition tree doesn’t show the appropriate guards, but 
they need to be taken care of when test cases are designed.

In test case 1 (shown previously), the maximum assumed stack height 
is four and the guard condition for the transition from the filled to the full 
state when push is called is max. height (4) – 1 = 3. Three push calls are 
therefore necessary to pass from filled to full in the transition tree. In 
addition, another first push call serves to change the state from empty to 
filled. If no guard conditions are set in a transition tree (as in figures 5-4 
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and 5-5), it looks like a single push call is sufficient to move from the 
filled to the full state. 

The transition tree shown in figure 5-4 includes all possible call sequences
resulting from the state model shown in figure 5-3. In addition, the reac-
tion of the state machine for wrong usage must be checked, which means 
that functions are called in states in which they are not supposed to be 
called. Here again the remark that push needs to work differently depends 
on the state. If push is called in the “full” state, it cannot add an element to 
the stack but must leave it unchanged. A message may result, but this is 
not the same as a fault.

Incorrect use of functions It is a violation of the specification if functions are called in states 
where they should not be used (e.g., to delete the stack while in the “full” 
state). A robustness test must be executed to check how the test object 
works when used incorrectly. It should be tested to see whether unex-
pected transitions appear. The test can be seen as an analogy to the test of 
unexpected input values.

The transition tree should be extended by adding a branch for every 
function from every node. This means that from every state, all the func-
tions should be executed or at least an attempt should be made to execute 
them (see figure 5-5).

Producing an extended transition tree can help to find gaps in the 
specifications.

initialize

push

pop

initial

empty

empty

deleted

filled filled filled

full full filled

filled

full

delete

push push pop
top

top push* pop

Figure 5–4
Transition tree 

for the stack example 
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Here, for example, the pop and top calls that weren’t present in the 
state diagram in figure 5-3 (i.e., that weren’t specified) have been added to 
the state “empty.” It definitely makes sense to define which reactions to 
expect when trying pop and top calls for an empty stack. A reasonable 
reaction would be, for example, an error message. 

State transition testing is also a good technique for system testing when 
testing the graphical user interface (GUI) of the test object: The GUI usu-
ally consists of a set of screens and dialog boxes; between those, the user 
can switch back and forth (via menu choices, an OK button, etc.). If 
screens and user controls are seen as states and input reactions as state 
transitions, then the GUI can be modeled with a state diagram. Appropri-
ate test cases and test coverage can be identified by the state transition test-
ing technique described earlier.

initialize

push
pop

initial

empty
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Figure 5–5
Transition tree for the test 
for robustness
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Example: 
Test of DreamCar-GUI

When testing the DreamCar GUI, it may look like this: 

The test starts at the DreamCar main screen (state 1). The action21 “Setup vehi-
cles” triggers the transition into the dialog “Edit vehicle” (state 2). The action 
“Cancel” ends this dialog and the application returns to state 1. Inside a state we 
can then use “local” tests, which do not change the state. These tests then verify 
the built-in functionality of the accessed screen. Navigation through arbitrarily 
complex chains of dialogs can then be modeled after this action. The state dia-
gram of the GUI ensures that all dialogs are included and verified in the test.

21. The two-staged menu choice is seen here as one action.

Figure 5–6
GUI navigation as state 

graph
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Test Cases

To completely define a state-based test case, the following information is 
necessary:

■ The initial state of the test object (component or system)
■ The inputs to the test object
■ The expected outcome or expected behavior
■ The expected final state

Further, for each expected state transition of the test case, the following 
aspects must be defined:

■ The state before the transition
■ The initiating event that triggers the transition
■ The expected reaction triggered by the transition
■ The next expected state

It is not always easy to identify the states of a test object. Often, the state is 
not defined by a single variable but is rather the result from a constellation 
of values of several variables. These variables may be deeply hidden in the 
test object. Thus, the verification and evaluation of each test case can be 
very expensive.

Hint■ Evaluate the state transition diagram from a testing point of view when writing 
the specification. If there are a high number of states and transitions, indicate 
the higher test effort and push for simplification if possible.

■ Check the specification, as well, to make sure the different states are easy to 
identify and that they are not the result of a multiple combination of values of 
different variables.

■ Check that the state variables are easy to display from the outside. It is a good 
idea to include functions that set, reset, and read the state for use during 
testing.

Definition of the Test Exit Criteria

Criteria for test intensity and for exiting can also be defined for state tran-
sition testing:

■ Every state has been reached at least once.
■ Every transition has been executed at least once.
■ Every transition violating the specification has been checked.
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Percentages can be defined using the proportion of test requirements that 
were actually executed to possible ones, similar to the earlier described 
coverage measures.

Higher-level criteria For highly critical applications, more stringent state transition test 
completion criteria can be defined:
■ All combination of transitions
■ All transitions in any order with all possible states, including multiple 

executions in a row

But, achieving sufficient coverage is often not possible due to the large 
number of necessary test cases. Therefore, it is reasonable to set a limit to 
the number of combinations or sequences that must be verified.

The Value of the Technique

State transition testing should be applied where states are important and 
where the functionality is influenced by the current state of the test object. 
The other testing techniques that have been introduced do not support 
these aspects because they do not account for the different behavior of the 
functions in different states.

Especially useful for test of 

object-oriented systems

In object-oriented systems, objects can have different states. The cor-
responding methods to manipulate the objects must then react according 
to what state they are in. State transition testing is therefore more impor-
tant for object-oriented testing because it takes into account this special 
aspect of object orientation.

5.1.4 Logic-Based Techniques (Cause-Effect Graphing and 
Decision Table Technique, Pairwise Testing)

The previously introduced techniques look at the different input data inde-
pendently. The input values are each considered separately for generating 
test cases. Dependencies among the different inputs and their effects on 
the outputs are not explicitly considered for test case design.

Cause-effect graphing [Myers 79] describes a technique that uses the dependencies for iden-
tification of the test cases. It is known as ➞cause-effect graphing. The 
logical relationships between the causes and their effects in a component 
or a system are displayed in a so-called cause-effect graph. The precondi-
tion is that it is possible to find the causes and effects from the specifica-
tion. Every cause is described as a condition that consists of input values 
(or combinations thereof). The conditions are connected with logical 
operators (e.g., AND, OR, NOT). The condition, and thus its cause, can be 
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true or false. Effects are treated similarly and described in the graph (see 
figure 5-7).

Example: 
Cause-effect graph 
for an ATM

In the following example, we’ll use the act of withdrawing money at an automated 
teller machine (ATM) to illustrate how to prepare a cause-effect graph. In order 
to get money from the machine, the following conditions must be fulfilled:22

■ The bank card is valid.
■ The PIN is entered correctly.
■ The maximum number of PIN inputs is three.
■ There is money in the machine and in the account.

The following actions are possible at the machine:
■ Reject card.
■ Ask for another PIN input.
■ “Eat” the card.
■ Ask for an other amount.
■ Pay the requested amount of money.

Figure 5-7 shows the cause-effect graph of the example. 

22. Note: This is not a complete description of a real automated teller machine but just an 
example to illustrate the technique.
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Cause-effect graph 
of the ATM
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The graph makes clear which conditions must be combined in order to achieve 
the corresponding effects.

The graph must be transformed into a ➞decision table from which the test 
cases can be derived. The steps to transform a graph into a table are as fol-
lows:

1. Choose an effect.
2. Looking in the graph, find combinations of causes that have this effect 

and combinations that do not have this effect.
3. Add one column into the table for every one of these cause-effect com-

binations. Include the caused states of the remaining effects.
4. Check to see if decision table entries occur several times, and if they 

do, delete them.

Test with decision tables The objective for a test based on decision tables is that it executes “inter-
esting” combinations of inputs—interesting in the sense that potential fail-
ures can be detected. Besides the causes and effects, intermediate results 
with their truth-values may be included in the decision table.

A decision table has two parts. In the upper half, the inputs (causes) 
are listed; the lower half contains the effects. Every column defines the test 
situations, i.e., the combination of conditions and the expected effects or 
outputs.

In the easiest case, every combination of causes leads to one test case. 
However, conditions may influence or exclude each other in such a way 
that not all combinations make sense. The fulfillment of every cause and 
effect is noted in the table with a “yes” or “no.” Each cause and effect 
should at least once have the values “yes” and “no” in the table.

Example: 
Decision table for an ATM

Because there are four conditions (from “bank card is valid” to “money availa-
ble”), there are, theoretically, 16 (24) possible combinations. However, not all de-
pendencies are taken into account here. For example, if the bank card is invalid, 
the other conditions are not interesting because the machine should reject the 
card.

An optimized decision table does not contain all possible combinations, but 
the impossible or unnecessary combinations are not entered. The dependencies 
between the inputs and the results (actions, outputs) lead to the following opti-
mized decision table, showing the result (table 5-11).



5.1 Black Box Testing Techniques 139

Every column of this table is to be interpreted as a test case. From the table, the 
necessary input conditions and expected actions can be found directly. Test case 5 
shows the following condition: The money is delivered only if the card is valid, 
the PIN is correct after a maximum of three tries, and there is money available 
both in the machine and in the account.

This relatively small example shows how more conditions or dependencies 
can soon result in large and unwieldy graphs or tables.

From a decision table, a decision tree may be derived. The decision 
tree is analogous to the transition tree in state transition testing in how it’s 
used.

Every path from the root of the tree to a leaf corresponds to a test case. 
Every node on the way to a leaf contains a condition that determines the 
further path, depending on its truth-value.

Test Cases

Every column is a test caseIn a decision table, the conditions and dependencies for the inputs, the cor-
responding predicted outputs, and the results for this combination of 
inputs can be read directly from every column to form a test case. The table 
defines logical test cases. They must be fed with concrete data values in 
order to be executed, and necessary preconditions and postconditions 
must be defined.

Definition of the Test Exit Criteria

Simple criteria for test exitAs with the previous methods, criteria for test completion can be defined 
relatively easily. A minimum requirement is to execute every column in the 

Decision table TC1 TC2 TC3 TC4 TC5

Conditions Bank card valid? N Y Y Y Y

PIN correct? - N N Y Y

Third PIN attempt? - N Y - -

Money available? - - - N Y

Actions Reject card Y N N N N

Ask for new PIN N Y N N N

“Eat” card N N Y N N

Ask for new amount N N N Y N

Pay cash N N N N Y

Table 5–11
Optimized decision table 

for the ATM



140 5 Dynamic Analysis – Test Design Techniques

decision table by at least one test case. This verifies all sensible combina-
tions of conditions and their corresponding effects.

The Value of the Technique

The systematic and very formal approach in defining a decision table with 
all possible combinations may show combinations that are not included 
when other test case design techniques are used. However, errors can result 
from optimization of the decision table, such as, for example, when the 
input and condition combinations to be considered are (erroneously) left 
out.

As mentioned, the graph and the table may grow quickly and lose 
readability when the number of conditions and dependent actions 
increases. Without adequate support by tools, the technique is then very 
difficult.

Pairwise Combination Testing

This test design technique can be used when interactions between different 
parameters are unknown. This is the opposite of cause-effect graphing, 
which is designed to cover explicitly known dependencies. Pairwise com-
bination testing has the objective of finding destructive interaction 
between presumably independent parameters (or parameters for which the 
specification does not include dependencies).

The technique starts from the equivalence class table. For every equiv-
alence class,23 a representative value is chosen. Then, every representative 
for one class is combined with every representative for every other class 
(taking into account only pairs of combinations, not higher-level combi-
nations).

After installation of the DreamCar subsystem, three parameters must be set: the 
operating system (Mac, Linux, or Windows), the language (German, Norwegian, 
English), and the screen size (small, large). If all combinations were chosen to test 
this, 3 × 3 × 2 = 18 test cases would result. However, choosing pair wise combi-
nations, we need only 9 test cases. Table 5-12 shows a possible solution.

23. Or even only for every valid equivalence class.
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The solution shows that each operating system occurs with every possible lan-
guage and every possible screen size. Every language also occurs with every pos-
sible screen size and with every possible operating system. Finally, every possible 
screen size occurs with every language and with every operating system. But not 
every possible triple combination (such as Mac, English, small) occurs in the test. 
Test case 9 is special: The combination of Windows and English is necessary, but 
any combinations with the screen size have already been covered in other test 
cases. Thus, the screen size can be freely chosen; for example, the most often 
occurring one can be used.

Pairwise combination tests will find any destructive interaction between 
supposedly independent parameters (provided the representative values 
chosen do this). Higher-level interactions will not necessarily be dis-
covered.

The technique is not easy to apply manually, but tools are available 
[URL: pairwise].

The technique can be extended to cover higher levels of inter-
action.

5.1.5 Use-Case-Based Testing

UML is widely usedWith the increasing use of object-oriented methods for software develop-
ment, the Unified Modeling Language (UML) ([URL: UML]) is used ever 
more frequently in practice. UML defines more than 10 graphical nota-
tions that can be used in all kinds of software development, not only 
object-oriented. 

Test case # OS Language Screen

1 Mac German small

2 Linux German large

3 Windows German large

4 Mac Norwegian large

5 Linux Norwegian small

6 Windows Norwegian small

7 Mac English large

8 Linux English small

9 Windows English Choose freely

Table 5–12
Pairwise combinations
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➞Use case testing There are many research projects and approaches to directly derive 
test cases from UML diagrams and to generate these tests more or less 
automatically. One current issue is model-based testing.24 

Requirements identification Requirements may be described as ➞use cases or business cases. They 
may be given as diagrams. The diagrams help define requirements on a 
relatively abstract level by describing typical user-system interactions. 
Testers may utilize use cases to derive test cases. 

Figure 5-8 shows a use case diagram for part of the dialog with an 
ATM for withdrawing money.

The individual use cases in this example are “Get money,” “PIN query,” 
and “Eat card.” Relationships between use cases may be “include” and 
“extend.” “Include” conditions are always used, and “extend” connections 
can lead to extensions of a use case under certain conditions at a certain 
point (extension point). Thus, the “extend” conditions are not always exe-
cuted; there are alternatives. 

Showing an external view Use case diagrams mainly serve to show the external view of a system from 
the viewpoint of the user or to show the relation to neighboring systems. 
Such external connections are shown as lines to actors (for example, the 
man symbol in the figure). There are further elements in a use case dia-
gram that are included in this discussion.

24. ISTQB [URL: ISTQB] is defining a model-based testing add-on to the Foundation 
Level syllabus.

ATM - bank machine

get money

eat card

“include”

client

bank

payment unit

“extend”

condition: 
{3rd wrong PIN input} 

extension points
PIN query

Figure 5–8
Use case diagram for ATM
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Pre- and postconditions For every use case, certain preconditions must be fulfilled to enable its 
execution. A precondition for getting money at the ATM is, for example, 
that the bank card is valid. After a use case is executed, there are postcon-
ditions. For example, after successfully entering the correct PIN, it is pos-
sible to get money. However, first the amount must be entered, and it must 
be confirmed that the money is available. Pre- and postconditions are also 
applicable for the flow of use cases in a diagram, that is, the path through 
the diagram.

Useful for system and 

acceptance testing

Use cases and use case diagrams serve as the basis for determining test 
cases in use-case-based testing. As the external view is modeled, the tech-
nique is very useful for both system testing and acceptance testing. If the 
diagrams are used to model the interactions between different subsystems, 
test cases can also be derived for integration testing.

Typical system use is testedThe diagrams show the “normal,” “typical,” and “probable” flows and 
often their alternatives. Thus, the use-case-based test checks typical use of 
a system. It is especially important for acceptance of a system that it runs 
as stable as possible in “normal” use. Thus, use-case-based testing is highly 
relevant for the customer and user and therefore for the developer and 
tester as well.

Test Cases

Every use case has a purpose and shall achieve a certain result. Events may 
occur that lead to further alternatives or activities. After the execution, 
there are postconditions. All of the following information is necessary for 
designing test cases and is thus available:

■ Start situation and preconditions
■ Possibly other conditions
■ Expected results
■ Postconditions

However, the concrete input data and results for the individual test cases 
cannot be derived directly from the use cases. The individual input and 
output data must be chosen. Additionally, each alternative contained in the 
diagram (“extend” relation) must be covered by a test case. The techniques 
for designing test cases on the basis of use cases may be combined with 
other specification-based test design techniques.
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Definition of the Test Exit Criteria

A possible criterion is that every use case or every possible sequence of 
use cases in the diagram is tested at least once by a test case. Since alterna-
tives and extensions are use cases too, this criterion also requires their 
execution.

The Value of the Technique

Use-case-based testing is very useful for testing typical user-system inter-
actions. Thus, it is best to apply it in acceptance testing and in system test-
ing. Additionally, test specification tools are available to support this 
approach (section 7.1.4). “Expected” exceptions and special treatment of 
cases can be shown in the diagram and included in the test cases, such as, 
for example, entering a wrong PIN three times (see figure 5-8). However, 
no systematic method exists to determine further test cases for testing facts 
that are not shown in the use case diagram. The other test techniques, such 
as boundary value analysis, are helpful for this.

Excursion This section definitely did not describe all black box test design techniques. We’ll 
briefly describe a few more techniques here to offer some tips about their selection. 
Further techniques can be found in [Myers 79], [Beizer 90], [Beizer 95], and [Pol 98].

Syntax test ➞Syntax testing describes a technique for identifying test cases that can be 
applied if a formal specification of the syntax of the inputs is available. Syntax testing 
would be used for testing interpreters of command languages, compilers, and 
protocol analyzers, for example. The syntax definition is used to specify test cases 
that cover both the compliance to and violation of the syntax rules for the inputs 
[Beizer 90].

Random test ➞Random testing generates values for the test cases by random selection. If a 
statistical distribution of the input values is given (e.g., normal distribution), then it 
should be used for the selection of test values. This ensures that the test cases are
preferably close to reality, making it possible to use statistical models for predicting or 
certifying system reliability [IEEE 982], [Musa 87].

Smoke test The term smoke test is often used in software testing. A smoke test is commonly 
understood as a “quick and dirty” test that is primarily aimed at verifying the minimum 
reliability of the test object. The test is concentrated on the main functions of the test 
object. The output of the test is not evaluated in detail. It is checked only if the test 
object crashes or seriously misbehaves. A test oracle is not used, which contributes 
to making this test inexpensive and easy. The term smoke test is derived from testing 
old-fashioned electrical circuits because short circuits lead to smoke rising. A smoke 
test is often used to decide if the test object is mature enough to proceed with further 
testing designed with the more comprehensive test techniques. Smoke tests can also 
be used for first and fast tests of software updates.
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5.1.6 General Discussion of the Black Box Technique

Wrong specification 

is not detected

The basis of all black box techniques is the requirements or specifications 
of the system or its components and how they collaborate. Black box test-
ing will not be able to find problems where the implementation is based on 
incorrect requirements or a faulty design specification because there will 
be no deviation between the faulty specification or design and the 
observed results. The test object will execute as the requirements or spec-
ifications require, even when they are wrong. If the tester is critical toward 
the requirements or specifications and uses “common sense”, she may find 
wrong requirements during test design.

Otherwise, to find inconsistencies and problems in the specifications, 
reviews must be used (section 4.1.2).

Functionality that’s not 

required is not detected

In addition, black box testing cannot reveal extra functionality that 
exceeds the specifications. (Such extra functionality is often the cause of 
security problems.) Sometimes additional functions are neither specified 
nor required by the customer. Test cases that execute those additional 
functions are performed by pure chance if at all. The coverage criteria, 
which serve as conditions for test exit, are exclusively identified on the 
basis of the specifications or requirements. They are not based on unmen-
tioned or assumed functions.

Verification of the 

functionality

The center of attention for all black box techniques is the verification 
of the functionality of the test object. It is indisputable that the highest pri-
ority is that the software work correctly. Thus, black box techniques 
should always be applied.

5.2 White Box Testing Techniques
Code-based testing 

techniques

The basis for white box techniques is the source code of the test object.
Therefore, these techniques are often called structure-based testing 

techniques because they are based on the structure (of the program). They 
are also called ➞code-based testing techniques. The source code must be 
available, and in certain cases, it must be possible to manipulate it, that is, 
to add code.

All code should be executedThe foundation of white box techniques is to execute every part of the 
code of the test object at least once. Flow-oriented test cases are identified, 
analyzing the program logic, and then they are executed. However, the 
expected results should be determined using the requirements or specifi-
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cations, not the code. This is done in order to decide if execution resulted 
in a failure.

A white box technique can focus on, for example, the statements of the 
test object. The primary goal of the technique is then to achieve a previ-
ously defined coverage of the statements during testing, such as, for exam-
ple, to execute as many statements of the program as possible.

These are the white box test case design techniques:
■ ➞Statement testing
■ ➞Decision testing or ➞branch testing
■ Testing of conditions

• ➞Condition testing25

• ➞Multiple condition testing
• ➞Condition determination testing26

■ ➞Path testing

The following sections describe these techniques in more detail. The 
ISTQB Foundation Level syllabus describes only statement and branch or 
decision testing.

5.2.1 Statement Testing and Coverage

Control flow graph is 

necessary

This analysis focuses on each statement of the test object. The test cases 
shall execute a predefined minimum quota or even all statements of the 
test object. The first step is to translate the source code into a control flow 
graph. The graph makes it easier to specify in detail the control elements 
that must be covered. In the graph, the statements are represented as nodes 
(boxes) and the control flow between the statements is represented as 
edges (connections). If sequences of unconditional statements appear in 
the program fragment, they are illustrated as one single node because exe-
cution of the first statement of the sequence guarantees that all following 
statements will be executed. Conditional statements (IF, CASE) and loops 
(WHILE, FOR), represented as control flow graphs, have more than one 
edge going to the exit node.

After execution of the test cases, it must be determined which state-
ments have been executed (section 5.2.6). When the previously defined 

25. Also called simple condition test or coverage.
26. Also called minimal multicondition test/coverage, modified multiple condition test/

coverage, or MC/DC.
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coverage level has been achieved, the test is considered to be sufficient and 
will therefore be terminated. Normally, all instructions should be executed 
because it is impossible to verify the correctness of instructions that have 
not been executed. 

ExampleThe following example will clarify how to do this. We chose a very simple pro-
gram fragment for this example. It consists of only two decisions and one loop 
(figure 5-9).

Test cases

Coverage of the nodes of the 

control flow

In this example, all statements (all nodes) can be reached by a single test 
case. In this test case, the edges of the graph must be traversed in this order:

a, b, f, g, h, d, e

One test case is enoughAfter the edges are traversed in this way, all statements have been executed 
once. Other combinations of edges of the graph can also be used to achieve 
complete coverage. But the cost of testing should always be minimized, 
which means reaching the goal with the smallest possible number of test 
cases.

The expected results and the expected behavior of the test object 
should be identified in advance from the specification (not the code!). 
After execution, the expected and actual results, and the behavior of the 
test object, must be compared to detect any difference or failure.
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Control flow of a program 
fragment 
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Definition of the Test Exit Criteria

The exit criteria for the tests can be very clearly defined:

➞Statement coverage =
(number of executed statements / total number of statements) × 100%

C0-measure Statement coverage is also known as C0-coverage (C-zero). It is a very 
weak criterion. However, sometimes 100% statement coverage is difficult 
to achieve, as when, for instance, exception conditions appear in the pro-
gram that can be triggered only with great trouble or not at all during test 
execution.

The Value of the Technique

Unreachable code can be 

detected

If complete coverage of all statements is required and some statements can-
not be executed by any test case, this may be an indication of unreachable 
source code (dead statements).

Empty ELSE parts are not 

considered

If a condition statement (IF) has statements only after it is fulfilled 
(i.e., after the THEN clause) and there is no ELSE clause, then the control 
flow graph has a THEN edge, starting at the condition, with (at least) one 
node, but additionally a second outgoing ELSE edge without any interme-
diate nodes. The control flow of both of these edges is reunited at the ter-
minating (ENDIF) node. For statement coverage, an empty ELSE edge 
(between IF and ENDIF) is irrelevant. Possible missing statements in this 
program part are not detected by a test using this criterion!

Statement coverage is measured using test tools (section 7.1.4).

5.2.2 Decision/Branch Testing and Coverage

A more advanced criterion for white box testing is ➞branch coverage of 
the control flow graph; for example, the edges (connections) in the graph 
are the center of attention. This time, the execution of decisions is con-
sidered instead of the execution of the statement. The result of the deci-
sion determines which statement is executed next. This should be used in 
testing.

➞branch or decision test If the basis for a test is the control flow graph with its nodes and edges, 
then it is called a branch test or branch coverage. A branch is the connec-
tion between two nodes of the graph. In the program text, there are IF or 
CASE statements, loops, and so on, also called decisions. This test is thus 
called decision test or decision coverage. There may be differences in the 
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degree of coverage. The following example illustrates this: An IF statement 
with an empty ELSE-part is checked. Decision testing gives 50% coverage 
if the condition is evaluated to true. With one more test case where the 
condition is false, 100% decision coverage will be achieved. For the branch 
test, which is built from the control flow graph, slightly different values 
result. The THEN part consists of two branches and one node, the ELSE 
part only of one branch without any node (no statement there). Thus, the 
whole IF statement with the empty ELSE part consists of three branches. 
Executing the condition with true results in covering two of the three 
branches, that is, 66% coverage. (Decision testing gives 50% in this case). 
Executing the second test case with the condition being false, 100% branch 
coverage and 100% decision coverage are achieved. Branch testing is dis-
cussed further a bit later. 

Empty ELSE-parts are 

considered

Thus, contrary to statement coverage, for branch coverage it is not 
interesting if, for instance, an IF statement has no ELSE-part. It must be 
executed anyway. Branch coverage requires the test of every decision out-
come: both THEN and ELSE in the IF statement; all possibilities for the 
CASE statement and the fall-through case; for loops, both execution of the 
loop body, bypassing the loop body and returning to the start of the loop.

Test Cases

Additional test cases 

necessary

In the example (figure 5-9), additional test cases are necessary if all 
branches of the control flow graph must be executed during the test. For 
100% statement coverage, a test case executing the following order of edges 
was sufficient:

a, b, f, g, h, d, e

The edges c, i, and k have not been executed in this test case. The edges c 
and k are empty branches of a condition, while the edge i is the return to 
the beginning of the loop. Three test cases are necessary:

a, b, c, d, e
a, b, f, g, i, g, h, d, e
a, k, e

Connection (edge) coverage 

of the control flow graph

All three test cases result in complete coverage of the edges of the control 
flow graph. With that, all possible branches of the control flow in the 
source code of the test object have been tested.
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Some edges have been executed more than once. This seems to be 
redundant, but it cannot always be avoided. In the example, the edges a 
and e are executed in every test case because there is no alternative to these 
edges.

For each test case, in addition to the preconditions and postcondi-
tions, the expected result and expected behavior must be determined and 
then compared to the actual result and behavior. Furthermore, it is reason-
able to record which branches have been executed in which test case in 
order to find wrong execution flows. This helps to find faults, especially 
missing code in empty branches.

Definition of the Test Exit Criteria

As with statement coverage, the degree of branch coverage is defined as fol-
lows:

Branch coverage =
(number of executed branches / total number of branches) × 100%

C1-measure Branch coverage is also called C1-coverage. The calculation counts only if 
a branch has been executed at all. The frequency of execution is not rele-
vant. In our example, the edges a and e are each passed three times—once 
for each test case.

If we execute only the first three test cases in our example (not the 
fourth one), edge k will not be executed. This gives a branch coverage of 
9 executed branches out of 10 total:

(9 / 10) × 100% = 90%.

For comparison, 100% statement coverage has already been achieved after 
the first test case.

Depending on the criticality of the test object, and depending on the 
expected failure risk, the test exit criterion can be defined differently. For 
instance, 85% branch coverage can be sufficient for a component of one 
project, whereas for a different project, another component must be tested 
with 100% coverage. The example shows that the test cost is higher for 
higher coverage requirements.

The Value of the Technique

More test cases necessary Decision/branch coverage usually requires the execution of more test cases 
than statement coverage. How much more depends on the structure of the 
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test object. In contrast to statement coverage, branch coverage makes it 
possible to detect missing statements in empty branches. Branch coverage 
of 100% guarantees 100% statement coverage, but not vice versa. Thus, 
branch coverage is a stronger criterion.

Each of the branches is regarded separately and no particular combi-
nations of single branches are required.

Hint■ A branch coverage of 100% should be aimed for.
■ The test can only be categorized as sufficient if, in addition to all statements, 

every possible branch of the control flow, and thus every possible result of a de-
cision in the program text, is considered during test execution.

Inadequate for object-

oriented systems

For object-oriented systems, statement coverage as well as branch coverage 
are inadequate because the control flow of the functions in the classes is 
usually short and not very complex. Thus, the required coverage criteria 
can be achieved with little effort. The complexity in object-oriented sys-
tems lies mostly in the relationship between the classes, so additional ade-
quate coverage criteria are necessary in this case. As tools often support the 
process of determining coverage, coverage data can be used to detect not-
called methods or program parts.

5.2.3 Test of Conditions27

Considering the complexity 

of combined conditions

Branch coverage exclusively considers the logical value of the result of a 
condition (“true” or “false”). Using this value, it is decided which branch 
in the control flow graph to choose and, accordingly, which statement is 
executed next in the program. If a decision is based on several (partial) 
conditions connected by logical operators, then the complexity of the con-
dition should be considered in the test. The following sections describe dif-
ferent requirements and degrees of test intensity under consideration of 
combined conditions.

27. In the ISTQB Certified Tester syllabus, condition test and multiple condition testing 
are mentioned only as examples of further structure-based techniques. These two tech-
niques, as well as condition determination testing, are described here anyway because 
they are effective techniques for testing conditions.
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Condition Testing and Coverage

The goal of condition testing is to cause each ➞atomic (partial) condition 
in the test to adopt both a true and a false value.

Definition of an atomic 

partial condition

An atomic partial condition is a condition that has no logical opera-
tors such as AND, OR, and NOT but at the most includes relation symbols 
such as > and =. A condition in the source code of the test object can con-
sist of multiple atomic partial conditions.

Example 
 for combined conditions

An example for a combined condition is x > 3 OR y < 5. The condition consists 
of two conditions (x > 3; y < 5) connected by the logical operator OR.

The goal of condition testing is that each partial condition (i.e., each individ-
ual part of a combined condition) is evaluated once, resulting in each of the log-
ical values. The test data x = 6 and y = 8 result in the logical value true for the first 
condition (x > 3) and the logical value false for the second condition (y < 5). The 
logical value of the complete condition is true (true OR false = true). The second 
pair of test data with the values x = 2 and y = 3 results in false for the first condi-
tion and true for the second condition. The value of the complete condition 
results in true again (false OR true = true). Both parts of the combined condition 
have each resulted in both logical values. The result of the complete condition, 
however, is equal for both combinations.

A weak criterion Condition coverage is therefore a weaker criterion than statement or branch 
coverage because it is not required that different logical values for the result of the
complete condition are included in the test.

Multiple Condition Testing and Coverage

All combinations of the 

logical values

Multiple condition testing requires that all true-false combinations of the 
atomic partial conditions be exercised at least once. All variations should 
be built, if possible.

Continuation 
of the example

Four combinations of test cases are possible with the test data from the previous 
example for the two conditions (x > 3, y < 5):

x = 6 (T), y = 3 (T), x > 3 OR y < 5 (T)
x = 6 (T), y = 8 (F), x > 3 OR y < 5 (T)
x = 2 (F), y = 3 (T), x > 3 OR y < 5 (T)
x = 2 (F), y = 8 (F), x > 3 OR y < 5 (F)

Multiple condition testing 
subsumes statement and 

branch coverage

The evaluation of the complete condition results in both logical values. Thus, 
multiple condition testing meets the criteria of statement and branch coverage. It 
is a more comprehensive criterion that also takes into account the complexity of 
combined conditions. But this is a very expensive technique due to the growing 


	4 Static Test
	4.2 Static Analysis
	4.2.1 The Compiler as a Static Analysis Tool
	4.2.2 Examination of Compliance to Conventions and Standards
	4.2.3 Execution of Data Flow Analysis
	4.2.4 Execution of Control Flow Analysis
	4.2.5 Determining Metrics

	4.3 Summary

	5 Dynamic Analysis – Test Design Techniques
	5.1 Black Box Testing Techniques
	5.1.1 Equivalence Class Partitioning
	5.1.2 Boundary Value Analysis
	5.1.3 State Transition Testing
	5.1.4 Logic-Based Techniques (Cause-Effect Graphing  and Decision Table Technique, Pairwise Testing)
	5.1.5 Use-Case-Based Testing
	5.1.6 General Discussion of the Black Box Technique

	5.2 White Box Testing Techniques
	5.2.1 Statement Testing and Coverage
	5.2.2 Decision/Branch Testing and Coverage
	5.2.3 Test of Conditions



