
Contents ix

Contents

1 Introduction 1

2 Fundamentals of Testing 5

2.1 Terms and Motivation .. 6

2.1.1 Error, Defect, and Bug Terminology ... 7

2.1.2 Testing Terms .. 8

2.1.3 Software Quality .. 11

2.1.4 Test Effort ... 13

2.2 The Fundamental Test Process ... 17

2.2.1 Test Planning and Control .. 19

2.2.2 Test Analysis and Design .. 22

2.2.3 Test Implementation and Execution .. 25

2.2.4 Test Evaluation and Reporting ... 28

2.2.5 Test Closure Activities .. 30

2.3 The Psychology of Testing ... 31

2.4 General Principles of Testing ... 33

2.5 Ethical Guidelines .. 35

2.6 Summary .. 36

3 Testing in the Software Life Cycle 39

3.1 The General V-Model .. 39

3.2 Component Test .. 42

3.2.1 Explanation of Terms .. 42

x Contents

3.2.2 Test objects .. 43

3.2.3 Test Environment .. 43

3.2.4 Test objectives .. 46

3.2.5 Test Strategy .. 48

3.3 Integration Test .. 50

3.3.1 Explanation of Terms .. 50

3.3.2 Test objects .. 52

3.3.3 The Test Environment .. 53

3.3.4 Test objectives .. 53

3.3.5 Integration Strategies .. 55

3.4 System Test .. 58

3.4.1 Explanation of Terms .. 58

3.4.2 Test Objects and Test Environment .. 59

3.4.3 Test Objectives ... 60

3.4.4 Problems in System Test Practice .. 60

3.5 Acceptance Test ... 61

3.5.1 Contract Acceptance Testing .. 62

3.5.2 Testing for User Acceptance .. 63

3.5.3 Operational (Acceptance) Testing ... 64

3.5.4 Field Testing .. 64

3.6 Testing New Product Versions .. 65

3.6.1 Software Maintenance ... 65

3.6.2 Testing after Further Development .. 67

3.6.3 Testing in Incremental Development 68

3.7 Generic Types of Testing ... 69

3.7.1 Functional Testing ... 70

3.7.2 Nonfunctional Testing ... 72

3.7.3 Testing of Software Structure ... 74

3.7.4 Testing Related to Changes and Regression Testing 75

3.8 Summary ... 76

Contents xi

4 Static Test 79

4.1 Structured Group Evaluations .. 79

4.1.1 Foundations .. 79

4.1.2 Reviews .. 80

4.1.3 The General Process ... 82

4.1.4 Roles and Responsibilities .. 86

4.1.5 Types of Reviews .. 88

4.2 Static Analysis ... 95

4.2.1 The Compiler as a Static Analysis Tool 97

4.2.2 Examination of Compliance to Conventions
and Standards ... 97

4.2.3 Execution of Data Flow Analysis .. 98

4.2.4 Execution of Control Flow Analysis ... 99

4.2.5 Determining Metrics .. 100

4.3 Summary ... 102

5 Dynamic Analysis – Test Design Techniques 105

5.1 Black Box Testing Techniques .. 110

5.1.1 Equivalence Class Partitioning ... 110

5.1.2 Boundary Value Analysis .. 121

5.1.3 State Transition Testing .. 128

5.1.4 Logic-Based Techniques (Cause-Effect Graphing
and Decision Table Technique, Pairwise Testing) 136

5.1.5 Use-Case-Based Testing ... 141

5.1.6 General Discussion of the Black Box Technique 145

5.2 White Box Testing Techniques .. 145

5.2.1 Statement Testing and Coverage ... 146

5.2.2 Decision/Branch Testing and Coverage 148

5.2.3 Test of Conditions .. 151

5.2.4 Further White Box Techniques .. 159

xii Contents

5.2.5 General Discussion of the White Box Technique 160

5.2.6 Instrumentation and Tool Support .. 160

5.3 Intuitive and Experience-Based Test Case Determination 161

5.4 Summary .. 164

6 Test Management 169

6.1 Test Organization ... 169

6.1.1 Test Teams .. 169

6.1.2 Tasks and Qualifications ... 172

6.2 Planning ... 174

6.2.1 Quality Assurance Plan ... 174

6.2.2 Test Plan ... 175

6.2.3 Prioritizing Tests .. 177

6.2.4 Test Entry and Exit Criteria .. 179

6.3 Cost and Economy Aspects .. 180

6.3.1 Costs of Defects ... 180

6.3.2 Cost of Testing ... 181

6.3.3 Test Effort Estimation .. 184

6.4 Choosing the Test Strategy and Test Approach 184

6.4.1 Preventative vs. Reactive Approach 185

6.4.2 Analytical vs. Heuristic Approach ... 186

6.4.3 Testing and Risk .. 187

6.5 Managing The Test Work ... 189

6.5.1 Test Cycle Planning .. 189

6.5.2 Test Cycle Monitoring ... 190

6.5.3 Test Cycle Control ... 192

6.6 Incident Management .. 192

6.6.1 Test Log .. 193

6.6.2 Incident Reporting ... 193

Contents xiii

6.6.3 Defect Classification .. 195

6.6.4 Incident Status ... 197

6.7 Requirements to Configuration Management 200

6.8 Relevant Standards .. 202

6.9 Summary ... 203

7 Test Tools 205

7.1 Types of Test Tools ... 205

7.1.1 Tools for Management and Control of
Testing and Tests .. 206

7.1.2 Tools for Test Specification ... 209

7.1.3 Tools for Static Testing ... 210

7.1.4 Tools for Dynamic Testing ... 211

7.1.5 Tools for Nonfunctional Test .. 216

7.2 Selection and Introduction of Test Tools ... 218

7.2.1 Cost Effectiveness of Tool Introduction 219

7.2.2 Tool Selection .. 220

7.2.3 Tool Introduction .. 221

7.3 Summary ... 223

Appendix

A Test Plans According to IEEE Standard 829-1998 225
Test Plans According to IEEE Standard 829-2008 231

B Important Information about the Syllabus
and the Certified Tester Exam 241

C Exercises 243

Glossary 247

Literature 277

Index 283

xiv Contents

1 Introduction 1

1 Introduction

In recent years, software been introduced virtually everywhere. There will
soon be no appliances, machines, or facilities for which control is not
implemented by software or software parts. In automobiles, for example,
microprocessors and their accompanying software control more and more
functionality, from engine management to the transmission and brakes.
Thus, software is crucial to the correct functioning of devices and industry.
Likewise, the smooth operation of an enterprise or organization depends
largely on the reliability of the software systems used for supporting the
business processes and particular tasks. How fast an insurance company
can introduce a new product, or even a new rate, most likely depends on
how quickly the IT systems can be adjusted or extended.

High dependence on the

correct functioning of the

software

Within both embedded and commercial software systems, quality has
become the most important factor in determining success.

Many enterprises have recognized this dependence on software and
strive for improved quality of their software systems and software engi-
neering (or development) processes. One way to achieve this goal is
through systematic evaluation and testing of the software. In some cases,
appropriate testing procedures have found their way into the daily tasks
associated with software development. However, in many sectors, there
remains a significant need to learn about evaluation and testing.

Basic knowledge for

structured evaluation and

testing

With this book, we offer basic knowledge that will help you achieve
structured and systematic evaluation and testing. Implementation of these
evaluation and testing procedures should contribute to improvement of
the quality of software. This book does not presume previous knowledge
of software quality assurance. It is designed as a textbook and can even be
used as a guide for self-study. We have included a single, continuous
example to help provide an explanation and practical solutions for all of
the topics we cover.

2 1 Introduction

We want to help software testers who strive for a well-founded, basic
knowledge of the principles behind software testing. We also address pro-
grammers and developers who are already performing testing tasks or will
do so in the future. The book will help project managers and team leaders
to improve the effectiveness and efficiency of software tests. Even those in
disciplines related to IT, as well as employees who are involved in the pro-
cesses of acceptance, introduction, and further development of IT applica-
tions, will find this book helpful for their daily tasks.

Evaluation and testing procedures are costly in practice (this area is
estimated to consume 25% to 50% of software development time and cost
[Koomen 99]). Yet, there are still too few universities, colleges, and voca-
tional schools in the sectors of computer and information science that
offer courses about this topic. This book will help both students and teach-
ers. It provides the material for an introduction-level course.

Lifelong learning is indispensable, especially in the IT industry. Many
companies and trainers offer further education in software testing to their
employees. General recognition of a course certificate is possible, however,
only if the contents of the course and the examination are defined and fol-
lowed up by an independent body.

Certification program for

software testers

In 1997, the Information Systems Examinations Board (ISEB) [URL:
ISEB] of the British Computer Society (BCS) [URL: BCS] started a certifi-
cation scheme to define course objectives for an examination (see the fore-
word by Dorothy Graham).

International initiative Similar to the British example, other countries took up these activities
and established independent, country-specific testing boards to make it
possible to offer training and exams in the language of the respective
countries. These national boards cooperate in the International Software
Testing Qualifications Board (ISTQB) [URL: ISTQB]. An updated list of
all ISTQB members can be found at [URL: ISTQB Members].

The ISTQB coordinates the national initiatives and assures uniformity
and comparability of the courses and exam contents among the countries
involved.

The national testing boards are responsible for issuing and maintain-
ing curricula in the language of their countries and for organizing and exe-
cuting examinations in their countries. They assess the seminars offered in
their countries according to defined criteria and accredit training provid-
ers. The testing boards thus guarantee a high quality standard for the sem-
inars. After passing an exam, the seminar participants receive an interna-
tionally recognized certificate of qualification.

1 Introduction 3

Three-step qualification

scheme

The ISTQB Certified Tester qualification scheme has three steps. The
basics are described in the Foundation Level curriculum (syllabus). Build-
ing on this is the Advanced Level certificate, showing a deeper knowledge
of testing and evaluation. The third level, the Expert Level, is intended for
experienced professional software testers and consists of several modules
about different special topics. Currently, the first four syllabi are being pre-
pared in the ISTQB and the national boards. The syllabi for “Improving
The Test Process” and “Test Management” are available. Syllabi for “Test
Automation” and “Security Testing” are on their way. The current status of
the syllabi can be seen at [URL: ISTQB].

The contents of this book correspond to the requirements of the
ISTQB Foundation Level certificate. The knowledge needed to pass the
exams can be acquired by self-study. The book can also be used to attain
knowledge after, or parallel to, participation in a course.

The overall structure of this book corresponds to the course contents
for the Foundation Level certificate.

FoundationsIn chapter 2, “Fundamentals of Testing,” the basics of software testing
are discussed. In addition to the motivation for testing, the chapter will
explain when to test, with which goals, and how intensively. The concept
of a basic test process is described. The chapter shows the psychological
difficulties experienced when testing one’s own software and the problems
that can occur when trying to find one’s own errors.

Testing in the software life

cycle

Chapter 3, “Testing in the Software Life Cycle,” discusses which test
activities should be performed during the software development process
and when. In addition to describing the different test levels, it will examine
the difference between functional and nonfunctional tests. Regression
testing is also discussed.

Static testingChapter 4, “Static Test,” discusses static testing techniques, that is,
ways in which the test object is analyzed but not executed. Reviews and
static analyses are already applied by many enterprises with positive
results. This chapter will describe in detail the various methods and tech-
niques.

Dynamic testingChapter 5, “Dynamic Analysis – Test Design Techniques,” deals with
testing in a narrower sense. The classification of dynamic testing tech-
niques into black box and white box techniques will be discussed.

Each kind of test technique is explained in detail with the help of a
continuous example. The end of the chapter shows the reasonable usage of
exploratory and intuitive testing, which may be used in addition to the
other techniques.

4 1 Introduction

Test management Chapter 6, “Test Management,” discusses aspects of test management
such as systematic incident handling, configuration management, and
testing economy.

Testing tools Chapter 7, “Test Tools,” explains the different classes of tools that can
be used to support testing. The chapter will include introductions to some
of the tools and suggestions for selecting the right tools for your situation.

The appendices include

additional information on the

topics covered and for the

exam.

Appendix A contains explanations of the test plan according to IEEE
Standard 829-1998 [IEEE 829] and 829-2008. Appendix B includes impor-
tant notes and additional information on the Certified Tester exam, and
appendix C offers exercises to reinforce your understanding of the topics
in each chapter. Finally, there is a glossary and a bibliography. Technical
terms that appear in the glossary are marked with an arrow [➞] when they
appear for the first time in the text. Text passages that go beyond the mate-
rial of the syllabus are marked as “excursions.”

2 Fundamentals of Testing 5

2 Fundamentals of Testing

This introductory chapter will explain basic facts of software testing, covering
what you will need to know to understand the following chapters. Important
concepts and essential vocabulary will be explained by using an example
application that will be used throughout the book. It appears frequently to
illustrate and clarify the subject matter. The fundamental test process with
the different testing activities will be illustrated. Psychological problems with
testing will be discussed. Finally, the ISTQB Code of Tester Ethics is presented
and discussed.

Throughout this book, we’ll use one example application to illustrate the
software test methods and techniques presented in this book. The funda-
mental scenario is as follows.

Case study,
“VirtualShowRoom” – VSR

A car manufacturer develops a new electronic sales support system called
VirtualShowRoom (VSR). The final version of this software system will be in-
stalled at every car dealer worldwide. Customers who are interested in purchasing
a new car will be able to configure their favorite model (model, type, color, extras,
etc.), with or without the guidance of a salesperson.

The system shows possible models and combinations of extra equipment and
instantly calculates the price of the car the customer configures. A subsystem
called DreamCar will provide this functionality.

When the customer has made up her mind, she will be able to calculate the
most suitable financing (EasyFinance) as well as place the order online (JustIn-
Time). She will even get the option to sign up for the appropriate insurance
(NoRisk). Personal information and contract data about the customer is managed
by the ContractBase subsystem.

Figure 2-1 shows the general architecture of this software system.
Every subsystem will be designed and developed by a separate development

team. Altogether, about 50 developers and additional employees from the respec-
tive user departments are involved in working on this project. External software
companies will also participate.

6 2 Fundamentals of Testing

The VSR-System must be tested thoroughly before release. The project mem-
bers assigned to test the software apply different testing techniques and methods.
This book contains the basic knowledge necessary for applying them.

VirtualShowRoom (VSR)

EasyFinanceJust InTime NoRisk

DreamCar

Host

ContractBase

3

2 2 2

1

1 Exchange of car data
2 Exchange of contract data

3 Exchange of order data

Figure 2–1
Architecture

 of the VSR-System

2.1 Terms and Motivation
Requirements During the construction of an industry product, the parts and the final

product are usually examined to make sure they fulfill the given
➞requirements, that is, whether the product solves the required task.

Depending on the product, there may be different requirements to
the ➞quality of the solution. If the product has problems, corrections
must be made in the production process and/or in the design of the
product itself.

Software is immaterial What generally counts for the production of industry products is also
appropriate for the production or development of software. However, test-
ing (or evaluation) of partial products and the final product is more diffi-
cult, because a software product is not a tangible physical product. Direct
examination is not possible. The only way to examine the product is by
reading (reviewing) the development documents and code.

The dynamic behavior of the software, however, cannot be checked
this way. It must be done through ➞testing, by executing the software on
a computer. Its behavior must be compared to the requirements. Thus,
testing of software is an important and difficult task in software develop-
ment. It contributes to reducing the ➞risk of using the software
because ➞defects can be found in testing. Testing and test documentation

2.1 Terms and Motivation 7

are often defined in contracts, laws, or industrial or organizational stand-
ards.
[Horizontal line, start example, example font]

ExampleTo identify and repair possible faults before delivery, the VSR-System from the
case study example must be tested intensively before it is used. For example, if the
system executes order transactions incorrectly, this could result in frustration for
the customer and serious financial loss and a negative impact on the image of the
dealer and the car manufacturer. Not finding such a defect constitutes a high risk
during system use.

2.1.1 Error, Defect, and Bug Terminology

What is a defect,
failure, or fault?

When does a system behave incorrectly, not conforming to requirements?
A situation can be classified as incorrect only after we know what the cor-
rect situation is supposed to look like. Thus, a ➞failure means that a given
requirement is not fulfilled; it is a discrepancy between the ➞actual result
or behavior1 and the ➞expected result or behavior.2

A failure is present if a legitimate (user) expectation is not adequately
met. An example of a failure is a product that is too difficult to use or too
slow but still fulfills the ➞functional requirements.

In contrast to physical system failure, software failures do not occur
because of aging or abrasion. They occur because of ➞faults in the soft-
ware. Faults (or defects or ➞bugs) in software are present from the time
the software was developed or changed yet materialize only when the soft-
ware is executed, becoming visible as a failure.

FailureTo describe the event when a user experiences a problem, [IEEE
610.12] uses the term failure. However, other terms, like problem, issue,
and incident, are often used. During testing or use of the software, the fail-
ure becomes visible to the ➞tester or user; for example, an output is wrong
or the program crashes.

FaultWe have to distinguish between the occurrence of a failure and its
cause. A failure is caused by a fault in the software. This fault is also called
a defect or internal error. Programmer slang for a fault is bug. For example,
faults can be incorrect or forgotten ➞statements in the program.

Defect maskingIt is possible that a fault is hidden by one or more other faults in other
parts of the program (➞defect masking). In that case, a failure occurs only

1. The actual behavior is identified while executing the test or during use of the system.
2. The expected behavior is defined in the specifications or requirements.

8 2 Fundamentals of Testing

after the masking defects have been corrected. This demonstrates that cor-
rections can have side effects.

One problem is that a fault can cause none, one, or many failures for
any number of users and that the fault and the corresponding failure are
arbitrarily far away from each other. A particularly dangerous example is
some small corruption of stored data, which may be found a long time
after it first occurred.

Error or mistake The cause of a fault or defect is an ➞error or ➞mistake by a person—
for example, defective programming by the developer. However, faults
may even be caused by environmental conditions, like radiation and mag-
netism, that introduce hardware problems. Such problems are, however,
not discussed in this book.

People err, especially under time pressure. Defects may occur, for
example, by bad programming or incorrect use of program statements.
Forgetting to implement a requirement leads to defective software.
Another cause is changing a program part because it is complex and the
programmer does not understand all consequences of the change.
Infrastructure complexity, or the sheer number of system interactions,
may be another cause. Using new technology often leads to defects in soft-
ware, because the technology is not fully understood and thus not used
correctly.

More detailed descriptions of the terms used in testing are given in the
following section.

2.1.2 Testing Terms

Testing is not debugging To be able to correct a defect or bug, it must be localized in the software.
Initially, we know the effect of a defect but not the precise location in the
software. Localization and correction of defects are tasks for a software
developer and are often called ➞debugging. Repairing a defect generally
increases the ➞quality of the product because the ➞change in most cases
does not introduce new defects.

However, in practice, correcting defects often introduces one or more
new defects. The new defects may then introduce failures for new, totally
different inputs. Such unwanted side effects make testing more difficult.
The result is that not only must we repeat the ➞test cases that have
detected the defect, we must also conduct even more test cases to detect
possible side effects.

2.1 Terms and Motivation 9

Debugging is often equated with testing, but they are entirely different
activities.

Debugging is the task of localizing and correcting faults. The goal of
testing is the (more or less systematic) detection of failures (that indicate
the presence of defects).

A test is a sample

examination

Every execution3 (even using more or less random samples) of a ➞test
object in order to examine it is testing. The ➞test conditions must be
defined. Comparing the actual and expected behaviors of the test object
serves to determine if the test object fulfills the required characteristics.4

Testing software has different purposes:
■ Executing a program to find failures
■ Executing a program to measure quality
■ Executing a program to provide confidence5

■ Analyzing a program or its documentation to prevent failures

Tests can also be performed to acquire information about the test object,
which is then used as the basis for decision-making—for example, about
whether one part of a system is appropriate for integration with other parts
of the system. The whole process of systematically executing programs to
demonstrate the correct implementation of the requirements, to increase
confidence, and to detect failures is called testing. In addition, a test
includes static methods, that is, static analysis of software products using
tools as well as document reviews (see chapter 4).

Testing termsBesides execution of the test object with ➞test data, planning, design,
implementation, and analysis of the test (➞test management) also belong
to the ➞test process. A ➞test run or ➞test suite includes execution of one
or more ➞test cases. A test case contains defined test conditions. In most
cases, these are the preconditions for execution, the inputs, and the
expected outputs or the expected behavior of the test object. A test case
should have a high probability of revealing previously unknown faults
[Myers 79].

Several test cases can often be combined to create ➞test scenarios,
whereby the result of one test case is used as the starting point for the next

3. This relates to dynamic testing (see chapter 5). In static testing (see chapter 4), the test
object is not executed.

4. It is not possible to prove correct implementation of the requirements. We can only
reduce the risk of serious bugs remaining in the program by testing.

5. If a thorough test finds few or no failures, confidence in the product will increase.

10 2 Fundamentals of Testing

test case. For example, a test scenario for a database application can con-
tain one test case writing a date into the database, another test case chang-
ing that date, and a third test case reading the changed date from the data-
base and deleting it. (By deleting the date, the database should be in the
same state as before executing this scenario.) Then all three test cases will
be executed, one after another, all in a row.

No large software system

is bug free

At present, there is no known bug-free software system, and there will
probably not be any in the near future (if a system has nontrivial complex-
ity). Often the reason for a fault is that certain exceptional cases were not
considered during development and testing of the software. Such faults
could be the incorrectly calculated leap year or the not-considered bound-
ary condition for time behavior or needed resources. On the other hand,
there are many software systems in many different fields that operate reli-
ably, 24/7.

Testing cannot produce

absence of defects

Even if all the executed test cases do not show any further failures, we
cannot safely conclude (except for very small programs) that there are no
further faults or that no further test cases could find them.

Excursion:
Naming tests

There are many confusing terms for different kinds of software tests. Some will be
explained later in connection with the description of the different ➞test levels (see
chapter 3). The following terms describe the different ways tests are named:

➞Test objective or test type:
A test is named according to its purpose (for example, ➞load test).

➞Test technique:
A test is named according to the technique used for specifying or executing the test
(for example, ➞business-process-based test).

Test object:
The name of a test reflects the kind of the test object to be tested (for example, a GUI
test or DB test [database test]).

Test level:
A test is named after the level of the underlying life cycle model (for example,
➞system test).

Test person:
A test is named after the personnel group executing the tests (for example, developer
test, ➞user acceptance test).

Test extent:
A test is named after the level of extent (for example, partial ➞regression test, full
test).

Thus, not every term means a new or different kind of testing. In fact, only one of the
aspects is pushed to the fore. It depends on the perspective we use when we look at
the actual test.

2.1 Terms and Motivation 11

2.1.3 Software Quality

Software testing contributes to improvement of ➞software quality. This is
done by identifying defects and subsequently correcting them. If the test
cases are a reasonable sample of software use, quality experienced by the
user should not be too different from quality experienced during testing.

But software quality is more than just the elimination of failures found
during testing. According to the ISO/IEC Standard 9126-1 [ISO 9126],
software quality comprises the following factors:

➞functionality, ➞reliability, usability, ➞efficiency, ➞maintainability,
and portability.

Testing must consider all these factors, also called ➞quality character-
istics and ➞quality attributes, in order to judge the overall quality of a
software product. Which quality level the test object is supposed to show
for each characteristic should be defined in advance. Appropriate tests
must then check to make sure these requirements are fulfilled.

Excursion:
ISO/IEC 25010

In 2011 ISO/IEC Standard 9126 was replaced by ISO/IEC Standard 25010 [ISO
25010]. The current ISTQB syllabus still refers to ISO/IEC 9126. Here is a short over-
view of the new standard.

ISO/IEC 25010 partitions software quality into three models: quality in use model,
product quality model, and data quality model. The quality in use model comprises
the following characteristics: effectiveness, satisfaction, freedom from risk, and con-
text coverage. The product quality model comprises functional sustainability, perfor-
mance efficiency, compatibility, usability, reliability, security, maintainability, and port-
ability. In this area much is like in ISO/IEC 9126. Data quality is defined in ISO/IEC
25012 [ISO 25012].

Example
VirtualShowRoom

In the case of the VSR-System, the customer must define which of the quality char-
acteristics are important. Those must be implemented in the system and then
checked for. The characteristics of functionality, reliability, and usability are very
important for the car manufacturer. The system must reliably provide the required
functionality. Beyond that, it must be easy to use so that the different car dealers
can use it without any problems in everyday life. These quality characteristics
should be especially well tested in the product.

We discuss the individual quality characteristics of ISO/IEC Standard
9126-1 [ISO 9126] in the following section.

FunctionalityWhen we talk about functionality, we are referring to all of the
required capabilities of a system. The capabilities are usually described by
a specific input/output behavior and/or an appropriate reaction to an

12 2 Fundamentals of Testing

input. The goal of the test is to prove that every single required capability
in the system was implemented as described in the specifications. Accord-
ing to ISO/IEC Standard 9126-1, the functionality characteristic contains
the subcharacteristics adequacy, accuracy, interoperability, correctness,
and security.

An appropriate solution is achieved if every required capability is
implemented in the system. Thereby it is clearly important to pay atten-
tion to, and thus to examine during testing, whether the system delivers
the correct or specified outputs or effects.

Software systems must interoperate with other systems, at least with
the operating system (unless the operating system is the test object itself).

Interoperability describes the cooperation between the system to be
tested and other specified systems. Testing should detect trouble with this
cooperation.

Adequate functionality also requires fulfilling usage-specific stand-
ards, contracts, rules, laws, and so on. Security aspects such as access con-
trol and ➞data security are important for many applications. Testing must
show that intentional and unintentional unauthorized access to programs
and data is prevented.

Reliability Reliability describes the ability of a system to keep functioning under
specific use over a specific period. In the standard, the reliability charac-
teristic is split into maturity, ➞fault tolerance, and recoverability.

Maturity means how often a failure of the software occurs as a result
of defects in the software.

Fault tolerance is the capability of the software product to maintain a
specified level of performance or to recover from faults such as software
faults, environment failures, wrong use of interface, or incorrect input.

Recoverability is the capability of the software product to reestablish a
specified level of performance (fast and easily) and recover the data
directly affected in case of failure. Recoverability describes the length of
time it takes to recover, the ease of recovery, and the amount of work
required to recover. All this should be part of the test.

Usability Usability is very important for acceptance of interactive software sys-
tems. Users won’t accept a system that is hard to use. What is the effort
required for the usage of the software for different user groups? Under-
standability, ease of learning, operability, and attractiveness as well as
compliance to standards, conventions, style guides, and user interface reg-
ulations are aspects of usability. These quality characteristics are checked
in ➞nonfunctional tests (see chapter 3).

2.1 Terms and Motivation 13

EfficiencyEfficiency tests may give measurable results. An efficiency test meas-
ures the required time and consumption of resources for the execution of
tasks. Resources may include other software products, the software and
hardware ➞configuration of the system, and materials (for example, print
paper, network, and storage).

Maintainability and

portability

Software systems are often used over a long period on various plat-
forms (operating system and hardware). Therefore, the last two quality
criteria are very important: maintainability and portability.

Subcharacteristics of maintainability are analyzability, changeability,
stability, and testability.

Subcharacteristics of portability are adaptability, ease of installation,
conformity, and interchangeability. Many aspects of maintainability and
portability can only be examined by ➞static analysis (see section 4.2).

A software system cannot fulfill every quality characteristic equally
well. Sometimes it is possible that meeting one characteristic results in a
conflict with another one. For example, a highly efficient software system
can become hard to port because the developers usually use special char-
acteristics (or features) of the chosen platform to improve efficiency. This
in turn negatively affects portability.

Prioritize quality

characteristics

Quality characteristics must therefore be prioritized. The quality spec-
ification is used to determine the test intensity for the different quality
characteristics. The next chapter will discuss the amount of work involved
in these tests.

2.1.4 Test Effort

Complete testing

is impossible

Testing cannot prove the absence of faults. In order to do this, a test would
need to execute a program in every possible situation with every possible
input value and with all possible conditions. In practice, a ➞complete or
exhaustive test is not feasible. Due to combinational effects, the outcome
of this is an almost infinite number of tests. Such a “testing” for all combi-
nations is not possible.

ExampleThe fact that complete testing is impossible is illustrated by an example of
➞control flow testing [Myers 79].

A small program with an easy control flow will be tested. The program con-
sists of four decisions (IF-instructions) that are partially nested. The control flow
graph of the program is shown in figure 2-2. Between Point A and B is a loop,
with a return from Point B to Point A. If the program is supposed to be exhaus-
tively tested for the different control-flow-based possibilities, every possible

14 2 Fundamentals of Testing

flow—i.e., every possible combination of program parts—must be executed. At a
loop limit of a maximum of 20 cycles and considering that all links are independ-
ent, the outcome is the following calculation, whereby 5 is the number of possible
ways within the loop:

520 + 519 + 518 + … + 51

51 test cases result from execution of every single possible way within the loop,
but in each case without return to the loop starting point. If the test cases result
in one single return to the loop starting point, then 5 × 5 = 52 different possibili-
ties must be considered, and so on. The total result of this calculation is about
100 quadrillion different sequences of the program.

A

B

Figure 2–2
Control flow graph
of a small program

Assuming that the test is done manually and a test case, as Myers describes
[Myers 79], takes five minutes to specify, to execute, and to be analyzed, the time
for this test would be one billion years. If we assume five microseconds instead of
five minutes per test case, because the test mainly runs automatically, it would still
last 19 years.

Test effort between

 25% and 50%

Thus, in practice it is not possible to test even a small program exhaus-
tively.

It is only possible to consider a part of all imaginable test cases. But
even so, testing still accounts for a large portion of the development effort.
However, a generalization of the extent of the ➞test effort is difficult
because it depends very much on the character of the project. The follow-
ing list shows some example data from projects of one large German soft-
ware company. This should shed light on the spectrum of different testing
efforts relative to the total budget of the development.

2.1 Terms and Motivation 15

■ For some major projects with more than 10 person-years’ effort, coding
and testing together used 40%, and a further 8% was used for the inte-
gration. At test-intensive projects (for example, ➞safety-critical sys-
tems), the testing effort increased to as much as 80% of the total budget.

■ In one project, the testing effort was 1.2 times as high as the coding
effort, with two-thirds of the test effort used for ➞component testing.

■ For another project at the same software development company, the
system test cost was 51.9% of the project.

Test effort is often shown as the proportion between the number of testers
and the number of developers. The proportion varies from 1 tester per
10 developers to up to 3 testers per developer. The conclusion is that test
efforts or the budget spent for testing vary enormously.

Defects can cause high costsBut is this high testing effort affordable and justifiable? The counter
question from Jerry Weinberg is “Compared to what?” [DeMarco 93]. His
question refers to the risks of faulty software systems. Risk is calculated as
the probability of occurrence and the expected amount of damage.

Faults that were not found during testing can cause high costs when
the software is used. The German newspaper Frankfurter Allgemeine Zei-
tung from January 17, 2002, had an article titled “IT system breakdowns
cost many millions.” A one-hour system breakdown in the stock exchange
is estimated to cost $7.8 million. When safety-critical systems fail, the lives
and health of people may be in danger.

Since a full test is not possible, the testing effort must have an appro-
priate relation to the attainable result. “Testing should continue as long as
costs of finding and correcting a defect6 are lower than the costs of failure”
[Koomen 99]. Thus, the test effort is always dependent on an estimation of
the application risk.

Example for a high risk
in case of failure

In the case of the VSR-System, the prospective customers configure their favorite
car model on the display. If the system calculates a wrong price, the customer can
insist on that price. In a later stage of the VSR-System, the company plans to offer
a web-based sales portal. In that case, a wrong price can lead to thousands of cars
being sold for a price that’s too low. The total loss can amount to millions, depend-
ing on how much the price was miscalculated by the VSR-System. The legal view
is that an online order is a valid sales contract with the quoted price.

6. The cost must include all aspects of a failure, even the possible cost of bad publicity,
litigation, etc., and not just the cost of correction, retesting, and distribution.

16 2 Fundamentals of Testing

Systems with high risks must be tested more thoroughly than systems that
do not generate big losses if they fail. The risk assessment must be done for
the individual system parts, or even for single error possibilities. If there is
a high risk for failures by a system or subsystem, there must be a greater
testing effort than for less critical (sub)systems. International standards for
production of safety-critical systems use this approach to require that dif-
ferent test techniques be applied for software of different integrity levels.

For a producer of a computer game, saving erroneous game scores can
mean a very high risk, even if no real damage is done, because the custom-
ers will not trust a defective game. This leads to high losses of sales, maybe
even for all games produced by the company.

Define test intensity and test

extent depending on risk

Thus, for every software program it must be decided how intensively
and thoroughly it shall be tested. This decision must be made based upon
the expected risk of failure of the program. Since a complete test is not
possible, it is important how the limited test resources are used. To get a
satisfying result, the tests must be designed and executed in a structured
and systematic way. Only then is it possible to find many failures with
appropriate effort and avoid ➞unnecessary tests that would not give more
information about system quality.

Select adequate test

techniques

There exist many different methods and techniques for testing
software.

Every technique especially focuses on and checks particular aspects of
the test object. Thus, the focus of examination for the control-flow-based
test techniques is the program flow. In case of the ➞data flow test tech-
niques, the examination focuses on the use and flow of data. Every test
technique has its strengths and weaknesses in finding different kinds of
faults. There is no test technique that is equally well suited for all aspects.
Therefore, a combination of different test techniques is always necessary
to detect failures with different causes.

Test of extra functionality During the test execution phase, the test object is checked to deter-
mine if it works as required by the ➞specifications. It is also important—
and thus naturally examined while testing—that the test object does not
execute functions that go beyond the requirements. The product should
provide only the required functionality.

Test case explosion The testing effort can grow very large. Test managers face the dilemma
of possible test cases and test case variants quickly becoming hundreds or
thousands of tests. This problem is also called combinatorial explosion, or
➞test case explosion. Besides the necessary restriction in the number of

2.2 The Fundamental Test Process 17

test cases, the test manager normally has to fight with another problem:
lack of resources.

Limited resourcesParticipants in every software development project will sooner or later
experience a fight about resources. The complexity of the development
task is underestimated, the development team is delayed, the customer
pushes for an earlier release, or the project leader wants to deliver “some-
thing” as soon as possible. The test manager usually has the worst position
in this “game.” Often there is only a small time window just before delivery
for executing the test cases and very few testers are available to run the
test. It is certain that the test manager does not have the time and
resources for executing an “astronomical” amount of test cases.

However, it is expected that the test manager delivers trustworthy
results and makes sure the software is sufficiently tested. Only if the test
manager has a well-planned, efficient strategy is there is a chance to fulfill
this challenge successfully. A fundamental test process is required. Besides
the adherence to a fundamental test process, further ➞quality assurance
activities must be accomplished, such as, for example, ➞reviews (see sec-
tion 4.1.2). Additionally, a test manager should learn from earlier projects
and improve the development and testing process.

The next section describes a fundamental test process typically used
for the development and testing of systems like the VSR-System.

2.2 The Fundamental Test Process

Excursion
Life cycle models

To accomplish a structured and controllable software development effort, software
development models and ➞development processes are used. Many different
models exist. Examples are the waterfall model [Boehm 73], [Boehm 81], the gen-
eral V-model7 [Boehm 79], and the German V-model XT [URL: V-model XT]). Fur-
thermore, there are the spiral model, different incremental or evolutionary models,
and the agile, or lightweight, methods like XP (Extreme Programming [Beck 00]) and
SCRUM [Beedle 01], which are popular nowadays (for example, see [Bleek 08]).
Development of object-oriented software systems often uses the rational unified
process [Jacobson 99].

All of these models define a systematic, orderly way of working during the project.
In most cases, phases or design steps are defined. They have to be completed with
a result in the form of a document. A phase completion, often called a ➞milestone,
is achieved when the required documents are completed and conform to the given
quality criteria. Usually, ➞roles dedicated to specific tasks in software development

7. The general V-model will be referred to as the general model to make sure it is not con-
fused with the German V-model, referred to as just V-model.

18 2 Fundamentals of Testing

are defined. Project staff has to accomplish these tasks. Sometimes, the models even
define the techniques and processes to be used in a particular phase. With the aid of
these models, detailed planning of resource usage (time, personnel, infrastructure,
etc.) can be performed. In a project, the development models define the collective and
mandatory tasks and their chronological sequence.

Testing appears in each of these life cycle models, but with very different mean-
ings and to a different extent. In the following, some models will be briefly discussed
from the view of testing.

The waterfall model:
Testing as “final inspection”

The first fundamental model was the waterfall model (see figure 2-3, shown with
the originally defined phases [Royce 70]8). It is impressively simple and very well
known. Only when one development phase is completed will the next one be initiated.

Between adjacent phases only, there are feedback loops that allow, if necessary,
required revisions in the previous phase. The crucial disadvantage of this model is
that testing is understood as a “one time” action at the end of the project just before
the release to operation. The test is seen as a “final inspection,” an analogy to a man-
ufacturing inspection before handing over the product to the customer.

The general V-model An enhancement of the waterfall model is the general V-model ([Boehm 79],
[IEEE/IEC 12207]), where the constructive activities are decomposed from the test-
ing activities (see chapter 3, figure 3-1). The model has the form of a V. The construc-
tive activities, from requirements definition to implementation, are found on the down-
ward branch of the V. The test execution activities on the ascending branch are
organized by test levels and matched to the appropriate abstraction level on the
opposite side’s constructive activity. The general V-model is common and frequently
used in practice.

System
Requirements

Software
Requirements

Analysis

Design

Coding

Test

Use

Figure 2–3
Waterfall-model

8. Royce did not call his model a waterfall model. He said in his paper, “Unfortunately, for
the process illustrated, the design iterations are never confined to the successive steps.”

2.2 The Fundamental Test Process 19

The description of tasks in the process models discussed previously is not
sufficient as an instruction on how to perform structured tests in software
projects. In addition to embedding testing in the whole development pro-
cess, a more detailed process for the testing tasks themselves is needed (see
figure 2-4). This means that the “content” of the development task testing
must be split into smaller subtasks, as follows: ➞test planning and control,
test analysis and design, test implementation and execution, evaluation of
test ➞exit criteria and reporting, and test closure activities. Although illus-
trated sequentially, the activities in the test process may overlap or take
place concurrently. Test activities also need to be adjusted to the individual
needs of each project. The test process described here is a generic one. The
listed subtasks form a fundamental test process and are described in more
detail in the following sections.

Planning and

Analysis and Design

Implementation and
Execution

Evaluation of Exit
Criteria and Reporting

Test Closure Activities

Control

Begin

End

Figure 2–4
ISTQB fundamental test
process

2.2.1 Test Planning and Control

Execution of such a substantial task as testing must not take place without
a plan. Planning of the test process starts at the beginning of the software
development project. As with all planning, during the course of the project
the previous plans must be regularly checked, updated, and adjusted.

Resource planningThe mission and objectives of testing must be defined and agreed
upon as well as the resources necessary for the test process. Which
employees are needed for the execution of which tasks and when? How
much time is needed, and which equipment and utilities must be availa-

20 2 Fundamentals of Testing

ble? These questions and many more must be answered during planning,
and the result should be documented in the ➞test plan (see chapter 6).
Necessary training programs for the employees should be prepared. An
organizational structure with the appropriate test management must be
arranged or adjusted if necessary.

Test control is the monitoring of the test activities and comparing
what actually happens during the project with the plan. It includes report-
ing the status of deviations from the plan and taking any actions necessary
to meet the planned goals in the new situation. The test plan must be
updated to the changed situation.

Part of the test management tasks is administrating and maintaining
the test process, the ➞test infrastructure, and the ➞testware. Progress
tracking can be based on appropriate reporting from the employees as well
as data automatically generated from tools. Agreements about these topics
must be made early.

Determination of the

test strategy

The main task of planning is to determine the ➞test strategy or
approach (see section 6.4). Since an exhaustive test is not possible, priori-
ties must be set based on risk assessment. The test activities must be dis-
tributed to the individual subsystems, depending on the expected risk and
the severity of failure effects. Critical subsystems must get greater atten-
tion, thus be tested more intensively. For less critical subsystems, less
extensive testing may be sufficient. If no negative effects are expected in
the event of a failure, testing could even be skipped on some parts. How-
ever, this decision must be made with great care. The goal of the test strat-
egy is the optimal distribution of the tests to the “right” parts of the soft-
ware system.

Example for a test strategy The VSR-System consists of the following subsystems:

■ DreamCar allows the individual configuration of a car and its extra equipment.
■ ContractBase manages all customer information and contract data.
■ JustInTime implements the ability to place online orders (within the first expan-

sion stage by the dealer).
■ EasyFinance calculates an optimal method of financing for the customer.
■ NoRisk provides the ability to purchase appropriate insurance.

Naturally, the five subsystems should not be tested with identical intensity. The
result of a discussion with the VSR-System client is that incorrect behavior of the
DreamCar and ContractBase subsystems will have the most harmful effects.
Because of this, the test strategy dictates that these two subsystems must be tested
more intensively.

2.2 The Fundamental Test Process 21

The possibility to place orders online, provided by the subsystem JustInTime,
is found to be less critical because the order can, in the worst case, still be passed
on in other ways (via fax, for example). But it is important that the order data
must not be altered or get lost in the JustInTime subsystem. Thus, this aspect
should be tested more intensively.

For the other two subsystems, NoRisk and EasyFinance, the test strategy
defines that all of their main functions (computing a rate, recording and placing
contracts, saving and printing contracts, etc.) must be tested. Because of time
constraints, it is not possible to cover all conceivable contract variants for financ-
ing and insuring a car. Thus, it is decided to concentrate the test around the most
commonly occurring rate combinations. Combinations that occur less frequently
get a lower priority (see sections 6.2 and 6.4).

With these first thoughts about the test strategy for the VSR-System, it is clear
that it is reasonable to choose the level of intensity for testing whole subsystems as
well as single aspects of a system.

Define test intensity for

subsystems and different

aspects

The intensity of testing depends very much on the test techniques that are
used and the ➞test coverage that must be achieved. Test coverage serves
as a test exit criterion. Besides ➞coverage criteria referring to source code
structure (for example, statement coverage; see section 5.2), it is possible
to define meeting the customer requirements as an exit criterion. It may be
demanded that all functions must be tested at least once or, for example,
that at least 70% of the possible transactions in a system are executed. Of
course, the risk in case of failure should be considered when the exit crite-
ria, and thus the intensity of the tests, are defined. Once all test exit criteria9

are defined, they may be used after executing the test cases to decide if the
test process can be finished.

Prioritization of the testsBecause software projects are often run under severe time pressure, it
is reasonable to appropriately consider the time aspect during planning.
The prioritization of tests guarantees that the critical software parts are
tested first in case time constraints do not allow executing all the planned
tests (see section 6.2).

Tool supportIf the necessary tool support (see chapter 7) does not exist, selection
and acquisition of tools must be initiated early. Existing tools must be eval-
uated if they are updated. If parts of the test infrastructure have to be
developed, this can be prepared. ➞Test harnesses (or ➞test beds), where
subsystems can be executed in isolation, must often be programmed. They
must be created soon enough to be ready after the respective test objects

9. Another term is test end criteria.

22 2 Fundamentals of Testing

are programmed. If frameworks—such as Junit [URL: xunit]—shall be
applied, their usage should be announced early in the project and should
be tried in advance.

2.2.2 Test Analysis and Design
Review the test basis The first task is to review the ➞test basis, i.e., the specification of what

should be tested. The specification should be concrete and clear enough to
develop test cases. The basis for the creation of a test can be the specifica-
tion or architecture documents, the results of risk analysis, or other docu-
ments produced during the software development process.

For example, a requirement may be too imprecise in defining the
expected output or the expected behavior of the system. No test cases can
then be developed. ➞Testability of this requirement is insufficient. There-
fore it must be reworked. Determining the ➞preconditions and require-
ments to test case design should be based on an analysis of the require-
ments, the expected behavior, and the structure of the test object.

Check testability As with analyzing the basis for a test, the test object itself also has to
fulfill certain requirements to be simple to test. Testability has to be
checked. This process includes checking the ease with which interfaces
can be addressed (interface openness) and the ease with which the test
object can be separated into smaller, more easily testable units. These
issues need to be addressed during development and the test object should
be designed and programmed accordingly. The results of this analysis are
also used to state and prioritize the test conditions based on the general
objectives of the test. The test conditions state exactly what shall be tested.
This may be a function, a component, or some quality characteristic.

Consider the risk The test strategy determined in the test plan defines which test tech-
niques shall be used. The test strategy is dependent on requirements for
reliability and safety. If there is a high risk of failure for the software, very
thorough testing should be planned. If the software is less critical, testing
may be less formal.

In the ➞test specification, the test cases are then developed using the
test techniques specified. Techniques planned previously are used, as well
as techniques chosen based on an analysis of possible complexity in the
test object.

Traceability is important It is important to ensure ➞traceability between the specifications to
be tested and the tests themselves. It must be clear which test cases test
which requirements and vice versa. Only this way is it possible to decide
which requirements are to be or have been tested, how intensively and

2.2 The Fundamental Test Process 23

with which test cases. Even the traceability of requirement changes to the
test cases and vice versa should be verified.

Logical and concrete
test cases

Specification of the test cases takes place in two steps. ➞Logical test
cases have to be defined first. After that, the logical test cases can be trans-
lated into concrete, physical test cases, meaning the actual inputs are
selected (➞concrete test cases). Also, the opposite sequence is possible:
from concrete to the general logical test cases. This procedure must be
used if a test object is specified insufficiently and test specification must be
done in a rather experimental way (➞exploratory testing, see section 5.3).
Development of physical test cases, however, is part of the next phase, test
implementation.

The test basis guides the selection of logical test cases with all test
techniques. The test cases can be determined from the test object’s specifi-
cation (➞black box test design techniques) or be created by analyzing the
source code (➞white box test design techniques). It becomes clear that the
activity called ➞test case specification can take place at totally different
times during the software development process. This depends on the
chosen test techniques, which are found in the test strategy. The process
models shown at the beginning of section 2.2 represent the test execution
phases only. Test planning, analysis, and design tasks can and should take
place in parallel with earlier development activities.

Test cases comprise more

than just the test data

For each test case, the initial situation (precondition) must be
described. It must be clear which environmental conditions must be ful-
filled for the test. Furthermore, before ➞test execution, it must be defined
which results and behaviors are expected. The results include outputs,
changes to global (persistent) data and states, and any other consequences
of the test case.

Test oracleTo define the expected results, the tester must obtain the information
from some adequate source. In this context, this is often called an oracle,
or ➞test oracle. A test oracle is a mechanism for predicting the expected
results. The specification can serve as a test oracle. There are two main
possibilities:

■ The tester derives the expected data based on the specification of the
test object.

■ If functions doing the reverse action are available, they can be run after
the test and then the result is verified against the original input. An
example of this scenario is encryption and decryption of data.

24 2 Fundamentals of Testing

See also chapter 5 for more information about predicting the expected
results.

Test cases for expected and

unexpected inputs

Test cases can be differentiated by two criteria:

■ First are test cases for examining the specified behavior, output, and
reaction. Included here are test cases that examine specified handling
of exception and error cases (➞negative test). But it is often difficult to
create the necessary preconditions for the execution of these test cases
(for example, capacity overload of a network connection).

■ Next are test cases for examining the reaction of test objects to invalid
and unexpected inputs or conditions, which have no specified
➞exception handling.

Example for test cases The following example is intended to clarify the difference between logical and
concrete (physical) test cases.

Using the sales software, the car dealer is able to define discount rules for his
salespeople: With a price of less than $15.000, no discount shall be given. For a
price of $20.000, 5% is OK. If the price is below $25.000, a 7% discount is possi-
ble. For higher prices, 8.5% can be granted.

From this, the following cases can be derived:
Price < 15.000 discount = 0%
15.000 price 20.000 discount = 5%
20.000 < price < 25.000 discount = 7%
price 25.000 discount = 8.5%

It becomes obvious that the text has room for interpretation10, which may be mis-
understood. With more formal, mathematical description, this will not happen.
However, the discounts are clearly stated. From the more formal statement
(above), table 2-1 can be developed.

Logical test case 1 2 3 4

input value x
(price in dollar)

x < 15000 15000
x

20000

20000
< x <

25000

x

25000

predicted result
(discount in %)

0 5 7 8.5

Table 2–1
Table with logical test cases

10. In the preceding paragraph, it is unclear what happens at exactly 25.000.

2.2 The Fundamental Test Process 25

To execute the test cases, the logical test cases must be converted into
concrete test cases. Concrete inputs must be chosen (see table 2-2) Special
preconditions or conditions are not given for these test cases

Concrete test case 1 2 3 4

input value x (price in dollar) 14500 16500 24750 31800

predicted result (discount in %) 0 825 1732.50 2703

.

Table 2–2
Table with concrete test cases

The values chosen here shall only serve to illustrate the difference between logical
and concrete test cases. No explicit test method has been used for designing them.
We do not claim that the program is tested well enough with these four test cases.
For example, there are no test cases for wrong inputs, such as, for example, nega-
tive prices. More detailed descriptions of methods for designing test cases are
given in chapter 5.

In parallel to the described test case specification, it is important to decide
on and prepare the test infrastructure and the necessary environment to
execute the test object. To prevent delays during test execution, the test
infrastructure should already be assembled, integrated, and verified as
much as possible at this time.

2.2.3 Test Implementation and Execution

Here, logical test cases must be transformed into concrete test cases; all the
details of the environment (test infrastructure and test framework) must
be set up. The tests must be run and logged.

When the test process has advanced and there is more clarity about
technical implementation, the logical test cases are converted into con-
crete ones. These test cases can then be used without further modifica-
tions or additions for executing the test, if the defined ➞preconditions for
the respective test case are fulfilled. The mutual traceability between test
cases and specifications must be checked and, if necessary, updated.

Test case executionIn addition to defining test cases, one must describe how the tests will
be executed. The priority of the test cases (see section 6.2.3), decided
during test planning, must be taken into account. If the test developer
executes the tests himself, additional, detailed descriptions may not be
necessary.

The test cases should also be grouped into ➞test suites or test scenar-
ios for efficient test execution and easier understanding.

26 2 Fundamentals of Testing

Test harness In many cases specific test harnesses, ➞drivers, ➞simulators, etc.
must be programmed, built, acquired, or set up as part of the test environ-
ment before the test cases can be executed. Because failures may also be
caused by faults in the test harness, the ➞test environment must be
checked to make sure it’s working correctly.

When all preparatory tasks for the test have been accomplished, test
execution can start immediately after programming and delivery of the
subsystems to testing. Test execution may be done manually or with tools
using the prepared sequences and scenarios.

Checking for completeness First, the parts to be tested are checked for completeness. The test
object is installed in the available test environment and tested for its ability
to start and do the main processing.

Examination of the

main functions

The recommendation is to start test execution with the examination of
the test object’s main functionality (➞smoke test). If ➞failures or
➞deviations from the expected result show up at this time, it is foolish to
continue testing. The failures or deviations should be corrected first. After
the test object passes this test, everything else is tested. Such a sequence
should be defined in the test approach.

Tests without a log

are of no value

Test execution must be exactly and completely logged. This includes
logging which test runs have been executed with which results (pass or
failure). On the one hand, the testing done must be comprehensible to
people not directly involved (for example, the customer) on the basis of
these ➞test logs. On the other hand, the execution of the planned tests
must be provable. The test log must document who tested which parts,
when, how intensively, and with what results.

Reproducibility

is important

Besides the test object, quite a number of documents and pieces of
information belong to each test execution: test environment, input data,
test logs, etc. The information related to a test case or test run must be
maintained in such a way that it is possible to easily repeat the test later
with the same input data and conditions. The testware must be subjected
to ➞configuration management (see also section 6.7).

Failure found? If a difference shows up between expected and actual results during
test execution, it must be decided when evaluating the test logs if the dif-
ference really indicates a failure. If so, the failure must be documented. At
first, a rough analysis of possible causes must be made. This analysis may
require the tester to specify and execute additional test cases.

The cause for a failure can also be an erroneous or inexact test speci-
fication, problems with the test infrastructure or the test case, or an incor-
rect test execution. The tester must examine carefully if any of these pos-

2.2 The Fundamental Test Process 27

sibilities apply. Nothing is more detrimental to the credibility of a tester
than reporting a supposed failure whose cause is actually a test problem.
But the fear of this possibility should not result in potential failures not
being reported, i.e., the testers starting to self-censor their results. This
could be fatal as well.

In addition to reporting discrepancies between expected and real
results, test coverage should be measured (see section 2.2.4). If necessary,
the use of time should also be logged. The appropriate tools for this pur-
pose should be used (see chapter 7).

Correction may lead

to new faults

Based on the ➞severity of a failure (see section 6.6.3), a decision must
be made about how to prioritize fault corrections. After faults are cor-
rected, the tester must make sure the fault has really been corrected and
that no new faults have been introduced (see section 3.7.4). New testing
activities result from the action taken for each incident—for example, re-
execution of a test that previously failed in order to confirm a defect fix,
execution of a corrected test, and/or regression tests. If necessary, new test
cases must be specified to examine the modified or new source code. It
would be convenient to correct faults and retest corrections individually to
avoid unwanted interactions of the changes. In practice, this is not often
possible. If the test is not executed by the developer, but instead by inde-
pendent testers, a separate correction of individual faults is not practical or
possible. It would take a prohibitive amount of effort to report every fail-
ure in isolation to the developer and continue testing only after correc-
tions are made. In this case, several defects are corrected together and then
a new software version is installed for new testing.

The most important
test cases first

In many projects, there is not enough time to execute all specified test
cases. When that happens, a reasonable selection of test cases must be
made to make sure that as many critical failures as possible are detected.
Therefore, test cases should be prioritized. If the tests end prematurely, the
best possible result should be achieved. This is called ➞risk-based testing
(see section 6.4.3).

Furthermore, an advantage of assigning priority is that important test
cases are executed first, and thus important problems are found and cor-
rected early. An equal distribution of the limited test resources on all test
objects of the project is not reasonable. Critical and uncritical program
parts are then tested with the same intensity. Critical parts would be tested
insufficiently, and resources would be wasted on uncritical parts for no
reason.

28 2 Fundamentals of Testing

2.2.4 Test Evaluation and Reporting11

End of test? During test evaluation and reporting, the test object is assessed against the
set test exit criteria specified during planning. This may result in normal
termination of the tests if all criteria are met, or it may be decided that
additional test cases should be run or that the criteria were too hard.

It must be decided whether the test exit criteria defined in the test plan
are fulfilled.

Considering the risk, an adequate exit criterion must be determined
for each test technique used. For example, it could be specified that a test
is considered good enough after execution of 80% of the test object state-
ments. However, this would not be a very high requirement for a test.
Appropriate tools should be used to collect such measures, or ➞metrics,
in order to decide when a test should end (see section 7.1.4).

If at least one test exit criterion is not fulfilled after all tests are exe-
cuted, further tests must be executed. Attention should be paid to ensure
that the new test cases better cover the respective exit criteria. Otherwise,
the extra test cases just result in additional work but no improvement con-
cerning the end of testing.

Is further effort justifiable? A closer analysis of the problem can also show that the necessary
effort to fulfill the exit criteria is not appropriate. In that situation, further
tests are canceled. Such a decision must, naturally, consider the associated
risk.

An example of such a case may be the treatment of an exceptional sit-
uation. With the available test environment, it may not be possible to
introduce or simulate this situation. The appropriate source code for treat-
ing it can then not be executed and tested. In such cases, other examina-
tion techniques should be used, such as, for example, static analysis (see
section 4.2).

Dead code A further case of not meeting test exit criteria may occur if the speci-
fied criterion is impossible to fulfill in the specific case. If, for example, the
test object contains ➞dead code, then this code cannot be executed. Thus,
100% statement coverage is not possible because this would also include
the unreachable (dead) code. This possibility must be considered in order
to avoid further senseless tests trying to fulfill the criterion. An impossible
criterion is often a hint to possible inconsistent or imprecise requirements
or specifications. For example, it would certainly make sense to investigate

11. ISTQB calls this phase “Evaluation of test exit criteria and Reporting.”

2.2 The Fundamental Test Process 29

why the program contains instructions that cannot be executed. Doing
this allows further faults to be found so their corresponding failures can be
prevented.

If further tests are planned, the test process must be resumed, and it
must be decided at which point the test process will be reentered. Some-
times it is even necessary to revise the test plan because additional
resources are needed. It is also possible that the test specifications must be
improved in order to fulfill the required exit criterion.

Further criteria for the

determination of the test’s

end

In addition to test coverage criteria, other criteria can be used to
define the test’s end. A possible criterion is the failure rate. Figure 2-5
shows the average number of new failures per testing hour over 10 weeks.
In the 1st week, there was an average of two new failures per testing hour.
In the 10th week, it is fewer than one failure per two hours. If the failure
rate falls below a given threshold (e.g., fewer than one failure per testing
hour), it will be assumed that more testing is not economically justified
and the test can be ended.

0

0.5

1

1.5

2

2.5

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

4 - low

3 - medium

2 - high

1 - critical

New failures/test hour

Failure class

Figure 2–5
Failure rate

When deciding to stop testing this way it must be considered that some fail-
ures can have very different effects. Classifying and differentiating failures
according to their impact to the stakeholders (i.e., failure severity) is there-
fore reasonable and should generally be considered (see section 6.6.3).

Consider several test cyclesThe failures found during the test should be repaired, after which a
new test becomes necessary. If further failures occur during the new test,

30 2 Fundamentals of Testing

new test cycles may be necessary. Not planning such correction and test-
ing cycles by assuming that no failures will occur while testing is unrealis-
tic. Because it can be assumed that testing finds failures, additional faults
must be removed and retested in a further ➞test cycle. If this cycle is
ignored, then the project will be delayed. The required effort for defect
correction and the following cycles is difficult to calculate. Historical data
from previous, similar projects can help. The project plan should provide
for the appropriate time buffers and personnel resources.

End criteria in practice:

Time and cost

In practice, the end of a test is often defined by factors that have no
direct connection to the test: time and costs. If these factors lead to stop-
ping the test activities, it is because not enough resources were provided in
the project plan or the effort for an adequate test was underestimated.

Successful testing saves costs Even if testing consumed more resources than planned, it nevertheless
results in savings due to elimination of faults in the software. Faults deliv-
ered in the product mostly cause higher costs when found during opera-
tion (see section 6.3.1).

Test summary report When the test criteria are fulfilled or a deviation from them is clari-
fied, a ➞test summary report should be written for the stakeholders,
which may include the project manager, the test manager, and possibly the
customer. In lower-level tests (component tests), this may just take the
form of a message to the project manager about meeting the criteria. In
higher-level tests, a formal report may be required.

2.2.5 Test Closure Activities

Learning from experience It is a pity that these activities, which should be executed during this final
phase in the test process, are often left out. The experience gathered during
the test work should be analyzed and made available for future projects. Of
interest are deviations between planning and execution for the different
activities as well as the assumed causes. For example, the following data
should be recorded:

■ When was the software system released?
■ When was the test finished or terminated?
■ When was a milestone reached or a maintenance release completed?

Important information for evaluation can be extracted by asking the fol-
lowing questions:

■ Which planned results were achieved and when—if at all?
■ Which unexpected events happened (reasons and how they were met)?

2.3 The Psychology of Testing 31

■ Are there any open problems and ➞change requests? Why were they
not implemented?

■ How was user acceptance after deploying the system?

The evaluation of the test process—i.e., a critical evaluation of the executed
tasks in the test process, taking into account the resources used and the
achieved results—will probably show possibilities for improvement. If
these findings are used in subsequent projects, continuous process
improvement is achieved. Detailed hints for analysis and improvement of
the test processes can be found in [Pol 98] and [Black 03].

Archiving testwareA further closure activity is the “conservation” of the testware for the
future. Software systems are used for a long time. During this time, failures
not found during testing will occur. Additionally, customers require
changes. Both of these lead to changes to the program, and the changed
program must be tested in every case. A major part of the test effort dur-
ing ➞maintenance can be avoided if the testware (test cases, test logs, test
infrastructure, tools, etc.) is still available. The testware should be deliv-
ered to the organization responsible for maintenance. It can then be
adapted instead of being constructed from scratch, and it can also be suc-
cessfully used for projects having similar requirements, after adaptation.
The test material needs to be archived. Sometimes this is necessary in
order to provide legal evidence of the testing done.

2.3 The Psychology of Testing
Errare humanum estPeople make mistakes, but they do not like to admit them! One goal of test-

ing software is to find discrepancies between the software and the specifi-
cations, or customer needs. The failures found must be reported to the
developers. This section describes how the psychological problems occur-
ring in connection with this can be dealt with.

The tasks of developing software are often seen as constructive
actions. The tasks of examining documents and software are seen as
destructive actions. The attitudes of those involved relating to their job
often differ due to this perception. But these differences are not justifiable,
because “testing is an extremely creative and intellectually challenging
task” [Myers 79, p.15].

Developer test“Can the developer test his own program?” is an important and fre-
quently asked question. There is no universally valid answer. If the tester
is also the author of the program, she must examine her own work very

32 2 Fundamentals of Testing

critically. Only very few people are able to keep the necessary distance to
a self-created product. Who really likes to detect and show their own
mistakes? Developers would rather not find any defects in their own
program text.

The main weakness of developer tests is that developers who have to
test their own programs will tend to be too optimistic. There is the danger
of forgetting reasonable test cases or, because they are more interested in
programming than in testing, only testing superficially.

Blindness to one’s own

mistakes

If a developer implemented a fundamental design error—for example,
if she misunderstood the task—then she will not find this using her own
tests. The proper test case will not even come to mind. One possibility to
decrease this problem of “blindness to one’s own errors” is to work
together in pairs and let a colleague test the programs.

On the other hand, it is advantageous to have a deep knowledge of
one’s own test object. Time is saved because it is not necessary to learn the
test object. Management has to decide when saving time is an advantage
over blindness to one’s own errors. This must be decided depending on the
criticality of the test object and the associated failure risk.

Independent test team An independent testing team is beneficial for test quality and com-
prehensiveness. Further information on the formation of independent
test teams can be found in section 6.1.1. The tester can look at the test
object without bias. It is not the tester’s own product, and the tester does
not necessarily share possible developer assumptions and misunder-
standings. The tester must, however, acquire the necessary knowledge
about the test object in order to create test cases, which takes time. But
the tester typically has more testing knowledge. A developer does not
have this knowledge and must acquire it (or rather should have acquired
it before, because the necessary time is often not unavailable during the
project).

Failure reporting The tester must report the failures and discrepancies observed to the
author and/or to management. The way this reporting is done can contrib-
ute to cooperation between developers and testers. If it’s not done well, it
may negatively influence the important communication of these two
groups. To prove other people’s mistakes is not an easy job and requires
diplomacy and tact.

Often, failures found during testing are not reproducible in the devel-
opment environment for the developers. Thus, in addition to a detailed
description of failures, the test environment must be documented in detail

2.4 General Principles of Testing 33

so that differences in the environments can be detected, which can be the
cause for the different behavior.

It must be defined in advance what constitutes a failure or discrep-
ancy. If it is not clearly visible from the requirements or specifications, the
customer, or management, is asked to make a decision. A discussion
between the involved staff, developer, and tester as to whether this is a
fault or not is not helpful. The often heard reaction of developers against
any critique is, “It’s not a bug, it’s a feature!” That’s not helpful either.

Mutual comprehensionMutual knowledge of their respective tasks improves cooperation
between tester and developer. Developers should know the basics of test-
ing and testers should have a basic knowledge of software development.
This eases the understanding of the mutual tasks and problems.

The conflicts between developer and tester exist in a similar way at the
management level. The test manager must report the ➞test results to the
project manager and is thus often the messenger bringing bad news. The
project manager then must decide whether there still is a chance to meet
the deadline and possibly deliver software with known problems or if
delivery should be delayed and additional time used for corrections. This
decision depends on the severity of the failures and the possibility to work
around the faults in the software.

2.4 General Principles of Testing

During the last 40 years, several principles for testing have become
accepted as general rules for test work.

Principle 1:
Testing shows the presence of defects, not their absence.

Testing can show that the product fails, i.e., that there are defects. Test-
ing cannot prove that a program is defect free. Adequate testing reduces
the probability that hidden defects are present in the test object. Even if
no failures are found during testing, this is no proof that there are no
defects.

34 2 Fundamentals of Testing

Principle 2:
Exhaustive testing is impossible.

It’s impossible to run an exhaustive test that includes all possible values
for all inputs and their combinations combined with all different
preconditions. Software, in normal practice, would require an “astro-
nomically” high number of test cases. Every test is just a sample. The
test effort must therefore be controlled, taking into account risk and
priorities.

Principle 3:
Testing activities should start as early as possible.

Testing activities should start as early as possible in the software life
cycle and focus on defined goals. This contributes to finding defects
early.

Principle 4:
Defect clustering.

Defects are not evenly distributed; they cluster together. Most defects
are found in a few parts of the test object. Thus if many defects are
detected in one place, there are normally more defects nearby. During
testing, one must react flexibly to this principle.

Principle 5:
The pesticide paradox.

Insects and bacteria become resistant to pesticides. Similarly, if the same
tests are repeated over and over, they tend to loose their effectiveness:
they don’t discover new defects. Old or new defects might be in pro-
gram parts not executed by the test cases. To maintain the effectiveness
of tests and to fight this “pesticide paradox,” new and modified test cases
should be developed and added to the test. Parts of the software not yet
tested, or previously unused input combinations will then become
involved and more defects may be found.

2.5 Ethical Guidelines 35

2.5 Ethical Guidelines

This section presents the Code of Tester Ethics as presented in the ISTQB
Foundation Syllabus of 2011.

Dealing with
critical information

Testers often have access to confidential and privileged information.
This may be real, not scrambled production data used as a basis for test
data, or it may be productivity data about employees. Such data or docu-
ments must be handled appropriately and must not get into the wrong
hands or be misused.

For other aspects of testing work, moral or ethical rules can be appli-
cable as well. ISTQB has based its code of ethics on the ethics from the
Association for Computing Machinery (ACM) and the Institute of Electri-
cal and Electronics Engineers (IEEE). The ISTQB code of ethics12 is as fol-
lows:

Principle 6:
Testing is context dependent.

Testing must be adapted to the risks inherent in the use and environ-
ment of the application. Therefore, no two systems should be tested in
the exactly same way. The intensity of testing, test exit criteria, etc.
should be decided upon individually for every software system, depend-
ing on its usage environment. For example, safety-critical systems
require different tests than e-commerce applications.

Principle 7:
No failures means the system is useful is a fallacy.

Finding failures and repairing defects does not guarantee that the sys-
tem meets user expectations and needs. Early involvement of the users
in the development process and the use of prototypes are preventive
measures intended to avoid this problem.

12. See [URL: ACM Ethics] and [URL: IEEE Ethics]. The guidelines listed here are from
the ISTQB curriculum.

36 2 Fundamentals of Testing

■ PUBLIC
»Certified software testers shall act consistently with the public interest.«

■ CLIENT AND EMPLOYER
»Certified software testers shall act in a manner that is in the best interest
of their client and employer, consistent with the public interest.«

■ PRODUCT
»Certified software testers shall ensure that the deliverables they provide
(on the products and systems they test) meet the highest professional
standards possible.«

■ JUDGMENT
»Certified software testers shall maintain integrity and independence in
their professional judgment.«

■ MANAGEMENT
»Certified software test managers and leaders shall subscribe to and pro-
mote an ethical approach to the management of software testing.«

■ PROFESSION
»Certified software testers shall advance the integrity and reputation of
the profession consistent with the public interest.«

■ COLLEAGUES
»Certified software testers shall be fair to and supportive of their col-
leagues, and promote cooperation with software developers.«

■ SELF
»Certified software testers shall participate in lifelong learning regarding
the practice of their profession and shall promote an ethical approach to
the practice of the profession.«

Ethical codes are meant to enhance public discussion about certain ques-
tions and values. Ideally, they serve as a guideline for individual responsi-
ble action. They state a “moral obligation,” not a legal one. Certified testers
must know the ISTQB code of ethics, which serve as a guide for daily work.

2.6 Summary

■ Technical terms in the domain of software testing are often defined and
used very differently, which can result in misunderstanding. Knowl-
edge of the standards (e.g., [BS 7925-1], [IEEE 610.12], [ISO 9126])
and terminology associated with software testing is therefore an
important part of the education of the Certified Tester. This book’s
glossary compiles the relevant terms.

2.6 Summary 37

■ Tests are important tasks for ➞quality assurance in software develop-
ment. The international standard ISO 9126-1 [ISO 9126] defines
appropriate quality characteristics.

■ The fundamental test process consists of the following phases: plan-
ning and control, analysis and design, implementation and execution,
evaluation of exit criteria and reporting, and test closure activities. A
test can be finished when previously defined exit criteria are fulfilled.

■ A test case consists of input, expected results, and the list of defined
preconditions under which the test case must run as well as the speci-
fied ➞postconditions. When the test case is executed, the test object
shows a certain behavior. If the expected result and actual result differ,
there is a failure. The expected results should be defined before test
execution and during test specification (using a test oracle).

■ People make mistakes, but they do not like to admit them! Because of
this, psychological aspects play an important role in testing.

■ The seven principles for testing must always be kept in mind during
testing.

■ Certified testers should know the ISTQB’s ethical guidelines, which are
helpful in the course of their daily work.

38 2 Fundamentals of Testing

3 Testing in the Software Life Cycle 39

3 Testing in the Software Life Cycle

This chapter explains the role of testing in the entire life cycle of a software
system, using the general V-model as a reference. Furthermore, we look at test
levels and the test types that are used during development.

Each project in software development should be planned and executed
using a life cycle model chosen in advance. Some important models were
presented and explained in section 2.2. Each of these models implies cer-
tain views on software testing. From the viewpoint of testing, the general
V-model according to [Boehm 79] plays an especially important role.

The role of testing
within life cycle models

The V-model shows that testing activities are as valuable as develop-
ment and programming. This has had a lasting influence on the apprecia-
tion of software testing. Not only every tester but every developer as well
should know this general V-model and the views on testing it implies.
Even if a different development model is used on a project, the principles
presented in the following sections can be transferred and applied.

3.1 The General V-Model

The main idea behind the general V-model is that development and testing
tasks are corresponding activities of equal importance. The two branches
of the V symbolize this.

The left branch represents the development process. During develop-
ment, the system is gradually being designed and finally programmed.
The right branch represents the integration and testing process; the pro-
gram elements are successively being assembled to form larger subsystems
(integration), and their functionality is tested. ➞Integration and testing
end when the acceptance test of the entire system has been completed.
Figure 3-1 shows such a V-model.1

1. The V-model is used in many different versions. The names and the number of levels
vary in literature and the enterprises using it.

40 3 Testing in the Software Life Cycle

Figure 3–1
The general V-model

The constructive activities of the left branch are the activities known from
the waterfall model:

■ ➞Requirements definition
The needs and requirements of the customer or the future system user
are gathered, specified, and approved. Thus, the purpose of the system
and the desired characteristics are defined.

■ Functional system design
This step maps requirements onto functions and dialogues of the new
system.

■ Technical system design
This step designs the implementation of the system. This includes the
definition of interfaces to the system environment and decomposing
the system into smaller, understandable subsystems (system architec-
ture). Each subsystem can then be developed as independently as
possible.

■ Component specification
This step defines each subsystem, including its task, behavior, inner
structure, and interfaces to other subsystems.

■ Programming
Each specified component (module, unit, class) is coded in a program-
ming language.

Through these construction levels, the software system is described in
more and more detail. Mistakes can most easily be found at the abstraction
level where they occurred.

3.1 The General V-Model 41

Thus, for each specification and construction level, the right branch of
the V-model defines a corresponding test level:

■ Component test
(see section 3.2) verifies whether each software ➞component correctly
fulfills its specification.

■ ➞Integration test
(see section 3.3) checks if groups of components interact in the way
that is specified by the technical system design.

■ System test
(see section 3.4) verifies whether the system as a whole meets the spec-
ified requirements.

■ ➞Acceptance test
(see section 3.5) checks if the system meets the customer requirements,
as specified in the contract and/or if the system meets user needs and
expectations.

Within each test level, the tester must make sure the outcomes of develop-
ment meet the requirements that are relevant or specified on this specific
level of abstraction. This process of checking the development results
according to their original requirements is called ➞validation.

Does a product solve
the intended task?

When validating,2 the tester judges whether a (partial) product really
solves the specified task and whether it is fit or suitable for its intended
use.

Is it the right system?The tester investigates to see if the system makes sense in the context
of intended product use.

Does a product fulfill
its specification?

In addition to validation testing, the V-model requires verification3

testing. Unlike validation, ➞verification refers to only one single phase of
the development process. Verification shall assure that the outcome of a
particular development level has been achieved correctly and completely,
according to its specification (the input documents for that development
level).

Is the system correctly built?Verification activities examine whether specifications are correctly
implemented and whether the product meets its specification, but not
whether the resulting product is suitable for its intended use.

2. To validate: to affirm, to declare as valid, to check if something is valid.
3. To verify: to prove, to inspect.

42 3 Testing in the Software Life Cycle

In practice, every test contains both aspects. On higher test levels the
validation part increases. To summarize, we again list the most important
characteristics and ideas behind the general V-model:

Characteristics of the

general V-model

■ Implementation and testing activities are separated but are equally
important (left side / right side).

■ The V illustrates the testing aspects of verification and validation.
■ We distinguish between different test levels, where each test level is

testing “against” its corresponding development level.

The V-model may give the impression that testing starts relatively late,
after system implementation, but this is not the case. The test levels on the
right branch of the model should be interpreted as levels of test execution.
Test preparation (test planning, test analysis and design) starts earlier and
is performed in parallel to the development phases on the left branch4 (not
explicitly shown in the V-model).

The differentiation of test levels in the V-model is more than a tempo-
ral subdivision of testing activities. It is instead defining technically very
different test levels; they have different objectives and thus need different
methods and tools and require personnel with different knowledge and
skills. The exact contents and the process for each test level are explained
in the following sections.

3.2 Component Test

3.2.1 Explanation of Terms

Within the first test level (component testing), the software units are tested
systematically for the first time. The units have been implemented in the
programming phase just before component testing in the V-model.

Depending on the programming language the developers used, these
software units may be called by different names, such as, for example,
modules and units. In object-oriented programming, they are called
classes. The respective tests, therefore, are called ➞module tests, ➞unit
tests (see [IEEE 1008]), and ➞class tests.

Component and

 component test

Generally, we speak of software units or components. Testing of a
single software component is therefore called component testing.

4. The so-called W-model (see [Spillner 00]) is a more detailed model that explicitly
shows this parallelism of development and testing.

3.2 Component Test 43

Test basisComponent testing is based on component requirements, and the
component design (or detailed design). If white box test cases will be
developed or white box ➞test coverage will be measured, the source code
can also be analyzed. However, the component behavior must be com-
pared with the component specification.

3.2.2 Test objects

Typical test objects are program modules/units or classes, (database)
scripts, and other software components. The main characteristic of com-
ponent testing is that the software components are tested individually and
isolated from all other software components of the system. The isolation is
necessary to prevent external influences on components. If testing detects
a problem, it is definitely a problem originating from the component under
test itself.

Component test examines

component internal aspects

The component under test may also be a unit composed of several
other components. But remember that aspects internal to the components
are examined, not the components’ interaction with neighboring compo-
nents. The latter is a task for integration tests.

Component tests may also comprise data conversion and migration
components. Test objects may even be configuration data and database
components.

3.2.3 Test Environment

Component testing as the lowest test level deals with test objects coming
“right from the developer’s desk.” It is obvious that in this test level there is
close cooperation with development.

 Example:
Testing of a class method

In the VSR subsystem DreamCar, the specification for calculating the price of the
car states the following:

■ The starting point is baseprice minus discount, where baseprice is the gen-
eral basic price of the vehicle and discount is the discount to this price
granted by the dealer.

■ A price (specialprice) for a special model and the price for extra equipment
items (extraprice) shall be added.

■ If three or more extra equipment items (which are not part of the special
model chosen) are chosen (extras), there is a discount of 10 percent on these
particular items. If five or more special equipment items are chosen, this dis-
count is increased to 15 percent.

44 3 Testing in the Software Life Cycle

■ The discount that is granted by the dealer applies only to the baseprice,
whereas the discount on special items applies to the special items only. These
discounts cannot be combined for everything.

The following C++-function calculates the total price:5

double calculate_price
(double baseprice, double specialprice,
double extraprice, int extras, double discount)

{
double addon_discount;
double result;

if (extras >= 3) addon_discount = 10;
else if (extras >= 5) addon_discount = 15;
else addon_discount = 0;
if (discount > addon_discount)

addon_discount = discount;

result = baseprice/100.0*(100-discount)
+ specialprice
+ extraprice/100.0*(100-addon_discount);
return result;

}

In order to test the price calculation, the tester uses the corresponding class inter-
face calling the function calculate_price() with appropriate parameters and
data. Then the tester records the function’s reaction to the function call. That
means reading and recording the return value of the previous function call. For
that, a ➞test driver is necessary. A test driver is a program that calls the compo-
nent under test and then receives the test object’s reaction.

For the test object calculate_price(), a very simple test driver could look
like this:

bool test_calculate_price() {

double price;
bool test_ok = TRUE;

// testcase 01
price = calculate_price(10000.00,2000.00,1000.00,3,0);
test_ok = test_ok && (abs (price-12900.00) < 0.01);6

5. Actually, there is a defect in this program: Discount calculation for >= 5 is not reach-
able. The defect is used when explaining the use of white box analysis in chapter 5.

6. Floating point numbers should not be directly compared, as there may be imprecise
rounding. As the result for price can be less than 12900.00, the absolute value of the
difference of “price” and 12900.00 must be evaluated.

3.2 Component Test 45

// testcase 02
price = calculate_price(25500.00,3450.00,6000.00,6,0);
test_ok = test_ok && (abs (price-34050.00) < 0.01);

// testcase ...

// test result
return test_ok;
}

The preceding test driver is programmed in a very simple way. Some useful
extensions could be, for example, a facility to record the test data and the
results, including date and time of the test, or a function that reads test
cases from a table, file, or database.

To write test drivers, programming skills and knowledge of the com-
ponent under test are necessary. The component’s program code must be
available. The tester must understand the test object (in the example, a class
function) so that the call of the test object can be correctly programmed in
the test driver. To write a suitable test driver, the tester must know the pro-
gramming language and suitable programming tools must be available.

This is why the developers themselves usually perform the component
testing. Although this is truly a component test, it may also be called
developer test. The disadvantages of a programmer testing his own pro-
gram were discussed in section 2.3.

Often, component testing is also confused with debugging. But debug-
ging is not testing. Debugging is finding the cause of failures and remov-
ing them, while testing is the systematic approach for finding failures.

Hint■ Use of component testing frameworks (see [URL: xunit]) reduces the effort in-
volved in programming test drivers and helps to standardize a project's compo-
nent testing architecture. [Vigenschow 2010] demonstrates the use of these
frameworks using examples of Junit for Java as well as nUnit and CppUnit for
C++. Generic test drivers make it easier to use colleagues7 who are not familiar
with all details of the particular component and the programming environment
for testing. Such test drivers can, for example, be used through a command in-
terface and provide comfortable mechanisms for managing the test data and for
recording and analyzing the tests. As all test data and test protocols are structured
in a very similar way, this enables analysis of the tests across several components.

7. Sometimes, two programmers work together, each of them testing the components that
their colleague has developed. This is called buddy testing or code swaps.

46 3 Testing in the Software Life Cycle

3.2.4 Test objectives

The test level called component test is not only characterized by the kind
of test objects and the testing environment, the tester also pursues test
objectives that are specific for this phase.

Testing the functionality The most important task of component testing is to check that the
entire functionality of the test object works correctly and completely as
required by its specification (see ➞functional testing). Here, functionality
means the input/output behavior of the test object. To check the correct-
ness and completeness of the implementation, the component is tested
with a series of test cases, where each test case covers a particular input/
output combination (partial functionality).

Example:
Test of the VSR price

calculation

The test cases for the price calculation of DreamCar in the previous example very
clearly show how the examination of the input/output behavior works. Each test
case calls the test object with a particular combination of data; in this example, the
price for the vehicle in combination with a different set of extra equipment items.
It is then examined to see whether the test object, given this input data, calculates
the correct price. For example, test case 2 checks the partial functionality of “dis-
count with five or more special equipment items.” If test case 2 is executed, we can
see that the test object calculates the wrong total price. Test case 2 produces a fail-
ure. The test object does not completely meet the functional requirements.

Typical software defects found during functional component testing are
incorrect calculations or missing or wrongly chosen program paths (e.g.,
special cases that were forgotten or misinterpreted).

Later, when the whole system is integrated, each software component
must be able to cooperate with many neighboring components and
exchange data with them. A component may then possibly be called or
used in a wrong way, i.e., not in accordance with its specification. In such
cases, the wrongly used component should not just suspend its service or
cause the whole system to crash. Rather, it should be able to handle the sit-
uation in a reasonable and robust way.

Testing robustness This is why testing for ➞robustness is another very important aspect
of component testing. The way to do this is the same as in functional test-
ing. However, the test focuses on items either not allowed or forgotten in
the specification. The tests are function calls, test data, and special cases.
Such test cases are also called ➞negative tests. The component’s reaction
should be an appropriate exception handling. If there is no such exception

3.2 Component Test 47

handling, wrong inputs can trigger domain faults like division by zero or
access to a null pointer. Such faults could lead to a program crash.

Example:
Negative test

In the price calculation example, such negative tests are function calls with nega-
tive values, values that are far too large, or wrong data types (for example, char
instead of int):8

// testcase 20
price = calculate_price(-1000.00,0.00,0.00,0,0);
test_ok = test_ok && (ERR_CODE == INVALID_PRICE);
…
// testcase 30
price = calculate_price(”abc”,0.00,0.00,0,0);
test_ok = test_ok && (ERR_CODE == INVALID_ARGUMENT);

ExcursionSome interesting aspects become clear:

■ There are at least as many reasonable negative tests as positive ones.
■ The test driver must be extended in order to be able to evaluate the test object’s

exception handling.
■ The test object’s exception handling (the analysis of ERR_CODE in the previous

example) requires additional functionality. Often more than 50% of the program
code deals with exception handling. Robustness has its cost.

Component testing should not only check functionality and robustness.
All the component’s characteristics that have a crucial influence on its

quality and that cannot be tested in higher test levels (or only with a much
higher cost) should be checked during component testing. This may be
nonfunctional characteristics like efficiency9 and maintainability.

Efficiency testEfficiency refers to how efficiently the component uses computer
resources. Here we have various aspects such as use of memory, comput-
ing time, disk or network access time, and the time required to execute the
component’s functions and algorithms. In contrast to most other nonfunc-
tional tests, a test object’s efficiency can be measured during the test. Suit-
able criteria are measured exactly (e.g., memory usage in kilobytes,
response times in milliseconds). Efficiency tests are seldom performed for
all the components of a system. Efficiency is usually only verified in effi-

8. Depending on the compiler, data type errors can be detected during the compiling
process.

9. The opportunity to use these types of checks on a component level instead of dur-
ing a system test is not often exploited. This leads to efficiency problems only
becoming visible shortly before the planned release date. Such problems can then
only be corrected or attenuated at significant cost.

48 3 Testing in the Software Life Cycle

ciency-critical parts of the system or if efficiency requirements are explic-
itly stated by specifications. This happens, for example, in testing embed-
ded software, where only limited hardware resources are available.
Another example is testing real-time systems, where it must be guaranteed
that the system follows given timing constraints.

Maintainability test A maintainability test includes all the characteristics of a program that
have an influence on how easy or how difficult it is to change the program
or to continue developing it. Here, it is crucial that the developer fully
understands the program and its context. This includes the developer of
the original program who is asked to continue development after months
or years as well as the programmer who takes over responsibility for a
colleague’s code. The following aspects are most important for testing
maintainability: code structure, modularity, quality of the comments in
the code, adherence to standards, understandability, and currency of the
documentation.

Example:
Code that is difficult

to maintain

The code in the example calculate_price() is not good enough. There are no
comments, and numeric constants are not declared but are just written into the
code. If such a value must be changed later, it is not clear whether and where this
value occurs in other parts of the system, nor is it clear how to find and change it.

Of course, such characteristics cannot be tested by ➞dynamic tests (see
chapter 5). Analysis of the program text and the specifications is necessary.
➞Static testing, and especially reviews (see section 4.1) are the correct
means for that purpose. However, it is best to include such analyses in the
component test because the characteristics of a single component are
examined.

3.2.5 Test Strategy

As we explained earlier, component testing is very closely related to devel-
opment. The tester usually has access to the source code, which makes
component testing the domain of white box testing (see section 5.2).

White box test The tester can design test cases using her knowledge about the com-
ponent’s program structures, functions, and variables. Access to the pro-
gram code can also be helpful for executing the tests. With the help of spe-
cial tools (➞debugger, see section 7.1.4), it is possible to observe program
variables during test execution. This helps in checking for correct or
incorrect behavior of the component. The internal state of a component

3.2 Component Test 49

cannot only be observed; it can even be manipulated with the debugger.
This is especially useful for robustness tests because the tester is able to
trigger special exceptional situations.

Example:
Code as test basis

Analyzing the code of calculate_price(), the following command can be recog-
nized as a line that is relevant for testing:

if (discount > addon_discount)

addon_discount = discount;

Additional test cases that lead to fulfilling the condition (discount >
addon_discount) can easily be derived from the code. The specification of the
price calculation contains no information about this situation; the implemented
functionality is extra: it is not supposed to be there.

In reality, however, component testing is often done as a pure black box
testing, which means that the code structure is not used to design test
cases.10 On the one hand, real software systems consist of countless ele-
mentary components; therefore, code analysis for designing test cases is
probably only feasible with very few selected components.

On the other hand, the elementary components will later be integrated
into larger units. Often, the tester only recognizes these larger units as
units that can be tested, even in component testing. Then again, these
units are already too large to make observations and interventions on the
code level with reasonable effort. Therefore, integration and testing plan-
ning must answer the question of whether to test elementary parts or only
larger units during component testing.

“Test first” developmentTest first programming is a modern approach in component testing.
The idea is to design and automate the tests first and program the desired
component afterwards.

This approach is very iterative. The program code is tested with the
available test cases. The code is improved until it passes the tests. This is
also called test-driven development (see [Link 03]).

10. This is a serious flaw because 60 to 80% of the code often is never executed—a perfect
hideout for bugs.

50 3 Testing in the Software Life Cycle

3.3 Integration Test

3.3.1 Explanation of Terms

After the component test, the second test level in the V-model is integra-
tion testing. A precondition for integration testing is that the test objects
subjected to it (i.e., components) have already been tested. Defects should,
if possible, already have been corrected.

Integration Developers, testers, or special integration teams then compose groups
of these components to form larger structural units and subsystems. This
connecting of components is called integration.

Integration test Then the structural units and subsystems must be tested to make sure
all components collaborate correctly. Thus, the goal of the integration test
is to expose faults in the interfaces and in the interaction between inte-
grated components.

Test basis The test basis may be the software and system design or system archi-
tecture, or workflows through several interfaces and use cases.

Why is integration testing necessary if each individual component has
already been tested? The following example illustrates the problem.

Example:
Integration test
VSR-DreamCar

The VSR subsystem DreamCar (see figure 2-1) consists of several elementary
components.

calculate_price() check_config()

Graphical User Interface (GUI)

Database

CarConfig

... ...

Figure 3–2
Structure of the subsystem

 VSR-DreamCar

One element is the class CarConfig with the methods calculate_price(),
check_config(), and other methods. check_config() retrieves all the vehicle data
from a database and presents them to the user through a graphical user interface
(GUI). From the user’s point of view, this looks like figure 3-3.

When the user has chosen the configuration of a car, check_config() executes
a plausibility check of the configuration (base model of the vehicle, special equip-
ment, list of further extra items) and then calculates the price. In this example (see
figure 3-3), the total resulting price from the base model of the chosen vehicle, the
special model, and the extra equipment should be $29,000 + $1,413 + $900 = $31,313.

3.3 Integration Test 51

However, the price indicated is only $30,413. Obviously, in the current program ver-
sion, accessories (e.g., alloy rims) can be selected without paying for them. Some-
where between the GUI and calculate_price(), the fact that alloy rims were chosen
gets lost.

Figure 3–3
User interface for the VSR
subsystem DreamCar

If the test protocols of the previous component tests show that the fault is neither
in the function calculate_price() nor in check_config(), the cause of the prob-
lem could be a faulty data transmission between the GUI and check_config() or
between check_config() and calculate_price().

Even if a complete component test had been executed earlier, such inter-
face problems can still occur. Because of this, integration testing is neces-
sary as a further test level. Its task is to find collaboration and interopera-
bility problems and isolate their causes.

Example:
VSR integration test

Integration of the single components to the subsystem DreamCar is just the be-
ginning of the integration test in the project VSR. The other subsystems of the
VSR (see chapter 2, figure 2-1) must also be integrated. Then, the subsystems
must be connected to each other. DreamCar has to be connected to the subsystem
ContractBase, which is connected to the subsystems JustInTime (order manage-
ment), NoRisk (vehicle insurance), and EasyFinance (financing). In one of the last
steps of integration, VSR is connected to the external mainframe in the IT center
of the enterprise.

52 3 Testing in the Software Life Cycle

Integration testing

 in the large

As the example shows, interfaces to the system environment (i.e., external
systems) are also subject to integration and integration testing. When
interfaces to external software systems are examined, we sometimes speak
of ➞system integration testing, higher-level integration testing, or integra-
tion testing in the large (integration of components is then integration test
in the small, sometimes called ➞component integration testing). System
integration testing can be executed only after system testing. The develop-
ment team has only one-half of such an external interface under its control.
This constitutes a special risk. The other half of the interface is determined
by an external system. It must be taken as it is, but it is subject to
unexpected change. Passing a system integration test is no guarantee that
the system will function flawlessly in the future.

Integration levels Thus, there may be several integration levels for test objects of differ-
ent sizes. Component integration tests will test the interfaces between
internal components or between internal subsystems. System integration
tests focus on testing interfaces between different systems and between
hardware and software. For example, if business processes are imple-
mented as a workflow through several interfacing systems and problems
occur, it may be very expensive and challenging to find the defect in a spe-
cial component or interface.

3.3.2 Test objects

Assembled components Step-by-step, during integration, the different components are combined
to form larger units (see section 3.3.5). Ideally, there should be an integra-
tion test after each of these steps. Each subsystem may then be the basis for
integrating further larger units. Such units (subsystems) may be test
objects for the integration test later.

External systems or acquired

components

In reality, a software system is seldom developed from scratch. Usually,
an existing system is changed, extended, or linked to other systems (for
example database systems, networks, new hardware). Furthermore, many
system components are ➞commercial off-the-shelf (COTS) software
products (for example, the database in DreamCar). In component testing,
such existing or standard components are probably not tested. In the inte-
gration test, however, these system components must be taken into account
and their collaboration with other components must be examined.

The most important test objects of integration testing are internal
interfaces between components. Integration testing may also comprise
configuration programs and configuration data. Finally, integration or

3.3 Integration Test 53

system integration testing examines subsystems for correct database
access and correct use of other infrastructure components.

3.3.3 The Test Environment

As with component testing, test drivers are needed in the integration test.
They send test data to the test objects, and they receive and log the results.
Because the test objects are assembled components that have no interfaces
to the “outside” other than their constituting components, it is obvious and
sensible to reuse the available test drivers for component testing.

Reuse of the test

environment

If the component test was well organized, then some test drivers
should be available. It could be one generic test driver for all components
or at least test drivers that were designed with a common architecture and
are compatible with each other. In this case, the testers can reuse these test
drivers without much effort.

If a component test is poorly organized, there may be usable test driv-
ers for only a few of the components. Their user interface may also be
completely different, which will create trouble. During integration testing
in a much later stage of the project, the tester will need to put a lot of effort
into the creation, change, or repair of the test environment. This means
that valuable time needed for test execution is lost.

Monitors are necessaryDuring integration testing, additional tools, called monitors, are
required. ➞Monitors are programs that read and log data traffic between
components. Monitors for standard protocols (e.g., network protocols) are
commercially available. Special monitors must be developed for the obser-
vation of project-specific component interfaces.

3.3.4 Test objectives

Wrong interface formats The test objectives of the test level integration test are clear: to reveal inter-
face problems as well as conflicts between integrated parts.

Problems can arise when attempting to integrate two single compo-
nents. For example, their interface formats may not be compatible with
each other because some files are missing or because the developers have
split the system into completely different components than specified
(chapter 4 covers static testing, which may help finding such issues).

Typical faults in data

exchange

The harder-to-find problems, however, are due to the execution of the
connected program parts. These kinds of problems can only be found by
dynamic testing. They are faults in the data exchange or in the communi-
cation between the components, as in the following examples:

54 3 Testing in the Software Life Cycle

■ A component transmits syntactically incorrect or no data. The receiv-
ing component cannot operate or crashes (functional fault in a compo-
nent, incompatible interface formats, protocol faults).

■ The communication works but the involved components interpret the
received data differently (functional fault of a component, contradict-
ing or misinterpreted specifications).

■ Data is transmitted correctly but at the wrong time, or it is late (timing
problem), or the intervals between the transmissions are too short
(throughput, load, or capacity problem).

Example:
Integration problems

in VSR

The following interface failures could occur during the VSR integration test.
These can be attributed to the previously mentioned failure types:

■ In the GUI of the DreamCar subsystem, selected extra equipment items are not
passed on to check_config(). Therefore, the price and the order data would be
wrong.

■ In DreamCar, a certain code number (e.g., 442 for metallic blue) represents the
color of the car. In the order management system running on the external
mainframe, however, some code numbers are interpreted differently (there, for
example, 442 may represent red). An order from the VSR, seen there as correct,
would lead to delivery of the wrong product.

■ The mainframe computer confirms an order after checking whether delivery
would be possible. In some cases, this examination takes so long that the VSR
assumes a transmission failure and aborts the order. A customer who has care-
fully chosen her car would not be able to order it.

None of these failures can be found in the component test because the
resulting failures occur only in the interaction between two software com-
ponents.

Nonfunctional tests may also be executed during integration testing, if
attributes mentioned below are important or are considered at risk. These
attributes may include reliability, performance, and capacity.

Can the component test

 be omitted?

Is it possible to do without the component test and execute all the test
cases after integration is finished? Of course, this is possible, and in prac-
tice it is regretfully often done, but only at the risk of great disadvantages:

■ Most of the failures that will occur in a test designed like this are caused
by functional faults within the individual components. An implicit
component test is therefore carried out, but in an environment that is
not suitable and that makes it harder to access the individual compo-
nents.

3.3 Integration Test 55

■ Because there is no suitable access to the individual component, some
failures cannot be provoked and many faults, therefore, cannot be
found.

■ If a failure occurs in the test, it can be difficult or impossible to locate
its origin and to isolate its cause.

The cost of trying to save effort by cutting the component test is finding
fewer of the existing faults and experiencing more difficulty in diagnosis.
Combining a component test with a subsequent integration test is more
effective and efficient.

3.3.5 Integration Strategies

In which order should the components be integrated in order to execute
the necessary test work as efficiently—that is, as quickly and easily—as
possible? Efficiency is the relation between the cost of testing (the cost of
test personnel and tools, etc.) and the benefit of testing (number and sever-
ity of the problems found) in a certain test level.

The test manager has to decide this and choose and implement an
optimal integration strategy for the project.

Components are completed

at different times

In practice, different software components are completed at different
times, weeks or even months apart. No project manager or test manager
can allow testers to sit around and do nothing while waiting until all the
components are developed and they are ready to be integrated.

An obvious ad hoc strategy to quickly solve this problem is to inte-
grate the components in the order in which they are ready. This means
that as soon as a component has passed the component test, it is checked
to see if it fits with another already tested component or if it fits into a par-
tially integrated subsystem. If so, both parts are integrated and the integra-
tion test between both of them is executed.

Example:
Integration Strategy
in the VSR project

In the VSR project, the central subsystem ContractBase turns out to be more com-
plex than expected. Its completion is delayed for several weeks because the work
on it costs much more than originally expected. To avoid losing even more time,
the project manager decides to start the tests with the available components
DreamCar and NoRisk. These do not have a common interface, but they exchange
data through ContractBase. To calculate the price of the insurance, NoRisk needs
to know which type of vehicle was chosen because this determines the price and
other parameters of the insurance. As a temporary replacement for ContractBase,
a ➞stub is programmed. The stub receives simple car configuration data from
DreamCar, then determines the vehicle type code from this data and passes it on

56 3 Testing in the Software Life Cycle

to NoRisk. Furthermore, the stub makes it possible to put in different relevant data
about the customer. NoRisk calculates the insurance price from the data and shows
it in a window so it can be checked. The price is also saved in a test log. The stub
serves as a temporary replacement for the still missing subsystem ContractBase.

This example makes it clear that the earlier the integration test is started
(in order to save time), the more effort it will take to program the stubs.
The test manager has to choose an integration strategy in order to optimize
both factors (time savings vs. cost for the testing environment).

Constraints for integration Which strategy is optimal (the most timesaving and least costly strat-
egy) depends on the individual circumstances in each project. The follow-
ing items must be analyzed:

■ The system architecture determines how many and which compo-
nents the entire system consists of and in which way they depend on
each other.

■ The project plan determines at what time during the course of the pro-
ject the parts of the system are developed and when they should be
ready for testing. The test manager should be consulted when deter-
mining the order of implementation.

■ The test plan determines which aspects of the system shall be tested,
how intensely, and on which test level this has to happen.

Discuss the integration

strategy

The test manager, taking into account these general constraints, has to
design an optimal integration strategy for the project. Because the integra-
tion strategy depends on delivery dates, the test manager should consult
the project manager during project planning. The order of component
implementation should be suitable for integration testing.

Generic strategies When making plans, the test manager can follow these generic inte-
gration strategies:

■ Top-down integration
The test starts with the top-level component of the system that calls
other components but is not called itself (except for a call from the
operating system). Stubs replace all subordinate components. Succes-
sively, integration proceeds with lower-level components. The higher
level that has already been tested serves as test driver.
• Advantage: Test drivers are not needed, or only simple ones are re-

quired, because the higher-level components that have already been
tested serve as the main part of the test environment.

3.3 Integration Test 57

• Disadvantage: Stubs must replace lower-level components not yet
integrated. This can be very costly.

■ Bottom-up integration
The test starts with the elementary system components that do not call
further components, except for functions of the operating system.
Larger subsystems are assembled from the tested components and then
tested.
• Advantage: No stubs are needed.
• Disadvantage: Test drivers must simulate higher-level components.

■ Ad hoc integration
The components are being integrated in the (casual) order in which
they are finished.
• Advantage: This saves time because every component is integrated

as early as possible into its environment.
• Disadvantage: Stubs as well as test drivers are required.

■ Backbone integration
A skeleton or backbone is built and components are gradually inte-
grated into it [Beizer 90].
• Advantage: Components can be integrated in any order.
• Disadvantage: A possibly labor-intensive skeleton or backbone is re-

quired.

Top-down and Bottom-up integration in their pure form can be applied
only to program systems that are structured in a strictly hierarchical way;
in reality, this rarely occurs. This is the reason a more or less individualized
mix of the previously mentioned integration strategies11 might be chosen.

Avoid the big bang!Any nonincremental integration—also called ➞big bang integra-
tion—should be avoided. Big bang integration means waiting until all soft-
ware elements are developed and then throwing everything together in
one step. This typically happens due to the lack of an integration strategy.
In the worst cases, even component testing is skipped. There are obvious
disadvantages of this approach:

■ The time leading up to the big bang is lost time that could have been
spent testing. As testing always suffers from lack of time, no time that
could be used for testing should be wasted.

11. Special integration strategies can be followed for object-oriented, distributed, and real-
time systems (see [Winter 98], [Bashir 99], [Binder 99]).

58 3 Testing in the Software Life Cycle

■ All the failures will occur at the same time. It will be difficult or impos-
sible to get the system to run at all. It will be very difficult and time-
consuming to localize and correct defects.

3.4 System Test

3.4.1 Explanation of Terms

After the integration test is completed, the third and next test level is the
system test. System testing checks if the integrated product meets the spec-
ified requirements. Why is this still necessary after executing component
and integration tests? The reasons for this are as follows:

Reasons for system test ■ In the lower test levels, the testing was done against technical specifica-
tions, i.e., from the technical perspective of the software producer. The
system test, though, looks at the system from the perspective of the
customer and the future user.12 The testers validate whether the
requirements are completely and appropriately implemented.

■ Many functions and system characteristics result from the interaction
of all system components; consequently, they are visible only when the
entire system is present and can be observed and tested only there.

Example:
VSR-System tests

The main purpose of the VSR-System is to make ordering a car as easy as
possible.

While ordering a car, the user uses all the components of the VSR-System:
the car is configured (DreamCar), financing and insurance are calculated (Easy-
Finance, NoRisk), the order is transmitted to production (JustInTime), and the
contracts are archived (ContractBase). The system fulfills its purpose only when
all these system functions and all the components collaborate correctly. The
system test determines whether this is the case.

The test basis includes all documents or information describing the test
object on a system level. This may be system requirements, specifications,
risk analyses if present, user manuals, etc.

12. The customer (who has ordered and paid for the system) and the user (who uses the
system) can be different groups of people or organizations with their own specific
interests and requirements for the system.

3.4 System Test 59

3.4.2 Test Objects and Test Environment

After the completion of the integration test, the software system is com-
plete. The system test tests the system as a whole in an environment as sim-
ilar as possible to the intended ➞production environment.

Instead of test drivers and stubs, the hardware and software products
that will be used later should be installed on the test platform (hardware,
system software, device driver software, networks, external systems, etc.).
Figure 3-4 shows an example of the VSR-System test environment.

The system test not only tests the system itself, it also checks system
and user documentation, like system manuals, user manuals, training
material, and so on. Testing configuration settings as well as optimizing
the system configuration during load and performance testing (see sec-
tion 3.7.2) must often be covered.

DB server

Mainframe

Web server

File server Application server

VSR workstations

Figure 3–4
Example of a system test
environment

➞data qualityIt is getting more and more important to check the quality of data in sys-
tems that use a database or large amounts of data. This should be included
in the system test. The data itself will then be new test objects. It must be
assured that it is consistent, complete, and up-to-date. For example, if a
system finds and displays bus connections, the station list and schedule
data must be correct.

System test requires a

separate test environment

One mistake is commonly made to save costs and effort: instead of
the system being tested in a separate environment, the system test is exe-
cuted in the customer’s operational environment. This is detrimental for a
couple of reasons:

60 3 Testing in the Software Life Cycle

■ During system testing, it is likely that failures will occur, resulting in
damage to the customer’s operational environment. This may lead to
expensive system crashes and data loss in the production system.

■ The testers have only limited or no control over parameter settings and
the configuration of the operational environment. The test conditions
may change over time because the other systems in the customer’s
environment are running simultaneously with the test. The system
tests that have been executed cannot be reproduced or can only be
reproduced with difficulty (see section 3.7.4 on regression testing).

System test effort is often

underestimated

The effort of an adequate system test must not be underestimated, espe-
cially because of the complex test environment. [Bourne 97] states the
experience that at the beginning of the system test, only half of the testing
and quality control work has been done (especially when a client/server
system is developed, as in the VSR-example).

3.4.3 Test Objectives

It is the goal of the system test to validate whether the complete system
meets the specified functional and nonfunctional requirements (see sec-
tions 3.7.1 and 3.7.2) and how well it does that. Failures from incorrect,
incomplete, or inconsistent implementation of requirements should be
detected. Even undocumented or forgotten requirements should be
identified.

3.4.4 Problems in System Test Practice

Excursion In (too) many projects, the requirements are incompletely or not at all written down.
The problem this poses for testers is that it’s unclear how the system is supposed to
behave. This makes it hard to find defects.

Unclear system requirements If there are no requirements, then all behaviors of a system would be valid
and assessment would be impossible. Of course, the users or the customers
have a certain perception of what they expect of “their” software system.
Thus, there must be requirements. Yet sometimes these requirements are
not written down anywhere; they exist only in the minds of a few people
who are involved in the project. The testers then have the undesirable role
of gathering information about the required behavior after the fact. One
possible technique to cope with such a situation is exploratory testing (see
section 5.3, and for more detailed discussion, [Black 02]).

3.5 Acceptance Test 61

Missed decisionsWhile the testers identify the original requirements, they will discover
that different people may have completely different views and ideas on the
same subject. This is not surprising if the requirements have never been
documented, reviewed, or released during the project. The consequences
for those responsible for system testing are less desirable: They must col-
lect information on the requirements; they also have to make decisions
that should have been made many months earlier. This collection of infor-
mation may be very costly and time consuming. Test completion and
release of the completed system will surely be delayed.

Project failIf the requirements are not specified, of course the developers do not
have clear objectives either. Thus, it is very unlikely that the developed sys-
tem will meet the implicit requirements of the customer. Nobody can seri-
ously expect that it is possible to develop a usable system given these con-
ditions. In such projects, execution of the system test can probably only
announce the collapse of the project.

3.5 Acceptance Test

All the test levels described thus far represent testing activities that are
under the producer’s responsibility. They are executed before the software
is presented to the customer or the user.

Before installing and using the software in real life (especially for soft-
ware developed individually for a customer), another last test level must
be executed: the acceptance test. Here, the focus is on the customer’s and
user’s perspective. The acceptance test may be the only test that the cus-
tomers are actually involved in or that they can understand. The customer
may even be responsible for this test!

➞Acceptance tests may also be executed as a part of lower test levels
or be distributed over several test levels:

■ A commercial-off-the-shelf product (COTS) can be checked for
acceptance during its integration or installation.

■ Usability of a component can be acceptance tested during its compo-
nent test.

■ Acceptance of new functionality can be checked on prototypes before
system testing.

62 3 Testing in the Software Life Cycle

There are four typical forms of acceptance testing:

■ Contract acceptance testing
■ User acceptance testing
■ Operational acceptance testing
■ Field testing (alpha and beta testing)

How much

 acceptance testing?

How much acceptance testing should be done is dependent on the product
risk. This may be very different. For customer-specific systems, the risk is
high and a comprehensive acceptance test is necessary. At the other
extreme, if a piece of standard software is introduced, it may be sufficient
to install the package and test a few representative usage scenarios. If the
system interfaces with other systems, collaboration of the systems through
these interfaces must be tested.

Test basis The test basis for acceptance testing can be any document describing
the system from the user or customer viewpoint, such as, for example,
user or system requirements, use cases, business processes, risk analyses,
user process descriptions, forms, reports, and laws and regulations as
well as descriptions of maintenance and system administration rules and
processes.

3.5.1 Contract Acceptance Testing

If customer-specific software was developed, the customer will perform
contract acceptance testing (in cooperation with the vendor). Based on the
results, the customer considers whether the software system is free of
(major) deficiencies and whether the service defined by the development
contract has been accomplished and is acceptable. In case of internal soft-
ware development, this can be a more or less formal contract between the
user department and the IT department of the same enterprise.

Acceptance criteria The test criteria are the acceptance criteria determined in the develop-
ment contract. Therefore, these criteria must be stated as unambiguously
as possible. Additionally, conformance to any governmental, legal, or
safety regulations must be addressed here.

In practice, the software producer will have checked these criteria
within his own system test. For the acceptance test, it is then enough to
rerun the test cases that the contract requires as relevant for acceptance,
demonstrating to the customer that the acceptance criteria of the contract
have been met.

3.5 Acceptance Test 63

Because the supplier may have misunderstood the acceptance criteria,
it is very important that the acceptance test cases are designed by or at
least thoroughly reviewed by the customer.

Customer (site)
acceptance test

In contrast to system testing, which takes place in the producer envi-
ronment, acceptance testing is run in the customer’s actual operational
environment.13 Due to these different testing environments, a test case
that worked correctly during the system test may now suddenly fail. The
acceptance test also checks the delivery and installation procedures. The
acceptance environment should be as similar as possible to the later oper-
ational environment. A test in the operational environment itself should
be avoided to minimize the risk of damage to other software systems used
in production.

The same techniques used for test case design in system testing can be
used to develop acceptance test cases. For administrative IT systems, busi-
ness transactions for typical business periods (like a billing period) should
be considered.

3.5.2 Testing for User Acceptance

Another aspect concerning acceptance as the last phase of validation is the
test for user acceptance. Such a test is especially recommended if the
customer and the user are different.

Example:
Different user groups

In the VSR example, the responsible customer is a car manufacturer. But the car
manufacturer’s shops will use the system. Employees and customers who want to
purchase cars will be the system’s end users. In addition, some clerks in the
company’s headquarter will work with the system, e.g., to update price lists in the
system.

Get acceptance of every

user group

Different user groups usually have completely different expectations of a
new system. Users may reject a system because they find it “awkward” to
use, which can have a negative impact on the introduction of the system.
This may happen even if the system is completely OK from a functional
point of view. Thus, it is necessary to organize a user acceptance test for
each user group. The customer usually organizes these tests, selecting test
cases based on business processes and typical usage scenarios.

13. Sometimes the acceptance test consists of two cycles: the first in the system test
environment, the second in the customer’s environment.

64 3 Testing in the Software Life Cycle

Present prototypes

 to the users early

If major user acceptance problems are detected during acceptance
testing, it is often too late to implement more than cosmetic countermeas-
ures. To prevent such disasters, it is advisable to let a number of represent-
atives from the group of future users examine prototypes of the system
early.

3.5.3 Operational (Acceptance) Testing

Operational (acceptance) testing assures the acceptance of the system by
the system administrators.14 It may include testing of backup/restore cycles
(including restoration of copied data), disaster recovery, user management,
and checks of security vulnerabilities.

3.5.4 Field Testing

If the software is supposed to run in many different operational environ-
ments, it is very expensive or even impossible for the software producer to
create a test environment for each of them during system testing. In such
cases, the software producer may choose to execute a ➞field test after the
system test. The objective of the field test is to identify influences from
users’ environments that are not entirely known or specified and to elimi-
nate them if necessary. If the system is intended for the general market (a
COTS system), this test is especially recommended.

Testing done by

representative customers

For this purpose, the producer delivers stable prerelease versions of
the software to preselected customers who adequately represent the mar-
ket for this software or whose operational environments are appropriately
similar to possible environments for the software.

These customers then either run test scenarios prescribed by the pro-
ducer or run the product on a trial basis under realistic conditions. They
give feedback to the producer about the problems they encountered along
with general comments and impressions about the new product. The pro-
ducer can then make the specific adjustments.

Alpha and beta testing Such testing of preliminary versions by representative customers is
also called ➞alpha testing or ➞beta testing. Alpha tests are carried out at
the producer’s location, while beta tests are carried out at the customer’s
site.

A field test should not replace an internal system test run by the pro-
ducer (even if some producers do exactly this). Only when the system test

14. This verifies that the system complies with the needs of the system administrators.

3.6 Testing New Product Versions 65

has proven that the software is stable enough should the new product be
given to potential customers for a field test.

Dogfood testA new term in software testing is dogfood test. It refers to a kind of
internal field testing where the product is distributed to and used by inter-
nal users in the company that developed the software. The idea is that “if
you make dogfood, try it yourself first.” Large suppliers of software like
Microsoft and Google advocate this approach before beta testing.

3.6 Testing New Product Versions

Until now, it was assumed that a software development project is finished
when the software passes the acceptance test and is deployed. But that’s not
the reality. The first deployment marks only the beginning of the software
life cycle. Once it is installed, it will often be used for years or decades and
is changed, updated, and extended many times. Each time that happens, a
new ➞version of the original product is created. The following sections
explain what must be considered when testing such new product versions.

3.6.1 Software Maintenance

Software does not wear out. Unlike with physical industry products, the
purpose of software maintenance is not to maintain the ability to operate
or to repair damages caused by use. Defects do not originate from wear and
tear. They are design faults that already exist in the original version. We
speak of software maintenance when a product is adapted to new opera-
tional conditions (adaptive maintenance, updates of operating systems,
databases, middleware) or when defects that have been in the product
before are corrected (corrective maintenance). Testing changes made
during maintenance can be difficult because the system’s specifications are
often out of date or missing, especially in the case of legacy systems.

Example:
Analysis of VSR hotline
requests

The VSR-System has been distributed and installed after intense testing. In order
to find areas with weaknesses that had not been found previously, the central hot-
line generates an analysis of all requests that have come in from the field. Here are
some examples:
1. A few dealers use the system on an unsupported platform with an old version

of the operating system. In such environments, sometimes the host access
causes system crashes.

2. Many customers consider the selection of extra equipment to be awkward,
especially when they want to compare prices between different packages of

66 3 Testing in the Software Life Cycle

extra equipment. Many users would therefore like to save equipment config-
urations and to be able to retrieve them after a change.

3. Some of the seldom-occurring insurance prices cannot be calculated at all
because the corresponding calculation wasn’t implemented in the insurance
component.

4. Sometimes, even after more than 15 minutes, a car order is not yet confirmed
by the server. The system cuts the connection after 15 minutes to avoid hav-
ing unused connections remain open. The customers are angry with this
because they waste a lot of time waiting in vain for confirmation of the pur-
chase order. The dealer then has to repeat inputting the order and then has to
mail the confirmation to the customer.

Problem 1 is the responsibility of the dealer because he runs the system on a plat-
form for which it was not intended. Still, the software producer might change the
program to allow it to be run on this platform to, for example, save the dealer
from the cost of a hardware upgrade.

Problems like number 2 will always arise, regardless of how well and com-
pletely the requirements were originally analyzed. The new system will generate
many new experiences and therefore new requirements will naturally arise.

Improve the test plan Problem 3 could have been detected during system testing. But testing cannot
guarantee that a system is completely fault free. It can only provide a sample with
a certain probability to reveal failures. A good test manager will analyze which
kind of testing would have detected this problem and will adequately improve or
adapt the test plan.

Problem 4 had been detected in the integration test and had been solved. The
VSR-System waits for a confirmation from the server for more than 15 minutes
without cutting the connection. The long waiting time happens in special cases,
when certain batch processes are run in the host computer. The fact that the cus-
tomer does not want to wait in the shop for such a long time is another subject.

These four examples represent typical problems that will be found in even
the most mature software system:

1. The system is run under new operating conditions that were not pre-
dictable and not planned.

2. The customers express new wishes.
3. Functions are necessary for rarely occurring special cases that were

not anticipated.
4. Crashes that happen rarely or only after a very long run time are re-

ported. These are often caused by external influences.

Therefore, after its deployment, every software system requires certain cor-
rections and improvements. In this context, we speak of software mainte-

3.6 Testing New Product Versions 67

nance. But the fact that maintenance is necessary in any case must not be
used as a pretext for cutting down on component, integration, or system
testing. We sometime hear, “We must continuously publish updates any-
way, so we don’t need to take testing so seriously, even if we miss defects.”
Managers behaving this way do not understand the true costs of failures.

Testing after
maintenance work

If the production environment has been changed or the system is
ported to a new environment (for example, by migration to a new plat-
form), a new acceptance test should be run by the organization responsi-
ble for operations. If data has to be migrated or converted, even this aspect
must be tested for correctness and completeness.

Otherwise, the test strategy for testing a changed system is the same as
for testing every new product version: Every new or changed part of the
code must be tested. Additionally, in order to avoid side effects, the
remainder of the system should be regression tested (see section 3.7.4) as
comprehensibly as possible. The test will be easier and more successful if
even maintenance releases are planned in advance and considered in the
test plans.

There should be two strategies: one for emergency fixes (or “hot
fixes”) and one for planned releases. For an ordinary release, a test
approach should be planned early, comprising thorough testing of any-
thing new or changed as well as regression testing. For an emergency fix,
a minimal test should be executed to minimize the time to release. Then
the normal comprehensive test should be executed as soon as possible
afterwards.

Testing before retirementIf a system is scheduled for retirement, then some testing is also
useful.

Testing for the retirement of a system should include the testing of
data archiving or data migration into the future system.

3.6.2 Testing after Further Development

Apart from maintenance work necessary because of failures, there will be
changes and extensions to the product that project management has
intended from the beginning.

Example:
Planning of the VSR
development

In the development plan for VSR release 2, the following work is scheduled:
1. New communication software will be installed on the host in the car manu-

facturer’s computing center; therefore, the VSR communication module must
be adapted.

68 3 Testing in the Software Life Cycle

2. Certain system extensions that could not be finished in release 1 will now be
delivered in release 2.

3. The installation base shall be extended to the EU dealer network. Therefore,
specific adaptations necessary for each country must be integrated and all the
manuals and the user interface must be translated.

These three tasks come neither from defects nor from unforeseen user
requests. So they are not part of ordinary maintenance but instead normal
further product development.

The first point results from a planned change of a neighbor system.
Point 2 involves functionality that had been planned from the beginning
but could not be implemented as early as intended. Point 3 represents
extensions that become necessary in the course of a planned market
expansion.

A software product is certainly not finished with the release of the first
version. Additional development is continuously occurring. An improved
product version will be delivered at certain intervals, such as, e.g., once a
year. It is best to synchronize these ➞releases with the ongoing mainte-
nance work. For example, every six months a new version is introduced:
one maintenance update and one genuine functional update.

After each release, the project effectively starts over, running through
all the project phases. This approach is called iterative software develop-
ment. Nowadays this is the usual way of developing software.15

Testing new releases How must testing respond to this? Do we have to completely rerun all
the test levels for every release of the product? Yes, if possible! As with
maintenance testing, anything new or changed should be tested, and the
remainder of the system should be regression tested to find unexpected
side effects (see section 3.7.4).

3.6.3 Testing in Incremental Development

Incremental development means that the project is not done in one (pos-
sibly large) piece but as a preplanned series of smaller developments and
deliveries. System functionality and reliability will grow over time.

The objective of this is to make sure the system meets customer needs
and expectations. The early releases allow customer feedback early and

15. This aspect is not shown in the general V-model. Only more modern life cycle models
show iterations explicitly (see [Jacobson 99], [Beck 00], [Beedle 01]).

3.7 Generic Types of Testing 69

continuously. Examples of incremental models are Prototyping, Rapid
Application Development (RAD) [Martin 91], Rational Unified Process
(RUP), Evolutionary Development [Gilb 05], the Spiral Model [Boehm
86], and so-called agile development methods such as Extreme Program-
ming (XP) [Beck 00], Dynamic Systems Development Method (DSDM)
[Stapleton 02], and SCRUM [Beedle 01]. SCRUM has become more and
more popular during recent years and is nowadays much used amongst
agile approaches.

Testing must be adapted to such development models, and continuous
integration testing and regression testing are necessary. There should be
reusable test cases for every component and increment, and they should
be reused and updated for every additional increment. If this is not the
case, the product’s reliability tends to decrease over time instead of
increasing.

This danger can be reduced by running several V-models in sequence,
one for each increment, where every next “V” reuses existing test material
and adds the tests necessary for new development or for higher reliability
requirements.

te
st d

e
sig

n
 in

itia
l

te
st

 r
u
n
 in

iti
a
l

Release 1 Release 2 Release 3

release and test

te
st d

e
sig

n

a
d
d
itio

n
a
l te

st ca
se

s

te
st

 r
u
n

re
g
re

ss
io

n
 &

 a
d
d
.
te

st
s

te

st d
e
sig

n

a
d
d
itio

n
a
l te

st ca
se

s

te
st

 r
u
n

re
g
re

ss
io

n
 &

 a
d
d
.
te

st
s

Figure 3–5
Testing in incremental
development

3.7 Generic Types of Testing

The previous chapters gave a detailed view of testing in the software life
cycle, distinguishing several test levels. Focus and objectives change when
testing in these different levels. And different types of testing are relevant
on each test level.

70 3 Testing in the Software Life Cycle

The following types of testing can be distinguished:

■ Functional testing
■ Nonfunctional testing
■ Testing of software structure
■ Testing related to changes

3.7.1 Functional Testing

Functional testing includes all kind of tests that verify a system’s input/out-
put behavior. To design functional test cases, the black box testing methods
discussed in section 5.1 are used, and the test bases are the functional
requirements.

Functional requirements Functional requirements ➞specify the behavior of the system; they
describe what the system must be able to do. Implementation of these
requirements is a precondition for the system to be applicable at all.
Characteristics of functionality, according to [ISO 9126], are suitability,
accuracy, interoperability, and security.

Requirements definition When a project is run using the V-model, the requirements are col-
lected during the phase called “requirements definition” and documented
in a requirements management system (see section 7.1.1). Text-based
requirements specifications are still in use as well. Templates for this
document are available in [IEEE 830].

The following text shows a part of the requirements paper concerning
price calculation for the system VSR (see section 3.2.4).

Example:
Requirements of the

VSR-System

R 100: The user can choose a vehicle model from the current model list for con-
figuration.

R 101: For a chosen model, the deliverable extra equipment items are indicated.
The user can choose the desired individual equipment from this list.

R 102: The total price of the chosen configuration is continuously calculated
from current price lists and displayed.

Requirements-based testing Requirements-based testing uses the final requirements as the basis for
testing. For each requirement, at least one test case is designed and docu-
mented in the test specification. The test specification is then reviewed.
The testing of requirement 102 in the preceding example could look like
the following example.

3.7 Generic Types of Testing 71

Example:
Requirements-based
testing

T 102.1: A vehicle model is chosen; its base price according to the sales manual
is displayed.

T 102.2: A special equipment item is selected; the price of this accessory is
added.

T 102.3: A special equipment item is deselected; the price falls accordingly.
T 102.4: Three special equipment items are selected; the discount comes into

effect as defined in the specification.

Usually, more than one test case is needed to test a functional requirement.
Requirement 102 in the example contains several rules for different

price calculations. These must be covered by a set of test cases
(102.1–102.4 in the preceding example). Using black box test methods
(e.g., ➞equivalence partitioning), these test cases can be further refined
and extended if desired. The decisive fact is if the defined test cases (or a
minimal subset of them) have run without failure, the appropriate func-
tionality is considered validated.

Requirements-based functional testing as shown is mainly used in
system testing and other higher levels of testing. If a software system’s pur-
pose is to automate or support a certain business process for the customer,
business-process-based testing or use-case-based testing are other similar
suitable testing methods (see section 5.1.5).

Example:
Testing based on
business process

From the dealer’s point of view, VSR supports him in the sales process. The pro-
cess can, for example, look like this:

■ The customer selects a type of vehicle he is interested in from the available mo-
dels.

■ The customer gets the information about the type of extra equipment and pri-
ces and selects the desired car.

■ The dealer suggests alternative ways of financing the car.
■ The customer decides and signs the contract.

A business process analysis (which is usually elaborated as part of the
requirements analysis) shows which business processes are relevant and
how often and in which context they appear. It also shows which persons,
enterprises, and external systems are involved. Test scenarios simulating
typical business processes are constructed based on this analysis. The test

72 3 Testing in the Software Life Cycle

scenarios are prioritized using the frequency and the relevance of the par-
ticular business processes.

Requirements-based testing focuses on single system functions (e.g.,
the transmission of a purchase order). Business-process-based testing,
however, focuses on the whole process consisting of many steps (e.g., the
sales conversation, consisting of configuring a car, agreeing on the pur-
chase contract, and the transmission of the purchase order). This means a
sequence of several tests.

Of course, for the users of the VirtualShowRoom system, it is not
enough to see if they can choose and then buy a car. More important for
ultimate acceptance is often how easily they can use the system. This
depends on how easy it is to work with the system, if it reacts quickly
enough, and if it returns easily understood information. Therefore, along
with the functional criteria, the nonfunctional criteria must also be
checked and tested.

3.7.2 Nonfunctional Testing

➞Nonfunctional requirements do not describe the functions; they
describe the attributes of the functional behavior or the attributes of the
system as a whole, i.e., “how well” or with what quality the (partial) system
should work. Implementation of such requirements has a great influence
on customer and user satisfaction and how much they enjoy using the
product. Characteristics of these requirements are, according to [ISO
9126], reliability, usability, and efficiency. (For the new syllabus, which is
effective from 2015, the basis is not ISO 9126 but ISO/IEC 25010:2011.
Compatibility and security are added to the list of system characteristics.)
Indirectly, the ability of the system to be changed and to be installed in new
environments also has an influence on customer satisfaction. The faster
and the easier a system can be adapted to changed requirements, the more
satisfied the customer and the user will be. These two characteristics are
also important for the supplier, because they help to reduce maintenance
costs.

According to [Myers 79], the following nonfunctional system charac-
teristics should be considered in the tests (usually in system testing):

3.7 Generic Types of Testing 73

■ ➞Load test: Measuring of the system behavior for increasing system
loads (e.g., the number of users that work simultaneously, number of
transactions)

■ ➞Performance test: Measuring the processing speed and response
time for particular use cases, usually dependent on increasing load

■ ➞Volume test: Observation of the system behavior dependent on the
amount of data (e.g., processing of very large files)

■ ➞Stress test: Observation of the system behavior when the system is
overloaded

■ Testing of security against unauthorized access to the system or data,
denial of service attacks, etc.

■ Stability or reliability test: Performed during permanent operation
(e.g., mean time between failures or failure rate with a given user pro-
file)

■ ➞Robustness test: Measuring the system’s response to operating
errors, bad programming, hardware failure, etc. as well as examination
of exception handling and recovery

■ Testing of compatibility and data conversion: Examination of com-
patibility with existing systems, import/export of data, etc.

■ Testing of different configurations of the system: For example, differ-
ent versions of the operating system, user interface language, hardware
platform, etc. (➞back-to-back testing)

■ Usability test: Examination of the ease of learning the system, ease and
efficiency of operation, understandability of the system outputs, etc.,
always with respect to the needs of a specific group of users ([ISO
9241], [ISO 9126])

■ Checking of the documentation: For compliance with system behav-
ior (e.g., user manual and GUI)

■ Checking maintainability: Assessing the understandability of the sys-
tem documentation and whether it is up-to-date; checking if the sys-
tem has a modular structure; etc.

A major problem in testing nonfunctional requirements is the often impre-
cise and incomplete expression of these requirements. Expressions like
“the system should be easy to operate” and “the system should be fast” are
not testable in this form.

74 3 Testing in the Software Life Cycle

Hint ■ Representatives of the (later) system test personnel should participate in early
requirement reviews and make sure that every nonfunctional requirement (as
well as each functional one) can be measured and is testable.

Furthermore, many nonfunctional requirements are so fundamental that
nobody really thinks about mentioning them in the requirements paper
(presumed matters of fact).16 Even such implicit characteristics must be
validated because they may be relevant.

Example:
Presumed requirements

The VSR-System is designed for use on a market-leading operating system. It is
obvious that the recommended or usual user interface conventions are followed
for the “look and feel” of the VSR GUI. The DreamCar GUI (see figure 3-3) vio-
lates these conventions in several aspects. Even if no particular requirement is
specified, such deviations from “matter of fact requirements” can and must be
seen as faults or defects.

Excursion:
Testing nonfunctional

requirements

In order to test nonfunctional characteristics, it makes sense to reuse existing func-
tional tests. The nonfunctional tests are somehow “piggybacking” on the functional
tests. Most nonfunctional tests are black box tests. An elegant general testing
approach could look like this:

Scenarios that represent a cross section of the functionality of the entire system
are selected from the functional tests. The nonfunctional property must be observa-
ble in the corresponding test scenario. When the test scenario is executed, the non-
functional characteristic is measured. If the resulting value is inside a given limit, the
test is considered “passed.” The functional test practically serves as a vehicle for
determining the nonfunctional system characteristics.

3.7.3 Testing of Software Structure

Structural techniques (➞structure-based testing, white box testing) use
information about the test object’s internal code structure or architecture.
Typically, the control flow in a component, the call hierarchy of proce-
dures, or the menu structure is analyzed. Abstract models of the software
may also be used. The objective is to design and run enough test cases to,
if possible, completely cover all structural items. In order to do this, useful
(and enough) test cases must be developed.

Structural techniques are most used in component and integration
testing, but they can also be applied at higher levels of testing, typically as

16. This is regrettably also true for functional requirements. The “of course the system has
to do X” implicit requirement is one of the main problems for testing.

3.7 Generic Types of Testing 75

extra tests (for example, to cover menu structures). Structural techniques
are covered in detail in sections 4.2 and 5.2.

3.7.4 Testing Related to Changes and Regression Testing

When changes are implemented, parts of the existing software are changed
or new modules are added. This happens when correcting faults and per-
forming other maintenance activities. Tests must show that earlier faults
are really repaired (➞retesting). Additionally, there is the risk of unwanted
side effects. Repeating other tests in order to find them is called regression
testing.

Regression testA regression test is a new test of a previously tested program following
modification to ensure that faults have not been introduced or uncovered
as a result of the changes made (uncovering masked defects).

Thus, regression testing may be performed at all test levels and applies
to functional, nonfunctional, and ➞structural test. Test cases to be used in
regression testing must be well documented and reusable. Therefore, they
are strong candidates for ➞test automation.

The question is how extensive a regression test has to be. There are the
following possibilities:

How much retest and

regression test

1. Rerunning of all the tests that have detected failures whose reasons
(the defects) have been fixed in the new software release (defect retest,
confirmation testing)

2. Testing of all program parts that were changed or corrected (testing of
altered functionality)

3. Testing of all program parts or elements that were newly integrated
(testing of new functionality)17

4. Testing of the whole system (complete regression test)

A bare retest (1) as well as tests that execute only the area of modifications
(2 and 3) are not enough because in software systems, simple local code
changes can create side effects in any other, arbitrarily distant, system
parts.

Changes can have

unexpected side effects

If the test covers only altered or new code parts, it neglects the conse-
quences these alterations can have on unaltered parts. The trouble with
software is its complexity. With reasonable cost, it can only be roughly
estimated where such unwanted consequences can occur. This is particu-

17. This is a regression test in a broader sense, where changes also means new functionality
(see the glossary].

76 3 Testing in the Software Life Cycle

larly difficult for changes in systems with insufficient documentation or
missing requirements, which, unfortunately, is often the case in old
systems.

Full regression test In addition to retesting the corrected faults and testing changed func-
tions, all existing test cases should be repeated. Only in this case would the
test be as safe as the testing done with the original program version. Such
a complete regression test would also be necessary if the system environ-
ment has been changed because this could have an effect on every part of
the system.

In practice, a complete regression test is usually too time consuming
and expensive. Therefore, we are looking for criteria that can help to
choose which old test cases can be omitted without losing too much infor-
mation. As always, in testing this means balancing risk and cost. The fol-
lowing test selection strategies are often used:

Selection of regression

 test cases

■ Repeating only the high-priority tests according to the test plan
■ In the functional test, omitting certain variations (special cases)
■ Restricting the tests to certain configurations only (e.g., testing of the

English product version only, testing of only one operating system
version)

■ Restricting the test to certain subsystems or test levels

Excursion Generally, the rules listed here refer to the system test. On the lower test levels,
regression test criteria can also be based on design or architecture documents (e.g.,
class hierarchy) or white box information. Further information can be found in [Kung
95], [Rothermel 94], [Winter 98], and [Binder 99]. There, the authors not only describe
special problems in regression testing object-oriented programs, they also describe
the general principles of regression testing in detail.

3.8 Summary

■ The general V-model defines basic test levels: component test, integra-
tion test, system test, and acceptance test. It distinguishes between ver-
ification and validation. These general characteristics of good testing
are applicable to any life cycle model:
• For every development step there is a corresponding test level
• The objectives of testing are specific for each test level
• The design of tests for a given test level should begin as early as pos-

sible, i.e., during the corresponding development activity

3.8 Summary 77

• Testers should be involved in reviewing development documents as
early as possible

• The number and intensity of the test levels must be tailored to the
specific needs of the project

■ The V-model uses the fact that it is cheaper to repair defects a short
time after they have been introduced. Thus, the V-model requires veri-
fication measures (for example, reviews) after ending every develop-
ment phase. This way, the “ripple effect” of defects (i.e., more defects) is
minimized.

■ Component testing examines single software components. Integration
testing examines the collaboration of these components. Functional
and nonfunctional system testing examine the entire system from the
perspective of the future users. In acceptance testing, the customer
checks the product for acceptance respective to the contract and
acceptance by users and operations personnel. If the system will be
installed in many operational environments, then field tests provide an
additional opportunity to get experience with the system by running
preliminary versions.

■ Defect correction (maintenance) and further development (enhance-
ment) or incremental development continuously alter and extend the
software product throughout its life cycle. All these altered versions
must be tested again. A specific risk analysis should determine the
amount of the regression tests.

■ There are several types of test with different objectives: functional test-
ing, nonfunctional testing, structure-based testing, and change-related
testing.

	Contents
	1 Introduction
	2 Fundamentals of Testing
	2.1 Terms and Motivation
	2.1.1 Error, Defect, and Bug Terminology
	2.1.2 Testing Terms
	2.1.3 Software Quality
	2.1.4 Test Effort

	2.2 The Fundamental Test Process
	2.2.1 Test Planning and Control
	2.2.2 Test Analysis and Design
	2.2.3 Test Implementation and Execution
	2.2.4 Test Evaluation and Reporting
	2.2.5 Test Closure Activities

	2.3 The Psychology of Testing
	2.4 General Principles of Testing
	2.5 Ethical Guidelines
	2.6 Summary

	3 Testing in the Software Life Cycle
	3.1 The General V-Model
	3.2 Component Test
	3.2.1 Explanation of Terms
	3.2.2 Test objects
	3.2.3 Test Environment
	3.2.4 Test objectives
	3.2.5 Test Strategy

	3.3 Integration Test
	3.3.1 Explanation of Terms
	3.3.2 Test objects
	3.3.3 The Test Environment
	3.3.4 Test objectives
	3.3.5 Integration Strategies

	3.4 System Test
	3.4.1 Explanation of Terms
	3.4.2 Test Objects and Test Environment
	3.4.3 Test Objectives
	3.4.4 Problems in System Test Practice

	3.5 Acceptance Test
	3.5.1 Contract Acceptance Testing
	3.5.2 Testing for User Acceptance
	3.5.3 Operational (Acceptance) Testing
	3.5.4 Field Testing

	3.6 Testing New Product Versions
	3.6.1 Software Maintenance
	3.6.2 Testing after Further Development
	3.6.3 Testing in Incremental Development

	3.7 Generic Types of Testing
	3.7.1 Functional Testing
	3.7.2 Nonfunctional Testing
	3.7.3 Testing of Software Structure
	3.7.4 Testing Related to Changes and Regression Testing

	3.8 Summary

