Lógica proposicional. Deducción natural Lógica

Justificación de la validez del razonamiento

Justificación semántica: $\Gamma \models \beta$

Probar que la veracidad de las hipótesis implica la veracidad de la conclusión

Justificación sintáctica: $\Gamma \vdash \beta$

Demostrar la conclusión a partir de las hipótesis usando pasos claramente definidos y explicitados.

Justificación sintáctica

$\Gamma \vdash \beta$

- Demostrar la conclusión β a partir de las hipótesis de Γ
- usando pasos claramente definidos y explicitados.

¿Qué es una demostración?

Es una prueba formal

- la corrección de la demostración depende de su forma y no del significado
- cumplen reglas precisas de construcción

١٠,

Pruebas formales

¿Cómo probamos usualmente?

- Sostenemos hipótesis iniciales (las podemos usar como dato en todo instante de la prueba)
- Encadenamos pasos simples de deducción que nos permite llegar a la conclusión

¿Por qué pruebas formales?

Podemos compilar las pruebas hechas, y asegurar su corrección o detectar errores mediante el análisis de su estructura.

Formalización del razonamiento

Varias maneras de formalizar el razonamiento

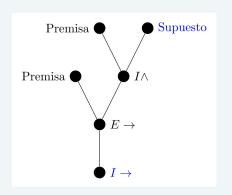
- Método Axiomático (a la Hilbert)
- Deducción Natural (Gentzen)
- otros ...

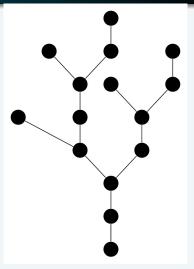
Ejemplo

En Deducción Natural las demostraciones se formalizan mediante árboles

$$\begin{array}{c|c} \frac{[\neg(\neg\alpha\vee\neg\beta)]^2 & \frac{[\neg\alpha]^3}{\neg\alpha\vee\neg\beta} \, I\vee_1}{\frac{1}{\alpha} \, RAA^{(3)}} \, E\neg & \frac{[\neg(\neg\alpha\vee\neg\beta)]^2 & \frac{[\neg\beta]^3}{\neg\alpha\vee\neg\beta} \, I\vee_1}{\frac{1}{\beta} \, RAA^{(3)}} \, E\neg \\ \frac{\beta\to\gamma}{\frac{\neg(\neg\alpha\vee\neg\beta)\to\gamma}{(\alpha\to(\beta\to\gamma))\to(\neg(\neg\alpha\vee\neg\beta)\to\gamma)}} \, I\to^{(1)} \end{array}$$

Algunos árboles de prueba





ī

Deducción natural

Reglas de construcción de pruebas

- Construyen una prueba a partir de subpruebas más simples
- Manejan correctamente las hipótesis (hipótesis globales) y supuestos (hipótesis locales) en cada etapa de la prueba

El análisis de corrección de una prueba formal puede mecanizarse, y lo ha sido. Existen asistentes y verificadores automáticos de pruebas para el cálculo proposicional.

Reglas de construcción de pruebas

En general, para cada conectivo se definen

Reglas de introducción

Indican cómo probar una fórmula con ese conectivo

Reglas de eliminación

Indican cómo *utilizar* una fórmula con ese conectivo en una prueba

¿Cómo probar una conjunción?

Hipótesis: $\delta_1, \dots \delta_n$

Tesis: $\alpha \wedge \beta$

- $\begin{array}{c} \bullet \ \, \operatorname{Probamos} \ \alpha \ \, \operatorname{usando} \\ \delta_1, \dots \delta_n \end{array}$
- $\begin{array}{c} \bullet \ \, \operatorname{Probamos} \, \beta \, \operatorname{usando} \\ \delta_1, \dots \delta_n \end{array}$
- Luego, hemos probado $\alpha \wedge \beta$ usando $\delta_1, \dots \delta_n$

¿Cómo probar un implica?

Hipótesis: $\delta_1, \dots \delta_n$

Tesis: $\alpha \rightarrow \beta$

- ullet Supongamos lpha
- $\begin{array}{c} \bullet \ \, \operatorname{Probamos} \, \beta \, \operatorname{usando} \\ \delta_1, \dots \delta_n \, \operatorname{y} \, \alpha \end{array}$
- Luego, hemos probado $\alpha \to \beta$ usando $\delta_1, ... \delta_n$

$$\begin{array}{c} \delta_1, \dots \delta_n, [\alpha]^k \\ \vdots \\ \frac{\beta}{\alpha \to \beta} \end{array}$$

¿Cómo probar una disyunción?

Hipótesis: $\delta_1, \dots \delta_n$

Tesis: $\alpha \vee \beta$

- Probamos α usando $\delta_1, \dots \delta_n$
- Luego, hemos probado $\alpha \vee \beta$ usando $\delta_1, ... \delta_n$

$$\begin{array}{c} \delta_1, \dots \delta_n \\ \vdots \\ \frac{\dot{\alpha}}{\alpha \vee \beta} \end{array}_{I \vee_1}$$

$$\begin{array}{c} \delta_1, \dots \delta_n \\ \vdots \\ \frac{\beta}{\alpha \vee \beta} \end{array}_{I \vee_2}$$

¿Cómo probar un si y sólo si?

Hipótesis: $\delta_1, \dots \delta_n$

Tesis: $\alpha \leftrightarrow \beta$

Demostración

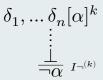
- Directo. Supongamos α , y probemos β usando $\delta_1, \dots \delta_n$ y α
- Recíproco. Supongamos β , y probemos α usando $\delta_1, \dots \delta_n$ y β
- Luego, hemos probado $\alpha \leftrightarrow \beta$ usando $\delta_1, \dots \delta_n$

¿Cómo probar una negación?

Hipótesis: $\delta_1, \dots \delta_n$

Tesis: $\neg \alpha$

- Supongamos α
- $\begin{array}{c} \bullet \ \operatorname{Probamos} \ \bot \ \operatorname{usando} \\ \delta_1, \dots \delta_n \ \mathrm{y} \ \alpha \end{array}$
- Luego, hemos probado $\neg \alpha$ usando $\delta_1, \dots \delta_n$



¿Cómo utilizar una conjunción?

Hipótesis: $\delta_1, \dots \delta_n$

Tesis: α

- Probamos $\alpha \wedge \beta$ usando $\delta_1, \dots \delta_n$
- Luego, hemos probado α usando $\delta_1, \dots \delta_n$

$$\begin{array}{c} \delta_1, \dots \delta_n \\ \vdots \\ \frac{\alpha \wedge \beta}{\alpha} \ _{E \wedge_1} \end{array}$$

$$\begin{array}{c} \delta_1, \dots \delta_n \\ \vdots \\ \frac{\alpha \wedge \beta}{\beta} \end{array}_{E \wedge_2}$$

¿Cómo utilizar una implicancia?

 ${\sf Hip\acute{o}tesis:}\ \delta_1,\dots\delta_n$

Tesis: β

- Probamos $\alpha \to \beta$ usando $\delta_1, \dots \delta_n$
- Probamos α usando $\delta_1, \dots \delta_n$
- Luego, hemos probado β usando $\delta_1, \dots \delta_n$

$$\begin{array}{cccc} \delta_1, \dots \delta_n & \delta_1, \dots \delta_n \\ \vdots & & \vdots \\ \alpha \to \beta & \overset{\vdots}{\alpha} & \overset{\vdots}{\alpha} \\ \beta & & E \to \end{array}$$

¿Cómo utilizar una disyunción?

Hipótesis: $\delta_1, \ldots \delta_n$

Tesis: δ

- $\bullet \ \, \mathsf{Probamos} \,\, \alpha \vee \beta \\ \mathsf{usando} \,\, \delta_1, \ldots \delta_n \\$
- Caso A. Probamos δ usando $\delta_1, \dots \delta_n$ y α
- Caso B. Probamos δ usando $\delta_1, ..., \delta_n$ y β
- Luego, hemos probado δ usando $\delta_1, \dots \delta_n$

¿Cómo utilizar un si y sólo si?

 $\text{Hipótesis: } \delta_1, \dots \delta_n$

Tesis: β

- $\bullet \ \, \operatorname{Probamos} \, \alpha \leftrightarrow \beta \, \operatorname{usando} \\ \delta_1, \dots \delta_n \\$
- $\bullet \ \, \text{Probamos} \,\, \alpha \,\, \text{usando} \\ \delta_1, \ldots \delta_n \,\,$
- Luego, hemos probado β usando $\delta_1, \dots \delta_n$

$$\begin{array}{ccc} \delta_1, \dots \delta_n & \delta_1, \dots \delta_n \\ \vdots & & \vdots \\ \alpha \leftrightarrow \beta & \overset{\overset{}{\alpha}}{\alpha} \\ \hline \beta & & E \leftrightarrow_1 \end{array}$$

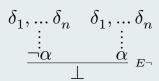
$$\begin{array}{ccc} \delta_1, \dots \delta_n & \delta_1, \dots \delta_n \\ \vdots & & \vdots \\ \alpha \leftrightarrow \beta & \beta \\ \hline \alpha & & \end{array}_{E \leftrightarrow_2}$$

¿Cómo utilizar una negación?

Hipótesis: $\delta_1, \dots \delta_n$

Tesis: Absurdo

- Probamos $\neg \alpha$ usando $\delta_1, \dots \delta_n$
- Probamos α usando $\delta_1, \dots \delta_n$
- Luego, hemos probado \perp usando $\delta_1, \dots \delta_n$



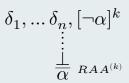
¿Cómo utilizar el absurdo?

Hipótesis: $\delta_1, \dots \delta_n$

Tesis: α

Demostración (reducción al absurdo)

- Supongamos $\neg \alpha$
- Llegamos a una contradicción usando $\delta_1, \dots \delta_n$ y $\neg \alpha$
- Luego, hemos probado α usando $\delta_1, \dots \delta_n$



¿Cómo utilizar el absurdo?

Hipótesis: $\delta_1, \dots \delta_n$

Tesis: α

- Llegamos a una contradicción usando $\delta_1, \dots \delta_n$
- Luego, hemos probado α usando $\delta_1, \dots \delta_n$

Una prueba trivial

Hipótesis: $\gamma_1, \gamma_2, \dots, \alpha, \dots, \gamma_n$

Tesis: α

Demostración

 La tesis vale porque suponemos la hipótesis. α hip

Pruebas = Árboles

- Las derivaciones se definen inductivamente como un conjunto de árboles etiquetados y "bien plantados :-)", o sea, con la raiz debajo de las hojas.
- Cada nodo, interno u hoja, se etiqueta con una fórmula proposicional y una regla y si genera hipótesis locales (supuestos), se le pone un superíndice.
- Las *hojas* son las *hipótesis* de la prueba.
- La raíz es la conclusión de la prueba.

Pruebas = Árboles

- De las hojas hacia la raíz se pasa por aplicación de alguna de las reglas de construcción.
- Las hipótesis locales a subpartes de una prueba se representan con hojas tachadas o usando [_]ⁿ donde n es el super de la regla que la introdujo.
- En cada nodo, importa el orden de sus hijos.

Ejemplo: $\vdash \alpha \land \beta \rightarrow \beta \land \alpha$

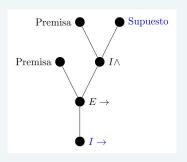
$$\frac{ \left[\alpha \wedge \beta \right]^1}{\beta} \, _{E \wedge_2} \, \frac{ \left[\alpha \wedge \beta \right]^1}{\alpha} \, _{I \wedge} \\ \frac{\beta \wedge \alpha}{\alpha \wedge \beta \rightarrow \beta \wedge \alpha} \, _{I \rightarrow^1}$$

Ejemplo: $\alpha \land \beta \rightarrow \gamma, \alpha \vdash \beta \rightarrow \gamma$

$$\begin{array}{c|c}
\alpha & \beta \\
\hline
\alpha \land \beta \rightarrow \gamma & \alpha \land \beta
\end{array}$$

$$\begin{array}{c}
\alpha \land \beta \\
\hline
\gamma \\
\beta \rightarrow \gamma
\end{array}$$

$$I \rightarrow 1$$



Definición 1.5.1. Derivaciones (DER)

El conjunto DER $\subseteq \mathcal{T}(\mathcal{E})$ de las derivaciones de la lógica proposicional se define inductivamente como sigue:

HIP

Si $\varphi \in PROP$, entonces $\varphi \in DER$

Definición 1.5.1. Derivaciones (DER) (2/16)

El conjunto DER $\subseteq \mathcal{T}(\mathcal{E})$ de las derivaciones de la lógica proposicional se define inductivamente como sigue:

$$I \land$$
 $Si \stackrel{D}{\searrow} \in DER \ y \stackrel{D}{\searrow} \in DER, \ entonces$

$$\stackrel{\varphi}{\xrightarrow{\varphi} \qquad \psi} I \land \in DER$$

Definición 1.5.1. Derivaciones (DER) (3/16)

El conjunto DER $\subseteq \mathcal{T}(\mathcal{E})$ de las derivaciones de la lógica proposicional se define inductivamente como sigue:

$E \wedge_1$

$$\operatorname{Si} \stackrel{D}{\varphi \wedge \psi} \in \operatorname{DER}, \text{ entonces}$$

$$\frac{D}{\varphi \wedge \psi} E \wedge_1 \in \mathtt{DER}$$

Definición 1.5.1. Derivaciones (DER) (4/16)

El conjunto DER $\subseteq \mathcal{T}(\mathcal{E})$ de las derivaciones de la lógica proposicional se define inductivamente como sigue:

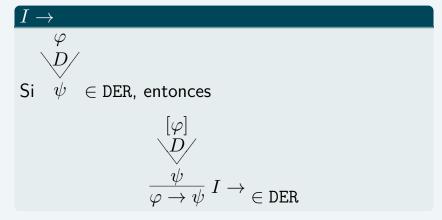
$E \wedge_2$

$$\operatorname{Si} \stackrel{D}{\varphi \wedge \psi} \in \operatorname{DER}, \text{ entonces}$$

$$\frac{D}{\varphi \wedge \psi} E \wedge_2 \in \mathrm{DER}$$

Definición 1.5.1. Derivaciones (DER) (5/16)

El conjunto DER $\subseteq \mathcal{T}(\mathcal{E})$ de las derivaciones de la lógica proposicional se define inductivamente como sigue:



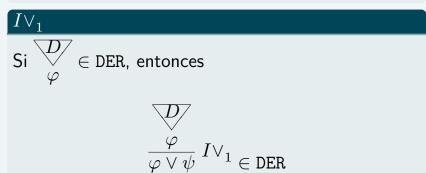
Definición 1.5.1. Derivaciones (DER) (6/16)

El conjunto DER $\subseteq \mathcal{T}(\mathcal{E})$ de las derivaciones de la lógica proposicional se define inductivamente como sigue:

$$E o$$
 Si $\varphi o\psi\in {
m DER}$ y $\varphi o\psi\in {
m DER}$, entonces $\varphi o\psi$ $\varphi o\psi$ $E o\in {
m DER}$

Definición 1.5.1. Derivaciones (DER) (7/16)

El conjunto DER $\subseteq \mathcal{T}(\mathcal{E})$ de las derivaciones de la lógica proposicional se define inductivamente como sigue:

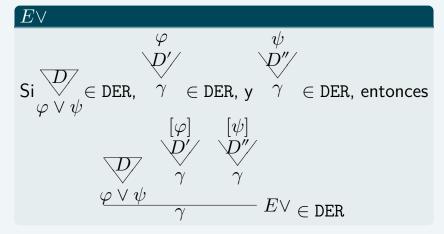


Definición 1.5.1. Derivaciones (DER) (8/16)

El conjunto DER $\subseteq \mathcal{T}(\mathcal{E})$ de las derivaciones de la lógica proposicional se define inductivamente como sigue:

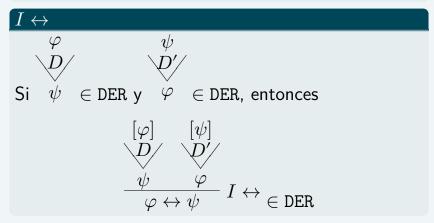
Definición 1.5.1. Derivaciones (DER) (9/16)

El conjunto DER $\subseteq \mathcal{T}(\mathcal{E})$ de las derivaciones de la lógica proposicional se define inductivamente como sigue:



Definición 1.5.1. Derivaciones (DER) (10/16)

El conjunto DER $\subseteq \mathcal{T}(\mathcal{E})$ de las derivaciones de la lógica proposicional se define inductivamente como sigue:



Definición 1.5.1. Derivaciones (DER) (11/16)

El conjunto DER $\subseteq \mathcal{T}(\mathcal{E})$ de las derivaciones de la lógica proposicional se define inductivamente como sigue:

$$E \leftrightarrow_1$$
 Si $\varphi \leftrightarrow \psi$ E DER y $\varphi \in$ DER, entonces
$$\varphi \leftrightarrow \psi \qquad \varphi \leftrightarrow \psi$$

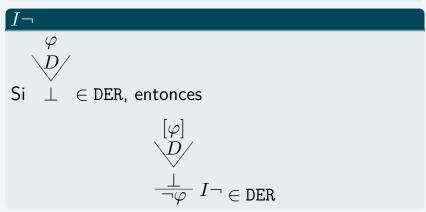
Definición 1.5.1. Derivaciones (DER) (12/16)

El conjunto DER $\subseteq \mathcal{T}(\mathcal{E})$ de las derivaciones de la lógica proposicional se define inductivamente como sigue:

$$E \leftrightarrow_2$$
 Si $\varphi \leftrightarrow \psi$ E DER y $\psi \in$ DER, entonces
$$\varphi \leftrightarrow \psi \quad \psi \quad \varphi \leftrightarrow \psi \quad \psi \quad E \leftrightarrow_2 \in \text{DER}$$

Definición 1.5.1. Derivaciones (DER) (13/16)

El conjunto DER $\subseteq \mathcal{T}(\mathcal{E})$ de las derivaciones de la lógica proposicional se define inductivamente como sigue:



Definición 1.5.1. Derivaciones (DER) (14/16)

El conjunto DER $\subseteq \mathcal{T}(\mathcal{E})$ de las derivaciones de la lógica proposicional se define inductivamente como sigue:

$$E \neg$$
 $Si \stackrel{D}{\searrow} \in DER \ y \stackrel{D}{\searrow} \in DER, \ entonces$
 $\stackrel{D}{\longrightarrow} \stackrel{D}{\swarrow} \stackrel{D}{\swarrow} E \neg \in DER$

Definición 1.5.1. Derivaciones (DER) (15/16)

El conjunto DER $\subseteq \mathcal{T}(\mathcal{E})$ de las derivaciones de la lógica proposicional se define inductivamente como sigue:

$E \perp$

Si
$$\stackrel{D}{\downarrow}$$
 \in DER y $\varphi \in$ PROP, entonces

$$\frac{D}{\varphi} E \bot \in \text{DER}$$

Definición 1.5.1. Derivaciones (DER) (16/16)

El conjunto DER $\subseteq \mathcal{T}(\mathcal{E})$ de las derivaciones de la lógica proposicional se define inductivamente como sigue:

RAA

$$D/$$
 $\bot \in DER$, entonces

$$\begin{array}{c} [\neg \varphi] \\ D/\\ \hline \frac{\bot}{\varphi} \ RAA \in \mathtt{DER} \end{array}$$

Conclusión e hipótesis

Ejercicio

Sea $D\in {\tt DER}.$ Llamamos $C\left(D\right)$ a la conclusión de D, y $H\left(D\right)$ al conjunto de hipótesis no canceladas de D.

Defina recursivamente sobre DER

- 1. C(D), y
- 2. $H\left(D\right)$, asumiendo que al aplicarse las reglas se realizan todas las cancelaciones (o descargas) posibles.

Consecuencia sintáctica

Definición 1.5.2

Sean $\Gamma\subseteq \mathsf{PROP}$ y $\varphi\in \mathsf{PROP}$. Decimos que φ es consecuencia sintáctica de Γ (o que φ se deriva de Γ ssi existe $D\in \mathsf{DER}$ tal que

$$C\left(D
ight)=arphi\qquad \mathbf{y}\qquad H\left(D
ight)\subseteq\Gamma$$

Notación

- $\Gamma \vdash \varphi$ se lee " φ se deriva de Γ "
- $\emptyset \vdash \varphi$ se lee " φ es teorema", y se escribe $\vdash \varphi$

Consecuencias sintácticas

Definición. Cons

Sea $\Gamma\subseteq \mathsf{PROP}.$ El conjunto de las consecuencias sintácticas de Γ es

$$\mathrm{Cons}\,(\Gamma) = \{\varphi \in \mathtt{PROP} | \Gamma \vdash \varphi\}$$

Ejercicio: $\vdash \neg \neg \varphi \rightarrow \varphi$

Ejercicio: $\vdash \alpha \rightarrow \neg \neg \alpha$

Propiedades de \wedge , \rightarrow y \perp

Lema 1.5.3

Sean $\alpha \in PROP$, $\beta \in PROP$, $\Gamma \subseteq PROP$, $\Delta \subseteq PROP$:

Si $\alpha \in \Gamma$	entonces	$\Gamma \vdash \alpha$
Si $\Gamma \vdash \alpha$ y $\Delta \vdash \beta$	entonces	$\Gamma, \Delta \vdash \alpha \land \beta$
Si $\Gamma \vdash \alpha \land \beta$	entonces	$\Gamma \vdash \alpha \text{ y } \Gamma \vdash \beta$
Si $\Gamma, \alpha \vdash \beta$	entonces	$\Gamma \vdash \alpha \to \beta$
Si $\Gamma \vdash \alpha$ y $\Delta \vdash \alpha \rightarrow \beta$	entonces	$\Gamma, \Delta \vdash \beta$
Si $\Gamma \vdash \bot$	entonces	$\Gamma \vdash \alpha$
Si $\Gamma, \neg \alpha \vdash \bot$	entonces	$\Gamma \vdash \alpha$

Propiedades de \vee , \leftrightarrow y \neg

Lema 1.7.2

```
Sean \alpha \in PROP, \beta \in PROP, \gamma \in PROP, \Gamma \subseteq PROP,
\Delta \subset \mathtt{PROP}:
Si \Gamma \vdash \alpha
                                                                                            \Gamma \vdash \alpha \lor \beta
                                                  entonces
Si \Gamma \vdash \beta
                                                                                            \Gamma \vdash \alpha \lor \beta
                                                  entonces
                                                                                      \Gamma, \alpha \vee \beta \vdash \gamma
Si \Gamma, \alpha \vdash \gamma y \Gamma, \beta \vdash \gamma entonces
Si \Gamma, \alpha \vdash \beta y \Gamma, \beta \vdash \alpha entonces
                                                                                       \Gamma \vdash \alpha \leftrightarrow \beta
Si \Gamma \vdash \alpha \leftrightarrow \beta
                                      entonces \Gamma, \alpha \vdash \beta y \Gamma, \beta \vdash \alpha
Si \Gamma, \alpha \vdash \bot
                                                                                                 \Gamma \vdash \neg \alpha
                                                entonces
Si \Gamma \vdash \alpha y \Delta \vdash \neg \alpha entonces
                                                                                             \Gamma, \Delta \vdash \bot
```

Equivalencias entre conectivos

Teorema 1.7.3

Sean $\alpha \in PROP$, $\beta \in PROP$:

Más propiedades

Teorema 1.5.4

Sean $\alpha \in PROP$, $\beta \in PROP$, $\gamma \in PROP$:

Propiedades interesantes de ⊢

- Si $\Gamma \subseteq \Delta$ y $\Gamma \vdash \alpha$, entonces $\Delta \vdash \alpha$
- Si $\Gamma \vdash \alpha$, entonces existe $\Delta \subseteq \Gamma$ tal que Δ es finito y $\Delta \vdash \alpha$
- Si $\Delta \vdash \alpha$ y $\Gamma \vdash \delta$ para todo $\delta \in \Delta$, entonces $\Gamma \vdash \alpha$