Splitting in Source–Terminal Network Reliability Estimation

Héctor Cancela

Universidad de la República, Montevideo, Uruguay Leslie Murray

Universidad Nacional de Rosario, Rosario, Argentina Gerardo Rubino IRISA/INRIA, Rennes, France

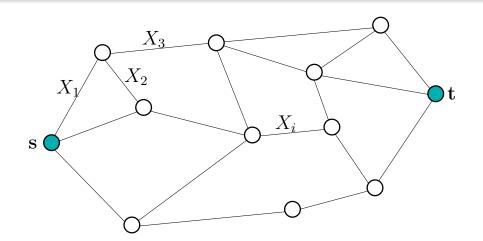
RESIM 7th International Workshop on Rare Event Simulation September 24-26 2008, Rennes, France

Splitting in Source–Terminal Network Reliability Estimation – p.1/2

Talk Outline

Network reliability model. Splitting method. Experimental results. Conclusions and future work.

Source-terminal network reliability model



 $X_i = \begin{cases} 1 \rightarrow \text{link } i \text{ operational} & \mathbb{P}[X_i = 1] = r_i \\ 0 \rightarrow \text{link } i \text{ link failed} & \mathbb{P}[X_i = 0] = q_i = 1 - r_i \end{cases}$

Links state vector: $\mathbf{X} = (X_1, X_2, \dots, X_m)$

 $\Phi(\mathbf{X}) = \begin{cases} 1 \rightarrow \text{operational network (i.e., } s, t\text{-connected).} \\ 0 \rightarrow \text{failed network (i.e., } s, t\text{-unconnected)} \end{cases}$

 $\begin{cases} R(\mathcal{G}) = \mathbb{P}[\text{network is } s, t\text{-connected}] = \mathbb{E}\{\Phi(\mathbf{X})\} \\ Q(\mathcal{G}) = \mathbb{P}[\text{network is not } s, t\text{-connected}] = \mathbb{E}\{1 - \Phi(\mathbf{X})\} \end{cases}$

All links considered failed at time 0; τ_i time to repair, exponential r.v. $\mathbb{P}[\tau_i \leq t] = 1 - e^{-\lambda_i t}$ $X_i(t) \text{ state of link } i \text{ at time } t;$ $X_i(t) = \begin{cases} 0 \text{ if } t < \tau_i \rightarrow & \text{link } i \text{ failed at time } t \\ 1 \text{ si } t \geq \tau_i \rightarrow & \text{link } i \text{ operational at time } t \end{cases}$

Link state vector: $\mathbf{X}(t) = (X_1(t), X_2(t), \dots, X_m(t))$

If $\lambda_i = -\log(q_i) \to \mathbb{P}[X_i(1) = 1] = \mathbb{P}[\tau_i \le 1] = 1 - e^{\log(q_i)} = r_i$

If
$$\mathbb{P}[X_i(1) = 1] = r_i \rightarrow \begin{cases} R = \mathbb{E}\{\Phi(\mathbf{X}(1))\} \\ Q = \mathbb{E}\{1 - \Phi(\mathbf{X}(1))\} \end{cases}$$

Standard Monte Carlo over Construction process

• $\mathbf{X}^{(j)}(t)$: *iid* samples from $\mathbf{X}(t)$ defined by $\{\tau_1, \tau_2, \dots, \tau_m\}$

$$\widehat{R} = \frac{1}{N} \sum_{j=1}^{N} \Phi(\mathbf{X}^{(j)}(1))$$

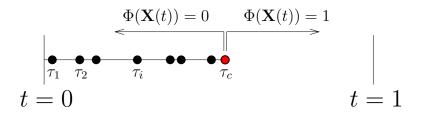
$$\widehat{Q} = \frac{1}{N} \sum_{j=1}^{N} (1 - \Phi(\mathbf{X}^{(j)}(1)))$$

- Highly reliable network
 - "Many" $\tau_i < 1$
 - "Almost always" $\Phi(\mathbf{X}^{(j)}(1)) = 1$

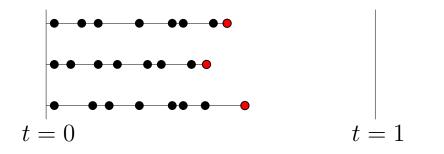
$$\Phi(\mathbf{X}^{(j)}(1)) = 0 \text{ rare event, } \widehat{Q} \to 0$$

Relative error $RE = \frac{\mathbb{V}\{\widehat{Q}\}^{1/2}}{\mathbb{E}\{\widehat{Q}\}} = \left(\frac{1-Q}{NQ}\right)^{1/2} \approx \frac{1}{(NQ)^{1/2}} \longrightarrow \infty$

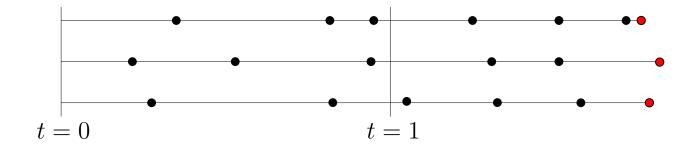
Network state evolution



Highly reliable networks



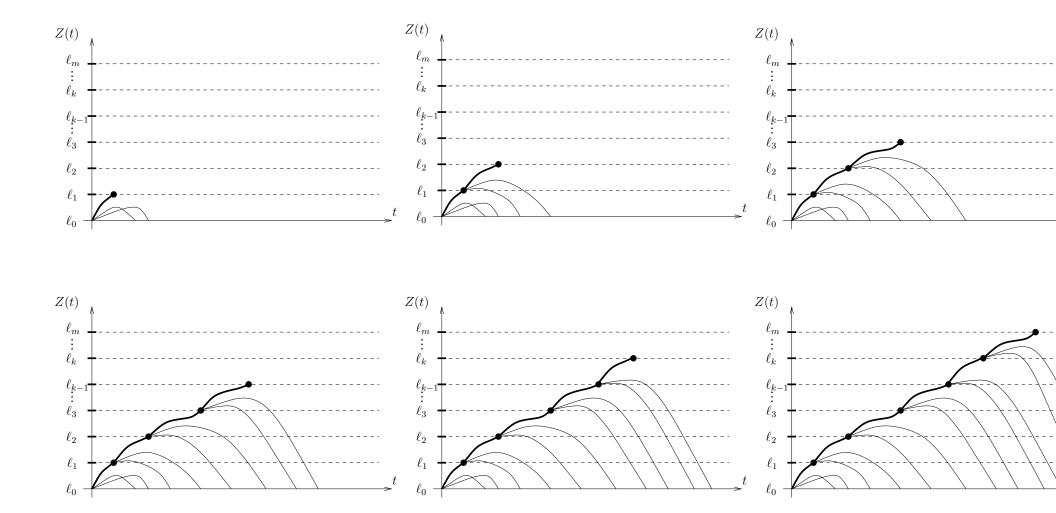
Unreliable networks



Splitting–General description

- Well-known technique for rare event estimation in Markovian processes.
- Typical setting: given a Markov process Y and a function h, compute the (small) probability that Y enters a region of interest $A = \{y|h(y) \ge L\}$ before reaching another region $B\{y|h(y) \le 0\}.$
- A series of intermediate regions are defined via thresholds L₁, L₂, ..., L_n = L. Whenever a trajectory reaches a threshold, it is "split" into a number of trajectories which might reach next threshold or "die".
- Estimator of measure of interest is given as product of the conditional estimations of reaching a threshold given that the previous one was reached.
- Technique used with good results in different contexts.

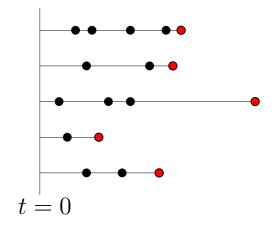
Splitting-graphical description

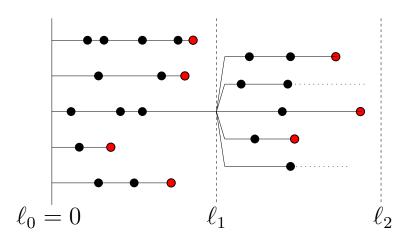


Splitting for network reliability (I)

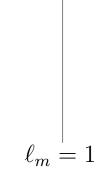
- Network construction process: interesting trajectories are those such that $\Phi(\mathbf{X}(1)) = 0$. No natural *h* function for thresholds.
- Idea: to partition the trajectories based on a sequence of times u_1, u_2, \ldots, u_n .
- Then, a trajectory such that $\Phi(\mathbf{X}(u_k)) = 0$ will be cloned hoping that it will reach time u_{k+1} holding $\Phi(\mathbf{X}(u_{k+1})) = 0$; and a trajectory such that $\Phi(\mathbf{X}(u_k)) = 1$ will be killed.
- $Q = \mathbb{P}{\mathbf{X}(1) = 0}$ will be estimated as the product of the conditional probabilities over each threshold.

Splitting for network reliability (II)





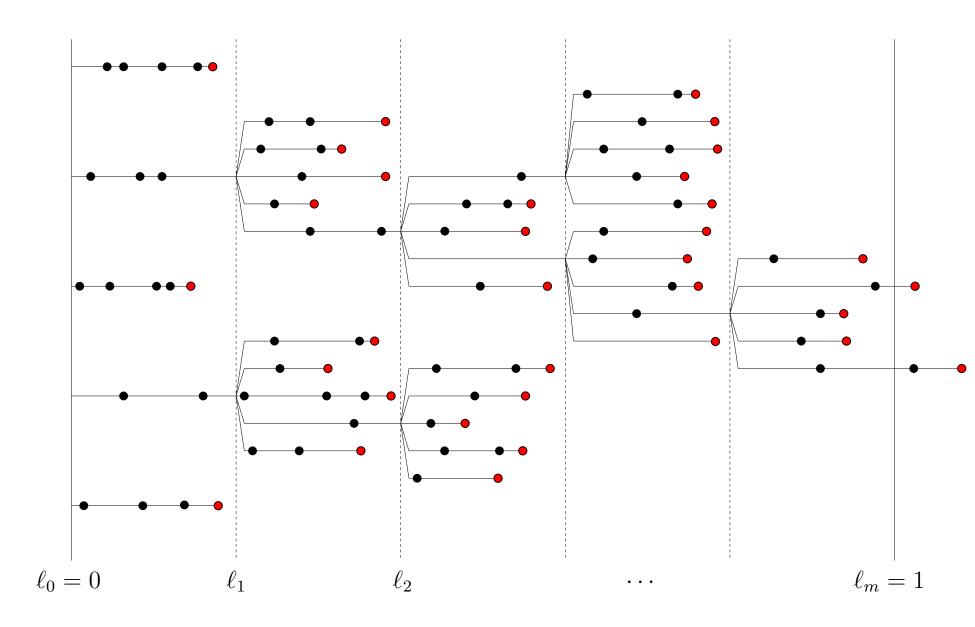
t = 1



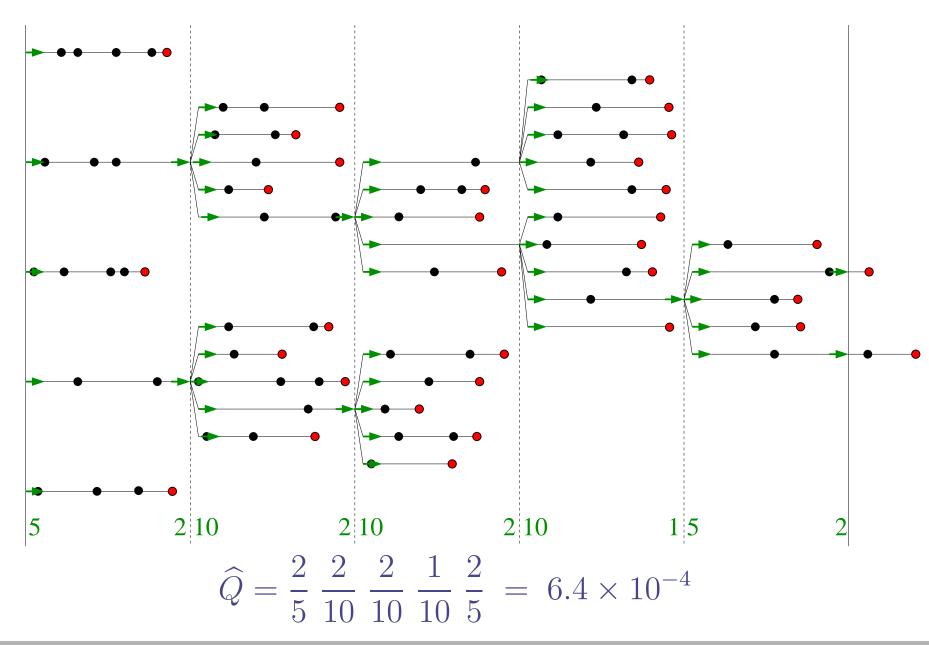
Splitting in Source–Terminal Network Reliability Estimation – p.10/2

. . .

Splitting for network reliability (III)

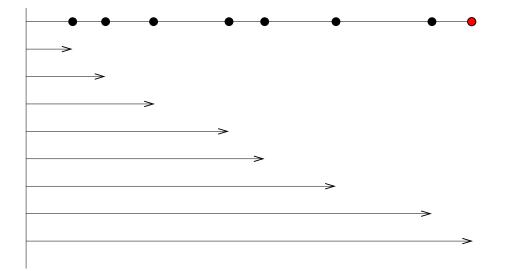


Splitting for network reliability (III)



Sequence of up-times τ_i (1)

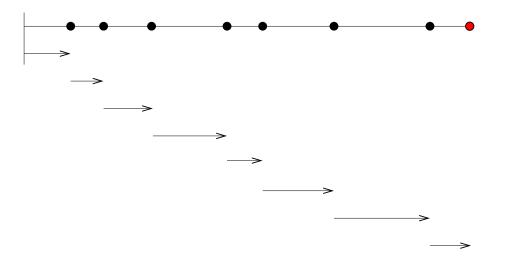
- Sample independently τ_i for every link *i*, exponential distribution with rate $\lambda_i = -\log(q_i)$;
- Sort all sampled τ_i in ascending order:



Sequence of up-times τ_i (2)

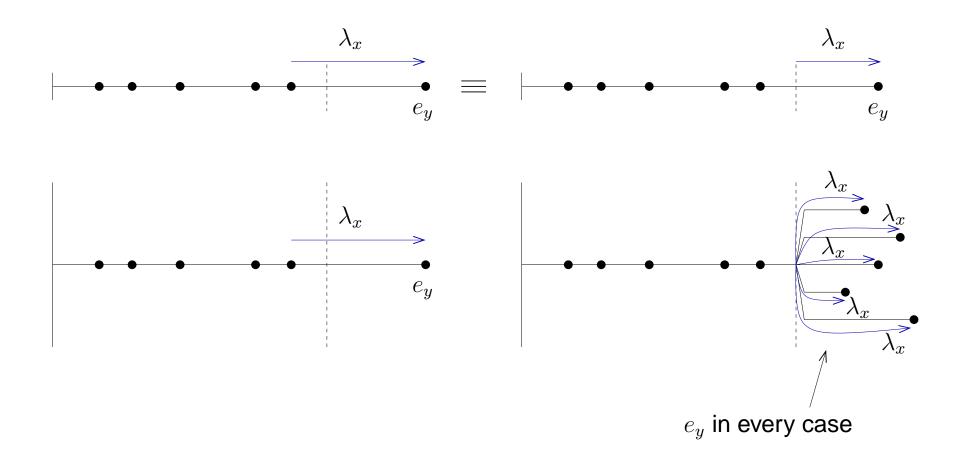
Let $P = \{$ links not yet sampled $\}$

- Sample next link to go up from distribution $\mathbb{P}[e_i] = \frac{\lambda_i}{\sum_{e_j \in P} \lambda_j}$
- Sample elapsing time until link goes up from exponential distribution with rate $\sum_{e_j \in P} \lambda_j$



Splitting sequences

Exponential distributions are memoryless:



Other implementation aspects

- How to determine number of thresholds?
 - Literature: minimize variance: $-(\log \widehat{Q})/2$
- How to determine the number of copies to make at each threshold?
 - Large enough to reach last threshold.
 - Not too large, else computational effort grows too quickly.
- Variants for splitting:
 - Fixed Splitting
 - Fixed Effort

Experimental setup

- 8 benchmark network topologies: dodecahedron, Arpanet (1972), complete graph C_{10} , bridge S_2 and graphs S_3, S_4, S_5, S_6 .
- Equi-reliable links, reliability values 0.9, 0.99, 0.9999 and 0.999999.
- The resulting source-terminal unreliabilities vary between 2.00e-02 and 2.00e-54.
- Splitting implementation Fixed Effort.
- Number of trajectories at each threshold: 4000.
- Number of independent experiments: 200.

Summary of results

$Red \ (\mathcal{V}, \mathcal{E})$	$\widehat{Q}_{0.9}$	t[seg]	RE[%]	$\widehat{Q}_{0.999999}$	t[seg]	RE[%]
$Dod\ (20, 30)$	2.87e-03	173.47	0.31	2.03e-18	1,278.89	0.57
Arpanet (21, 26)	9.53e-02	110.39	0.14	6.00e-12	708.48	0.44
K10 (10, 45)	2.00e-09	802.65	0.49	2.01e-54	6,174.49	1.19
S2(4,5)	2.16e-02	13.86	0.20	2.01e-12	134.55	0.38
S3(8,13)	3.78e-03	56.06	0.27	2.99e-18	524.17	0.50
S4(14,25)	6.02e-04	163.70	0.34	4.03e-24	1,379.40	0.71
S5(22,41)	9.15e-05	372.12	0.38	4.98e-30	2,941.92	0.88
S6~(32, 61)	4.31e-05	834.86	0.44	5.38e-36	6,193.18	2.61

Other experiments

- Number of thresholds: $-(\log \hat{Q})/2$ good results, near best values (always obtained by a slightly higher number of thresholds).
- Influence of number of trajectories vs. number of replications: number of trajectories must be large enough to guarantee reaching last threshold (4000); number of replications must be large enough to guarantee good variance estimation (100 or more).
- Comparison to Permutation Monte Carlo (another Construction Process based method) shows that, except for very small networks, Splitting attains better speedup values (for example, for S₅ and link reliabilities 0.9 up to 0.999999, Splitting attains the same precision with an effort from 6 up to 28 times lower; for S₆, up to 473 times lower.

Conclusions

- Splitting adapted and applied in a new context.
- Performance of the method very robust in regard to network reliability values.
- Huge efficiency gains over Standard Monte Carlo.
- Good efficiency gains over Permutation Monte Carlo, specially for larger and more reliable networks.
- Future work: improve understanding of relation between number of thresholds and link reliability.
- Compare with other variance reduction methods.

Questions?