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Unified optimization criterion for energy converters
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We propose a unified optimization criterion for energy converters. It represents the best compromise be-
tween energy benefits and losses for a specific job and neither an explicit evaluation of entropies nor the
consideration of environmental parameters are required. For all considered systems the criterion predicts a
performance regime laying between those of maximum efficiency and maximum useful energy. Such regime
has been invoked as optimum not only in macroscopic heat engines but also in some molecular motors.
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The subject of optimization of real devices has received
continued attention in thermodynamics, engineering and, re-
cently, in biochemistry [ 1-6]. The main goal in optimization
is to find the pathway that yields optimum performance in a
process operating at nonzero rates. To achieve this goal, an
objective function that depends on parameters of the problem
must be optimized. In principle one has the freedom of
choice of such objective function. It has been pointed out
[6,7], however, that a thermodynamic criterion devoted to
analyze the optimum regime of operation in a real process
should meet the following requirements: (i) its dependence
on the parameters of the process should be a guidance in
order to improve the performance of that process; (ii) it
should not depend on parameters of the environment; and
(iii) it should take into account the unavoidable dissipation of
energy provoked by the process. In this letter we address the
problem of finding an optimization criterion which, satisfy-
ing the above requirements, can be applied to any energy
converter.

The two methods most widely used in the optimization of
traditional thermodynamic heat devices are the entropy gen-
eration minimization and exergy analysis. Both methods are
based on the Gouy-Stodola theorem [8], which quantifies
the lost available work (or exergy destruction), W,
=TS gen » for any system operating under irreversible (finite-
time) conditions in terms of the corresponding entropy gen-
eration, S,.,, and the environment temperature, T,. The ap-
plication of this theorem to a particular design requires the
evaluation of S, through a model linking the thermody-
namic nonideality of the design to the physical characteris-
tics of the system. However, deriving expressions for S, is
a subtle and, sometimes, difficult task (as it happens for situ-
ations where the system is far from the equilibrium). Exer-
getic methods additionally depend on the parameters of the
environment which can be unknown or far from the average
values [6,7]. A number of different optimization criteria have
also been proposed, but they suffer from a lack of generality
since they apply to particular heat devices, either heat en-
gines, refrigerators, or heat-pump cycles [5].

An important feature of the proposed criterion is that it
gives an optimized efficiency that lies between the maximum
efficiency and the efficiency under maximum power condi-
tions. Such operation regime was invoked as optimum in
traditional heat engines [9] and agrees with recent observa-
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tions that some molecular motors seem to be optimized both
from the velocity and the efficiency standpoints [10,11]. Al-
though conceptual differences exist between microscopic
and macroscopic engines [3,10,11], this fact suggests that the
proposed optimization could be used as a unified framework
for dealing with molecular and macroscopic engines.

Let us consider an energy converter whose task is to pro-
duce a useful energy E,(x:{a}) by the conversion of an
input energy E;(x;{a}) along a given (nonideal) process.
Here x denotes an independent variable while {a} denotes a
set of parameters which can be considered as controls. The
conventional efficiency of this converter, defined as the ratio
between the wuseful and input energy z(x:{a})
=E,(x:{a})/E(x;{a}), satisfies the relation z.;,({a})
<z(x{ap)<zpn({a}), where 7 ({a}) and z,.({a}) are, re-
spectively, the minimum and maximum values of z(x:{a})
in the allowed range of values of x for given a’s [we note
that in some energy converters z,;.{a}#0 (see below for an
example)]. Then, for a given input energy, one has
Zmin({a})Ei(X;{a})sEu(x;{a})szmax({a})Ei(x;{a})- These lim-
its suggest to define an effective useful energy as
E, g(xs{ap) =E, (x:{a}) = znin{ D) Efx:{a}) and a lost use-
ful energy as £, (x:{ a}) = zpa (o E{ah) — E,(x:{a). To
evaluate the best compromise between useful energy and lost
useful energy we introduce the () function as the difference
between these quantities:

Q(x;{a}) =Eu.eﬂ(x;{a}) —EuQL(-x;{a})

e 22()5;{“}) —Zmin({a}) _zmax({a}) 3
= lah E, (x:{a}),
(1)

which is our proposal as objective function to analyze the
operation mode of any energy converter giving the best com-
promise between energy benefits and losses.

We first apply the criterion to macroscopic heat devices
used in thermodynamics, distinguishing among heat engines
(HE), refrigerators (RE), and heat pumps (HP). In a HE the
useful energy is the work delivered |W| and the input energy
is the heat supply |Qpl; a RE extracts a refrigeration load
|Q;| from a cold space at the cost of an expenditure of work
|W|; and a HP delivers a heating load |Qy]| to a warm space
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while a given work |W| is supplied. The efficiencies of these
systems are well known: zyg=7n=|W|/|Qy|, zgre=¢€
=|Q.|/|W] is the coefficient of performance (COP) of the
RE and zyp=v=|Qpy|/|W| is the COP of the HP. Note that
7 and € can attain the value zero, while v=€+1. As a
consequence, in a HP v is never below unity and the effec-
tive useful heating load is |Qy| —|W|. The HP is an explicit
example where z.,;,#0. From the above considerations and
using Eq. (1) we obtain for these heat devices the following
expressions for 1:

Qpp=2| W] = W] max

= (27— Nmax) | Qi

= (297~ 7ma) | W/ 7, )
Qre=201] =10 1| max

=(2€~ €mar)| W]

=(2€— €u)|0;l/€, (3

QHP=2|QH|_]W|—|QH|max
=(2V— 1= vmax)IWl
=(2V—'1—Vmax)|QH|/V’ (4)

which can be considered, respectively, as the best compro-
mise between maximum work performed and minimum lost
work in a HE, between maximum cooling load and minimum
lost cooling load in a RE, and between the maximum heating
load and minimum lost heating load in a HP.

In order to obtain concrete results we focus on the so-
called irreversible Carnot-type models. They are widely used
in finite-time thermodynamics [5] because, in spite of their
relative analytical simplicity, are able to account for the main
irreversibilities that usually arise in real heat devices: finite-
rate heat transfer between the working fluid and the external
heat sources, internal dissipation of the working fluid, and
heat leak between reservoirs. For an irreversible Carnot-type

model of a HE, the power W and efficiency # are [12]

I(a,—1)—oya,—1)*—1(a;—ay)

W(ah T, O 0 ) %

b4

®)

2
a/1(1+ ahc) — OpeQy

n(ah ;T9I’Uhc ’O-ih) .

1 anT il
! o-hc(ah— 1)
ah-—l

% ah—1+0'ihah(l_7)J’ ©

where a;,=1 is the ratio of the hot reservoir temperature to
the working fluid temperature in the upper isothermal pro-
cess (our independent variable x) and 7, /, 0., and o, are
the set {a} of controls accounting for, respectively, the ratio
of the cold reservoir to the hot reservoir temperature, the
internal dissipations of the working fluid, the ratio of the
external hot-end to cold-end conductances and the ratio of
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FIG. 1. Efficiency, 7, and (dimensionless) power, W, for an
irreversible Carnot-type HE model (I=0.9, o),.=1, 0;,=0.1) ver-
sus 7. Upper part: maximum 7 (dashed line) and » under condi-
tions of maximum QHE (solid line) and maximum W (dotted line).
Lower part: maximum W (dashed line) and W under conditions of

maximum QHE (solid line) and maximum 7 (dotted line).

the internal heat conductance to the external hot-end conduc-
tance. For this model 7,,;,=0 and the rate-dependent version
of Eq. (2) becomes

QHE(ah ;T’I’th ’o-ih)

=[2n(ay;7.0,0..01) = Nmax( 71T s i) ]

X W(ah ;T’Iv Ohe ’O-ih)/ 77(011 5 T’I’ O ’(Tih)'

For given values of controls, the functions 7, W, and Qyg
always present a maximum for some a;,=1. The maximum
efficiency and the efficiencies under conditions of maximum

W and maximum QHE are plotted versus 7 in the upper part
of Fig. 1 for a set of realistic values of controls, while the
lower part shows the maximum power and the power under

conditions of maximum 7 and maximum Qyg. As it can be

seen, the Qyp regime gives efficiencies and powers whose
values are between those obtained from the maximum effi-
ciency and maximum power regimes. We have checked that
this happens for any allowed value of the controls.

For an irreversible Carnot-type RE the cooling rate, Q.
and the COP, ¢, are [13]

10,y 1580y ot 7
Ap 3Tl O e sOip) o 7
g g : Yal1—(y_l)
aah.—ﬁ
6(ah ;T’I»o'hc ’U'ih)= (8)

(ap,—1)(yay—96)’

with a=17’—-0',-h(1+10',,c)(1—7'), ,3=a+0',-h(l—7'), Y
=1+Ioy,, and 8=1(o,.+ 7). Now a;,=1 denotes the ratio
of the temperature of the refrigerant in the upper isothermal
process to the temperature of the external hot reservoir,
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FIG. 2. COP, ¢, and (dimensionless) cooling power, |Q, |, for an
irreversible Carnot-type RE model (/=0.9, o;,.=1, 0;,=0.1) ver-
sus 7. (a) Maximum € (dashed line) and € under conditions of
maximum QHE (solid line) and maximum |Q;| (dotted line); (b)
maximum |Q;| (dashed line) and |Q,| under conditions of maxi-
mum QHE (solid line) and maximum e (dotted line).

€min=0 and Qgg(ay;7.1,04..0)=[2€(ay;1.1,0,.,0)

— €mad .04 .03 1Q1lay 3 70,0 T €@y s 7,03 son)- Fig-
ure 2(a) shows the maximum COP and the COP under con-

dition of maximum QRE (the COP under condition of maxi-
mum |Q;| is zero) and Fig. 2(b) shows the maximum |Q,]
and |Q;| under conditions of maximum € and maximum

Qgg. Note again that the proposed criterion gives a COP
below that corresponding to the maximum COP regime and a
cooling power lying between the maximum one and that ob-
tained under maximum COP. Results for the Carnot-type ir-
reversible HP are straightforward and they are not shown.
As a second application to heat devices, we consider the
so-called endoreversible models [1,14]. These models, sub-
ject to criticisms during the last years [15] (see however
[16]), assume an internally reversible Carnot engine coupled
to two external heat reservoirs through linear finite-rate heat
transfer laws. They emerge from the irreversible Carnot-type
models if /=1 and 0;,=0. Now 7, =1—7=7%c, €na
=7(1—1=€c, Vyu=1/(1 —T)=v, and the values of in-

volved functions under maximum € condition can be
worked out analytically. In particular, the results for the ef-

ficiency and the COP’s are g, = 1—V7r(7+1)/2,
Emaxy, = 7/( V2= 7= 1), and Vpax@h,,,= €maxii, T 1- It is also
found that 7cAS maxd,,,< 7c» where nca=1-— J7, is the

(Curzon—Ahlborn [14]) efficiency under maximum power
conditions. Two of the above 7-dependent values have been
reported previously. Angulo-Brown [17] first derived
MmaxQyy; OY applying the so-called ecological criterion (the
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FIG. 3. As in Fig. | but for the efficiency, 7, and (dimension-
less) power, P, of the isothermal linear model versus q°.

best compromise between power production and the product
of entropy production and the cold reservoir temperature

Tc: Egg=W—T¢S gen) to the optimization of an endorevers-
ible Carnot HE. Later, this criterion was reinterpreted by Yan
[18] in exergetic terms as Eyg= W — TS gen With Ty denoting
the environment temperature. The €y, result was first
reported by Yan and Chen [19] in the optimization of an
endoreversible Carnot RE under the ecological criterion

Ege=|01|— €cToS wen (the best compromise between the
maximum rate of refrigeration and the minimum rate of ex-
ergy loss) when T, takes the value of the hot reservoir T .
The optimized vy, Value can be also obtained from the
optimization of an endoreversible HP under the criterion
Ewp=(0ul =W = vcToSgen with To=T¢. Accordingly,
the () criterion is an ecological-like optimization but without
requiring environmental parameters and explicit calculations
of Sgen-

An entirely different energy converter is the isothermal
linear model for systems in nonreversible steady states as
considered by Stucki [20], Santillan et al. [21], and Prost
et al. [3,10] in the analysis of the efficiency in linear biologi-
cal motors. For such energy converter power, P, and effi-
ciency, 7, are P=—TJ,X, and n=—J,X,/J,X,, where J,
and J, are the generalized currents and X; and X, are the
generalized forces, with J,;X ;<0 and J,X,>0 denoting, re-
spectively, the driven and driver processes in the steady
state. Under a constant driver force X,, these magnitudes can
be expressed in terms of a relevant variable x=
—X,L,,/X5L; [0=<x=<1] and a (control) irreversibility pa-
rameter ¢=L,/\L;;L» [0<¢*><1] measuring the cou-
pling degree between driver and driven processes through
the phenomenological constants L;;, as
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g*x(1—x)

P(x:q)=TLnX3¢*x(1—x), n(x;q)=

1= q?'x
©

In this case the () function becomes [ 7pin(q)=0]

s’l(x;q)=TLnX§[2q2x(l—x)—nm(q)u—qzx)],( :
10

where nm(q)z(l—*\fl—qz)fqz. In Fig. 3(b) we plot the
results for the maximum power and power under maximum

7 and Q and in Fig. 3(a) the results for the maximum effi-
ciency and efficiency under maximum P and Q. We stress

two main facts. (a) For any value of ¢° the Q regime yields
a power between the maximum power and the power under
maximum efficiency condition and an efficiency between the
maximum attainable value and the efficiency under maxi-
mum power condition. (b) For q2—> 1, the maximum effi-
ciency regime is not operative since it implies zero power
and the maximum power regime implies a drastic decreasing

of the efficiency up to 0.5. Between these two regimes ()
yields an efficiency approaching 3/4 while power remains
finite, in agreement with reported results [20,21]. Similar
values to those plotted in Fig. 3(a) emerge from an ecologi-

cal regime [21], E, which can be obtained from ) by replac-
ing 7ma by the unity in Eq. (10). A significant difference
between them is that the E regime crosses, for some value of
g, the maximum efficiency and maximum power criteria.

Only when ¢>=1, E and © coincide.

Finally, with the aim of showing the wide applicability of
the proposed optimization, we analyze a mechanical con-
verter: an Atwood machine [22] with two weights Mg, the
driven force, and M ; g, the driver force (g is the acceleration
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of gravity), and a friction force proportional to the velocity
of the masses, v. In the steady state this velocity is given
by v,,=M (1— 7n)g/2u, the (useful) power output is

Pu=Mng_“=(M1g)27](l il 7?)’(2“)
=(M5g)* (1= n)/(2un),

where n=M,/M is the efficiency, and the objective func-

tion is Q=(27—1 )P,/ n. If we keep M constant, maximi-
zation of power gives an efficiency 1/2 while maximization

of Q) gives and efficiency 3/4, in full agreement with results
for the isothermal linear model (where the driver force was
also considered as a constant) in the limit g>— 1. Keeping
M, constant, maximization of power gives a nonoperative

zero efficiency while maximization of ) gives an efficiency
2/3.

In summary, a unified optimization criterion for energy
converters has been presented. It represents the best compro-
mise between maximum useful energy and minimum lost
useful energy for a specific job, it is independent of any
environment parameter, and does not require the explicit
derivation of entropy generation. For endoreversible Carnot-
type models it recovers in a natural way some temperature-
dependent efficiency limits obtained under different
ecological-like criteria. For irreversible heat engines it pre-
dicts an operation regime lying between those corresponding
to maximum efficiency and maximum power. Such regime
has been considered as optimum in macroscopic and molecu-
lar engines.
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