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a b s t r a c t

A multi-objective and multi-parametric optimization analysis is presented for a recuperative multi-step
solar-driven Brayton thermosolar plant. The analysis is done over a thermodynamic analytical model that
incorporates all the losses observed in real plants, from the heat engine itself and from the solar subsys-
tem. The model allows to consider several compression–expansion stages. The overall system efficiency
and the power output were taken as objective functions. The Pareto Front of the system is obtained by
considering possible fluctuations in all the involved parameters. This study allows to discern the signif-
icant design variables. Then, the exact Pareto Fronts were calculated, by taking as variables only those
parameters, and building an appropriate grid. Several configurations (ideal and realistic, with single stage
or multi-step compression–expansion processes) were analyzed and multi-criteria decision making pro-
cedures applied in order to obtain physical insights from the results. It was shown the importance of
electing an appropriate conducting gas, and adequate values of the global pressure and temperature
ratios. This study could constitute an interesting guideline for the design of future generations of plants
of this type, that are now at the research and developing stage.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction several losses (irreversibility) sources are considered in order to
A promising technology in electric energy generation is the uti-
lization of concentrated solar energy as energy input for a Brayton
type gas turbine. This is usually done in central receiver solar
installations.These plants can contribute to produce clean energy
with a reduced consumption of fossil fuels. Several projects in
the last years [1–3] have shown their feasibility as well as the
necessity to optimize the design of future facilities in order to be
commercially interesting. Up to date production costs are still high
and efficiencies require substantial improvement. From this point
of view thermodynamic analyses of these systems can play an
interesting role. They provide a global perspective of the plant
and the main flaw processes maybe identified and optimized.
There exist in the literature several works relative to the model
and optimization of solar systems working in different thermody-
namic cycles as Carnot, Ericsson, Braysson, and Stirling [4–6] or
Brayton [7–14]. In all of these works a pure thermodynamic model
is proposed for the considered cycle. The model starts from the
principles of Classical Reversible Thermodynamics and then
reproduce the behavior of real systems. In this way analytical
equations for the system performance are obtained and, eventually
an optimization analysis can be performed. Usually, one or two
parameters are considered for optimization once the reminder
are considered as fixed. This is elucidating from the theoretical
viewpoint. Nevertheless, the main inconvenience of this kind of
studies is that they only provide partial conclusions for the opti-
mization of real systems, because in them complex relationships
between variables make that efficiency or other output records
depend simultaneously on several variables in a non trivial way.
Moreover, in this procedure it is not possible to simultaneously
optimize two or more objective functions.

Nevertheless, there exists another kind of approximation. It
relies on the combination of thermodynamic analysis with
multi-objective and multi-parametric optimization techniques
[15]. In this way the main advantages of thermodynamic analyses
are maintained: identification of the main losses sources, analytical
formulation of expressions for efficiency, power or any other
objective function, easy checking of the sensitivity of the system
to a particular parameter, reduced computational costs, etc. And
at the same time it is possible to obtain reliable information on
the system optimization because a simultaneous study on two or
more objective functions including the influence of several
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Nomenclature

Aa aperture area of the collector
Ar absorber area of the collector
ac isentropic compressor pressure ratio
at isentropic turbine pressure ratio
C solar collector concentration ratio
Cw heat capacity rate of the working fluid
G solar irradiance
I-conf . ideal plant configuration
M1 radiation heat loss coefficient for the solar collector
M2 effective convection and conduction loss coefficient

for the solar collector
NC number of compression stages
NT number of expansion stages
N number of compression and expansion stages as-

sumed equal
nPF number of points of the Pareto Front
NRR-conf . non-regenerative realistic plant configuration
P power output
P adimensional power output
j _QHj total heat absorbed by the working fluid
j _QLj heat release from the working fluid to the ambient
j _Qsj heat input in the solar collector
rp overall pressure ratio

R-conf . realistic plant configuration
TH working temperature of the solar collector
TL ambient temperature
T1 compressors inlet temperature
T3 turbines inlet temperature
UL convective losses of the solar collector
a effective emissivity
�H solar collector heat exchanger efficiency
�c isentropic efficiency of the compressors
�L cold side heat exchanger efficiency
�r regenerator effectiveness
�t isentropic efficiency of the turbines
c adiabatic coefficient of the working fluid
n heat leakage coefficient
qH irreversibilities due to pressure drops in the heat in-

put
qL irreversibilities due to pressure drops in the heat re-

lease
g overall thermal efficiency
gs solar collector efficiency
g0 effective transmittance–absorptance product
r Stefan–Boltzmann constant
s temperature ratio associated to the solar collector
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variables can be performed. This approach has been applied in the
last years to thermodynamic cycles with conventional or solar heat
input like Stirling [16,17], Ericsson [18], Brayton [8,19–22], and
Braysson [23]. Also recently a paper by Ahmadi et al. [24] deals
with the analysis of a solar-driven Brayton cycle from a thermody-
namic model developed by our group [12,13,25], but significant
information relative to the number of compression–expansion
stages, the values taken for the fixed parameters, and the possible
links among the variables that were considered as free variables,
was not provided.

In this work our objective is to perform a detailed
multi-objective optimization study based upon a thermodynamic
model previously developed by us of a solar-driven gas turbine
plant. The model describes a multi-stage recuperative Brayton tur-
bine receiving the heat input from a concentrating solar collector. It
incorporates the main irreversibility terms in this type of systems,
both from the solar subsystem and the turbine itself: heat losses
in the collector, pressure losses in the heat absorption from the tur-
bine, turbines and compressor non-isentropic processes, losses in
the recuperator and in all the heat exchangers. By using an evolu-
tionary algorithm and taking as objective functions the overall
plant efficiency and the power output, we obtained the Pareto
Front by considering, in principle, all the main system parameters
as free variables. After identifying the relevant ones, the exact
Pareto Front was calculated by a thorough evaluation of the search
space, keeping the non-relevant parameters as fixed and using a
fine discretization for the others. Several plant configurations, with
a different number of compression–expansion stages were consid-
ered and the working intervals for the free variables were carefully
surveyed. Moreover, the representative points of the Pareto Front
were analyzed in different situations: an ideal configuration with
minimized losses, a non-recuperative configuration, and a realistic
layout with parameters taken from existing real installations. We
emphasize the main novelties of this work with respect to previous
ones: the exact Pareto Front is obtained after a systematic search of
the relevant system parameters, several plant configurations within
a multi-step compression–expansion scheme are investigated, and
also ideal and non-recuperative configurations are analyzed.
2. Thermodynamic model of a Brayton-solar cycle

Our model for an irreversible solar-driven multi-step Brayton
heat engine is depicted in Fig. 1(a). The analytical model incorpo-
rates an arbitrary number of turbines and compressors coupled
to a solar collector for which heat losses from convection, conduc-
tion, and radiation are considered, (for more details see [12,13]).
The overall efficiency of the coupled system is given by: g ¼ ghgs.
gh represents the thermal efficiency of the heat engine,

gh ¼ P
j _QH j
¼ 1� j _QL j

j _QH j
, and gs is the efficiency of the solar collector,

gs ¼
j _QH j
j _Qs j

, where P is the net power output of the cycle,

P ¼ j _Q Hj � j _Q Lj; j _Q Hj is the total heat input absorbed by the working

fluid, j _QLj is the heat released to the surroundings, and j _Qsj is the
solar heat input in the solar collector.
2.1. Efficiency of the solar collector

A concentrating collector is considered with the aim to get a
higher efficiency for the overall system. It is well-known that at
low and intermediate temperatures, heat losses in the solar collec-
tor are essentially associated to conduction and convection and
that at high enough temperatures radiation losses are dominant
[26]. In this model the useful energy delivered to the heat engine
is given by, j _QHj ¼ j _Qr � _Q ‘j, where j _Q r j ¼ g0GAa represents the

energy per unit of time transmitted to the receiver and j _Q ‘j the
losses by conduction, convection, (both proportional to the first
power of temperature) and radiation (proportional to T4),

j _Q ‘j ¼ Arar T4
H � T4

L

� �
� ArULðTH � TLÞ. g0 is the effective transmit

tance–absorptance product (optical efficiency), G is the solar irradi-
ance, Aa and Ar are respectively the aperture and absorber areas, a
is the effective emissivity, r is the Stefan–Boltzmann constant and
UL the overall conduction and convection heat loss coefficient of
the solar collector [27,28]. The energy per unit time received in
the aperture area is j _Qsj ¼ GAa.
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Fig. 1. (a) Scheme of the solar-driven Brayton plant considered. It incorporates a recuperator and an arbitrary number of turbines and compressors with the corresponding
intercoolers and reheaters. (b) T—S diagram of the thermodynamic cycle [13].
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Thus, the efficiency of the solar collector (see [26,29] for details)
reads as:

gs ¼ g0 1�M1ðs4 � 1Þ �M2ðs� 1Þ
� �

; ð1Þ

where M1 and M2 are two losses parameters defined as: M1 ¼ arT4
L=

ðg0GCÞ and M2 ¼ ULTL=ðg0GCÞ; s ¼ TH=TL is the heat reservoirs tem-
perature ratio and C ¼ Aa=Ar the concentration ratio [12,13].

2.2. Irreversible multi-step Brayton heat engine

This model for the multi-step Brayton heat engine [25] has been
validated and compared with experimental facilities in [29]. We
consider irreversibilities for turbines and compressors, pressure
drops in the heat input and heat release, heat leakage, and
non-ideal couplings of the working fluid with the external heat
reservoirs. It is considered as working fluid and ideal gas with tem-
perature independent heat capacities and adiabatic constant, c, and
flowing in stationary conditions. Here, we briefly summarize the
most important steps in the thermodynamic cycle (see Fig. 1(b)):

1. The working fluid is compressed from the initial state 1 by
means of Nc non-adiabatic compressors and Nc � 1 isobaric
intercoolers. All the compressors are assumed to have the same
isentropic efficiency �c and the same inlet temperature T1 [12].



1 We are assuming that minimization is the goal of the optimization problem. An
equivalent formulation can be defined when the goal is maximization.

S. Sánchez-Orgaz et al. / Energy Conversion and Management 99 (2015) 346–358 349
2. The gas is pre-heated after state 2 in a regenerative heat
exchanger to state X, that has an effectiveness �r . A
non-regenerative cycle corresponds to �r ¼ 0 and ideal or limit
regeneration to �r ¼ 1. After X the working fluid is heated up
with the useful heat released from the solar collector to T3, that
is the turbine inlet temperature. The losses in this heat input
processes are accounted by �H ¼ ðTX � T3Þ=ðTX � THÞ. The over-
all heating process from state 2 to 3 is considered as
non-isobaric, with a pressure drop quantified by qH (qH ¼ 1 cor-
responds to a zero pressure decay) [30].

3. Afterwards reaching the maximum temperature in the cycle, T3,
the working fluid is expanded by means of Nt non-adiabatic tur-
bines and Nt � 1 isobaric reheaters. The efficiency of all turbines
is the same, �t and the inlet temperature for all of them is T3.

4. The heat release process between state 4 and 1 is divided into
two parts, a cooling from 4 to Y through the regenerative heat
exchanger and a following cooling from TY to T1. The effective-
ness of this irreversible heat transfer is denoted as �L. A global
pressure decay quantified by qL (qL ¼ 1 corresponds to a zero
pressure decay) is considered during the entire cooling process.

The isentropic compressor and turbine pressure ratios,

at ¼ T3=T4s and ac ¼ T2s=T1 ¼ rðc�1Þ=c
p where rp ¼ P2=P1 is the global

pressure ratio, can be related through the parameters accounting
for the pressure drops in the 2! 3 heating and 4! 1 cooling pro-
cesses as at ¼ acqHqL.

Heat is provided to the system along the process X ! 3 (in
absence of regeneration from 2! 3) and along the Nt � 1 reheat-
ing processes between turbines and can be expressed as [25]:

j _Q Hj ¼ CwTL �H s� Zcð1� �rÞ
T1

TL
� �rZt

T3

TL

� ��

þ �tðNt � 1Þ 1� a�1=Nt
t

� � T3

TL
þ nðs� 1Þ

	
ð2Þ

where Cw is the heat capacity rate of the working fluid,

Zc ¼ 1þ a1=Nc
c � 1
�c

Zt ¼ 1� �t 1� a�1=Nt
t

� �
ð3Þ

and

T1

TL
¼
�L þ ð1� �LÞð1� �rÞZt

T3
TL

� �
1� ð1� �LÞ�rZc

ð4Þ

T3

TL
¼ s�H 1�ð1��LÞ�rZc½ �þ�Lð1��HÞð1��rÞZc

1�ð1��LÞ�rZc½ � 1�ð1��HÞ�rZt½ ��ð1��HÞð1��LÞð1��rÞ2ZtZc

ð5Þ
The term nðs� 1Þ in Eq. (2) represents the linear heat leakage.
n ¼ Ci=Cw where Ci is the internal conductance of the power plant
[31,32].

Because of the existence of an irreversible regenerator, effective
heat release is associated to the process Y ! 1 and to the cooling
processes from the Nc � 1 intercoolers between the compressors.
The heat release is given by:

j _Q Lj ¼ CwTL �L �1þ Ztð1� �rÞ
T3

TL
þ �rZc

T1

TL

� ��

þ 1
�c
ðNc � 1Þða1=Nc

c � 1Þ T1

TL
þ nðs� 1Þ

	
ð6Þ

where Zc; Zt; T1=TL and T3=TL are given by Eqs. (3)–(5). Eqs. (2) and
(6) for the heat input and heat release allow to obtain the efficiency
of the Brayton heat engine, gh, and subsequently the overall plant
efficiency through g ¼ ghgs. This efficiency and any other output
record are functions of several geometrical parameters that charac-
terize the shape and size of the cycle, and other parameters that
quantify the internal and external irreversibilities affecting all the
plant subsystems.

Previous studies have shown the influence of some of these
parameters on the overall plant efficiency. For instance, the depen-
dence of g with the temperature ratio, s and the pressure ratio, rp

was analyzed in [12,13]. The behavior is depicted in Fig. 2: the
solar collector efficiency, gs, is a monotonically decreasing function
with increasing s because heat losses are larger for higher working
temperature for the collector. On the contrary, the heat engine
thermodynamic efficiency, gh, increases as the ratio between
external heat sources increases. So, the overall efficiency, g, that
is the simple product of both efficiencies, always presents a
parabolic-like shape with a maximum as a function of s. This
makes g an optimizable function in terms of s. This figure also
allows to understand the plausible interval of values for s. Its min-
imum value is associated to the heat engine, which efficiency
becomes 0 for small values of s and its maximum value is associ-
ated to the solar subsystem that leads to negative values of gs

when temperatures are high and heat losses in the collector
become too large. The lowest value of s depends on all the param-
eters affecting the heat engine efficiency (pressure ratio and losses
terms), roughly it is between s ¼ 2:5 and s ¼ 3:5. The upper limit
only depends on the particularities of the solar subsystem. For
the parameters considered in the figure, s ¼ 4:4.

Additionally, in previous works, it was shown that for a simple
one-compressor one-turbine plant, the effect of the regenerator is
subtle: only for low enough pressure ratios maximum overall effi-
ciency increases with a larger regenerator effectiveness, �r [13].
This is a direct consequence of the coupling of the solar and the
Brayton subsystems and can be explained from Fig. 2. It is a
well-known result from textbooks that regeneration in a Brayton
recuperative cycle is only effective for high enough temperature
ratios. These temperature ratios increase with rp. This is shown
in the insets of the figure. In the inset of the upper panel, gh is
higher for high values of �r from about s ¼ 2:8. When making the
product g ¼ ghgs to obtain the overall efficiency, this leads to
higher maximum values of overall efficiency for higher values of
�r as observed in the curves for g. On the contrary, from the bottom
panel it is concluded that for higher values of rp, the overall effi-
ciency gets it maximum value in the region of values of s where
gh decreases with increasing �r (the cross point in gh is now about
s ¼ 5:5, see bottom inset). An so, overall efficiency reaches higher
values when decreasing regenerator effectiveness.

Nevertheless, a complete multi-parametric multi-objective
analysis for this system, including several compression and expan-
sion stages, to our knowledge, has not been previously presented.
Particularly, it will be studied in the next sections an optimization
procedure where all the above mentioned parameters are simulta-
neously considered in the joint optimization of two particular
objective functions, the overall plant efficiency, g, and the net
power output, P.

3. Multi-objective optimization background

In this section, we briefly introduce some classical concepts
about multi-objective optimization, multi-objective evolutionary
algorithms and multi-criteria decision-making to help a better
understanding of our approach.

3.1. Multi-objective optimization

The Multi-objective Optimization Problem (MOP) can be for-
mally defined as follows1 [15]:
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Fig. 2. Behavior of the overall efficiency g ¼ ghgs , for a simple solar Brayton
arrangement (Nt ¼ Nc ¼ 1) with the temperature ratio, s, in terms of the effective-
ness recuperator, �r , for the shown values of rp [13]. The insets show separately the
behavior of the solar collector efficiency, gs , and of the thermal part, gh .
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minimize f ið~xÞ i ¼ 1; . . . ; q
subject to : gkð~xÞP 0 k ¼ 1; . . . ;m

hlð~xÞ ¼ 0 l ¼ 1; . . . ;p

xL
j 6 xj 6 xU

j j ¼ 1; . . . ;n

ð7Þ
where ~x ¼ ½x1; x2; . . . ; xn� is a solution (a vector of n decision vari-
ables), gk are the m inequalities constraints, hl are the p equalities
constraints, and the variable bounds are the last set of constraints
of Eq. (7). The search space S is defined by the set of solutions that
satisfies all the constraints. Fð~xÞ is usually used as a short notation
for ½f 1ð~xÞ; . . . ; f qð~xÞ�.

The notion of optimality used in MOP is related to the concept
of dominance. A vector ~u ¼ ðu1; . . . ;uqÞ dominates another vector
~v ¼ ðv1; . . . ;vqÞ if and only if ui 6 v i 8i 2 1; . . . ; q and there exists
at least one j ð1 6 j 6 qÞ such that uj < v j. This is usually notated
by~u � ~v . On the other hand, two vectors are non-dominated when
none of them dominates the other.

The Pareto Optimal Set (POS) of a given MOP Fð~xÞ is defined as
P� ¼ f~x1 2 Sj : 9 ~x2 2 S; Fð~x2Þ � Fð~x1Þg. The solutions from the POS
satisfy that any two solutions of P� are non-dominated with
respect to each other, and that any other solution that it does not
belong to P� must be dominated by at least one member of the
set [15]. The representation of the POS in the objective space is
known as the Pareto Front. The Pareto Front of a given MOP Fð~xÞ
is formally defined as PF� ¼ fFð~x1Þj~x1 2 P�g.

The solutions from PF� represent different trade-offs between
the conflicting objectives, i.e., improving the value of one of the
objective functions degrades at least one of the other objective
functions. As a consequence, and in the absence of further informa-
tion that would allow to choose among the solutions, all the solu-
tions from PF� are equally important. For this reason, when a MOP
it is being solved, the solutions not only should be as close as
possible to PF� (convergence), but also they have to be spread uni-
formly through PF� (diversity).

3.2. Multi-objective evolutionary algorithms

In the first stage of the experimental evaluation, we use a
state-of-the-art Multi-Objective Evolutionary Algorithm (MOEA)
[15] known as NSGA-II (Nondominated Sorting Genetic
Algorithm II) [33]. Evolutionary algorithms (EAs) [34] are stochas-
tic search methods inspired by the natural process of evolution of
species. EAs iteratively evolve a population of candidate solutions
of the optimization problem guided by a survival of the fittest prin-
ciple. EAs have been widely used for solving MOP since they use a
population of solutions which (hopefully) allows to obtain several
solutions of the Pareto Optimal Set in a single run. Several EAs have
been designed specially for MOP, which are known as MOEAs [15].

The NSGA-II used in the experimental evaluation has been
worked out using jMetal [35,36]. jMetal is an object-oriented
Java-based framework for MOP with metaheuristic techniques that
includes several classical and state-of-the-art algorithms such as
NSGA-II, SPEA2 [15] and PAES [15].

3.3. Multi-criteria decision-making

It is important to note that for solving a MOP, besides the search
process for finding the non-dominated solutions, there is an expli-
cit decision-making process that is not present in single-objective
optimization [15]. It is not enough to find the Pareto Front, but a
decision maker, which it is usually an expert in the problem being
solved, has to choose one solution from the set. This process is not
trivial and involves incorporating additional information, criteria
or preferences that are not included in the problem formulation.
The different methods used for multi-criteria decision-making
can be classified depending on when they incorporate additional
information to the decision making process: a priori, interactive
or a posteriori.

In this work, we have followed the a posteriori approach that
consists in indicating the preferences after the search process.
Following this approach, the aim is to find as many Pareto Front
solutions as possible and evenly distributed among the front.
However, the number of solutions of the front can be large, making
impossible to analyze each solution. In this scenario, a subset of the
solutions is selected to be analyzed in detail. The criteria for choos-
ing these reference solutions used in this work is described next.

The first points that we include in the subset of solutions ana-
lyzed are the extremes of the Pareto Front. These solutions belong
to the Pareto Front and minimize one of the objectives
(f �i ¼ arg min~x2P� f ið~xÞ). Then, we include solutions from the
Pareto Front whose distance is minimal to a given reference point,
which is known as the method of compromise programming or the
method of global criteria [15]. In this case, the reference point is

the ideal point zIdeal ¼ f �1; . . . ; f �q
h i

, i.e., the point with the best (min-

imal) value for each f i. Since this point does not belong to the
Pareto Front, a solution from the Pareto Front is chosen minimizing
the distance to the ideal point (arg min~x2P�dðFð~xÞ; zIdealÞ). The
distance can be defined using different norms: we consider the
1-norm distance, Eq. (8), the 2-norm distance or Euclidean
distance, Eq. (9), and the infinity norm distance or Chebyshev dis-
tance, Eq. (10). As the difference between the magnitudes of the
different objective functions could be great, we also consider the
three distances normalizing the objective functions between 0
and 1.

d1ðFð~xÞ; zIdealÞ ¼
Xq

i¼1

jf ið~xÞ � zIdeal
i j ð8Þ
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d2ðFð~xÞ; zIdealÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq

i¼1
jf ið~xÞ � zIdeal

i j2
q

ð9Þ

dinfðFð~xÞ; zIdealÞ ¼max
q

i¼1
f ið~xÞ � zIdeal

i

�� �� ð10Þ
4. Experimental evaluation

In this section we formally introduce the optimization problem
associated to the solar-driven Brayton cycle. Then, the execution
platform is described. Finally, the experimental results obtained
are presented and analyzed.

4.1. Problem formulation and experimental settings

The model we have presented in Section 2 is versatile and flex-
ible and, particularly, it can predict the output records of the plant
for any value of the design and losses parameters considered. The
model was validated in previous works [12,13,25,29]. Also the
overall thermodynamic efficiency was optimized by means of an
standard thermodynamic optimization procedure in which its
maximum value is found in terms of a chosen particular parameter
once all the others were previously fixed. In this work, we follow a
multi-objective optimization approach (as discussed in Section 3).
The purpose from now on is to simultaneously maximize g and P,
that is the adimensional power output, P ¼ P=ðCwTLÞ, in terms, in
principle, of all the variables involved in the model.

Table 1 presents the instantiation of our multi-objective opti-
mization problem, including a description of each parameter, the
range of possible values and the discretization used. The ranges
of possible values of each parameter are realistic and they can be
found in [12,13,29,37–41]. The interval of values considered for s
as commented at the end of Section 2 is [2.0,4.4]. All the
Table 1
Range and discretization of the parameters involved in the multi-objective optimiza-
tion problem (see text for references and details).

Description Range Discretization

Basic design parameters
Number of compressors 1 6 NC 6 5 1
Number of turbines 1 6 NT 6 5 1
Adiabatic coefficient 1:35 6 c 6 1:40 0.01
Overall pressure ratio 5:00 6 rp 6 20:00 1
Heat reservoirs temperature ratio 2:00 6 s 6 4:40 0.1

Brayton thermal cycle losses parameters
Irreversibilities coming from the

coupling of the working fluid with
the heat reservoir at temperature
TL

0:70 6 �H 6 1:00 0.1

Irreversibilities coming from the
coupling of the working fluid with
the heat reservoir at temperature
TH

0:70 6 �L 6 1:00 0.1

Regenerator effectiveness 0:00 6 �r 6 1:00 0.1
Isentropic efficiency of the

compressors
0:90 6 �c 6 0:95 0.01

Isentropic efficiency of the turbines 0:90 6 �t 6 0:95 0.01
Pressure drops in the heat input 0:90 6 qH 6 0:98 0.02
Pressure drops in the heat release 0:90 6 qL 6 0:98 0.02
Heat leakage through the plant to the

surroundings
0:02 6 n 6 0:30 0.04

Solar subsystem losses parameters
Radiation heat loss coefficient for the

solar collector
0:001 6 M1 6 0:003 0.0001

Convection heat loss coefficient for
the solar collector

0:002 6 M2 6 0:010 0.001

Effective transmittance–absorptance
product

0:70 6 g0 6 0:90 0.1
parameters are taken as independent, so the only constraints in
the problem formulation are the ranges considered for each of
them, shown in Table 1.

The execution platform is a PC with a Quad Core Intel i7 2600
processor at 3.40 GHz with 16 GB RAM using Linux O.S. The
solar-driven Brayton cycle simulation was implemented in Java
1.6.0_22. All the executions were run as single-threaded
applications.
4.2. Experimental analysis

The search space of the multi-objective optimization problem
associated to the solar-driven Brayton cycle simulation is large.
Even using the discretization presented in Section 4.1 the search
space has more than 4:31e13 feasible points. For this reason, we
use NSGA-II that is able to make a smart exploration of the search
space instead of an exhaustive one.

Taking into account that MOEAs and EAs are stochastic algo-
rithms, 30 independent runs of NSGA-II have been performed.
The algorithm was executed for a maximum of 50,000 function
evaluations on each run, i.e., we have evaluated only 1:5e6 solu-
tions. The algorithm was configured using a population of 100 indi-
viduals, the single point crossover [34] with a crossover probability
of 0.9, and the bit-flip mutation [34] with a mutation probability of
1=p, being p the number of parameters of our multi-objective opti-
mization problem. These parameters provide a good compromise
between the accuracy of the results and the required execution
time.

Since, up to the best of our knowledge, this is the first work that
addresses the MOP associated to the multi-step solar-driven
Brayton cycle considering simultaneously all the variables detailed
in Section 2.2, one of our goals is to find the Pareto Front that is
unknown so far. For this reason, we determine a reference Pareto
Front combining the non-dominated solutions that resulted from
all the runs of NSGA-II and then filtering the non-dominated solu-
tions. It should be noted that since solutions are non-dominated
with respect to each other, when combining the output of different
runs non-dominated solutions could result dominated. Fig. 3
depicts a flow chart with the sequence of the procedure that was
followed. Next we detail the approximated Pareto Front obtained
after the first steps.

Fig. 4 presents the Pareto Front obtained using NSGA-II that has
121 non-dominated solutions. The extremes of the Pareto Front are
the points with P ¼ 1:0107 and g ¼ 0:4588, and P ¼ 2:1627 and
g ¼ 0:3752. Analyzing the Pareto Optimal Set (the solutions of
the Pareto Front in the domain space), we have found that 13 out
of the 16 parameters of our model are fixed in all the solutions.
The parameters that are fixed are those labelled as I-conf . in
Table 2. Most fixed parameters are associated to losses (see
Table 1). They reach the highest value for the interval considered
(efficiencies or effectivenesses) or the lowest one (losses parame-
ters themselves). The number of turbines and compressors, Nc

and Nt , reach the highest value that was taken: Nt ¼ Nc � N ¼ 5.
So, the variables that really offer diverse combinations at the
Pareto Front are the design parameters rp; c, and s.

Since only rp; c, and s parameters take different values for the
solutions of the Pareto Front obtained, and in order to find the best
possible approximation to the real Pareto Front as an input for the
decision-making process, we implement an exact algorithm that
enumerates all possible solutions varying the values for the param-
eters rp; c, and s (in the same intervals that in Table 1), and keeping
fixed the rest of the parameters (this is called I-conf . in Table 2).
We stress here that the consideration of c as optimization param-
eter is equivalent to analyze different working fluids, because in
our Brayton heat engine the working fluid is an ideal gas with
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Table 2
Losses parameters in the different configurations considered. The I-conf. is that
obtained by means of the NSGA-II algorithm allowing losses parameters fluctuate up
to ideal values. The R-conf. one is taken by considering realistic values for those losses
parameters. The NRR-conf. is the real non-regenerative case.

Parameter I-conf. R-conf. NRR-conf.

�H 1.0 0.9 0.9
�L 1.0 1.0 1.0
�r 1.0 0.85 0.0
�c 0.95 0.84 0.84
�t 0.95 0.89 0.89
qH 0.98 0.98 0.98
qL 0.98 0.98 0.98
n 0.02 0.02 0.02
M1 0.001 2.25 � 10�3 2.25 � 10�3

M2 0.002 2.5 � 10�3 2.5 � 10�3

g0 0.9 0.8 0.8
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Fig. 5. Pareto Fronts obtained using an exact method by considering as free
parameters rp; c, and s with N ¼ 1, 2, and 5. The rest of parameters are those
contained in Table 2: (a) I-conf .; (b) R-conf .; and (c) NRR-conf .
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Table 3
Subset of solutions analyzed from the Pareto Front for the I-conf . with a number of
compression–expansion stages N ¼ 1;2, and 5. In each case it is shown in parenthesis
the number of points of the front.

P g rp c s

N ¼ 1 ð7796Þ
0.5616 0.3510 5.0 1.350 3.71
0.8010 0.3126 6.40 1.364 4.25
0.8049 0.3117 6.80 1.353 4.25
0.8406 0.3029 7.0 1.363 4.31
0.8905 0.2897 7.9 1.359 4.39
0.9218 0.2794 9.3 1.361 4.40
0.9453 0.2653 11.8 1.361 4.40
0.9518 0.2518 14.6 1.360 4.40

N ¼ 2 ð7444Þ
0.6569 0.4175 5.0 1.350 3.51
1.2054 0.3848 12.4 1.389 3.90
1.2496 0.3808 16.0 1.357 3.93
1.2585 0.3799 16.0 1.359 3.94
1.5986 0.3399 20.0 1.400 4.28
1.6559 0.3295 20.0 1.400 4.37
1.6750 0.3256 20.0 1.400 4.40

N ¼ 5 ð15;638Þ
1.0185 0.4588 8.6 1.376 3.40
1.7052 0.4451 20.0 1.400 3.76
1.7838 0.4383 20.0 1.400 3.87
1.8208 0.4338 20.0 1.398 3.93
2.0951 0.3896 20.0 1.399 4.31
2.1413 0.3802 20.0 1.400 4.37
2.1627 0.3752 20.0 1.400 4.40

Table 4
Subset of solutions analyzed from the Pareto Front for the R-conf . with N ¼ 1;2, and 5.
In each case it is shown in parenthesis the number of points of the front.

P g rp c s

N ¼ 1 ð20;190Þ
0.3044 0.1562 5.0 1.350 3.41
0.4594 0.1254 5.6 1.377 3.92
0.4905 0.1139 6.3 1.363 4.01
0.4976 0.1111 5.8 1.392 4.03
0.5566 0.0844 6.4 1.395 4.20
0.5818 0.0714 7.3 1.376 4.27
0.6282 0.0448 7.4 1.400 4.40
0.6284 0.0445 8.6 1.369 4.40

N ¼ 2 ð23;162Þ
0.4737 0.2071 6.9 1.355 3.22
0.9382 0.1573 20.0 1.396 3.85
0.9573 0.1535 20.0 1.400 3.88
0.9676 0.1513 20.0 1.398 3.90
1.1456 0.1000 20.0 1.400 4.21
1.2026 0.0778 20.0 1.400 4.31
1.2540 0.0552 20.0 1.400 4.40

N ¼ 5 ð276Þ
0.9184 0.2549 20.0 1.390 3.12
1.3548 0.2092 20.0 1.400 3.77
1.4264 0.1917 20.0 1.400 3.88
1.4524 0.1846 20.0 1.400 3.92
1.6346 0.1231 20.0 1.400 4.20
1.6931 0.0986 20.0 1.400 4.29
1.7647 0.0654 20.0 1.400 4.40
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Fig. 6. Relative increments of power output, DP, and overall efficiency, Dg, between
the extremes of the Pareto Front for the R configuration and the number of
compression–expansion stages considered, N. All the percentages are calculated
with respect to the lowest value in each case. The scheme also shows the increase of
P and g with N.

Table 5
Subset of solutions analyzed from the Pareto Front for the NRR-conf . with N ¼ 1;2,
and 5. In each case it is shown in parenthesis the number of points of the front.

P g rp c s

N ¼ 1 ð33;042Þ
0.2820 0.1113 9.7 1.357 3.45
0.4437 0.0912 8.8 1.390 3.93
0.4714 0.0840 10.1 1.359 4.01
0.4814 0.0812 8.8 1.393 4.04
0.5527 0.0568 10.9 1.358 4.25
0.5788 0.0463 8.9 1.395 4.32
0.6072 0.0337 9.0 1.388 4.40
0.6073 0.0335 8.5 1.396 4.40

N ¼ 2 ð113Þ
0.5853 0.1409 20.0 1.400 3.28
0.8911 0.1147 20.0 1.400 3.85
0.9394 0.1057 20.0 1.400 3.94
0.9555 0.1025 20.0 1.400 3.97
1.1110 0.0630 20.0 1.400 4.26
1.1540 0.0495 20.0 1.400 4.34
1.1861 0.0386 20.0 1.400 4.40

N ¼ 5 ð137Þ
0.8028 0.1616 20.0 1.400 3.04
1.2247 0.1305 20.0 1.400 3.74
1.2910 0.1197 20.0 1.400 3.85
1.3151 0.1154 20.0 1.400 3.89
1.5321 0.0658 20.0 1.400 4.25
1.5864 0.0502 20.0 1.400 4.34
1.6225 0.0390 20.0 1.400 4.40
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temperature independent adiabatic constant, c. So, c represents
the mean adiabatic constant of the considered working fluid in
the interval of temperatures experienced in the cycle. The analysis
of an optimal range for c should be considered as a guide for
searching an adequate working gas, in which refers to its adiabatic
coefficient. Particularly, Tournier et al. [42] presented a nice review
of the properties of noble gases and binary mixtures for closed
Brayton applications.
In this case, the search space is relatively small (2400 feasible
points), the discretizations were reduced one order of magnitude
with respect to those in Table 1, i.e., the step is 0.1 for rp, 0.001
for c, and 0.01 for s, resulting a search space with more than
1:85e6 points. We performed the calculations for three different
values of N (N ¼ 1;2, and 5).

Fig. 5(a) presents the Pareto Fronts obtained using the exact
method for the I-conf . These Pareto Fronts are more dense than
the previous one (Fig. 4), and are composed between 7444
(N ¼ 2) and 15,638 (N ¼ 5) non-dominated solutions. The
extremes of the Pareto Front for N ¼ 1 are the points
(P ¼ 0:5616;g ¼ 0:3510) and (P ¼ 0:9518, g ¼ 0:2518) and for the
highest number of compression–expansion stages, N ¼ 5,
(P ¼ 1:0185;g ¼ 0:4588) (this solution dominates the extreme of
the first Pareto Front obtained, Fig. 4), and (P ¼ 2:1627;
g ¼ 0:3752). In Fig. 5(a) it appears clear the increase both in power
output and efficiency when multiplying the number of stages from



0

100

200

300

400

500

600

0

100

300

500

700

900

1.35 1.36 1.37 1.38 1.39 1.4
0

40

80

120

160

N = 1

N = 2

N = 5

0

100

200

300

400

500

600

700

800

900

100

200

300

400

500

600

5 10 15 20
0

20

40

60

80

100

120

140

160

N = 1

N = 2

N = 5

r
p

n
PF

n
PF

n
PF

Fig. 7. Number of non-dominated points of the Pareto Front, nPF , with given values of c and rp for the R-conf . The discretization considered and the intervals for the
parameters are those in Tables 1 and 2.

354 S. Sánchez-Orgaz et al. / Energy Conversion and Management 99 (2015) 346–358
the single stage Brayton case to N ¼ 5. In real plants is nowadays
considered unpractical a larger number of compression–expansion
stages, mainly because of economical reasons [43,44].

After obtaining the Pareto Front of the MOP associated to the
solar-driven Brayton cycle, we conduct the decision-making pro-
cess. Table 3 presents the subset of solutions analyzed from the
Pareto Front. This subset was selected using the criteria presented
in Section 3.3. At sight of the table it could be concluded that for
N ¼ 1 small pressure ratios (rp around 5–7) would be required to
get high efficiencies and relatively low power output. On the oppo-
site the highest power outputs are obtained at rp around 12–14.
When the number of stages increases, we note that globally rp at
the Pareto Front also increases, but only up to a saturation value
around 20. These results on the rp values for the Pareto Front
non-dominated points are in accordance with previous results
from single optimization procedures, where all the rest of variables
were considered as fixed and the only optimization parameter was
rp [12,13]. We shall see later on the effects of widening the consid-
ered interval of values for rp as well as that for c.

With respect to the influence of the adiabatic constant c, its val-
ues at the Pareto Front globally increase when increasing the num-
ber of compression–expansion steps. Note that in our theoretical
model c is taken as temperature independent and thus, should
be considered as an average value between the extreme tempera-
tures in the cycle. The values of the temperature ratio, s, have a
clear tendency: they are always lower for those non-dominated
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Table 6
Subset of solutions analyzed from the Pareto Front for the R-conf . with N ¼ 2, and 5
for the following intervals of c and rp . N ¼ 2 : c 2 [1.2,1.7], rp 2 [5,50]. N ¼ 5 : c 2
[1.2,1.8], rp 2 [5,80]. Note the differences with the solutions of Table 4, specially in
the values of P for N ¼ 5.

P g rp c s

N ¼ 2 ð6136Þ
0.4650 0.2070 10 1.28 3.2
0.9007 0.1644 21 1.37 3.8
0.9751 0.1499 37 1.32 3.9
0.9929 0.1443 19 1.48 3.9
1.2141 0.0794 39 1.32 4.3
1.2695 0.0732 17 1.62 4.1
1.3415 0.0497 19 1.62 4.4
1.3417 0.0494 47 1.42 4.4

N ¼ 5 ð276Þ
0.9017 0.2549 10 1.57 3.1
2.3320 0.1844 79 1.79 3.8
2.3354 0.1841 78 1.80 3.8
2.3378 0.1839 79 1.80 3.8
2.9887 0.0903 78 1.78 4.3
3.1475 0.0618 79 1.80 4.4
3.1518 0.0618 80 1.80 4.4

S. Sánchez-Orgaz et al. / Energy Conversion and Management 99 (2015) 346–358 355
points with high overall efficiencies. This is reasonable because
overall efficiency is proportional to the solar collector efficiency
which decreases with the temperature ratio, as the heat losses
increase. On the contrary, the combination of parameters leading
to high power output are those with high temperature ratios,
and so, high turbine inlet temperatures. The lowest value of s
(s ¼ 3:40) is obtained for N ¼ 5 and the highest efficiency, that
for instance for an external temperature of 288 K corresponds to
a working temperature for the collector of 979 K. On the other side,
the highest value of s is s ¼ 4:40 that would lead to a collector
temperature of 1267 K. Temperatures close to these ones are
nowadays feasible since have been reported in several experimen-
tal facilities and prototype plants [3,45].

As mentioned before, the results of Fig. 5(a) and Table 3 were
obtained by taking all the losses in the system at their minimum
values, within the intervals considered in Table 1. The Pareto
Front was also calculated for a realistic set of losses parameters.
This set is labelled R-conf . in Table 2. These values were taken from
several references, [25,37,38,40,41,46–48]. The corresponding
Pareto Fronts and the subsets of solutions are contained in
Fig. 5(b) and Table 4. In general, there is a clear decrease both in
power output and overall efficiency with respect to the case
I-conf ., because now the losses are greater and closer to the real
ones in existing facilities. Nevertheless, the comments above about
the values and evolution of the design parameters rp; c, and s are
still valid now. Probably, the main difference when comparing
the values of rp in Tables 3 and 4 is that for N ¼ 1 smaller values
of rp are required in the realistic configuration, R-conf ., when com-
paring with the ideal one, I-conf . The results in Tables 3 and 4 sug-
gest that a broadening in the intervals considered for rp and c could
affect the results. These effects will be detailed below in this sec-
tion. The interval considered for s is not susceptible to be enlarged
because negative values of efficiency would appear as it was
explained from Fig. 2.

In Fig. 6 the relative variations of power output, DP and overall
efficiency, g, between the extreme values of the Pareto Fronts for
the R-conf . are depicted. For instance, for N ¼ 1 the relative
increase in P amounts 1.06 and in g, the corresponding increase
is 2.51. When comparing the increase in the maximum achievable
power output between different configurations with a different
number of stages increments are quite diverse: for power output
when going from N ¼ 1 to N ¼ 2;DP ¼ 0:99 while Dg ¼ 0:33.
When increasing the number of steps from 2 to 5 the increasings
are not very large, DP ¼ 0:41 and Dg ¼ 0:23. As a general conclu-
sion, there is a wide interval in the power output and in the overall
efficiency obtained from the plant in terms of the basic design
parameters considered, pressure and temperature ratios, adiabatic
constant of the working fluid, and number of compression–expan-
sion stages. In other words a rigorous optimization analysis of the
plant, at the design stage, is required to obtain good output
records, and so to estimate the economical viability of the
installation.

We have also analyzed the influence of the regenerator in the
optimization process of the plant by constructing the Pareto
Fronts with the same parameters that in the so-called R-conf .,
but eliminating the recuperator, that in our model is identical to
fixing its effectiveness equal to zero. This configuration is named
NRR-conf . in Table 2. The associated Pareto Fronts and the set of
analyzed points are represented in Fig. 5(c) and Table 5. The
decrease of the overall efficiency, is clear when comparing with
the results for the recuperative plant (Fig. 5(b) and Table 4). For
N ¼ 1 the decrease for the highest efficiency point amounts
approximately 40%, for N ¼ 2, 47%, and for N ¼ 5, 58%. With
respect to the power output, the absence or presence of a regener-
ator in the plant design should be indifferent, because regeneration
is an internal heat transfer effect, that does not affect the net power
output. This is corroborated by comparing the columns relative to
P in Tables 4 and 5. The differences in between should be ascribed
to the discretization process performed to obtain the Pareto Fronts.
In reference to the optimum values of the design parameters that
lead to the Pareto Fronts, the values of s in both tables are very
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similar, so the existence of a regenerator does not influence the
optimum working temperature of the solar collector. Opposite,
pressure ratios for N ¼ 1, clearly change. They are larger in the case
of no regeneration. For the R-conf ., rp in the subset of the Pareto
Front analyzed is in the interval ½5:0;8:6�, but in the NRR-conf .
the interval is ½8:5;10:9�. The values of c are similar in both



S. Sánchez-Orgaz et al. / Energy Conversion and Management 99 (2015) 346–358 357
configurations: oscillate between 1:35 and 1:4 for N ¼ 1 and tend
to reach the highest value, 1:4, for more compression–expansion
steps.

We finish this section by analyzing the effects of the intervals
considered for c and rp in the Pareto Fronts. In Fig. 7 we show
the histograms of the number of points of the Pareto Fronts with
given values of c and rp;nPF , for the R-conf. (the intervals for the
parameters are those in Table 1). For N ¼ 2 and N ¼ 5 the plots
suggest that probably wider intervals for both parameters will lead
to more non-dominated points (because distributions are not
bell-shaped), and so, broader intervals could lead to different
Pareto Fronts. In Fig. 8 and Table 6 we show the Pareto Fronts cal-
culated with wider intervals both for c and rp, and the correspond-
ing subset of solutions analyzed. The particular intervals
considered are shown in the figure. The most important effect is
that wider intervals provoke a displacement of the power output
for N ¼ 5 to higher values. For N ¼ 1 and N ¼ 2 the shape of the
fronts and their numerical values are similar to those of Fig. 5(b)
with narrower intervals.

Fig. 9 represents nPF as functions of c and rp for wide intervals.
For N ¼ 2 the distributions show a maximum: around 1.35 for c
and around 13 for rp. Nevertheless, when increasing the number
of stages to N ¼ 5, the distributions monotonically increase, with-
out displaying a maximum. Even broader intervals in this case
would be unphysical. In particular, the behavior with rp is in accor-
dance with previous results (see Fig. 6 in [25] and Fig. 5 in [12]). In
those works the power and the efficiency for a similar system were
independently optimized with a thermodynamic single-objective
procedure. It was concluded that both objective functions show a
maximum with rp for values of N below 2, but for a higher number
of intermediate stages, power and efficiency monotonically
increase with rp, i.e., do not have a maximum in terms of rp, that
is precisely what could be concluded from the bottom right panel
of Fig. 9.
5. Conclusions

In this work a multi-objective optimization analysis of a
multi-step regenerative Brayton thermosolar plant was performed.
At difference with previous works [24], the analysis explicitly con-
siders several compression and expansion stages and, in principle,
all the variables of the system (from the solar subsystem and the
thermodynamic engine) are independently checked in order to dis-
criminate the most important ones in regards to the overall plant
efficiency and power output.

In a first stage, the Pareto Front of the system was obtained by
means of a NSGA-II algorithm allowing fluctuations in all the
parameters, both design parameters as pressure and temperature
ratios (rp and s respectively), the average adiabatic constant of
the working gas (c), and the number of compression–expansion
stages (N) with reasonable limits for all the parameters, and also
losses parameters arising from the thermal engine itself and from
the solar subsystem. This procedure involved 15 different parame-
ters with appropriate discretization for each. The objective func-
tions selected were the overall thermodynamic efficiency of the
system (g) and the dimensional power output (P). It is important
to note that in a system like the one considered, in which the input
energy, solar energy, is free (fuel is not included in the operation
costs) the thermal efficiency represents the power obtained for a
certain size of the solar collector arrangement. The solar plant
has costs associated to construction investment and also to main-
tenance, so an optimum thermal efficiency represents a good com-
promise between power output and solar plant investing.

The analysis of the obtained Pareto Front revealed that no
intriguing coupling effects occurred and all the losses parameters
reached their corresponding minimum values for the
non-dominated points. Thus, we restricted our study to design
parameters and recalculated the Pareto Front by means of exact
meshed computations with a fine grid. Subsets of the calculated
Pareto Front were selected and analyzed after following a
multi-criteria decision making process.

It was shown that in any case the variations of efficiency and
power output associated to the design points in the Pareto Front
are important, i.e., small changes in rp; s, and c lead to quite differ-
ent values of g and P. This reinforces the idea that in the design of
this type of plants a previous basic optimization study is basic in
order to find the appropriate numerical intervals of the main
thermodynamic design variables. Specially elucidating are the
conclusions with respect to the pressure ratio values of the
non-dominated points at the Pareto Fronts. The analysis presented
concludes that for mono-stage plants, N ¼ 1, with realistic
irreversibility parameters, the pressure ratio should be between
approximately 5 and 9. The distribution of the number of
non-dominated points displays a maximum at approximately
rp ¼ 7:5. For plants with N ¼ 2 the distribution is centered around
rp ¼ 15, i.e., there is some kind or multiplicative effect. But for
N ¼ 5, the distribution is a monotonically increasing function.
This is in accordance with previous single-objective thermody-
namic optimization procedures which showed that the efficiency
and power output for high enough values of N are monotonic func-
tions of rp and do not display maximum values [12,25].

In summary, the systematic multi-objective and
multi-parametric optimization of a pure solar-driven plant consid-
ered shows the wide interval of optimization possibilities of these
plants when electing as objective functions their overall perfor-
mance and power output. This kind of studies at an initial design
stage of the plant are very elucidating to decide the main thermo-
dynamic plant parameters. Small changes in those parameters
could lead to an undesired design point with important misplace-
ments of those output records.
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