

Clase V (b) Turbinas de gas tipo Brayton: modelización

Alejandro Medina, José Miguel Mateos Roco

Febrero 2018

 $\rm http://campus.usal.es/gtfe$

Esquema

- CICLO BRAYTON IDEAL
- 2 Ciclo Brayton reversible con regeneración
- 3 IRREVERSIBILIDADES Y OPTIMIZACIÓN
- PLANTAS MULTIETAPA SIN IRREVERSIBILIDADES
- **5** TURBINAS MULTIETAPA IRREVERSIBLES

Ciclo Brayton regenerativo Irreversibilidades y optimización Plantas multietapa reversibles Turbinas multietapa irreversibles

ESQUEMA

- CICLO BRAYTON IDEAL
- 2 Ciclo Brayton reversible con regeneración
- IRREVERSIBILIDADES Y OPTIMIZACIÓN
- Plantas multietapa sin irreversibilidades
- 5 TURBINAS MULTIETAPA IRREVERSIBLES

Ciclo Brayton regenerativo reversibilidades y optimización Plantas multietapa reversibles urbinas multietapa irreversibles

CICLO BRAYTON IDEAL

(日) (同) (三) (三)

Ciclo Brayton regenerativo rreversibilidades y optimización Plantas multietapa reversibles urbinas multietapa irreversibles

DIAGRAMAS p - V y T - S

HIPÓTESIS BÁSICAS

- Tanto en el caso de turbina abierta como cerrada, el proceso es cíclico (los gases de escape intercambian calor con el ambiente a través de un intercambiador de calor y vuelven al compresor).
- ② El fluido de trabajo es un gas ideal.
- Sus capacidades caloríficas con constantes.
- Se desprecian las transferencias de calor al ambiente cuando el fluido atraviesa el compresor y la turbina (procesos isoentrópicos).
- Se desprecian las caídas de presión en la absorción y cesión de calor (procesos isóbaros).
- El calor proveniente la combustión (cuando existe combustión) se considera como un aporte de calor desde una fuente externa.

Ciclo Brayton regenerativo Irreversibilidades y optimización Plantas multietapa reversibles Turbinas multietapa irreversibles

Rendimiento térmico del ciclo

$$\eta = \frac{\dot{W}_t/\dot{m} - \dot{W}_c/\dot{m}}{\dot{Q}_H/\dot{m}}$$

• \dot{W}_t : trabajo realizado por la turbina

$$rac{\dot{W}_t}{\dot{m}} = h_3 - h_4 \quad \longrightarrow \quad \dot{W}_t = \dot{m}c_p(T_3 - T_4) > 0$$

• \dot{W}_c : trabajo consumido por el compresor

$$rac{\dot{W}_c}{\dot{m}} = h_2 - h_1 \quad \longrightarrow \quad \dot{W}_c = \dot{m}c_{
ho}(T_2 - T_1) > 0$$

< ロ > (同 > (回 > (回 >)))

э

Si c_p representa el calor específico, el calor absorbido será:

$$\dot{Q}_{H} = c_{p} \dot{m}(T_{3} - T_{2}) > 0 \implies \eta = \frac{(T_{3} - T_{4}) - (T_{2} - T_{1})}{T_{3} - T_{2}}$$

Ciclo Brayton ideal Ciclo Brayton regenerativo versibilidades y optimización antas multietana reversibles

Rendimiento térmico del ciclo

Ecuaciones de las adiabáticas:

$$1 \longrightarrow 2: \quad T_2 = T_1 \left(\frac{p_2}{p_1}\right)^{(\gamma-1)/\gamma}$$
$$3 \longrightarrow 4: \quad T_4 = T_3 \left(\frac{p_4}{p_3}\right)^{(\gamma-1)/\gamma} = T_3 \left(\frac{p_1}{p_2}\right)^{(\gamma-1)/\gamma} \text{ porque } p_2 = p_3; \quad p_1 = p_4$$

$$\longrightarrow \quad \frac{T_4}{T_1} = \frac{T_3}{T_2} \Longrightarrow \quad \eta = 1 - \left(\frac{T_4 - T_1}{T_3 - T_2}\right) = 1 - \frac{T_1}{T_2} \underbrace{\left(\frac{T_4}{T_1} - 1\right)}_{\left(\frac{T_3}{T_2} - 1\right)} = 1 - \frac{T_1}{T_2}$$

Por la ecuación de la adiabática $1 \rightarrow 2$:

$$\eta = 1 - \frac{1}{\left(\frac{p_2}{p_1}\right)^{(\gamma-1)/\gamma}} = 1 - \frac{1}{r_p^{(\gamma-1)/\gamma}} \quad \text{donde} \quad r_p = \frac{p_2}{p_1}$$
$$\implies \boxed{\eta = 1 - r_p^{(1-\gamma)/\gamma}}$$

Ciclo Brayton regenerativo Irreversibilidades y optimización Plantas multietapa reversibles Turbinas multietapa irreversibles

(日) (同) (三) (

Ciclo Brayton regenerativo Irreversibilidades y optimización Plantas multietapa reversibles Turbinas multietapa irreversibles

Rendimiento del ciclo Brayton ideal

(日) (同) (三) (三)

Ciclo Brayton regenerativo Irreversibilidades y optimización Plantas multietapa reversibles Turbinas multietapa irreversibles

Rendimiento del ciclo Brayton ideal

(日) (同) (三) (三)

CICLO BRAYTON IDEAL

2 Ciclo Brayton reversible con regeneración

- 3 IRREVERSIBILIDADES Y OPTIMIZACIÓN
- Plantas multietapa sin irreversibilidades
- 5 TURBINAS MULTIETAPA IRREVERSIBLES

CICLO BRAYTON REVERSIBLE CON REGENERACIÓN

Regeneradores reales e ideales Counterflow heat exchangers Hotter Hotter $\rightarrow z$ >Z stream in stream in 4 1-4 \triangleleft ~~~~~ www -**^** M -D -> Colder Colder stream in stream in $T_{\rm hot, in}$ Hot Thot, in Hot T_{cold, out} Cold Thot, out Cold T_{cold, in} $T_{\text{cold, in}}$ $\Delta T \rightarrow 0$ ΔT Z Ζ Actual Reversible

Regeneradores reales e ideales Counterflow heat exchangers Hotter Hotter $\rightarrow z$ >Z stream in stream in 4 1-4 \triangleleft ~~~~~ www -**^** M -D -> Colder Colder stream in stream in $T_{\rm hot, in}$ Hot Thot, in Hot T_{cold, out} Cold Thot, out Cold T_{cold, in} $T_{\text{cold, in}}$ $\Delta T \rightarrow 0$ ΔT Z Ζ Actual Reversible

EFECTIVIDAD (effectiveness) DEL REGENERADOR

Cuantifica lo que se aleja un regenerador real del comportamiento ideal:

$$\epsilon_r = rac{\dot{Q}_{\mathsf{reg},\mathsf{real}}}{\dot{Q}_{\mathsf{reg},\mathsf{ideal}}} = rac{h_x - h_2}{h_4 - h_2}$$

Sobre la adiabática en la que se cede calor:

$$\epsilon_r = \frac{h_4 - h_y}{h_4 - h_2}$$

En términos de temperaturas:

$$\epsilon_r = \frac{T_x - T_2}{T_4 - T_2} = \frac{T_4 - T_y}{T_4 - T_2}$$

 $\left\{ \begin{array}{l} \epsilon_r = 0 \longrightarrow {\rm ciclo~sin~regeneración} \\ \epsilon_r = 1 \longrightarrow {\rm ciclo~con~regeneración~límite~o~ideal} \\ \epsilon_r = 0,6-0,85 \longrightarrow {\rm valores~típicos~de~un~regenerador~real} \end{array} \right.$

Eficiencia del ciclo Brayton con regeneración ideal

 $T_x = T_4 \longrightarrow \dot{Q}_H = \dot{m}c_p(T_3 - T_4)$

Igual que en el caso sin regeneración:

$$\dot{W}_t = \dot{m}c_p(T_3 - T_4) \Longrightarrow \dot{Q}_H = \dot{W}_t$$
$$\dot{W}_c = \dot{m}c_p(T_2 - T_1)$$

$$\eta = \frac{\dot{W}_t - \dot{W}_c}{\dot{Q}_H} = \frac{\dot{W}_t - \dot{W}_c}{\dot{W}_t} = 1 - \frac{\dot{W}_c}{\dot{W}_t} \implies \eta = 1 - \frac{T_2 - T_1}{T_3 - T_4} = 1 - \frac{T_1}{T_3} \frac{\left(\frac{T_2}{T_1} - 1\right)}{\left(1 - \frac{T_4}{T_3}\right)}$$

Utilizando las ecuaciones de las adiabáticas se llega a:

$$\eta = 1 - \frac{r_p^{(\gamma-1)/\gamma}}{\tau} \quad \text{donde} \quad \tau = \frac{T_3}{T_1} > 1$$

2

Ciclo Brayton ideal Ciclo Brayton regenerativo Irreversibilidades y optimización Plantas multietapa reversibles Turbinas multietapa irreversibles

Rendimiento del ciclo Brayton regenerativo ideal

En un ciclo Brayton sin regeneración, η, aumenta con r_p. Sin embargo, con regeneración ideal, η_{reg}, disminuye con r_p.

 $\begin{cases} \text{Valores pequeños de } r_p & \rightarrow & \eta_{\text{reg}} > \eta \\ \text{Valores altos de } r_p & \rightarrow & \eta > \eta_{\text{reg}} \end{cases}$

1 η_{reg} aumenta con τ , mientras que η es independiente de τ .

- CICLO BRAYTON IDEAL
- 2 Ciclo Brayton reversible con regeneración
- 3 IRREVERSIBILIDADES Y OPTIMIZACIÓN
- Plantas multietapa sin irreversibilidades
- 5 TURBINAS MULTIETAPA IRREVERSIBLES

IRREVERSIBILIDADES Y OPTIMIZACIÓN

CICLO BRAYTON REGENERATIVO IRREVERSIBLE

PARÁMETROS RELEVANTES

PARÁMETROS geométricos

 Relaciones de compresión del compresor, a_c y de la turbina, a_t (ecuaciones de las adiabáticas):

$$a_{c} = \frac{T_{2s}}{T_{1}} = \left(\frac{p_{H}}{p_{L} - \Delta p_{L}}\right)^{(\gamma - 1)/\gamma} = r_{p}^{(\gamma - 1)/\gamma} \quad \text{donde} \quad r_{p} = \frac{p_{H}}{p_{L} - \Delta p_{L}} = \frac{p_{2}}{p_{1}}$$
$$a_{t} = \frac{T_{3}}{T_{4s}} = \left(\frac{p_{H} - \Delta p_{H}}{p_{L}}\right)^{(\gamma - 1)/\gamma}$$

• Relación entre las temperaturas de las fuentes externas, τ :

$$\tau = \frac{T_H}{T_L} > 1$$

Coeficiente adiabático del gas considerado, γ:

$$\gamma = C_P/C_V$$

PARÁMETROS RELEVANTES

PARÁMETROS DE irreversibilidad

• Eficiencias isoentrópicas del compresor ϵ_c y la turbina ϵ_t :

$$\begin{split} \epsilon_c &= \frac{T_{2s} - T_1}{T_2 - T_1} : \frac{\text{Trabajo mínimo que necesitaría el compresor}}{\text{Trabajo real que necesita el compresor}} &\simeq 0,70 - 0,85\\ \epsilon_t &= \frac{T_3 - T_4}{T_3 - T_{4s}} : \frac{\text{Trabajo real realizado por la turbina}}{\text{Máximo trabajo que podría realizar la turbina}} &\simeq 0,75 - 0,9 \end{split}$$

• Eficiencia del regenerador, ϵ_r :

$$\epsilon_r = \frac{T_x - T_2}{T_4 - T_2} : \frac{\text{Calor real transferido por el regenerador}}{\text{Máximo calor que podría transferir}} \simeq 0.80 - 0.95$$

< ∃→

< 行

э

PARÁMETROS RELEVANTES

PARÁMETROS DE irreversibilidad

• Irreversibilidades en las transferencias de calor con los focos externos, ϵ_H y ϵ_L :

$$\begin{split} \epsilon_{H} &= \frac{T_{x} - T_{3}}{T_{x} - T_{H}} : \frac{\text{Calor real que transmite la fuente caliente}}{\text{Máximo calor que se podría transmitir}} \simeq 0,80 - 0,95\\ \epsilon_{L} &= \frac{T_{1} - T_{y}}{T_{L} - T_{y}} : \frac{\text{Calor real que cede el fluido a la fuente fría}}{\text{Mínimo calor que podría cederse}} \simeq 0,80 - 0,95 \end{split}$$

• Caídas de presión en la absorción y cesión de calor, ρ_H y ρ_L :

$$\rho_{H} = \left(\frac{p_{3}}{p_{2}}\right)^{(\gamma-1)/\gamma} = \left(\frac{p_{H} - \Delta p_{H}}{p_{H}}\right)^{(\gamma-1)/\gamma}$$
$$\rho_{L} = \left(\frac{p_{1}}{p_{4}}\right)^{(\gamma-1)/\gamma} = \left(\frac{p_{L} - \Delta p_{L}}{p_{L}}\right)^{(\gamma-1)/\gamma}$$

$$\rightarrow a_T = a_C \rho_H \rho_L$$

CALORES TRANSFERIDOS

Calor absorbido de la cámara de combustión

$$\begin{aligned} \dot{Q}_{H} &= C_{W}(T_{3} - T_{x}) = C_{W}\epsilon_{H}(T_{H} - T_{x}) = \cdots = \\ &= C_{W}\epsilon_{H}T_{L}\left[\tau - Z_{C}(1 - \epsilon_{R})\frac{T_{1}}{T_{L}} - \epsilon_{R}Z_{T}\frac{T_{3}}{T_{L}}\right] \end{aligned}$$

Calor cedido a la fuente fría

$$\begin{aligned} \dot{Q}_L &= C_W(T_Y - T_1) = C_W \epsilon_C(T_Y - T_L) = \cdots = \\ &= C_W \epsilon_L T_L \left[-1 + Z_T (1 - \epsilon_R) \frac{T_3}{T_L} + \epsilon_R Z_C \frac{T_1}{T_L} \right] \end{aligned}$$

donde Z_C , Z_T , $\frac{T_1}{T_L}$ y $\frac{T_3}{T_L}$ son funciones de los parámetros geométricos y de irreversibilidad.

э

イロト イポト イヨト イヨト

CALORES TRANSFERIDOS

$$Z_C = 1 + \frac{a_c - 1}{\epsilon_c}$$

$$Z_T = 1 - \epsilon_t \left(1 - \frac{1}{a_t} \right)$$

$$\frac{T_1}{T_L} = \frac{\epsilon_L + (1 - \epsilon_L)(1 - \epsilon_r)Z_T \left(\frac{T_3}{T_L} \right)}{1 - (1 - \epsilon_L)\epsilon_r Z_C}$$

$$\frac{T_3}{T_L} = \frac{\tau\epsilon_H \left[1 - (1 - \epsilon_L)\epsilon_r Z_C \right] + \epsilon_L (1 - \epsilon_H)(1 - \epsilon_r) Z_C}{\left[1 - (1 - \epsilon_L)\epsilon_r Z_C \right] \left[1 - (1 - \epsilon_H)\epsilon_r Z_T \right] - (1 - \epsilon_H)(1 - \epsilon_L)(1 - \epsilon_r)^2 Z_T Z_C}$$

Rendimiento y potencia

$$\eta = 1 - \frac{|\dot{Q}_L|}{|\dot{Q}_H|}$$
$$P = |\dot{Q}_H| - |\dot{Q}_L|$$

Rendimiento, potencia y cualquier otra función objetivo a optimizar dependen de:

 $(\tau, a_t, a_c, \gamma, \epsilon_c, \epsilon_t, \epsilon_r, \epsilon_H, \epsilon_L, \rho_H, \rho_L)$

Optimización

VARIABLES Y PARÁMETROS

 a_t y a_c están relacionados a través de la ecuación: $a_t = a_c \rho_H \rho_L$.

Elegiremos como variable independiente la relación entre las presiones extremas del ciclo, r_p :

$$r_{p} = a_{c}^{\gamma/(\gamma-1)} = \left(\frac{p_{H}}{p_{L} - \Delta p_{L}}\right)^{\gamma/(\gamma-1)} = \left(\frac{p_{2}}{p_{1}}\right)^{\gamma/(\gamma-1)}$$

De este modo todas las funciones objetivo son de la forma:

$$f = f(\underline{r_{\rho}}; \tau, \epsilon_{c}, \epsilon_{t}, \epsilon_{r}, \epsilon_{H}, \epsilon_{L}, \rho_{H}, \rho_{L})$$

EVOLUCIÓN DE P y η con r_p

▲ロ▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のQ@

Ejemplo: trabajando a máxima eficiencia

• $\epsilon_r = 0.0 \longrightarrow r_{p,\max\eta} = 22.0 \quad \eta = 0.28 \quad P = 0.53$ • $\epsilon_r = 0.8 \longrightarrow r_{p,\max\eta} = 6.5 \quad \eta = 0.36 \quad P = 0.63$ • $\epsilon_r = 0.9 \longrightarrow r_{p,\max\eta} = 4.9 \quad \eta = 0.40 \quad P = 0.58$ • $\epsilon_r = 1.0 \longrightarrow r_{p,\max\eta} = 3.0 \quad \eta = 0.47 \quad P = 0.48$

Ejemplo: trabajando a máxima eficiencia

•
$$\epsilon_r = 0.0 \longrightarrow r_{p,\max\eta} = 22.0 \quad \eta = 0.28 \quad P = 0.53$$

• $\epsilon_r = 0.8 \longrightarrow r_{p,\max\eta} = 6.5 \quad \eta = 0.36 \quad P = 0.63$
• $\epsilon_r = 0.9 \longrightarrow r_{p,\max\eta} = 4.9 \quad \eta = 0.40 \quad P = 0.58$
• $\epsilon_r = 1.0 \longrightarrow r_{p,\max\eta} = 3.0 \quad \eta = 0.47 \quad P = 0.48$

- 4 日 1 4 母 1 4 日 1 4 日 1 9 9 9 9 9

EJEMPLO: TRABAJANDO A MÁXIMA EFICIENCIA • $\epsilon_r = 0, 0 \longrightarrow r_{p, \max \eta} = 22, 0 \quad \eta = 0,28 \quad P = 0,53$ • $\epsilon_r = 0,8 \longrightarrow r_{p, \max \eta} = 6,5 \quad \eta = 0,36 \quad P = 0,63$ • $\epsilon_r = 0,9 \longrightarrow r_{p, \max \eta} = 4,9 \quad \eta = 0,40 \quad P = 0,58$ • $\epsilon_r = 1,0 \longrightarrow r_{p, \max \eta} = 3,0 \quad \eta = 0,47 \quad P = 0,48$

Alejandro Medina, Pedro Curto-Risso, José Miguel Mateos Roco

・ロト・日本・ 小田・ トロ・ うらる

Ejemplo: trabajando a máxima eficiencia

•
$$\epsilon_r = 0.0 \longrightarrow r_{p,\max\eta} = 22.0 \quad \eta = 0.28 \quad P = 0.53$$

• $\epsilon_r = 0.8 \longrightarrow r_{p,\max\eta} = 6.5 \quad \eta = 0.36 \quad P = 0.63$
• $\epsilon_r = 0.9 \longrightarrow r_{p,\max\eta} = 4.9 \quad \eta = 0.40 \quad P = 0.58$
• $\epsilon_r = 1.0 \longrightarrow r_{p,\max\eta} = 3.0 \quad \eta = 0.47 \quad P = 0.48$

- CICLO BRAYTON IDEAL
- 2 Ciclo Brayton reversible con regeneración
- IRREVERSIBILIDADES Y OPTIMIZACIÓN
- Plantas multietapa sin irreversibilidades
 - 5 TURBINAS MULTIETAPA IRREVERSIBLES

PLANTAS MULTIETAPA SIN IRREVERSIBILIDADES

TURBINAS MULTIETAPA CON RECALENTAMIENTO

TURBINAS MULTIETAPA CON RECALENTAMIENTO

- Por razones metalúrgicas las temperaturas máximas en la turbina están limitadas. Esto se consigue añadiendo aire en exceso sobre el necesario para quemar el combustible.
- Los gases de escape son ricos en O₂ y soportan la combustión de más combustible.
- En el diagrama T S las isobaras son ligeramente divergentes, luego el trabajo total que se produce es mayor en el caso de dos etapas de expansión.
- Pero el consumo de combustible también es mayor, luego no es evidente que la eficiencia sea mayor.
- Pero la temperatura de salida de la segunda turbina (T₄) es bastante mayor que si el ciclo fuera monoetapa (T₄[']), luego el potencial de regeneración aumenta.
- Se puede concluir que el efecto conjunto de varias etapas con recalentamiento intermedio y regeneración sí que aumenta la eficiencia de la planta.

Compresión multietapa con refrigeración intermedia

- El objetivo es reducir el trabajo de compresión requerido por el compresor.
- El área a la izquierda de las curvas en el diagrama p V representa el trabajo por unidad de masa necesario en cada proceso.
- Es menor el trabajo en el proceso con enfriamiento, $1 \rightarrow 2$.
- Esto sugiere que enfriar de algún modo el gas durante la compresión reduce el trabajo requerido por el compresor.

Compresión multietapa con refrigeración intermedia

- En la práctica es complicado comprimir y enfriar simultáneamente. Lo que se hace es separar el proceso en dos partes: adiabática e isóbara.
- Para ello se utilizan intercambiadores de calor intermedios denominados *intercoolers*.

Compresión multietapa con refrigeración intermedia

- Proceso $1 \rightarrow c$: compresión isoentrópica hasta la presión p_i .
- Proceso $c \rightarrow d$: Enfriamiento isóbaro a la presión p_i desde la temperatura T_c hasta la T_d .
- Proceso $d \rightarrow 2$: compresión isoentrópica desde el punto d hasta el 2.

Compresión multietapa con refrigeración intermedia

Compresión multietapa con refrigeración intermedia

- Trabajo por unidad de masa con enfriamiento: diagrama p V, área encerrada en 1 c d 2 a b 1.
- Sin enfriamiento: área 1 2' a b 1.
- El área sombreada c 2' 2 d c representa la reducción de trabajo como consecuencia del enfriamiento.

Compresión multietapa con refrigeración intermedia

- El número de etapas se puede, en principio, variar. La determinación del número de etapas óptimo es un problema de optimización de la planta.
- El uso de de varias etapas con refrigeración intermedia no asegura un aumento de la eficiencia: el trabajo requerido en el compresor disminuye, pero la temperatura después de la compresión (T₂) es menor que si no hubiera varias etapas (T₂) por lo que se requiere o más combustible o una buena regeneración.
- En general, cuando se utiliza compresión multietapa y regeneración conjuntamente la eficiencia del sistema aumenta.
- La reducción de trabajo en el compresor (área c 2' 2 d c) depende de p_i y de T_d .
- Si p_i es un valor fijado, el área es máxima (trabajo de compresión mínimo) si T_d ~ T₁, que es la temperatura de entrada al compresor. Es decir, si después de cada isóbara nos acercamos a la isoterma T₁.
- Del mismo modo, si se fija T_d , se podría buscar el valor de p_i que maximiza el área (trabajo ahorrado).

Plantas multietapa con recalentamiento y reenfriamiento (sin pérdidas)

CICLO BRAYTON CON INFINITAS ETAPAS DE RECALENTAMIENTO Y REFRIGERACIÓN: CICLO ERICSSON T_{H} p_{ecte} p_{p-cte} p_{p-cte} p_{p-cte} p_{p-cte} p_{p-cte} p_{p-cte}

RENDIMIENTO DEL CICLO ERICSSON

$$\eta_{
m Ericsson} = \eta_{\mathcal{C}} = 1 - rac{1}{ au}$$

- **1** Ciclo Brayton ideal
- 2 Ciclo Brayton reversible con regeneración
- 3 Irreversibilidades y optimización
- Plantas multietapa sin irreversibilidades
- **5** TURBINAS MULTIETAPA IRREVERSIBLES

TURBINAS MULTIETAPA IRREVERSIBLES

DIAGRAMA p - V

DIAGRAMA T - S

・ロト ・部ト ・ヨト ・ヨト

CALOR ABSORBIDO

$$|\dot{Q}_{H}| = C_{w}(T_{3} - T_{x}) + C_{w}\epsilon_{t}\sum_{j=1}^{N_{t}-1}(T_{3} - T_{js}) + |\dot{Q}_{HL}| =$$
$$= C_{w}T_{L}\left\{\epsilon_{H}\left[\tau - \frac{Z_{c}}{T_{L}}(1 - \epsilon_{r})\frac{T_{1}}{T_{L}} - \epsilon_{r}\frac{Z_{t}}{T_{L}}\frac{T_{3}}{T_{L}}\right] + \epsilon_{t}(\frac{N_{t}}{N_{t}} - 1)(1 - a_{t}^{-1/\frac{N_{t}}{N_{t}}})\frac{T_{3}}{T_{L}} + \xi(\tau - 1)\right\}$$

CALOR CEDIDO

$$|\dot{Q}_{L}| = C_{w}(T_{y} - T_{1}) + C_{w}\frac{1}{\epsilon_{c}}\sum_{k=1}^{N_{c}-1}(T_{ks} - T_{1}) + |\dot{Q}_{HL}| =$$

$$= C_{w}T_{L}\left\{\epsilon_{L}\left[-1 + \frac{Z_{t}}{T_{L}}(1 - \epsilon_{r})\frac{T_{3}}{T_{L}} + \epsilon_{r}\frac{Z_{c}}{T_{L}}\frac{T_{1}}{T_{L}}\right] + \frac{1}{\epsilon_{c}}(\frac{N_{c}}{L} - 1)(a_{c}^{1/N_{c}} - 1)\frac{T_{1}}{T_{L}} + \xi(\tau - 1)\right\}$$

$$Z_{C} = 1 + \frac{a_{c}^{1/N_{c}} - 1}{\epsilon_{c}}; \quad Z_{T} = 1 - \epsilon_{t}\left(1 - \frac{1}{a_{t}^{-1/N_{t}}}\right) \quad \left(\frac{T_{1}}{T_{L}}y\frac{T_{3}}{T_{L}}\text{ son como en el caso irreversible monoetapa}\right)$$

Validación del modelo.

PLANTA PARA VALIDACIÓN CICBTX, A. ROMIER, APPL. THERMAL ENG., 24, 1709-1723 (2004)

Combustible	Gas natural
Potencia en el eje, <i>P</i>	350 kW
Relación de compresión, r_p	6
Temperatura ambiente, T_1	288 K
Temperatura de entrada en la turbina, T_3	1223 K
Temperatura del aire tras el regenerador, T_x	830 K
Eficiencia eléctrica neta	0,33
Eficiencia termodinámica, η	0,36
Eficiencia isoentrópica de la turbina, ϵ_t	0,85
Eficiencia isoentrópica del compresor, ϵ_c	0,77
Eficiencia del regenerador, ϵ_r	0,85
Eficiencia térmica de cogeneración	0,48
Eficiencia global	0,80
Flujo másico de aire	1,97 kg/s

VALIDACIÓN DEL MODELO

	η	P (kW)	$ \dot{Q}_{H} $ (kJ/s)
Modelo	0,37	346,1	928,1
Planta real	0,36	350	
Desviación (%)	2,8	1,1	

Curvas de potencia y rendimiento, $N_t = N_c \equiv N$

Curvas de potencia y rendimiento, $N_t = N_c \equiv N$

Curvas de potencia y rendimiento, $N_t = N_c \equiv N$

Curvas de potencia y rendimiento, $N_t = N_c \equiv N$

Curvas de potencia y rendimiento, $N_t = N_c \equiv N$

Curvas de potencia y rendimiento, $N_t \neq N_c$

Alejandro Medina, Pedro Curto-Risso, José Miguel Mateos Roco

200

Comparación con simulaciones

SÓLO IRREVERSIBILIDADES INTERNAS, $\epsilon_L = \epsilon_H = 1$

	$r_p(r)$	$m_{ m máx})$	$\eta_{ m n}$	náx	$r_p(\overline{F})$	₽ _{máx})	\overline{P}_{1}	máx
	Н		H		Н		Н	
CBT	45	32	0,44	0,40	16	13	_	1,0
CBTX	9	7,5	0,46	0,45	16	13	—	1,0
CBTBTX	16	11	0,45	0,47	30	31	—	1,5
CICBTX	16	12	0,50	0,49	35	28	—	1,3
CICBTBTX	36	24	0,50	0,52	_	_	_	_

(H) Datos tomados de Horlock (2003)

Resultados en el caso irreversible

$\epsilon_L = \epsilon_H = 0,9$

	$r_p(\eta_{ m máx})$	$\eta_{ m m\acute{a}x}$	$r_p(\overline{P}_{max})$	$\overline{\textit{P}}_{ ext{máx}}$
CBT	23(23)	0,34 (0,32)	11,5	0,71
CBTX	5,5(6)	0,39 (0,37)	8,3	0,76
CBTBTX	7,5(8)	0,41 (0,40)	13,7	1,1
CICBTX	9,3(10)	0,44 (0,43)	19,3	1,05
CICBTBTX	15,5(17)	0,47 (0,46)	_	—

$$au = 5,
ho_L =
ho_H = 0.97, \epsilon_c = \epsilon_t = 0.9, \epsilon_L = \epsilon_H = 0.9, \epsilon_r = 0.75, \xi = 0.0$$

イロト イポト イヨト イヨト

э

() Considerando un *heat-leak* con
$$\xi = 0,02$$

CURVAS POTENCIA-RENDIMIENTO

Bibliografía

- H. Cohen, G.F.C. Rogers, and H.R. Saravanamuttoo *Gas Turbine Theory*, Addison Wesley (1996)
- A. Bejan Advanced Engineering Thermodynamics, Wiley (2006)
- J.H. Horlock Advanced Gas Turbine Cycles, Pergamon (2003)
- J.M.M. Roco, S. Velasco, A. Medina, and A. Calvo Hernández *Optimum performance of a regenerative Brayton thermal cycle*, J. Appl. Phys. 82, 2735-41 (1997)
- S. Sánchez Orgaz, A. Medina, and A. Calvo Hernández *Thermodynamic model and optimization of a multi-step irreversible Brayton cycle*, Energy Conversion and Management 51, 2134-43 (2010)