

Clase V (a) Turbinas de gas tipo Brayton: introducción

Alejandro Medina, José Miguel Mateos Roco

Febrero 2018

http://campus.usal.es/gtfe

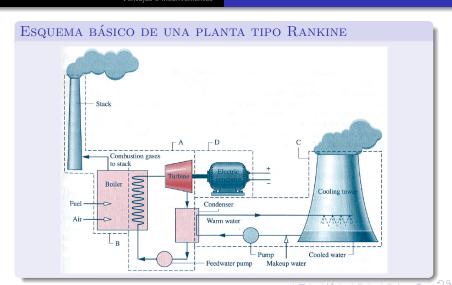
ESQUEMA

- Introducción
- 2 GENERACIÓN DE POTENCIA CON TURBINAS DE GAS
- 3 Aplicaciones
- 4 Combustibles y emisiones
- **6** LÍNEAS DE I+D
- 6 Modelización y análisis
- RESUMEN: VENTAJAS DE LAS PLANTAS TIPO BRAYTON

ESQUEMA

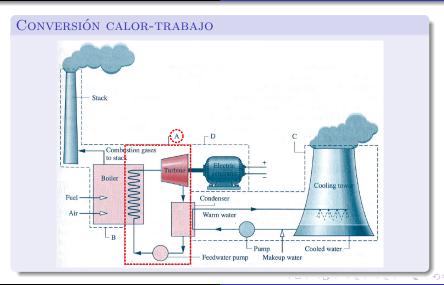
- 1 Introducción
- 2 GENERACIÓN DE POTENCIA CON TURBINAS DE GAS
- APLICACIONES
- COMBUSTIBLES Y EMISIONES
- 6 LÍNEAS DE I+D
- 6 Modelización y análisis
- RESUMEN: VENTAJAS DE LAS PLANTAS TABO BRANTON

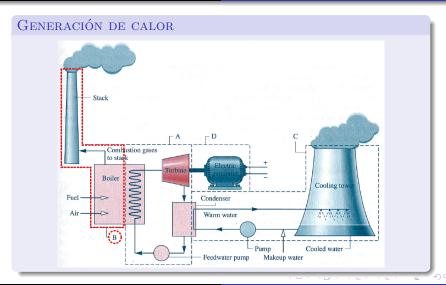
Plantas de Potencia de Vapor

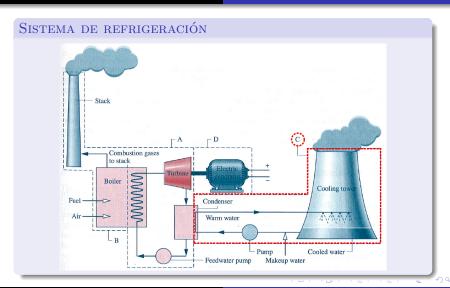

La mayor parte de centrales de generación de energía eléctrica trabajan en base a un ciclo de vapor (*Rankine*) o a un ciclo de gas (*Brayton*).

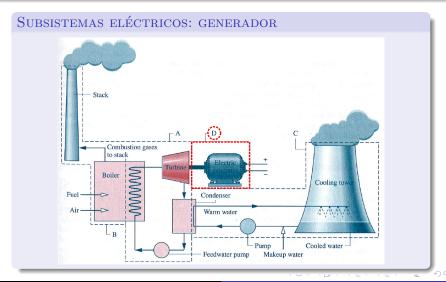
Posibles fuentes de energía:

- Reacción química de combustión (combustibles fósiles)
- Reacción nuclear
- Energía solar térmica
- .









- Generan alrededor del 80 % de la energía eléctrica mundial.
- ② Desde los primeros prototipos (Charles Parsons, 1884, potencia ~ 10 CV) el intervalo operativo de potencias se ha aumentado enormemente. Hoy en día ese intervalo es aproximadamente: $[0.75 \, \text{kW}, 1500 \, \text{MW}]$.
- También se utilizan en transporte marítimo. Para una potencia determinada son más ligeras que un motor Diesel, generan menos vibraciones y tienen un mantenimiento sencillo y económico. Sin embargo, los motores Diesel alcanzan fácilmente eficiencias por encima del 50 % y en las turbinas de vapor no es fácil llegar a esa eficiencia.

Ventajas e inconvenientes de las turbinas de vapor

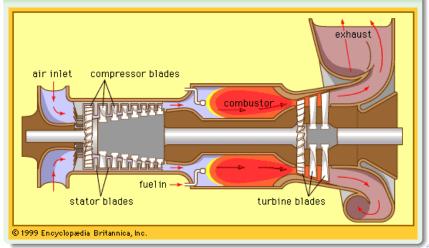
- Tienen mucha inercia térmica: son lentas para arrancar y parar.
- Su mantenimiento es sencillo y no demasiado costoso.
- Son caras de construir, requieren una manufactura muy precisa y materiales de gran calidad.
- Pueden trabajar con muchos tipos de fluidos:
 - Refrigerantes -Agua (altas temp., $\sim 600^{\circ}$ C)
 - Tolueno Orgánicos (bajas temp., $\sim 10-400^{\circ}\text{C}$)
 - Amoniaco Mezclas de los anteriores
- Son muy versátiles, se pueden integrar en sistemas combinados y de cogeneración.

Esquema

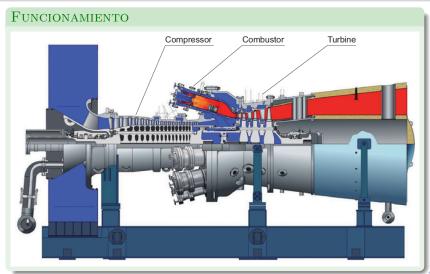
- 1 Introducción
- 2 GENERACIÓN DE POTENCIA CON TURBINAS DE GAS
- APLICACIONES
- COMBUSTIBLES Y EMISIONES
- 6 LÍNEAS DE I+D
- 6 Modelización y análisis
- RESUMEN: VENTAJAS DE LAS PLANTAS TABO BRANTON 90

Plantas de potencia de turbina de gas

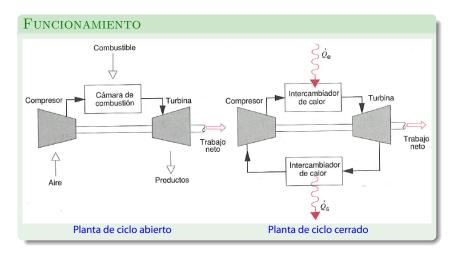
HISTORIA

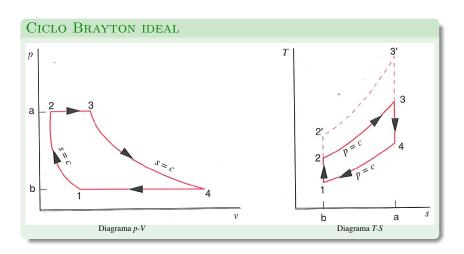

- En 1791 se concedió la primera patente (John Barber) para una turbina de gas con los componentes utilizados hoy en día. Su función era funcionar de motor para un carruaje.
- En 1899 se patenta la primera turbina de gas en EEUU.
- ⑤ En 1903 se construye la primera turbina capaz de generar más potencia de la que consumían sus propios componentes.
- En 1939 se pone en funcionamiento la primera turbina con funcionamiento práctico real. La desarrollaron en Suiza (C. Brown y W. Boveri) como generador de emergencia, generaba 4 MW y su eficiencia era del 17 %.

FUNCIONAMIENTO



FUNCIONAMIENTO




ETAPAS Y PROCESOS

- Los gases se aceleran en un compresor que aumenta su temperatura y presión.
 - Idealmente: proceso isoentropico
 - En realidad: se pierde energía en forma de calor por fricciones y turbulencias
- ② OPCIÓN 1: Los gases calientes pasan a una cámara de combustión donde se inyecta combustible y se queman, aumentándose aún más la temperatura: CICLO ABIERTO.
 - OPCIÓN 2: Los gases calientes reciben un aporte de calor a través de un intercambiador de calor: CICLO CERRADO.
 - Idealmente: proceso isobárico
 - En realidad: hay caídas de presión debido a fricciones
- O Los gases a altas presiones y altas temperaturas se expanden en una turbina. Aquí se obtiene la energía mecánica en forma de rotación del eje.
 - Idealmente: proceso isoentrópico.
 - En realidad: hay pérdidas de energía en forma de calor debida a fricciones y turbulencias.

Parámetros básicos

- Mayores relaciones de temperatura y presiones dan lugar a mayores eficiencias y potencias.
- $\ \ \,$ Temperatura máxima de entrada en la turbina, impuesta por los materiales de los álabes. Máximas temperaturas alcanzables $\sim 1600~{\rm K}.$
- Relaciones de presión hasta 30.
- Condiciones climáticas: mayores temperaturas de entrada, menor η y P.
- Eficiencia de los componentes: turbinas, compresores, intercambiadores de calor...
- Caídas de presión en absorción y cesión de calor.

Variables básicas y valores típicos

Potencia eléctrica generada	0,04 — 450 MW
Rendimiento térmico (ciclo simple)	hasta el 40 %
Rendimiento térmico (cogeneración)	hasta el 80 %
Relación de presiones (p_2/p_1)	4 - 30
Temperatura de entrada en la turbina	hasta 1600 K
Temperatura de los gases de escape	500 - 700 K
Relación de temperaturas (T_3/T_1)	2 - 6
Eficiencia isoentrópica de la turbina Eficiencia isoentrópica del compresor Eficiencia de los intercambiadores de calor Caídas de presión	0,75 - 0,90 $0,70 - 0,85$ $0,80 - 0,95$ $5 - 10%$

Esquema

- 1 Introducción
- 2 GENERACIÓN DE POTENCIA CON TURBINAS DE GAS
- 3 Aplicaciones
- COMBUSTIBLES Y EMISIONES
- 5 LÍNEAS DE I+D
- 6 Modelización y análisis
- RESUMEN: VENTAJAS DE LAS PLANTAS TABO BRANTON 900

TIPOS DE APLICACIONES

Generación eléctrica industrial u otros

2 Transporte: transporte naval, aviación, automóviles (híbridos)

GENERACIÓN ELÉCTRICA

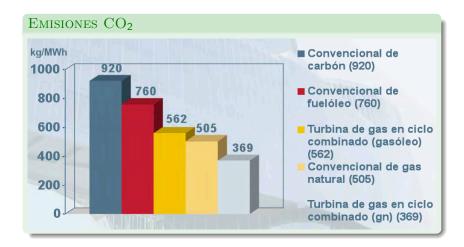
Tipo	Aplicaciones	Modelos	Potencia (MW)
Microturbinas	Almacenes, pequeño comercio	Capstone, Turbec Ingersoll-Rand	0,04 - 0,25
Turbinas ciclo simple, generadores de emergencia	Bloques de oficinas, hospitales	Yanmar AT36C, 60C, 180C Turbomeca Astazou	0,25 - 1,5
Ciclos combinados y cogeneración	Hospitales, fábricas	NP PGT2, Allison 501 Solar Mars, Alstom Tempest	0,5 - 10
Ciclos combinados y cogeneración	Generación residencial, (hasta 25 000 habs.) grandes fábricas	Alstom GT10, GE LM2500 RR RB211	10 - 60
Turbinas ciclo simple (picos de demanda)	Red eléctrica	Alstom GT10, GE LM600 RR RB211	20 - 60
Plantas tamaño medio (picos de demanda)	Red eléctrica	GE LM600 RR Trent	30 - 60
Plantas ciclo combinado	Red eléctrica	WEC 501F GE PG9331(FA)	50 — 450

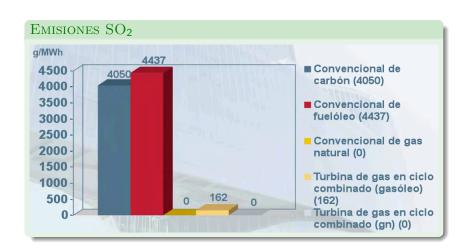
Esquema

- 1 Introducción
- 2 Generación de potencia con turbinas de gas
- APLICACIONES
- **4** Combustibles y emisiones
- **6** LÍNEAS DE I+D
- 6 Modelización y análisis
- RESUMEN: VENTAJAS DE LAS PLANTAS TABO BRANTON 200

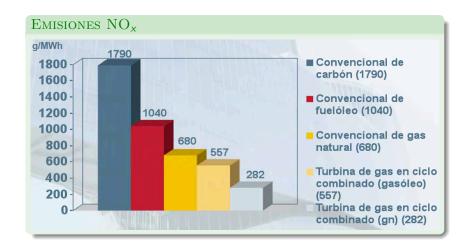
Combustibles

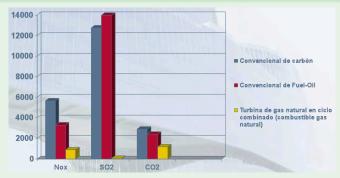
- Ciclo abierto: combustibles fósiles líquidos o gaseosos (gas natural, gasolina, diesel, keroseno...)
- Ciclo cerrado: combustible nuclear, energía solar, biomasa (EFGT, IFGT)


EMISIONES


 NO_x , SO_2 , partículas, CO, CO_2 ...

La generación de ${\rm CO}_2$ es inferior a otras tecnologías. Las plantas de uso industrial permiten integrar sistemas de atrapamiento y almacenamiento de ${\rm CO}_2$.


Constituyen el sistema más limpio de generar energía eléctrica de entre los que utilizan combustibles fósiles.



Emisiones anuales comparadas. Planta tipo de 400 MW (Unidades: T/año para NO_x y SO_2 ; kT/año para CO_2)

Cuando la planta no trabaja a plena potencia disminuye la temperatura de combustión, con lo que disminuye la eficiencia térmica y las emisiones de NO_x , pero aumentan las emisiones de CO.

Esquema

- 1 Introducción
- 2 Generación de potencia con turbinas de gas
- APLICACIONES
- COMBUSTIBLES Y EMISIONES
- **5** LÍNEAS DE I+D
- 6 Modelización y análisis
- RESUMEN: VENTAJAS DE LAS PLANTAS TAPO BRANTON 🤊

- Desarrollo y diagnóstico de componentes
 Dinámica de fluidos (CFD), desarrollo de materiales
 —> Mayores temperaturas de entrada en la turbina, intervalo más amplio de relaciones de presión, mejor enfriamiento, combustión más eficiente...
- Ciclos tipo Brayton modificados Regeneración, múltiples etapas de compresión y expansión, ciclo Ericsson, ciclo Braysson, combustión externa (EFGT, combustibles "sucios"), ciclos húmedos...
- 6 Ciclos combinados y cogeneración Acoplamiento de ciclos Brayton y Rankine, ciclos Brayton en cascada...
- 1 Reacciones químicas de combustión y reducción de emisiones Atrapamiento y almacenamiento de CO₂, modificaciones del oxidante de la combustión, otros combustibles (H₂), inyección de diluyentes, mezclas pobres, catalizadores...
- Centrales termosolares tipo Brayton
 Ciclo cerrado, energía absorbida: parcialmente solar (hibridación)...

- Desarrollo y diagnóstico de componentes
 Dinámica de fluidos (CFD), desarrollo de materiales
 —> Mayores temperaturas de entrada en la turbina, intervalo más amplio de relaciones de presión, mejor enfriamiento, combustión más eficiente...
- Ciclos tipo Brayton modificados Regeneración, múltiples etapas de compresión y expansión, ciclo Ericsson, ciclo Braysson, combustión externa (EFGT, combustibles "sucios"), ciclos húmedos...
- 6 Ciclos combinados y cogeneración Acoplamiento de ciclos Brayton y Rankine, ciclos Brayton en cascada...
- Reacciones químicas de combustión y reducción de emisiones Atrapamiento y almacenamiento de CO₂, modificaciones del oxidante de la combustión, otros combustibles (H₂), inyección de diluyentes, mezclas pobres catalizadores...
- Centrales termosolares tipo Brayton
 Ciclo cerrado, energía absorbida: parcialmente solar (hibridación).

- Desarrollo y diagnóstico de componentes
 Dinámica de fluidos (CFD), desarrollo de materiales
 —> Mayores temperaturas de entrada en la turbina, intervalo más amplio de relaciones de presión, mejor enfriamiento, combustión más eficiente...
- Ciclos tipo Brayton modificados Regeneración, múltiples etapas de compresión y expansión, ciclo Ericsson, ciclo Braysson, combustión externa (EFGT, combustibles "sucios"), ciclos húmedos...
- 6 Ciclos combinados y cogeneración Acoplamiento de ciclos Brayton y Rankine, ciclos Brayton en cascada...
- ① Reacciones químicas de combustión y reducción de emisiones Atrapamiento y almacenamiento de CO₂, modificaciones del oxidante de la combustión, otros combustibles (H₂), inyección de diluyentes, mezclas pobres, catalizadores...
- Centrales termosolares tipo Brayton
 Ciclo cerrado, energía absorbida: parcialmente solar (hibridación)...

- Desarrollo y diagnóstico de componentes
 Dinámica de fluidos (CFD), desarrollo de materiales
 —> Mayores temperaturas de entrada en la turbina, intervalo más amplio de relaciones de presión, mejor enfriamiento, combustión más eficiente...
- Ciclos tipo Brayton modificados Regeneración, múltiples etapas de compresión y expansión, ciclo Ericsson, ciclo Braysson, combustión externa (EFGT, combustibles "sucios"), ciclos húmedos...
- Ciclos combinados y cogeneración Acoplamiento de ciclos Brayton y Rankine, ciclos Brayton en cascada...
- Reacciones químicas de combustión y reducción de emisiones Atrapamiento y almacenamiento de CO₂, modificaciones del oxidante de la combustión, otros combustibles (H₂), inyección de diluyentes, mezclas pobres, catalizadores...
- 6 Centrales termosolares tipo Brayton Ciclo cerrado, energía absorbida: parcialmente solar (hibridación)...

- Desarrollo y diagnóstico de componentes
 Dinámica de fluidos (CFD), desarrollo de materiales
 —> Mayores temperaturas de entrada en la turbina, intervalo más amplio de relaciones de presión, mejor enfriamiento, combustión más eficiente...
- Ciclos tipo Brayton modificados Regeneración, múltiples etapas de compresión y expansión, ciclo Ericsson, ciclo Braysson, combustión externa (EFGT, combustibles "sucios"), ciclos húmedos...
- Ciclos combinados y cogeneración Acoplamiento de ciclos Brayton y Rankine, ciclos Brayton en cascada...
- Reacciones químicas de combustión y reducción de emisiones Atrapamiento y almacenamiento de CO₂, modificaciones del oxidante de la combustión, otros combustibles (H₂), inyección de diluyentes, mezclas pobres, catalizadores...
- 6 Centrales termosolares tipo Brayton Ciclo cerrado, energía absorbida: parcialmente solar (hibridación)...

Esquema

- 1 Introducción
- 2 GENERACIÓN DE POTENCIA CON TURBINAS DE GAS
- APLICACIONES
- COMBUSTIBLES Y EMISIONES
- 5 LÍNEAS DE I+D
- 6 Modelización y análisis
- RESUMEN: VENTAJAS DE LAS PLANTAS TABO BRANTON 990

Modelización y análisis

TIPOS DE MODELOS

- Modelización termodinámica
 - Ciclo termodinámico ideal
 - Modelización de irreversibilidades
 - 3 Ciclo termodinámico 'realista'
 - Estudio de sensibilidad
 - 6 Elección de una función objetivo
 - Optimización termodinámica
- Simulación componente a componente
 - Modelización de cada componente (CFD, Termodinámica, Ingeniería Mecánica, Química, Combustión, Métodos Numéricos...)
 - Cálculo de los parámetros globales de la planta (rendimientos, potencias, emisiones, consumo...)
 - Análisis termoeconómico . . .

Esquema

- 1 Introducción
- 2 GENERACIÓN DE POTENCIA CON TURBINAS DE GAS
- APLICACIONES
- Combustibles y emisiones
- 6 LÍNEAS DE I+D
- 6 Modelización y análisis
- RESUMEN: VENTAJAS DE LAS PLANTAS TIPO BRAYTON 990

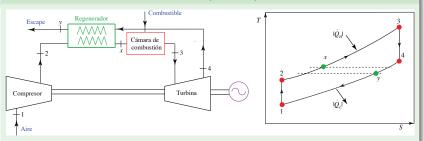
Resumen: ventajas e inconvenientes de las plantas tipo Brayton

Inconvenientes

- Elevado coste de construcción
- Encendido y apagado más lento que los motores de combustión interna (pero más rápido que las plantas de vapor)
- Respuesta más lenta a las demandas de potencia variable
- Ruidosas

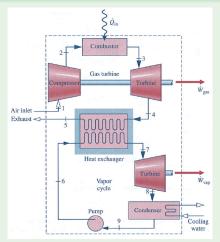
Resumen: ventajas e inconvenientes de las plantas tipo Brayton

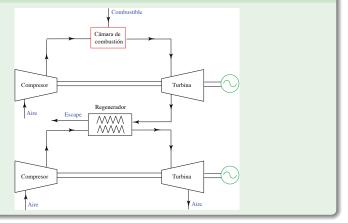
VENTAJAS


- Muy alta relación potencia/peso
- Mucho menor tamaño que las plantas Rankine
- Movimientos mecánicos sencillos y pocas partes móviles (ausencia de vibraciones)
- Alta fiabilidad incluso para potencias altas
- Pueden trabajar a presiones no demasiado elevadas
- Bajo coste de mantenimiento (muy bajo consumo de lubricantes)
- Pueden operar con muchos tipos de combustible (gas natural ...)
- Bajas emisiones de CO e hidrocarburos porque pueden utilizarse mezclas pobres

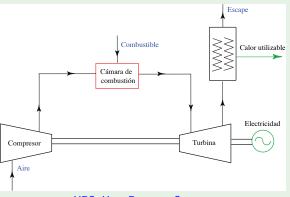
TURBINA SIMPLE REGENERATIVA (CBTX)

Los regeneradores son caros pero pueden aumentar la eficiencia en torno al $10\,\%$. Son interesantes para sistemas que operan muchas horas por año y cuando el coste de combustible es elevado. Disminuyen la temperatura de los gases de escape y la posibilidad de acoplar la planta a otros sistemas.



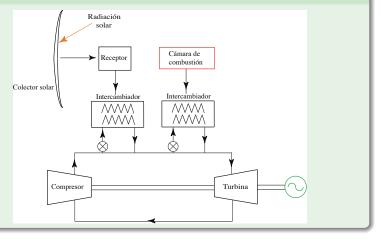


CICLO COMBINADO BRAYTON-RANKINE (CCGT, $Combined\ Cycle\ Gas\ Turbine$)


CICLO COMBINADO BRAYTON-BRAYTON (ABC, Air Bottoming Cycle)

$\hbox{Cogeneraci\'on con turbinas de gas (CHP, $\it Combined Heat and Power)}$

HRS: Heat Recovery Systems WHR: Waste Heat Recovery



Plantas termosolares Brayton híbridas

