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@ Cooperative Game Theory

Notes:

o the term cooperative may sometimes be misleading, it does not
mean that we are modeling competing or non competing situations;
it can model both

coalitional game theory its a synonym

the term coalitional means that the unit we are modeling are
coalitions (i.e. groups of players) we are not modeling player’s
action but groups of players’ actions.

the problem we care about is how to split the revenue/cost resulting
from the interaction, among the players

Cooperative games with transferable utility

Notes:

Some application examples

o Transportation Share highways costs, Share Airport fees

o P2P networks, WIFI share (e.g. fonera) Give a share (i.e.
fee reduction) to those users who collaborate with storage
capacity or WIFI coverage

o Electric Vehicles Share the revenues of roaming among all
recharging operators. Give a share (diminish his/her fee) to a
user that provides energy to the network (V2G)




Cooperative games with transferable utility

Notes:
Motivation, simple example: Connection to the power grid
o Intuitively it makes sense to collaborate
o Cost function: f(distance)
o How to split the cost?
s
UPQOM 9 Notes:
e How is the revenue of the grand coalition split among its
members? — revenue/cost sharing
e |s it interesting for a player to take part of a coalition? —
stability
Some solution concepts: the core, the nucleolus, the 7-value, the
Shapley value
e Establish revenue/cost shares
o Provide different properties
Sharing Rules are Diverse and Provide Notes.

Different Shares

Example: the contested garment.

e 2 persons A,B. One piece of fabric

o A wants half of the piece, B wants the whole piece
Which is the fairest way to share it?
Ideas:

o Proportional to the demand

o Answer provided in the Talmud

o GT?

The Talmud (central text of Rabbinic Judaism) provides the answer
to both examples, without explaining how the calculations are done.
For 2k years mathematicians and economist had not found such
explanation. Game theory does.

Lets start by defining a quite natural rule, the proportional rule:
share; — < demand

;e demand;
o Proportional rule yields shares = 1/12% =1/3,
shareg = 1/2% =2/3

the Talmud law: A wants only half of it, thus only the other half of
the fabric is contested. Share in equal parts the contested piece.
sharey = % =1/4, shareg =1/2 + 1# =3/4

we will model this situation using GT

Auother Talmud example

The bankrupt problem: One man dies with a wealth e and three

debts dy, da,d3. How should e be split among the 3 debts claimers?

Claims dy, dp, d3 | Total () | Talmudic Law | Proportional

100 () (7,5‘50)
(100,200,300) 200 (50,75,75) | (%%, B 100

300 (50,100,150) | (50,100,150)

Table: The bankrupt problem example.

Notes:

o Game theory also allows to explain this result

e Would you say is the same rule as the garment?




Defivition

Conlitiondl Game
with ‘
Mathematica\\y define
o t of players .
Zsjalue function, Mapping ever:‘
' ossible sub-coalition into a re
p

value

d by:

Notes:
o G =(N,v), where
e N is a set of players (usually referred as coalition or grand coalition)
o v is usually called (the worth or revenue of the coalition)

o v: 2N 4R
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Notes:

We will care about situations where the outcome of being in the
coalition is more interesting than the outcome of being alone.

These games are called superadditve games

A superadditve game, is a cooperative game (N,v) such that for all
sub coalitions S, T C N such that S() T = 0 then

v(SUT) = v($)+v(T)

A sharing rule is a function mapping a coalitional game into a real
vector of dimension [N|: ¢ : N x R2™ 5 RIM

For short we shall admit notation x = {x;}ieny = ¢(N, v), where x;
is the share for player /.

e A pre-imputation is a sharing vector x = {x;};en such that
i€ Nxi=v(N)

\/ouloulmy

M/wgid».l cogtn\'outot:) —
Contribution of player ! tz atween

oalition is the difference e -
Che worth of that subcoalition W "
t' and the worth of that subcoa

1

tion when i is not there.

Notes:

o Marginal contribution of i € N to coalition S C N is defined as

v(8) = v(S\{i})

Some desirable properties

o Efficiency

o Stability

e Fairness

o No free riders
o Monotonicity

e Resource-
* Population-

Notes:

o A rule is efficient if for every outcome x computed through such
rule it renders Z xn = v(N)

nineN
Stability: incentives to remain in the coalition, we shall formalize it
later on
Fairness: not quite a consensus in the literature. Eg. that who
contributes the most receives the most...
Resource monotonicity: provide the right incentives to members to
contribute to increase/decrease the revenue/cost of the coalition
Many flavors of resource-monotonicity exist
A population-monotonic revenue sharing rule guarantees that the
entrance of a new member to the alliance does not reduce the
revenue of each of the members already there




Notes:

e Photo Lloyd Shapley, Taken in 1980 by Konrad Jacobs, Erlangen,
Copyright is with MFO, source Mathematisches Institut Oberwolfach
(MFO), http://owpdb.mfo.de/detail ?photoID=3808

e One of the most well known sharing rule is the Shapley value
o It was proposed by Lloyd Shapley in 1953 [10].

e Intuitively, its idea is to share the worth proportionally to the
contribution of each player

The SAA.Ple_tj Valve - Intuition

Example:
o Consider 2 players, v(1) =1, v(2) =1, v({1,2}) = 3.
o Then, each player's contribution is equal to 2 units

Notes:

o Is evident that we cant share the 3 units giving 2 units to each of
them!

e The idea behind Shapley value is to share proportionally to each
player’s contribution to every subcoalition, but weighting the
contribution.

Shapley Valve - Defivition
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Notes:

e That is, for player i, we consider all possible orderings for forming
the grand coalition from the empty one, and we sum up the
marginal contribution of player i at the moment of being added. We
finally average by dividing by all the possible orderings for forming
the grand coalition (i.e. by [N|!).

Formally, Given a cooperative game (N,v) the SV for player i € N is
given by
G(N.v) = D ISIIN] = [S| = DIV(S U {i}) = v(S)].

SCM\i

Example: Voting game

Set-up:

e Three parties, A, B, C

e Representatives per party 44, 39, 7

o They vote for approving a budget of 100 uruguayan pesos

e They need simple majority, i.e. 51 votes to approve the budget
Question: How should they split the budget among them?

Possible AnSWET
. Define a coalitional game‘
. Compute the Shaptey vaiue

Notes:

o We define a coalitional game where N is the set of parties, and v is
a function whose value is 100 for any subcoalition with more than
50 votes, and 0 for all the others.

e We compute the Shapley value for party A, using the intuitive
interpretation

o We shall thus consider all possible orderings, sum up the marginal
contribution of player A at the moment of being added, and divide
by all the possible orderings.

Ordering  marginal contribution of A at the moment of adding A
AB.C v(A)-V(@)=0
ACB v(A)-V(@)=0
BA,C v(
B.CA v(B,C.A)— V(B,C) =100
CAB v(C,A) - V(C) =100
CBA v(C,B,A)— V(C,B) =100

<

o From them, we calculate the SV and obtain A's share (¢4) as
6a =1 x[0+0+100 + 100 + 100 + 100] = 222




Is the SV a good solution? - Defivitions
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Notes:
e We should of course define good
o We should do that in terms of desirable properties for a good rule
o Note that each sharing rule defines its own properties conveniently ;)

o If two players are interchangeable one desired property is that they
receive the same share.

o Definition i, j are interchangeable if v(S\ {i}) = v(5\ {j})
VSUN\{i,j}

o Definition, i € N is a dummy player if v(S) = v(S\ {i}) = v({i})
VSCN
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Notes:

o Symmetry Axiom: ¢;i(N\ j,v)=¢;j(N\i,v)Vi,jeN

o Additivity Axiom: ¢;(N,v1) + ¢i(N, va) = ¢i(N, vy + v2), where the
game (N, vy + v2) where v; + v, is defined as
(i +v)(S) =wvi(S) +v(S)VSC N

SV - Axiematic characterization

ummy player »
A rule verifying the Dummy p\aye{
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a share equal to the wor
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Notes:

e Dummy player axiom: if i is a dummy player then ¢;(N,v) = v({i})

e Remark: Is the dummy player a desirable property? Depends on the
context, at least no in a social-aware context.

SV, axiomatic characterization

Theorem

There is only one sharing rule that verifies all the three previously
stated axioms, and that rule is the SV.

Notes:

e So SV is only one possible sharing rule, we will see later on others
e Lets first address the question of which coalition will be formed.
e For that we are going to discuss about Stability

e The idea is that the grand coalition will remain stable if there are no
incentives to form other sub coalitions.

o For that we will introduce the definition of the core.




Important solution comcept: The Core
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Notes:

o A payoff vector x is in the core of a coalitional game (N, v) if and
only if 37cs X > v(S)VS C N

> x> V(S)VSCN (1)
ies
> % =V(N) (2)
ieN

o A sharing rule lying in the Core is said to provide Stability
e Remark: similar concept to Nash equilibrium, when the payoff
vector is in the core, there are no incentives to unilaterally deviate

o |t is however stronger, since unilateral deviations are not possible
not only for individual players but for all possible subcoalition

ls the core A.lwAL«js Non-empty?

Exercise: Three-player majority game. Three players dispute one
unit of a divisible good. Any majority keeps the good. Define a
coalitional game for this situation and show that the core of such
game is empty.

Notes:

Three-player majority game, we define the game as follows

We define a coalitional game as follows

N ={1,2,3}

v({1}) = v({2}) = v({3}) = 0.v({1,2,3}) = v({1,3}) =
v({1,2})=1

Specify the constraints defining the core, and conclude

The core iv convex games

Notes:
Theorem
The core of a convex coalitional game is always non empty.
Deoes the core determives a unigue. slwm-iua Notes:

veetor?

Example: Two people produce together one unit, which they may
share in any way they wish. If they are alone each produces zero
units. Each person cares only about the amount of output she/he
receives, preferring more to less.

o Define a coalitional game
e Determine the core




Does the Skmflej value lie in the Core?

Notes:
Theorem
For every convex coalitional game, the SV lies in the core.
Other sharing rules Notes.

o T-value
o Nucleolus
o Aumann-Shapley

e Friedman-Moulin

e The SV is not, of course, the only sharing rule

e For instance, we have already introduced the proportional one,
which could be defied as dividing the whole value proportional to
the contribution of each player, or proportional to the demand.

back to the initial examples of come back to the contested garment
and the bankrupt situations, and the solutions proposed in the
Talmud. Aumman [1] has shown that the solutions proposed in the
Talmud are the nucleolus of the bankrupt problem defined as a
coalitional game, and that it is also garment-consistent for any two
players.

The nucleolus is a core refinement and it is unique, regardless of the
game.

Example: Multicast Tree

e A group of customers must be connected to a service provided
by some central facility

a customer must either be directly connected to the facility or
be connected to some other connected customer.

We can model the customers and the facility as nodes on a
graph, and the possible connections as edges with associated
costs.

Problem can be modeled as a coalitional game (N, v) .

N is the set of customers, and v(S) is the cost of connecting
all customers in S directly to the facility minus the cost of the
minimum spanning tree that spans both the customers in S
and the facility.

Notes:

e Remark: the definition of the game implies that different solutions
can verify different properties

The Nash Bargaiving Solution

Define:

e a compact and convex set of all possible outcomes

model each member’s bargaining power (weight for
negotiating)

a disagreement point (outcome when there is no agreement)

each member’'s utility function, i.e. their preferences over the
set of possible outcomes.

Assume there exits within the set of possible outcomes an
outcome "suitable” for every member

Notes:

e X set of possible outcomes

Bn will note the bargaining power of n € N

Let us assume utility functions are linear u, = x, for all n € N
where x = {x,}n € X

d is the disagreement point d € D c RIV

we assume X is such that 3 x € X such that x, > d,, forall n€ N,
where d,, is n's disagreement point.

examples of bargaining powers: contribution to the coalition

example of disagreement point: the stand alone revenue of each
player, i.e. d, = v({n}), forall n e N.

The total amount to share is given by v(/N), and bounds the set of
possible outcomes.
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Notes:

e The nash bargaining solution is the result of the following
optimization problem

max H (%o — dn)P"

neN

s.t. an = v(N)

neN
Xp > dp, Vne N

which can be proven to be given by:
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Is the NBS & ‘good’ solution?-Definitions
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Notes:

o Symmetry: if X is symmetric, and if players are indistinguishable,
then players get the same outcome.

e Independence of irrelevant alternatives: let X and X’ be such that
X' C X. If ¢"5(X, D) € X' then ¢"(X', D) = ¢"*(X, D)

Is the NBS & 'good’ solution?-Definitions
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Notes:

e Pareto efficiency: phi”bs(X, D) is Pareto efficient if there is not
X € X such that x > ¢"*(x, D) and x, > ¢7%*(x, D) for some
neN.

o Invariance to equivalent utility representations: e.g. of

transformation of the utility functions that maintains the same
ordering over preferences: a linear transformation

ls the NBS & ‘good’ solution?

o Nash proved that for 2-person bargaining games four

previously introduced axioms characterize NBS [6], theory that
was then extended to multiple players (see e.g. [2])

Notes:
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@ Conclusion

Further Types of Games

Notes:

¢ Non-atomic games
e Large number of players
o The individual effect of a player in the outcome is negligible
but not the one of a portion of players

o Repeated games
o Game is played several times, history is known
o Potential games
o Utilities can be expressed through a common function

To Sum vp

Notes:

e Game theory provides tools for analysing situations where
multiple decisions makers interact
o Non-cooperative game theory
e Study choices of rational selfish players

e Nash Equilibrium iGV'A—Q;AS!

® helps predict the possible rational outcomes of a game
o Cooperative game theory (with TU)
e How to split costs/revenue of a coalition
e The core set, stability

o A correct modeling is very important for coherent results

e Beyond Game Theory: evolutionary game theory
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Quizz Lecture 5

The questions proposed here are taken from: the MOOC Game Theory
on Coursera platform, created by Matthew Jackson, Kevin Leyton-Brown
and Yoav Shoham.

Exercise 1 Suppose N =3 and v(1) =v(2) =v(3) = 1.
Which of the following payoff functions is superadditive?

a. v(1,2)=8, v(1,3)=4, v(2,3)=5, v(1,2,3)=5;
b. v(1,2)=3, v(1,3)=4, v(2,3)=5, v(1,2,3)="7;
c. v(1,2)=0, v(1,3)=4, v(2,3)=5, v(1,2,3)="7;
d. None of the above.

Exercise 2 Suppose N=2 and v(1)=0, v(2)=2, v(1,2)=2.
What is the Shapley Value of both players?

a. ¢p1(N,v) =1, ¢2(N,v) =0
b. ¢1(N,v) =1/2, ¢po(N,v) =1/2
c. p1(N,v) =1/3, ¢o(N,v) =2/3
d. $1(N,v) =0, ¢o(N,v) =2

Exercise 3 Suppose N=3 and v(1)=v(2)=v(3)=0, v(1,2)=v(2,3)=v(3,1)=2/3,
v(1,2,3)=1.
Which allocation is in the core of this coalitional game?

a. (0,0,0);
b. (1/3, 1/3, 0);
c. (1/3, 1/3, 1/3);

d. non of the above



