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Triangulation

Fundamental principle of stereo vision
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.

f focal length.
H distance optical center-ground.
B distance between optical centers
(baseline).

Goal
Given two recti�ed images, point correspondences and computation
of their apparent shift (disparity) gives information about relative
depth of the scene.



Epipolar constraints

Rays from matching points must
intersect in space

I The vectors ~Cx , ~C ′x ′ and T are coplanar. We write it in
camera 1 coordinate frame: x , Rx ′ and T coplanar,∣∣x T Rx ′

∣∣ = 0,

which we can write:

xT (T × Rx ′) = 0.

I We note [T ]×x = T × x and we get the equation

xTEx ′ = 0 with E = [T ]×R

(Longuet-Higgins 1981)



Epipolar constraints

I E is the essential matrix but deals with points expressed in
camera coordinate frame.

I Converting to pixel coordinates requires multiplying by the
inverse of camera calibration matrix K : xcam = K−1ximage

I We can rewrite the epipolar constraint as:

xTFx ′ = 0 with F = K−TEK ′−1 = K−T [T ]×RK
′−1

(Faugeras 1992)
I F is the fundamental matrix. The progress is actually

important: we can constrain the match without calibrating the
cameras!

I It can be easily derived formally, by expressing everything in
camera 2 coordinate frame:

λx = K (RX + T ) λ′x ′ = K ′X

We remove the 5 unknowns X , λ and λ′ from the system

λK−1x = λ′RK ′−1x ′ + T ⇒ λT × (K−1x) = λ′[T ]×RK
′−1x ′

followed by scalar product with K−1x



Anatomy of the fundamental matrix
Glossary:

I e = KT satis�es eTF = 0, that is
the left epipole

I e ′ = K ′R−1T satis�es Fe ′ = 0,
that is the right epipole

I Fx ′ is the epipolar line (in left
image) associated to x ′

I FT x is the epipolar line (in right
image) associated to x

I Observe that if T = 0 we get F = 0, that is, no constraints:
without displacement of optical center, no 3D information.

I The constraint is important: it is enough to look for the match
of point x along its associated epipolar line (1D search).

Theorem
A 3× 3 matrix is a fundamental matrix i� it has rank 2



Example

Image 1 Image 2
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Singular Value Decomposition

Theorem (SVD)

Let A be an m × n matrix with m ≥ n. We can decompose A as:

A = U

σ1 . . .

σn

V T =
n∑

i=1

σiUiV
T
i

with σi ≥ 0 and U (m × n) and V (n × n) composed of

orthonormal columns.

I The rank of A is the number of non-zero σi
I An orthonormal basis of the kernel of A is composed of Vi for

indices i such that σi = 0.



Singular Value Decomposition

I Proof:

1. Orthonormal diagonalization of ATA = VΣV T

2. Write Ui = AVi/ni (ni for norm 1) if σi 6= 0. Complement the
Ui by orthonormal vectors.

3. Check A = UΣV T by comparison on the basis formed by Vi .

I Implementation: e�cient algorithm but:
As much as we dislike the use of black-box routines, we need

to ask you to accept this one, since it would take us too far

a�eld to cover its necessary background material here.

Numerical Recipes
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Computation of F

I The 8 point method (actually 8+) is the simplest as it is linear.

I We write the epipolar constraint for the 8 correspondences

xiFx
′
i = 0⇔ AT

i f = 0 with f =
(
f11 f12 f13 f21 . . . f33

)T
I Each one is a linear equation in the unknown f .

I f has 8 independent parameters, since scale is indi�erent.

I We impose the constraint ‖f ‖ = 1:

min
A
‖Af ‖2 subject to ‖f ‖2 = 1 with A =

AT
1
...

AT
8


I Solution: f is eigenvector of A associated to smallest

eigenvalue of ATA.

I Constraint: to enforce rank 2 of F , we can decompose it as
SVD, put σ3 = 0 and recompose.



Computation of F

I Enforcing constraint detF = 0 after minimization is not
optimal.

I The 7 point method imposes that from the start.

I We get linear system Af = 0 with A of size 7× 9.

I Let f1, f2 be 2 free vectors of the kernel of A (from SVD).

I Look for a solution f1 + xf2 with detF = 0.

I det(F1 + xF2) = P(x) with P polynomial of degree 3, we get 1
or 3 solutions.

I The main interest is not computing F with fewer points (we
have many more in general, which is anyway better for
precision), but we have fewer chances of selecting false
correspondences.

I By the way, how to ensure we did not incorporate bad
correspondences in the equations?



Normalization

I The 8 point algorithm �as is� yields very imprecise results

I Hartley (1997): In Defense of the Eight-Point Algorithm

I Explanation: the scales of coe�cients of F are very di�erent.
F11, F12, F21 and F22 are multiplied by xix

′
i , xiy

′
i , yix

′
i and

yiy
′
i , that can reach 106. On the contrary, F13, F23, F31 and

F32 are multiplied by xi , yi , x
′
i and y ′i that are of order 10

3.
F33 is multiplied by 1.

I The scales being so di�erent, A is badly conditioned.

I Solution: normalize points so that coordinates are of order 1.

N =

10−3

10−3

1

 , x̃i = Nxi , x̃ ′i = Nx ′i

I We �nd F̃ for points (x̃i , x̃ ′i ) then F = NT F̃N



Computation of E

I E depends on 5 parameters (3 for R+3 for T -1 for scale)

I A 3× 3 matrix E is essential i� its singular values are 0 and
two equal positive values. It can be written:

2EETE − tr(EET )E = 0

I 5 point algorithm (Nister, 2004)

I We have Ae = 0, A of size 5× 9, we get a solution of the form

E = xX + yY + zZ + W

with X ,Y ,Z ,W a basis of the kernel of A (SVD)

I Write the 9 contraints+detE = 0, we get 10 polynomial
equations of degree 3 in x , y , z

I 1) Gauss pivot to eliminate terms of degree 2+ in x , y , then

B(z)
(
x y 1

)T
= 0, that is detB(z) = 0, degree 10.

2) Gröbner bases. 3) C (z)
(
1 x y x2 xy . . . y3

)T
= 0

and detC (z) = 0.
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RANSAC algorithm

I How to solve a problem of parameter estimation in presence of
outliers? This is the framework of robust estimation.

I Example: regression line of plane points (xi , yi ) with for
certain i bad data (not simply imprecise).

I Correct data are called inliers and incorrect outliers.
Hypothesis: inliers are coherent while outliers are random.

I RANdom SAmple Consensus (Fishler&Bolles, 1981):

1. Select k samples out of n, k being the minimal number to
estimate uniquely a model.

2. Compute model and count samples among n explained by
model at precision σ.

3. If this number is larger than the most coherent one until now,
keep it.

4. Back to 1 if we have iterations left.

I Example: k = 2 for a plane regression line.



RANSAC for fundamental matrix

I Choose k = 7 or k = 8

I Classify (xi , x
′
i ) inlier/outlier as a function of the distance of x ′i

to epipolar line associated to xi (F
T xi ).

I k = 7 is better, because we have fewer chances to select an
outlier. In that case, we can have 3 models by sample. We
test the 3 models.



Conclusion

I Epipolar constraint:

1. Essential matrix E (calibrated case)
2. Fundamental matrix F (non calibrated case)

I F can be computed with the 7- or 8-point algorithm.

I Computation of E is much more complicated (5-point
algorithm)

I Removing outliers through RANSAC algorithm.



Practical session: RANSAC algorithm for F computation

Objective: Fundamental matrix computation with RANSAC
algorithm.

I Get initial program from the website.

I Write the core of function ComputeF. Use RANSAC algorithm
(500 iterations should be enough), based on 8-point algorithm.
Solve the linear system estimating F from 8 matches. Do not
forget normalization! Hint: it is easier to use SVD with a
square matrix. For that, add the 9th equation 0T f = 0.

I After RANSAC, re�ne resulting F with least square
minimization based on all inliers.

I Write the core of displayEpipolar: when user clicks, �nd in
which image (left or right). Display this point and show
associated epipolar line in other image.
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