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Reminder on camera matrix K

I The (internal) calibration matrix (3× 3) is:

K =

f cx
f cy

1


I The projection matrix (3× 4) is:

P = K
(
R T

)
I If pixels are parallelograms, we can generalize K :

K =

fx s cx
fy cy

1

 (with s = −fx cotan θ)

Theorem

Let P be a 3× 4 matrix whose left 3× 3 sub-matrix is invertible.

There is a unique decomposition P = K
(
R T

)
.

Proof: Gram-Schmidt on rows of left sub-matrix of P starting from
last row (RQ decomposition), then T = K−1P4.



Camera calibration by resection
[R.Y. Tsai,An e�cient and accurate camera calibration technique

for 3D machine vision, CVPR'86] We estimate the camera internal
parameters from a known rig, composed of 3D points whose
coordinates are known.

I We have points Xi and their projection xi in an image.

I In homogeneous coordinates: xi = PXi or the 3 equations (but
only 2 of them are independent)

xi × (PXi ) = 0

I Linear system in unknown P . There are 12 parameters in P ,
we need 6 points in general (actually only 5.5).

I Decomposition of P allows �nding K .

Restriction: The 6 points cannot be on a plane,
otherwise we have a degenerate situation; in that
case, 4 points de�ne the homography and the two
extra points yield no additional constraint.



Calibration with planar rig
[Z. Zhang A �exible new technique for camera calibration 2000]

I Problem: One picture is not enough to �nd K .
I Solution: Several snapshots are used.
I For each one, we determine the homography H between the

rig and the image.
I The homography being computed with an arbitrary

multiplicative factor, we write

λH = K
(
R1 R2 T

)
I We rewrite:

λK−1H = λ
(
K−1H1 K−1H2 K−1H3

)
=
(
R1 R2 T

)
I 2 equations expressing orthonormality of R1 and R2:

HT
1 (K−TK−1)H1 = HT

2 (K−TK−1)H2

HT
1 (K−TK−1)H2 = 0

I With 3 views, we have 6 equations for the 5 parameters of
K−TK−1; then Cholesky decomposition.



The problem of geometric distortion

I At small or moderate focal length, we cannot ignore the
geometric distortion due to lens curvature, especially away
from image center.

I This is observable in the non-straightness of certain lines:

Photo: 5600× 3700 pixels Deviation of 30 pixels
I The classical model of distortion is radial polynomial:(

xd
yd

)
−
(
dx
dy

)
= (1+ a1r

2 + a2r
4 + . . . )

(
x − dx
y − dy

)



Estimation of geometric distortion

I If we integrate distortion coe�cients as unknowns, there is no
more closed formula estimating K .

I We have a non-linear minimization problem, which can be
solved by an iterative method.

I To initialize the minimization, we assume no distortion
(a1 = a2 = 0) and estimate K with the previous linear
procedure.
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Gold standard error in homography estimation

I We consider x and x ′ as noisy observations of ground truth
positions x̂ and x̂ ′ = Hx̂ .

Image 1 Image 2d’

d

x
x’

H
Hx

^x

^

ε(H, x̂) = d(x , x̂)2 + d(x ′,Hx̂)2

I Problem: this has a lot of parameters: H, {x̂i}i=1...n

I The minimization is heavy in complexity and memory.



Sampson error

I A method that linearizes the dependency on x̂ in the gold
standard error so as to eliminate these unknowns.

0 = ε(H, x̂) = ε(H, x) + J(x̂ − x) with J =
∂ε

∂x
(H, x)

I Find x̂ minimizing ‖x − x̂‖2 subject to J(x − x̂) = ε

I Solution: x − x̂ = JT (JJT )−1ε and thus:

‖x − x̂‖2 = εT (JJT )−1ε (1)

I Here, εi = Aih = x ′i × (Hxi ) is a 3-vector.

I For each i , there are 4 variables (xi , x
′
i ), so J is 3× 4.

I This is almost the algebraic error εT ε but with adapted scalar
product.

I The resolution, through iterative method, must be initialized
with the algebraic minimization.
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Linear least squares problem

I For example, when we have more than 4 point
correspondences in homography estimation:

Am×8h = Bm m ≥ 8

I In the case of an overdetermined linear system, we minimize

ε(X ) = ‖AX − B‖2 = ‖f (X )‖2

I The gradient of ε can be easily computed:

∇ε(X ) = 2(ATAX − ATB)

I The solution is obtained by equating the gradient to 0:

X = (ATA)−1ATB

I Remark 1: this is correct only if ATA is invertible, that is A
has full rank.

I Remark 2: if A is square, it is the standard solution X = A−1B
I Remark 3: A(−1) = (ATA)−1AT is called the pseudo-inverse of

A, because A(−1)A = In.



Non-linear least squares problem

I We would like to solve as best we can f (X ) = 0 with f

non-linear. We thus minimize

ε(X ) = ‖f (X )‖2

I Let us compute the gradient of ε:

∇ε(X ) = 2JT f (X ) with Jij =
∂fi
∂xj

I Gradient descent: we iterate until convergence

4X = −αJT f (X ), α > 0

I When we are close to the minimum, a faster convergence is
obtained by Newton's method:

ε(X0) ∼ ε(X ) +∇ε(X )T (4X ) + (4X )T (∇2ε)(4X )

and minimum is for 4X = −(∇2ε)−1∇ε



Levenberg-Marquardt algorithm

I This is a mix of gradient descent and quasi-Newton method
(quasi since we do not compute explictly the Hessian matrix,
but approximate it).

I The gradient of ε is

∇ε(X ) = 2JT f (X )

so the Hessian matrix of ε is composed of sums of two terms:
1. Product of �rst derivatives of f .
2. Product of f and second derivatives of f .

I The idea is to ignore the second terms, as they should be small
when we are close to the minimum (f ∼ 0). The Hessian is
thus approximated by

H = 2JT J

I Levenberg-Marquardt iteration:

4X = −(JT J + λI )−1JT f (X ), λ > 0



Levenberg-Marquardt algorithm

I Principle: gradient descent when we are far from the solution
(λ large) and Newton's step when we are close (λ small).

1. Start from initial X and λ = 10−3.

2. Compute

4X = −(JT J + λI )−1JT f (X ), λ > 0

3. Compare ε(X +4X ) and ε(X ):

3a If ε(X +4X ) ∼ ε(X ), �nish.
3b If ε(X +4X ) < ε(X ),

X ← X +4X λ← λ/10

3c If ε(X +4X ) > ε(X ), λ← 10λ

4. Go to step 2.



Example of distortion correction

Results of Zhang:

Snapshot 1 Snapshot 2



Example of distortion correction

Results of Zhang:

Corrected image 1 Corrected image 2



Conclusion

I Calibration with a 3D rig is constraining, though the algorithm
is simple (resection).

I Calibration with a planar pattern is easier to implement.

I With distortion correction, we have a non-linear least squares
problem, which can be initialized with a linear minimization.

I The method of choice for non-linear least squares is
Levenberg-Marquardt.

I Gold standard error can be well approximated with Sampson
error, at a fraction of the complexity.
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Practical session: camera calibration
Objective: Implement Zhang's calibration (without distortion).
From a set of photographs of a planar pattern, recover K .

I Get initial program from the website.
I The points of the model and in the images are in �les

model.txt and data?.txt
I Fill the function computeK:

1. Build the 10× 5 linear system satis�ed by the coe�cients of
K−TK−1, supposing its (3,3) entry is 1.

2. Find the result by Cholesky decomposition.
I For comparison, I get:

K =

871.024 0.153579 300.682
0 870.678 220.872
0 0 1


I Zhang gets from the same data (but with distortion correction):

K =

832.5 0.204494 303.959
0 832.53 206.585
0 0 1


I You can see the distortion by looking at the snapshots.
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