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Reminder on camera matrix K

» The (internal) calibration matrix (3 x 3) is:

f Cx
K= f ¢
1
» The projection matrix (3 x 4) is:
P=K(R T)
» If pixels are parallelograms, we can generalize K:
i
s ¢
K= f, ¢ | (with s = —f cotan6)
1

Theorem
Let P be a 3 x 4 matrix whose left 3 x 3 sub-matrix is invertible.
There is a unique decomposition P = K (R T).

Proof: Gram-Schmidt on rows of left sub-matrix of P starting from
last row (RQ decomposition), then T = K-1P,.



Camera calibration by resection

[R.Y. Tsai,An efficient and accurate camera calibration technique
for 3D machine vision, CVPR'86] We estimate the camera internal
parameters from a known rig, composed of 3D points whose
coordinates are known.

» We have points X; and their projection x; in an image.

» In homogeneous coordinates: x; = PX; or the 3 equations (but

only 2 of them are independent)

Xj X (PX,') =0

» Linear system in unknown P. There are 12 parameters in P,
we need 6 points in general (actually only 5.5).

» Decomposition of P allows finding K.

Restriction: The 6 points cannot be on a plane,
otherwise we have a degenerate situation; in that
case, 4 points define the homography and the two
extra points yield no additional constraint.



Calibration with planar rig
[Z. Zhang A flexible new technique for camera calibration 2000]

» Problem: One picture is not enough to find K.

» Solution: Several snapshots are used.

» For each one, we determine the homography H between the
rig and the image.

» The homography being computed with an arbitrary
multiplicative factor, we write

M=K (R1 Ry T)
> We rewrite:
AKIH = MKTH K'Hy, K 'Hs)=(Ri Ry T)
» 2 equations expressing orthonormality of Ry and R»:
HI (K-TK YH, = HI (K- TK Y H,
HI (K"TKH)H, =0

» With 3 views, we have 6 equations for the 5 parameters of
K~TK=1; then Cholesky decomposition.



The problem of geometric distortion

» At small or moderate focal length, we cannot ignore the
geometric distortion due to lens curvature, especially away
from image center.

» This is observable in the non-straightness of certain lines:

Photo: 5600 x 3700 pixels Deviation of 30 pixels
» The classical model of distortion is radial polynomial:

Xd . dx o 2 4 X—dx
(}’d) (dy)_(l—i—alr 4 aor +...)(y_dy)



Estimation of geometric distortion

> If we integrate distortion coefficients as unknowns, there is no
more closed formula estimating K.

» We have a non-linear minimization problem, which can be
solved by an iterative method.

» To initialize the minimization, we assume no distortion
(a1 = a» = 0) and estimate K with the previous linear
procedure.
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Gold standard error in homography estimation

» We consider x and x’ as noisy observations of ground truth

positions X and x’ = HX.

Hx
— ~e » Image2

\

Xy

Image 1 H
X
X
d\
K
X
e(H,%) =

d(x, %)% + d(x', H%)?

» Problem: this has a lot of parameters: H, {X;}i=1.n

» The minimization is heavy in complexity and memory.




Sampson error

>

A method that linearizes the dependency on X in the gold
standard error so as to eliminate these unknowns.
Oe

0=¢(H,%) =€¢(H,x)+ J(X — x) with J = a—(H,x)
X

Find X minimizing ||x — %||? subject to J(x — %) = ¢
Solution: x — &% = JT(JJT)Le and thus:

Ix = R]|? = €T (JIT) e (1)

Here, €; = Ajh = x! x (Hx;) is a 3-vector.

For each i, there are 4 variables (x;, x!), so J is 3 x 4.

This is almost the algebraic error € e but with adapted scalar
product.

The resolution, through iterative method, must be initialized
with the algebraic minimization.
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Linear least squares problem

» For example, when we have more than 4 point
correspondences in homography estimation:

Anxsh=Bn m>38
> In the case of an overdetermined linear system, we minimize
e(X) = [|AX = BIP = [£(X)|]
» The gradient of € can be easily computed:
Ve(X) =2(ATAX — ATB)
» The solution is obtained by equating the gradient to 0:
X =(ATA)IATB

» Remark 1: this is correct only if AT A is invertible, that is A

has full rank.
» Remark 2: if A is square, it is the standard solution X = A~1B
» Remark 3: ACD = (AT A)~1AT is called the pseudo-inverse of

A, because ACDA = ly.



Non-linear least squares problem

» We would like to solve as best we can f(X) = 0 with £
non-linear. We thus minimize

e(X) = IF(X)II?
» Let us compute the gradient of e:
Ve(X) = 2JTF(X) with J;; = o
Ox;

» Gradient descent: we iterate until convergence
AX = —adTF(X), a >0

» When we are close to the minimum, a faster convergence is
obtained by Newton's method:

e(Xo) ~ e(X) + Ve(X)T(AX) + (AX)T(V2e)(AX)
and minimum is for AX = —(V?¢)"1Ve



Levenberg-Marquardt algorithm

» This is a mix of gradient descent and quasi-Newton method
(quasi since we do not compute explictly the Hessian matrix,
but approximate it).

» The gradient of € is

Ve(X) = 2JTF(X)

so the Hessian matrix of ¢ is composed of sums of two terms:
1. Product of first derivatives of f.
2. Product of f and second derivatives of f.

» The idea is to ignore the second terms, as they should be small
when we are close to the minimum (f ~ 0). The Hessian is
thus approximated by

H=2J7J
> Levenberg-Marquardt iteration:

AX =TI+ AM)HTF(X),A>0



Levenberg-Marquardt algorithm

» Principle: gradient descent when we are far from the solution
(X large) and Newton's step when we are close (A small).

1. Start from initial X and \ = 1073.
2. Compute

AX =TI+ M)ITF(X), A >0

3. Compare €(X + AX) and ¢(X):
3a If (X + AX) ~ ¢(X), finish.
3b If (X + AX) < e(X),

X+~ X+ALX X< A/10

3¢ If (X + AX) > ¢(X), A + 10X
4. Go to step 2.



Example of distortion correction

Results of Zhang:

l

Snapshot 2

Snapshot 1



Example of distortion correction

Results of Zhang:

Corrected image 1 Corrected image 2



Conclusion

» Calibration with a 3D rig is constraining, though the algorithm
is simple (resection).

» Calibration with a planar pattern is easier to implement.

» With distortion correction, we have a non-linear least squares
problem, which can be initialized with a linear minimization.

» The method of choice for non-linear least squares is
Levenberg-Marquardt.

» Gold standard error can be well approximated with Sampson
error, at a fraction of the complexity.
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Practical session: camera calibration

Objective: Implement Zhang's calibration (without distortion).
From a set of photographs of a planar pattern, recover K.

» Get initial program from the website.
» The points of the model and in the images are in files
model.txt and data?.txt
» Fill the function computek:
1. Build the 10 x 5 linear system satisfied by the coefficients of
K~TK~=1, supposing its (3,3) entry is 1.
2. Find the result by Cholesky decomposition.
» For comparison, | get:

871.024 0.153579 300.682
K= 0 870.678 220.872
0 0 1

> Zhang gets from the same data (but with distortion correction):

832.5 0.204494 303.959
K= 0 832.53  206.585
0 0 1

> You can see the distortion by looking at the snapshots.
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