Regeneration Theory
By H. NYQUIST

Regeneration or feed-back is of considerable importance in many appli-
cations of vacuum tubes. The most obvious example is that of vacuum tube
oscillators, where the feed-back is carried beyond the singing point. Another
application is the 21-circuit test of balance, in which the current due to the
unbalance between two impedances is fed back, the gain being increased
until singing occurs. Still other applications are cases where portions of
the output current of amplifiers are fed back to the input either unin-
tentionally or by design. For the purpose of investigating the stability of
such devices they may be looked on as amplifiers whose output is connected
to the input through a transducer. This paper deals with the theory of
stability of such systems.

PRELIMINARY DiscussioN

HEN theoutput of an amplifier is connected to the input through
a transducer the resulting combination may be either stable or
unstable. The circuit will be said to be stable when an impressed small
disturbance, which itself dies out, results in a response which dies out.
It will be said to be unstable when such a disturbance results in a
response which goes on indefinitely, either staying at a relatively small
value or increasing until it is limited by the non-linearity of the
amplifier. When thus limited, the disturbance does not grow further.
The net gain of the round trip circuit is then zero. Otherwise stated,
the more the response increases the more does the non-linearity decrease
the gain until at the point of operation the gain of the amplifier is just
equal to the loss in the feed-back admittance. An oscillator under
these conditions would ordinarily be called stable but it will simplify
the present paper to use the definitions above and call it unstable.
Now, this fact as to equality of gain and loss appears to be an accident
connected with the non-linearity of the circuit and far from throwing
light on the conditions for stability actually diverts attention from the
essential facts. In the present discussion this difficulty will be avoided
by the use of a strictly linear amplifier, which implies an amplifier of
unlimited power carrying capacity. The attention will then be
centered on whether an initial impulse dies out or results in a runaway
condition. If a runaway condition takes place in such an amplifier, it
follows that a non-linear amplifier having the same gain for small
current and decreasing gain with increasing current will be unstable as
well.
126
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STEADY-STATE THEORIES AND EXPERIENCE

First, a discussion will be made of certain steady-state theories: and
reasons why they are unsatisfactory will be pointed out. The most
obvious method may be referred to as the series treatment. Let the
complex quantity 4.J(iw) represent the ratio by which the amplifier and
feed-back circuit modify the current in one round trip, that is, let
the magnitude of A.J represent the ratio numerically and let the angle
of AJ represent the phase shift. It will be convenient to refer to 4.J
as an admittance, although it does not have the dimensions of the
quantity usually so called. Let the current

Iy = cos w! = real part of e (a)
be impressed on the circuit. The first round trip is then represented by

I, = real part of A Je' ()
and the nth by

I, = real part of AnJnelet, (¢)
The total current of the original impressed current and the first »
round trips is

I, = real part of (1 + AJ + A2T2 4 ... AnJn)ele, (d)

If the expression in parentheses converges as # increases indefinitely,
the conclusion is that the total current equals the limit of (d) as n
increases indefinitely. Now
1 — An+ljn+l

1+AJ+---A"J"=—_——1_£UT . (e)
If |AJ|< 1 this converges to 1/(1 — AJ) which leads to an answer
which accords with experiment. When |4J| > 1 an examination of
the numerator in (e) shows that the expression does not converge but
can be made as great as desired by taking » sufficiently large. The
most obvious conclusion is that when |AJ| > 1 for some frequency
there is a runaway condition. This disagrees with experiment, for
instance, in the case where AJ is a negative quantity numerically
greater than one. The next suggestion is to assume that somehow the
expression 1/(1 — AJ) may be used instead of the limit of (¢). This,
however, in addition to being arbitrary, disagrees with experimental
results in the case where AJ is positive and greater than 1, where the
expression 1/(1 — AJ) leads to a finite current but where experiment
indicates an unstable condition.
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The fundamental difficulty with this method can be made apparent
by considering the nature of the current expressed by (a) above.
Does the expression cos wt indicate a current which has been going on
for all time or was the current zero up to a certain time and cos wi
thereafter? In the former case we introduce infinities into our
expressions and make the equations invalid; in the latter case there will
be transients or building-up processes whose importance may increase
as n increases but which are tacitly neglected in equations (b) — (e).
Briefly then, the difficulty with this method is that it neglects the
building-up processes.

Another method is as follows: Let the voltage (or current) at any
point be made up of two components

V="Vi+ Vy (N

where V is the total voltage, V1 is the part due directly to the impressed
voltage, that is to say, without the feed-back, and V3 is the component
due to feed-back alone. We have

Vo= AJV. ()

Eliminating V. between (f) and (g)
V= V(1 — AJ). (k)

This result agrees with experiment when |AJ[<1 but does not
generally agree when AJ is positive and greater than unity. The
difficulty with this method is that it does not investigate whether or
not a steady state exists. It simply assumes tacitly that a steady
state exists and if so it gives the correct value. When a steady state
does not exist this method yields no information, nor does it give any
information as to whether or not a steady state exists, which is the
important point.

The experimental facts do not appear to have been formulated
precisely but appear to be well known to those working with these
circuits. They may be stated loosely as follows: There is an unstable
condition whenever there is at least one frequency for which AJ is
positive and greater than unity. On the other hand, when AJ is
negative it may be very much greater than unity and the condition is
nevertheless stable. There are instances of |AJ| being about 100
without the conditions being unstable. This, as will appear, accords
closely with the rule deduced below.
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NoTATION AND RESTRICTIONS
The following notation will be used in connection with integrals:

f;i(z)dz= lim f+m¢(z)dz, (1
I M=»J_ i

the path of integration being along the imaginary axis (see equation 9),
i.e., the straight line joining — M and + i0/f;

1A
ﬁ d(e)ds = lim [ @(s)ds, )

M=% J_qr

the path of integration being along a semicircle ! having the origin for
center and passing through the points — 401, M, iM;

fﬁ(z}dzz lim f_ur,ci(z)dz, (3)

AM—xm iM
the path of integration being first along the semicircle referred to and
then along a straight line from 717 to — iM. Referring to Fig. 1 it

Y
M

o
<
p<

—iM Z-PLANE

Fig. 1—Paths of integration in the z-plane.

IRAA @

The total feed-back circuit is made up of an amplifier in tandem
with a network. The amplifier is characterized by the amplifying
ratio 4 which is independent of frequency. The network is character-
ized by the ratio J(iw) which is a function of frequency but does not
depend on the gain. The total effect of the amplifier and the network
is to multiply the wave by the ratio 4J(iw). An alternative way of
characterizing the amplifier and network is to say that the amplifier is

! For physical interpretation of paths of integration for which x > 0 reference
is made to a paper by J. R. Carson, *‘ Notes on the Heaviside Operational Calculus,”’
B. S. T. J, Jan. 1930. For purposes of the present discussion the semicircle is
preferable to the path there discussed.

will be seen that
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characterized by the amplifying factor 4 which is independent of
time, and the network by the real function G(£) which is the response
caused by a unit impulse applied at time ¢ = 0. The combined effect
of the amplifier and network is to convert a unit impulse to the
function AG(f). Both these characterizations will be used.

The restrictions which are imposed on the functions in order that
the subsequent reasoning may be valid will now be stated. There is no
restriction on A4 other than that it should be real and independent of
time and frequency. In stating the restrictions on the network it is
convenient to begin with the expression G. They are

G(t) has bounded variation, — e <{ < 0. (AI)
G@i) =0, —w <t <0 (AII)
f | G(¢) | dt exists. (AIII)

It may be shown ? that under these conditions G(f) may be expressed
by the equation

GU) = 'z‘lﬁ f: T(iw)etd (i), (5)

where

T(iw) = f_ " Gletdt (6)

These expressions may be taken to define J. The function may,
however, be obtained directly from computations or measurements; in
the latter case the function is not defined for negative values of w. It
must be defined as follows to be consistent with the definition in (6):

J(— iw) = complex conjugate of J(iw). (7

While the final results will be expressed in terms of 4J(iw) it will be
convenient for the purpose of the intervening mathematics to define an
auxiliary and closely related function

oy 1 AT(e) .
w(z) = 7 ), P — zd(m}, 0 <x < 0, (8)
where
z=x+1y (9)

and where x and y are real. Further, we shall define
w(iy) = lim w(z). (10)
z=—>0

2 See Appendix 11 for fuller discussion.
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The function will not be defined for x < 0 nor for |z|= ®. As
defined it is analytic® for 0 < x < « and at least continuous for
x= 0.

The following restrictions on the network may be deduced:

lim v J(iy) | exists. (BI)
y—rm
J(iy) is continuous. (BII)
w(iy) = AJ(iy). (BIII)
Equation (5) may now be written
N = _1. o(z) et = .i J 2t
AGQH) = zm.j:n(a)e dz = z’ﬂ.js;n(z)e dz. (11)

From a physical standpoint these restrictions are not of consequence.
Any network made up of positive resistances, conductances, in-
ductances, and capacitances meets them. Restriction (AII) says that
the response must not precede the cause and is obviously fulfilled
physically. Restriction (AIII) is fulfilled if the response dies out at
least exponentially, which is also assured. Restriction (AI) says that
the transmission must fall off with frequency. Physically there are
always enough distributed constants present to insure this. This
effect will be illustrated in example 8 below. Every physical network
falls off in transmission sooner or later and it is ample for our purposes
if it begins to fall off, say, at optical frequencies. We may say then
that the reasoning applies to all linear networks which occur in
nature. It also applies to other linear networks which are not physi-
cally producible but which may be specified mathematically. See
example 7 below.

A temporary wave fo(t) is to be introduced into the system and an
investigation will be made of whether the resultant disturbance in the
system dies out. It has associated with it a function F(z) defined by

] | 2] — i e\ pz
folt) = mfj}(ﬂ)e ds = zﬂ.f# F(z)eds. (12)

F(z) and fo(t) are to be made subject to the same restrictions as w(z)
and G(f) respectively.

DERIVATION OF A SERIES FOR THE ToTAL CURRENT
Let the amplifier be linear and of infinite power-carrying capacity.
Let the output be connected to the input in such a way that the

®W. F. Osgood, *“Lehrbuch der Funktionentheorie,” 5th ed., Kap. 7, § 1, Haupt-
satz. For definition of “analytic” see Kap. 6, § 5.
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amplification ratio for one round trip is equal to the complex quantity
AJ, where A is a function of the gain only and J is a function of
only, being defined for all values of frequency from 0 to .

Let the disturbing wave fo(t) be applied anywhere in the circuit.
We have

-+
50 = gz [ Flia)ee (13)

or

5o) = 5 L Fls)esds, (13"

The wave traverses the circuit and on completing the first trip it
becomes

10 = 5 f w(ie) Fliw)é“de (14)
— L 0 zt ’
= 2T1.L'u(z)F(z)e dz. (14"
After traversing the circuit a second time it becomes
Fall) = o f Futerds (15)
2 2771 ot !

and after traversing the circuit # times

fall) = 2—1W-L f+ Furertdz, (16)

Adding the voltage of the original impulse and the first # round trips
we have a total of

sal) = 2, £i(0) = 5% L F(1 + w + « - wh)estds. an

The total voltage at the point in question at the time / is given by
the limiting value which (17) approaches as # is increased indefinitely *

s(t) = gofk(t) - ’}irzlmi%i L Sa(z)e*ds, (18)

where
F(1 — w)
1 —

# Mr. Carson has called my attention to the fact that this series can also be
derived from Theorem IX, p. 49, of his Electric Circuit Theory. Whereas the
present derivation is analogous to the theory expressed in equations (a)—(e) above,
the alternative derivation would be analogous to that in equations (f)-(k)-

S, = F+ Fw+ Fuw 4+ -+ Fu" = (19)
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CONVERGENCE OF SERIES

We shall next prove that the limit s(¢) exists for all finite values of £.
It may be stated as of incidental interest that the limit

f S« (2)ei*tdz (20)
o+

does not necessarily exist although the limit s(¢) does. Choose M, and
N such that

)| = Me  O0=Ar=01 (21)
|GE—N|=N. 0=rx=1 (22)

We may write 8
50 = [ 66— Nnman 23)
)] = f “MuNIN = MNL (24)

0
70 = [ 66 = Npoan 25)
ROIE f MNUudt = MyNUR/2) (26)
]
Similarly

| fulf) | = MoN®2/n! @n
[sa(f)| = Mo(1 + Nt + --- Nnn/nl). (28)

It is shown in almost any text ® dealing with the convergence of
series that the series in parentheses converges to e as n increases
indefinitely. Consequently, s,(f) converges absolutely as # increases
indefinitely.

RELATION BETWEEN s5(f) AND w

Next consider what happens to s(f) as ¢ increases. As ? increases
indefinitely s(/) may converge to zero, indicating a condition of
stability, or it may go beyond any value however large, indicating a
runaway condition. The question which presents itself is: Referring to
(18) and (19), what properties of w(z) and further what properties of
AJ(iw) defermine whether s(£) converges lo zero or diverges as ¢ increases

$G. A, Campbell, “Fourier Integral,” B. S. T". J., Oct. 1928, Pair 202.
¢ E.g., Whittaker and Watson, '“Modern Analysis,” 2d ed., p. 531.
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indefinitely? From (18) and (19)

eeptit1
() = lim = F(;— w )e"dz. (29)

o 2771 1—w 1 —w
We may write

s(t) = —f [F/(1 — w)]e*'dz — Inm —f [ Furt/(1 —w) Jez'dz (30)

provided these functions exist. Let them be called ¢y(f) and lim g.(¢)
respectively. Then

gu(t) = fm gt — N B(N)an. (31)
where -

60\ = 5% f+ et s, (32)

By the methods used under the discussion of convergence above it can
then be shown that this expression exists and approaches zero as n
increases indefinitely provided go(t) exists and is equal to zero for ¢ < 0.
Equation (29) may therefore be written, subject to these conditions

S(t) = = f [F/(1 — w)Je"ds. (33)

In the first place the integral is zero for negative values of ¢ because
the integrand approaches zero faster than the path of integration
increases. Moreover,

f[F/(l — w)Jetdz (34)

exists for all values of ¢ and approaches zero for large values of ¢ if
1 — w does not equal zero on the imaginary axis. Moreover, the
integral

f [F/(1 — w)]e"dz (35)
C
exists because

1. Since F and w are both analytic within the curve the integrand does
not have any essential singularity there,

2. The poles, if any, lie within a finite distance of the origin because
w — 0 as | z| increases, and

3. These two statements insure that the total number of poles is
finite.
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We shall next evaluate the integral for a very large value of £. It
will suffice to take the C integral since the I integral approaches zero.
Assume originally that 1 — w does not have a root on the imaginary
axis and that F(z) has the special value w%'(z). The integral may be

written
1
3 [ @/ = wlerds. (36)
c

Changing variables it becomes
1 -
EJD [1/(1 — w)Jetdu, (37)
where z is a function of w and D is the curve in the w plane which
corresponds to the curve C in the s plane. More specifically the

imaginary axis becomes the locus x = 0 and the semicircle becomes a
small curve which spirals around the origin. See Fig. 2. The function

W -PLANE

-

~———

Fig. 2—Representative paths of integraﬁipn 1in the w-plane corresponding to paths
in Fig. 1.

z and, therefore, the integrand is, in general, multivalued and the

curve of integration must be considered as carried out over the

appropriate Riemann surface.”

Now let the path of integration shrink, taking care that it does not
shrink across the pole at w = 1 and initially that it does not shrink
across such branch points as interfere with its passage, if any. This
shrinking does not alter the integral ® because the integrand is analytic
at all other points. At branch points which interfere with the passage
of the path the branches stopped may be severed, transposed and
connected in such a way that the shrinking may be continued past the
branch point. This can be done without altering the value of the
integral. Thus the curve can be shrunk until it becomes one or more
very small circles surrounding the pole. The value of the total integral

" Osgood, loc. cit., Kap. 8.
8 Osgood, loc. cit., Kap. 7, § 3, Satz 1.
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(for very large values of {) is by the method of residues *

=

4 rjcz’.tl (38)

H

where z; (j=1,2---n) is a root of 1 — w= 0 and 7, is its order.
The real part of z; is positive because the curve in Fig. 1 encloses
points with x > 0 only. The system is therefore stable or unstable
according to whether

n
27
i=1

is equal to zero or not. But the latter expression is seen from the
procedure just gone through to equal the number of times that the
locus ¥ = 0 encircles the point w = 1.

If 7 does not equal w’ the calculation is somewhat longer but not
essentially different. The integral then equals

F(ZJ)

=1 w(z,) (39)

if all the roots of 1 — w = 0 are distinct. If the roots are not distinct
the expression becomes

n ry
XL Ao (40)

where 4., at least, is finite and different from zero for general values
of F. It appears then that unless F is specially chosen the result is
essentially the same as for F = w'. The circuit is stable if the point
lies wholly outside the locus x = 0. It is unstableif the point is within
the curve. It can also be shown that if the point is on the curve
conditions are unstable. We may now enunciate the following

Rule: Plot plus and minus the imaginary part of AJ(iw) against the
real part for all frequencies from 0 to «. If the pm’nt 1 + 10 lies com-
pletely outside this curve the system is stable; if not it 15 unstable.

In case of doubt as to whether a point is inside or outside the curve
the following criterion may be used: Draw a line from the point

(w=1, v=0) to the point z= — i. Keep one end of the line
fixed at (# = 1, v = 0) and let the other end describe the curve from
s = —{iw toz = i, these two points being the same in the w plane.

If the net angle through which the line turns is zero the point (# = 1,
= 0) is on the outside, otherwise it is on the inside.
If AJ be written |AJ|(cos 6 + i sin 6) and if the angle always

9 Osgood, loc. cit., Kap. 7, § 11, Satz 1.
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changes in the same direction with increasing w, where « is real, the
rule can be stated as follows: The system is stable or unstable according
to whether or not a real frequency exists for which the feed-back ratio is
real and equal to or greater than unity.

In case df/dw changes sign we may have the case illustrated in Figs. 3
and 4. In these cases there are frequencies for which w is real and

\'
P 0
w=0/ (‘b@v)v ~ u

\ N “”\-/:l
\ /

N, 7/

\\ | //

S~ | -~ W-PLANE

Fig. 3—Illustrating case where amplifying ratio is real and greater than unity
for two frequencies, but where nevertheless the path of integration does not include
the point 1, 0.

greater than 1. On the other hand, the point (1, 0) is outside of the
locus x = 0 and, therefore, according to the rule there is a stable
condition.

W=PLANE

Fig. 4—Tllustrating case where amplifying ratio is real and greater than unity
for two frequencies, but where nevertheless the path of integration does not include
the point 1, 0.

If networks of this type were used we should have the following
interesting sequence of events: For low values of 4 the system is in a
stable condition. Then as the gain is increased gradually, the system
becomes unstable. Then as the gain is increased gradually still
further, the system again becomes stable. As the gain is still further
increased the system may again become unstable.
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EXAMPLES

The following examples are intended to give a more detailed picture
of certain rather simple special cases. They serve to illustrate the
previous discussion. In all the cases F is taken equal to 4J so that
fois equal to AG. This simplifies the discussion but does not detract
from the illustrative value.

1. Let the network be pure resistance except for the distortionless
amplifier and a single bridged condenser, and let the amplifier be such
that there is no reversal. We have

. B
AJ(iw) = T Tia’ (41)
where A and « are real positive constants. In (18) '
= ._1... n+l fn+1(7 dwt 17
fn= 2mi ), At It (jw) e diw (42)
= Be ! (B*[nl).
s(f) = Be (1 + Bt + B¥/2! + ---). (43)

The successive terms fy, fi, etc., represent the impressed wave and the
successive round trips. The whole series is the total current.

It is suggested that the reader should sketch the first few terms
graphically for B = «, and sketch the admittance diagrams for B < «,
and B > a.

The expression in parentheses equals ¢# and

s(f) = Be—t, (44)

This expression will be seen to converge to 0 as ¢ increases or fail to do
so according to whether B < a or B =a. This will be found to check
the rule as applied to the admittance diagram.
2. Let the network be as in 1 except that the amplifier is so arranged
that there is a reversal. Then
— B
a + iw ’

fa = (— 1)"HBe—=(Bmir[n!). (46)

AT (iw) = (45)

The solution is the same as in 1 except that every other term in the
series has its sign reversed:
s(t) = — Be (1 — Bt + B¥}2! + --+)
= — Beta-b, (47)
10 Campbell, loc. cit. Pair 105.
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This converges to 0 as ¢ increases regardless of how great B may be
taken. If the admittance diagram is drawn this is again found to check
the rule.

3. Let the network be as in 1 except that there are two separated
condensers bridged across resistance circuits. Then

B2

The solution for s(f) is obtained most simply by taking every other
term in the series obtained in 1.

s(t) = Be=(Bt + B¥%*3! 4 -- )
= Be " sinh Bi. (49)

4. Let the network be as in 3 except that there is a reversal. Then

— B2

AJ(’IIW) = m . (50)

The solution is obtained most directly by reversing the sign of every
other term in the series obtained in 3.
s(t) = — Be (Bt — B¥3/3! 4+ - )
= — Be ™ sin Bt. (51)

This is a most instructive example. An approximate diagram has
been made in Fig. 5, which shows that as the gain is increased the

Fig. S—Illustrating Example 4, with three values for B.
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feed-back ratio may be made arbitrarily great and the angle arbitrarily
small without the condition being unstable. This agrees with the
expression just obtained, which shows that the only effect of increasing
the gain is to increase the frequency of the resulting transient.

5. Let the conditions be as in 1 and 3 except for the fact that four
separated condensers are used. Then

B4

(@ + 1w)*

AJ(iw) = (52)

The solution is most readily obtained by selecting every fourth
term in the series obtained in 1.
s(t) = Be(B%/3! + BT + -+ +)
= 1Be (sinh Bt — sin B#). (53)
This indicates a condition of instability when B = «, agreeing with the

result deducible from the admittance diagram.
6. Let the conditions be as in 5 except that there is a reversal.

Then
—_— 4
Y B (54)

CEXDN

The solution is most readily obtained by changing the sign of every
other term in the series obtained in 5.

s(f) = Be—i(— B3] + BT — ---). (55)

W - PLANE

Fig. 6—Illustrating Example 6, with two values for B.
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For large values of ¢ this approaches

s(t) = — 1BetNIt gin (BiN2 — /4). (56)

This example is interesting because it shows a case of instability
although there is a reversal. Fig. 6 shows the admittance diagram for

BV2 — a < 0and for BY2 — a > 0.

7. Let
AG) = fo(t) = A(1 — 1), 0=¢t=1. (57)
AG@) = fo(t) = 0, —® <t<0, 1 <t<w,  (37)

We have

AJ(iw) = Afl(l — e t'dt
0

1—et 1
=4 ( - + E) . (58)
Fig. 7 is a plot of this case for 4 = 1.
v
/”’——H\\
/, \\\
\\
\
< \\
0 [T 1,0

W -PLANE

Fig. 7—Illustrating Example 7.
8. Let
Al + iw)

AJ(’IQ) = (1—_’_12'00—)- .

(59)
This is plotted on Fig. 8 for 4 = 3. It will be seen that the point 1
lies outside of the locus and for that reason we should expect that the
system would be stable. We should expect from inspecting the dia-
gram that the system would be stable for 4 < 1and 4 > 2 and that it
would be unstable for 1 =4 = 2. We have overlooked one fact,
however; the expression for A.J(iw) does not approach zero as w
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increases indefinitely. Therefore, it does not come within restriction
(BI) and consequently the reasoning leading up to the rule does not
apply.

The admittance in question can be made up by bridging a capacity
in series with a resistance across a resistance line. This admittance

v

W - PLANE

Fig. 8—Illustrating Example 8, without distributed constants.

obviously does not approach zero as the frequency increases. In any
actual network there would, however, be a small amount of distributed
capacity which, as the frequency is increased indefinitely, would cause
the transmission through the network to approach zero. This is
shown graphically in Fig. 9. The effect of the distributed capacity is

W-PLANE

Fig. 9—Illustrating Example 8, with distributed constants.

essentially to cut a corridor from the circle in Fig. 8 to the origin, which
insures that the point lies inside the locus.

ApPPENDIX I

Alternative Procedure
In some cases 4J(iw) may be given as an analytic expression in
(iw). In that case the analytic expression may be used to define w for
all values of z for which it exists. If the value for 4.J(iw) satisfies all
the restrictions the value thus defined equals the w defined above for
0=x < ® only. For — o < x < 0 it equals the analytic continu-
ation of the function w defined above. If there are no essential
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singularities anywhere including at o, the integral in (33) may be
evaluated by the theory of residues by completing the path of inte-
gration so that all the poles of the integrand are included. We then
have

J=n 1;
s() = 3 Apblet, (60)
i=1 k=1
If the network is made up of a finite number of lumped constants there
is no essential singularity and the preceding expression converges
because it has only a finite number of terms. In other cases there is an
infinite number of terms, but the expression may still be expected to
converge, at least, in the usual case. Then the system is stable if all
the roots of 1 — w = 0 have x < 0. If some of the roots have x = 0
the system is unstable.
The calculation then divides into three parts:
1. The recognition that the impedance function is 1 — .1
2. The determination of whether the impedance function has zeros
for which x = 0.12

W -PLANE

Fig. 10—Network of loci x = const., and y = const.

3. A deduction of a rule for determining whether there are roots for
which & = 0. The actual solution of the equation is usually too
laborious.

To proceed with the third step, plot the locus x = 0 in the w plane,
i.e., plot the imaginary part of w against the real part for all the
values of ¥, — @ <y < «., See Fig. 10. Other loci representing

x = const. (61)
and
y = const. (62)

u Cf. H. W. Nichols, Phys. Rev., vol. 10, pp. 171-193, 1917,
12 Cf. Thompson and Tait, ““Natural Philosophy,” vol. I, § 344.
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may be considered and are indicated by the network shown in the
figure in fine lines. On one side of the curve « is positive and on the
other it is negative. Consider the equation

w(Ez —1=0

and what happens to it as 4 increases from a very small to a very large
value. At first the locus x = 0 lies wholly to the left of the point.
For this case the roots must have x < 0. As A increases there may
come a time when the curve or successive convolutions of it will sweep
over the point w = 1. For every such crossing at least one of the
roots changes the sign of its x. We conclude that if the point w = 1
lies inside the curve the system is unstable. It is now possible to
enunciate the rule as given in the main part of the paper but there
deduced with what appears to be a more general method.

AprpEnDIX II

Discussion of Restrictions
The purpose of this appendix is to discuss more fully the restrictions
which are placed on the functions defining the network. A full
discussion in the main text would have interrupted the main argument
too much.
Define an additional function

ne) = 5 j; ‘f{f’g diN), — o <x <0 (63)

n{iy) = lim0 n(z).

This definition is similar to that for w(z) given previously. It isshown
in the theorem B referred to that these functions are analytic for
x # 0if AJ(iw) is continuous. We have not proved, as yet, that the
restrictions placed on G(¢) necessarily imply that J(iw) is continuous.
For the time being we shall assume that J(iw) may have finite dis-
continuities. The theorem need not be restricted to the case where
J(iw) is continuous. From an examination of the second proof it will

be seen to be sufficient that f J(iw)d(iw) exist. Moreover, that proof
I

can be slightly modified to include all cases where conditions (AI)-
(AIII) are satisfied.

13 Osgood, loc. cit.
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For, from the equation at top of page 298 13

w(zy — Az) — w(z) AJTEN)
Az 21r1f( z)zd( M}

AJTEN(EN)
f(q?\ — 25 — Az) (4N — z)2

=4z

) x0 > 0. (64)

It is required to show that the integral exists. Now
) AJT(AN)d(N)
L (IN — 20 — Az) (1N — z)?
AJT(@N)d(iN) Asz?
(I — z)? (1+1)\—z + i — g

if Az is taken small enough so the series converges. It will be sufficient
to confine attention to the first term. Divide the path of integration
into three parts,

-+ etc.) (65)

— <A — || —1, — 20| =1 <A< 20| +1, [z0] F1 <A< 0,

In the middle part the integral exists because both the integrand and
the range of integration are finite. In the other ranges the integral
exists if the integrand falls off sufficiently rapidly with increasing A.
It is sufficient for this purpose that condition (BI) be satisfied. The
same proof applies to n(z).
Next, consider lim(J w(z) = w(iy). If iy is a point where J(iy) is
T—>

continuous, a straightforward calculation yields

w(iy) = AJ(iy)/2 + P(iy). (66a)
Likewise,

n(iy) = — AJ(iy)[2 + P(iy) (66b)
where P(iy) is the principal value '* of the integral

AT (r)\)
271 f i\ — d( N).
Subtracting
w(iy) — n(iy) = AJ(iy) (67)

f (iy) is a point of discontinuity of J(iy)
[w| and |#| increase indefinitely as x — 0. (68)

Next, evaluate the integral

1
-— w(z)eds,
2mi iy

1 E. W. Hobson, “ Functions of a Real Variable,” vol. I, 3d edition, § 352.
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where the path of integration is from x — 7% to x + 4% along the
line x = const. On account of the analytic nature of the integrand
this integral is independent of x (for x > 0). It may be written then

im L [ w(@erds = lim ~— f f“” (N et (inyde
e 27

r—>0 2‘1T‘l oy z—>0 27I"?z

fy—1id iy-+18
= lim — ! f 21 lim [f + +f ]AJ(M) e*td(iN)dz
=0 2mi -+ T p—m M o y—id o/ ty+15 i

LU AT _

y—16

where 6 is real and positive. The function Q defined by this equation
exists for all values of ¢ and for all values of 8. Similarly,

lim 21— n(z)e*'ds
z—0 &1 1
whis 4 J( m et in)ds _
[11_:3] 21rzf+,21r1 L.Hs S estd(iN)ds + QU 6)], x<0, (70)

Subtracting and dropping the limit designations
I 1 1 sy g s
= w(z)etds — s— n(z)etds = z— fAJ(t)\)e'“d(th). (71)
2 -L+J 2 ),y 2mi ),

The first integral is zero for ¢ < 0 as can be seen by taking  sufficiently
large. Likewise, the second is equal to zero for ¢ > 0. Therefore,

1 1 iy
g | w5 f, AT(iw)ed(io) = AG(H), 0<t<wo (72)

1 ‘j'
- — n(z)etds
2m z41

- z—ingJ(m)ewd(@'w) — AG() — o <1 <0. (13)
I
We may now conclude that

f n(iy)end(iy) = 0, — o <t<w® (74)
1

provided
G{t) =0, —w < <0. (AII)

But (74) is equivalent to
n(z) =0, (74")
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which taken with (67) gives
w(ty) = AJ(iy). (BIII)

(BIII) is, therefore, a necessary consequence of (AII). (74') taken
with (68) shows that
J(iy) is continuous. (BII)

It may be shown '® that (BI) is a consequence of (AI). Conse-
quently all the B conditions are deducible from the A conditions.

Conversely, it may be inquired whether the 4 conditions are
deducible from the B conditions. This is of interest if AJ(iw) is given
and is known to satisfy the B conditions, whereas nothing is known
about G.

Condition AII is a consequence of BIII as may be seen from (67)
and (74). On the other hand AI and AIII cannot be inferred from
the B conditions. It can be shown by examining (5), however, that
if the slightly more severe condition

lim v*J(iy) exists, (v > 1), (Bla)
y—rw

is satisfied then
G(t) exists, —o <t < w, (Ala)

which, together with AII, insures the validity of the reasoning.

It remains to show that the measured value of J(iw) is equal to that
defined by (6). The measurement consists essentially in applying a
sinusoidal wave and determining the response after a long period. Let
the impressed wave be

= real part of e®, t=0. (75)

E
E =0, t <0. (75"

The response is
L
real part off AG(N)e*—M dx
0

(14
= real part of Ae"‘"j G(\Ne M\, (76)
0

For large values of ¢ this approaches
real part of Ae"™'J(iw). (77

Consequently, the measurements yield the value 4 J(iw).

15 See Hobson, loc. cit., vol. 11, 2d edition, § 335. It will be apparent that K de-
pends on the total variation but is independent of the limits of integration.



