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Side note: Cluny abbey

Applications to virtual tourism, video games, film industry...

virtual



  

Renaud Marlet (ENPC) – 2012-2013 23

Problem 4: 3D model construction (cont.)
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Problem 4: 3D model construction (cont.)
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Problem 4: 3D model construction (cont.)
Two main tasks

● External camera calibration
= determination of pose (i.e., location and orientation) 
of each camera in a common coordinate system

− requires corresponding points 
in several images
 detection and matching 
of salient points

● Dense 3D reconstruction
= by triangulation, given camera pose
(!) not restricted to salient points only

− requires matching image patches 
in several images
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Question

Suppose you are given two views of an object.

What can be obstacles to feature detection & matching?
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Robustness / repeatability issues

Obstacles to detection and matching :

− change of scale

− change of orientation (rotation)

− change of viewpoint (affine, projective transformations)

− change of illumination

− noise

− clutter & occlusion

− repetitive patterns

 Design of robust similarity measures, detector and
        descriptors/matchers
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Wrap-up: Problems to address

● Similarity measures

− how to compare image patches?

● Salient point detection

− what are singular patches?

● Salient point matching

− how to abstract patches and compare abstraction?

● … in a robust way
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A similar setting: tracking

● Problem: in a video

− maintain a set of correspondences

● Solution 1: naïve approach

− detect features in all images (frames) and match them

● Solution 2: tracking approach

■ limited movement between successive frames 

■ next displacement can be anticipated from previous motion

− in frame 1, detect features

− in following frames, look for corresponding features
(or similar image patches) only where expected
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Common similarity measures

− P (or P
p
): patch of pixels around given point p in image I

− x
q
 = (x,y): position of pixel q   P in image I

− u = (u,v): displacement of patch P in image I' 

− N.B. smaller value  more similar (0  equal)

● Sum of square difference (SSD) [similar ↘]

− E
SSD

(P
 
;

 
u) = ∑

q P
 [I'(x

q
+u) ­ I(x

q
)]2 

● Cross correlation (CC)  [similar ↗]

− E
CC

(P
 
;

 
u) = ∑

q  P
 [I'(x

q
+u) I(x

q
)]

meaningful mainly if normalized (see below) 

● Auto-correlation (AC): single image I = I'
− E

AC
(P

 
;

 
u): applies to E

SSD
(P

 
;

 
u) or E

CC
(P

 
;

 
u) 

u

P

patch P
centered on p

p

q

P
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Auto-correlation surfaces

− AC surface = P fixed: E
AC

(u)

− original image:

red crosses = locations of 
AC surface computation

     Q1: Which AC surface
corresponds to
which cross ?

     Q2: Which surface
corresponds to a
distinctive feature ?

Szelisky 201
0 ©

 Sp
rin

ger

(a) (b) (c)
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Auto-correlation surfaces

Szelisky 201
0 ©

 Sp
rin

ger

− AC surface = P fixed: E
AC

(u)

− original image:

red crosses = locations of 
AC surface computation

    

− (a): textured patch,
good unique minimum

− (b): patch with edge,
1D aperture problem
(↔ barber-pole illusion)

− (c): textureless, no peak  
(a) (b) (c)

 

(a)

(b)

(c)
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Two uses of local similarity measures

● Correspondence assessment

− If a patch P
1
 around point p

1
 in image I is similar 

to a patch P
2
 around point p

2
 in image I',

then p
1
 and p

2
 are potential matches.

● Saliency for detection

− A point that is dissimilar to other points 
in its neighborhood is salient, 
and thus “detected”.



  

Renaud Marlet (ENPC) – 2012-2013 34

Auto-correlation for detection
(Moravec 1980)

● Directional variance

− E
AC

(P
 
;

 
u) = ∑

q P
 [I(x

q
+u)­I(x

q
)]2 

■ patch P: square window (typ. 4x4 to 8x8)

■ 4 directions: u ∈ U = {(0,1),(1,0),(1,1)(1,-1)}

● Interest points

− s.t. min
u U

(E
AC

(P
 
;

 
u)) above threshold and local maximum

(typ. 8 neighbors)

● Why is called a “corner” detector?

threshold = seuil

Sz
el

is
ky

 2
01

0 
©
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ri

n
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Auto-correlation for detection
(Moravec 1980)

● Directional variance

− E
AC

(P
 
;

 
u) = ∑

q P
 [I(x

q
+u)­I(x

q
)]2 

■ patch P: square window (typ. 4x4 to 8x8)

■ 4 directions: u ∈ U = {(0,1),(1,0),(1,1)(1,-1)}

● Interest points 

− s.t. min
u U

(E
AC

(P
 
;

 
u)) above threshold and local maximum

(typ. 8 neighbors) 

− “corner” 
detector

Fair performance, some problems...

threshold = seuil

Pa
rk

s 
&

 G
ra

ve
l @

 M
cG

ill
 U

. 
Sz

el
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ky
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0

©
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n
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Auto-correlation for detection
(Harris-Stephens 1988)

● Pb 1 (in Moravec): discrete set of shifts → anisotropic

● Solution: analytic expansion (Taylor, 1st order) 

A
P
: auto-correlation matrix

(cf. second-moment matrix, structure tensor)

I (x q+Δu)≈ I (x q)+∇ I (x q) Δu

E AC (P ;Δu)=∑q∈P
[ I (x q+Δu)− I ( xq)]

2

≈∑q∈P
[∇ I ( xq) Δu ]2 = Δu

T
AP Δu

AP = [ ∑q∈P
I x

2( xq) ∑q∈P
I x (x q) I y( xq)

∑q∈P
I x(xq) I y(x q) ∑q∈P

I y
2 (x q) ] with

I x(xq) =
∂ I
∂ x

( xq)

I y ( xq) =
∂ I
∂ y

( xq)
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Auto-correlation for detection
(Harris-Stephens 1988)

● Pb 2: rectangular binary window → noisy, anisotropic

● Solution: use smooth circular window, e.g., Gaussian

 insensitive to in-plane rotation

E AC(P ;Δu)=∑q∈P
w (x q) [ I (x q+Δu)−I (x q)]

2

≈∑q∈P
w( xq) [∇ I (x q) Δu ]2 = Δu

T
AP Δu

AP =∑q∈P (w∗ [ I x
2 I x I y

I x I y I y
2 ])(x q)

e.g., w (x q) = G (x , y ;σ) =
1

2πσ2
e
−

x 2+ y2

2σ2
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Auto-correlation for detection
(Harris-Stephens 1988)

● Pb 3: min
u
(E

AC
(P

 
;

 
u)) → too many edge responses

● Solution:

− keep only marked peaks 

− for this, look at local curvature

Sz
el

is
ky

 2
01

0 
©
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p

ri
n
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Curvature

● Curvature k of plane curve C at point P

= 1/r where r radius of osculating circle

● Principal curvatures k
1
 and k

2
 of surface S(u,v) at P 

= max & min value of curvature for different normal planes
− sign convention: + if turns in same direction as chosen normal

= eigenvalues of Hessian of S
   (shape operator) at P

© Gaba 2006

planes 

of principal 

curvatures

normal 

vector

tangent 

plane

H (S )=[
∂2 S

∂u 2

∂2 S
∂u∂ v

∂2 S
∂u∂ v

∂2 S

∂ v2 ]

curve = courbe
curvature = courbure
osculating circle = cercle osculateur
principal curvature = courbure principale
eigenvalue = valeur propre
Hessian (matrix) = (matrice) hessienne
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Auto-correlation for detection
(Harris-Stephens 1988)

● Pb 3: min
u
(E

AC
(P ; u)) → too many edge responses

● Solution: look at local curvature of E
AC

− E
AC

(P ; u) ≈ uT A
P
 u  for u small (2nd order discarded)

− (H(E
AC

))(P) ≈ A
P

− principal curvatures: eigenvalues 
0
, 

1
 of A

P
  

( rotational invariance description of A
P
)

(a) 
0
, 

1
 large: E

AC
 sharply peaked → corner

(b) 
0
 small, 

1
 large: E

AC
 ridged shape → edge

(c) 
0
, 

1
 small: E

AC
 flat → +/- constant intensity 


0


1

Harris & Stephens 1988 © The Plessey Company

peak = pic
sharp = tranchant, aigu, marqué...
ridge = crête
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Eigenvalue-based criteria

● Good features to track (Shi & Tomasi 1994)

larger uncertainty ↔ smaller eigenvalue 
0
 

☛ look for maxima in smaller eigenvalue 
0

Szelisky 2010 © Springer
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Eigenvalue-based criteria (cont.)

Avoid explicit eigenvalue decomposition (square root)

☛ only use determinant and trace of A 

● Corner response (Harris-Stephens 1988)

R = det(A) – α tr(A)2 = 
0


1
 – α (

0
 + 

1
)2  

with  α = 0,06    (common: 0,04 ≤ α ≤ 0,15)

● Corner strength (Brown et al. 2005): harmonic mean

  smoother response in the region where 
0
≈ 

1
 

[see also SIFT detector below]

f =
det(A)
tr (A)

=
λ0λ1

λ0+λ1
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Computations for the so-called
“Harris corner detector”

● Compute for each point p and corresponding patch P:

then consider criterion based on det(A), tr(A)

● Is this computation efficient?
How to compute it efficiently?

AP =∑q∈P (w∗ [ I x
2 I x I y

I x I y I y
2 ])(xq)

where  I x(x q)=
∂ I
∂ x

(xq) ,  I y(x q)=
∂ I
∂ y

(x q)

w (xq) = G (x , y ;σ )=
1

2πσ2
e
−x2+y 2

2σ2
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Differentiating in the presence of noise
Seitz @

 U
. W

as h
in

gto
n

f (x )

d
dx

f (x)

Edge not noticeable because of noise
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Differentiating in the presence of noise

f

g

f ∗g

d
dx

( f ∗g )● Look for peak of

● Smooth first Seitz @
 U

. W
as h

in
gto

n
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Efficient Differentiation

d
dx

( f ∗g )= d
dx

(g∗ f ) = ( d
dx

g )∗ f = f ∗ d
dx

g

f

d
dx

g

f ∗ d
dx

g

● Associativity   smaller size masks  less computations
  (similar to clever associativity for efficient matrix multiplication) 

● Property of 
   differentiation
   and convolution

Seitz @
 U

. W
as h

in
gto

n
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Algorithm for the so-called
“Harris corner detector”

● For each p of I, compute the derivatives I
x
(x

p
) and I

y
(x

p
)

■ convolve operators d
x
 = [-½ 0 ½] and d

y
 = [-½ 0 ½]T  with

smoothing “derivation” Gaussian (e.g., 
d
 = 1)  derivative masks

■ convolve I with the derivative masks  I
x
 and I

y
  

■ using 1D-convolutions only (1D-Gaussian and 1D-derivation),
not 2D-convolutions  more efficient   [see slides on convolution]

● For each p, compute product of derivatives I
x
2, I

x
I

y 
, I

y
2 

■ and extra smoothing with an “integration” Gaussian (e.g., 
i
 = 2) 

● For each p, consider auto-correlation matrix
■ compute “corner response”
■ response above threshold and local maximum  detection
■ possibly: only keep locally significant responses (see ANMS below)
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Image boundary effects

● Padding strategies (aka wrapping mode, texture addressing mode)

− pad with 0 (or constant), wrap (loop around), clamp 
(replicate edge pixel), mirror (reflect pixels across edge)

− or discard results close to boundary...

Szelisky
20

10 ©
 Sp

rin
gerBlurring

examples :
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Adaptive non-maximal suppression 
(ANMS)

● Problem: local maxima
 uneven distribution

− denser in regions 
of higher contrast

● Sol.: only keep locally 
significant responses
− greater (e.g. 10%+)

than all neighbors
within given radius r 

− choose r such that
n detections only: 
r

p
 = min

q detection
 || x

p
 ‒ x

q
 ||  such that f(x

p
) < 0.9 f(x

q
) 

B
ro

w
n

 e
t 

al
. 2

00
5 

©
 IE

EE

Brown et al. 2005
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Adaptive non-maximal suppression 
(ANMS)

x
p

x
q

such that f(x
p
) < c f(x

q
)

x
q'
 such that  f(x

p
) < c f(x

q'
)

x
q''

such that f(x
p
) ≥ c f(x

q''
)

r
p
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An Algorithm for ANMS

r
min

 = ∞

ProcessedPoints = 
sort detections by decreasing strength

for each detection p, in decreasing strength order

 r
p
 = min

q ∈ ProcessedPoints
 || x

p
 ‒ x

q
 ||  such that  f(x

p
) < c f(x

q
)

 (= suppression radius w.r.t. ProcessedPoints)

 if r
p
 < r

min
 then

 r
min

 = r
p
 

add p to ProcessedPoints

 stop when |ProcessedPoints| = number of requested detections

// Quadratic in number of points. (There are subquadratic algorithms.)
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Sensitivity to change of scale

What is salient at some scale is not at another scale
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Robustness / repeatability issues

● Obstacles to detection and matching :

− change of scale

− change of orientation (rotation)

− change of viewpoint (affine, projective transformations)

− change of illumination

− noise

− clutter & occlusion

− repetitive patterns

 Design of robust similarity measures, detector and
        descriptors/matchers

What is the expected 
repeatability of Harris corner ?



  

Renaud Marlet (ENPC) – 2012-2013 54

Some repeatability measures

● Setting  (Schmid et al. 2000, Mikolajczyk & Schmid 2001, 2002)

− images of planar scenes

− known homography and scale transformations

● Location error

− detected points x
a
 in I , x

b
 in I'

− I and I' related by homography H:  I = H(I') 

− 
pos

 = || x
a
­H x

b
 ||     1.5 (e.g.) means success

● Scale error

− scale ratio within given factor, e.g. 1.2, means success
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Some repeatability measures (cont.)

● Affinity error

− Ĥ local affine approximation of H at point x
b
 

− 
A
 and 

B
 elliptical regions defined by  xTMx ≤ 1 

corresponding to Harris correlation matrices A and B 

− Jaccard distance

−  
surf

  0.2 (e.g.) means success

ϵsurf = 1−
μA∩(Ĥ

TμB Ĥ )

μA∪( Ĥ TμB Ĥ )


