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Computing evolution



Mapa Conceptual



CPS: a definition?
● Cyber – computation, communication, and control 

that are discrete, logical, and switched
● Physical – natural and human-made systems 

governed by the laws of physics and operating in 
continuous time

● Cyber-Physical Systems – systems in which the 
cyber and physical systems are tightly integrated 
at all scales and levels
– Change from cyber merely applied on physical

– Change from physical with COTS “computing as parts” mindset

– Change from ad hoc to grounded, assured development



CPS: a definition?
● Integration of physical systems and 

processes with networked computing

● Computations and communications are 
deeply embedded in, and interacting with 
physical processes to equip physical systems 
with new capabilities

● Covers a wide range of scale (pacemakers to 
national power grid)



Computing in CPS



Application Domains of Cyber-
Physical Systems
● Healthcare

– Medical devices

– Health management networks

● Transportation
– Automotive electronics

– Vehicular networks and smart 
highways

– Aviation and airspace 
management

– Avionics

– Railroad systems

● Process control

● Large-scale 
Infrastructure
– Physical infrastructure 

monitoring and control

– Electricity generation and 
distribution

– Building and environmental 
controls

● Defense systems
● Tele-physical operations

– Telemedicine

– Tele-manipulation



Industria 4.0



CPS characteristics
● Cyber capability in every physical component
● Networked at multiple and extreme scales
● Complex at multiple temporal and spatial scales
● Constituent elements are coupled logically and physically
● Dynamically reorganizing/reconfiguring; “open systems”
● High degrees of automation, control loops closed at many 

scales
● Unconventional computational & physical substrates 

(such as bio, nano, chem, ...)
● Operation must be dependable, certified in some cases



Confluence of diverse areas



Realistic (Integrated) Solutions
● CPS must tolerate

– Failures

– Noise

– Uncertainty

– Imprecision

– Security attacks

– Lack of perfect synchrony

– Scale

– Openness

– Increasing complexity

– Heterogeneity

– Disconnectedness



Challenges Arise
● Assumptions underlying distributed systems 

technology has changed dramatically
– New abstractions needed

– Wired => wireless

– Unlimited power => limited power

– User interface (screen/mouse) => sensors/real world 
interface

– Fixed set of resources => resources are dynamically 
added/deleted

– Each node is important => aggregate behavior is important

– Location unimportant => location is critical



New Theories
● Compositional
● Control Theory
● Optimization
● Real-Time
● Integration Issues
● Openness, Mobility, Uncertainty, 

Concurrency, Noise, Faults, Attacks, Self-
Healing, etc.



Embedded Systems
• Embedded system: computing systems designed for a 

specific purpose.
• Embedded systems are everywhere!



Embedded Systems are getting more complex

• Modern high-end cars have over 
one hundred processors.

• Increasing number of sensors, 
actuators, smart control, GUI..

• Intelligent data fusion.
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… are more Interconnected

• Command-and-control 
network – real-time 
integration of vehicles, 
people, command.

• Geotagging: useful or 
scary?

+

• Many other examples
– Power Grid
– Medical systems
– Transportation 
– Etc.



CPS – the next evolution
• Cyber-physical systems: integration of computation with 

physical processes.
• Still build on top of embedded computing systems.
• Interaction with the physical environment is promoted to 

a “first class citizen”.
• Promotes interaction and integration of subsystems

– Classic safety-critical embedded systems: black 
boxes

– CPS: white-boxes, open protocols
• Main goals: 

– Co-design the cyber and physical part of the system 
– Engineer a “system of systems”



CPS as multidisciplinary approach
• Within ECE, CPS design requires competences in…

– Computer Architecture
– CAD & Embedded Design
– Software Engineering
– Control
– Formal Verification
– Real-Time Analysis

• … plus whatever engineering field(s) are related to the 
design of the plant/actuator.

• Problem: all such field and subfields have very different 
design & development conventions.

• Perhaps we need a new science of CPS design?



El proceso de diseño de un SCF



CPS Challenges – Design Abstractions

• We could argue that the biggest design challenge is in 
abstractions – the entire ECE design is a stack-based 
process.

(from Prof. Edward Lee)

• Unfortunately, most such 
abstractions  do not directly 
encapsulate characteristics 
of the environment such as:
– Concurrency
– Criticality
– Timing

• It is very hard to predict if 
the cyber part will meet the 
requirements of the 
physical part!



Current Design Flow
• The picture below exemplifies a typical design flow for an 

avionic subsystem.
• Analysis is required to verify that requirements are met.
• Analysis can only be performed after implementation.
• Recipe for disaster!



Reliable CPS: not so much!

• In 2007, 12 F-22s 
were going from 
Hawaii to Japan.

• After crossing the IDL, 
all 12 experienced 
multiple crashes.
– No navigation
– No fuel subsystems
– Limited 

communications
– Rebooting didn’t 

help

• F-22 has 1.7 million 
lines of code.

F-22 RaptorF-22 Raptor



Example: Automotive Telematics



CPS Challenges - Safety
• Safety is hard to guarantee in interconnected and 

interdependent systems.
1. Do not trust communication channels.

– Ex: medical plug-and-play initiative is looking to 
interconnect medical devices using wireless technology.

– Problem: what happens if somebody jams the signal?
– Each subsystem must be independently safe.

2. Do not trust the users.
– Users are an (unfortunate) part of the systems.
– Users are very error prone: over 90% of avionic 

accidents are caused by flight crew/controllers.
– System must be protected against user mistakes



CPS Challenges - Safety
3. Do not trust lower-criticality subsystems.

– Medical pacemaker composed of multiple subsystems.
– Life-critical functionalities: base pacing, wiring, battery
– Non-critical functionalities: adaptive pacing, logging, 

programming, RF communication.
– Protect life-critical subsystem.

PacemakerPacemaker



Verification & Certification
• How do we ensure safety?
1. Formal Verification

– Build a model of the systems.
– Prove (mathematically) that the system satisfies some 

safety property.
– Problem#1: no good model for the whole system.
– Problem#2: model is not implementation.

2. Certification
– Usually a process-based mechanism: show that you 

have performed all process step according to some 
standard (ex: DO178a/b/c, IEC 61508).

– Typically includes extensive testing.
– Very expensive.



CPS Challenges - Integration
• Putting the system together is much more challenging that 

implementing the individual subsystems.
• Quiz (avionic systems): can you guess what % of $ goes in 

implementation vs debugging?

20%

Implementation

80%

Debugging &
Verification

Avionic Development CostAvionic Development Cost

• Individual productivity for 
safety-critical code is 
reported as 6 lines/day!
– F22: 1.7 million lines / 6 = 

776 man-years
– Perhaps the US$66.7billion 

program cost is not a 
surprise…

• Clearly the design process 
must be improved…



CPS Challenges - Timing Predictability

• The biggest architectural challenge.
• The lowest abstraction layer (transistors) 

is pretty deterministic – we know how to 
compute exact timings.

• However, higher levels lose all concept 
of timing.
– Deep pipelining, caches, out-of-order 

and speculative execution…
– Thread models, locking, interrupts…

• This is fine for general purpose 
computing, but not for CPS – the 
physical system uses real time!

(by Prof. Edward Lee)



CPS Challenges - Timing Predictability

• We need to ensure that computation 
always finishes within guarantee time 
windows -> We are interested in worst-
case performance, not average 
performance!

• Timing predictability
– The time that the system requires to 

perform an operation should exhibit 
little variation

– Such time should be easy to compute
– It should not be affected by other 

parallel operations in the system.

(by Prof. Edward Lee)



Real-Time and Composability
• System correctness depends on:

– Logical correctness: system produces correct results.
– Temporal correctness: system produces results at the 

right time.
• Timing (real-time) analysis = verify temporal correctness.
• Ideally, we want composable analysis

– Verify each subsystem in isolation
– Then verify that there interaction is correct

• Unfortunately, this is very hard in practice…
• Main issue: hardware and software resources shared 

among multiple subsystems.



What is Required - Isolation
• Isolation: one subsystem should not affect another 

unrelated subsystem.
• Current architectures are pretty good at logical isolation…

– Ex: memory protection and privilege levels in the CPU 
make sure that a process can not mess with the 
memory of another process or the OS.

• … but fairly poor at temporal isolation.

• Note #1: any and all hw isolation mechanisms are useless 
if not supported by the OS. 

• Note #1: after the first OS was created, it took a while 
before hw architects started implementing protection 
mechanisms. So we stand a chance!



CPS Challenges – Software Models
• Current software programming models and languages are 

inadequate to support CPS design.
• C is by far the most popular language for embedded sys.
• C has no intrinsic support for concurrency, timing parameters, 

synchronization, etc.
• POSIX libraries (ex: threads) are often used, but again lack any 

explicit concept of timing.
• Extremely common operations in controller implementation:

– specify that I want to execute an operation after a given 
amount of time

– specify that I want to complete an operation within a given 
amount of time

• Why do I need to use OS constructs (times, watchdogs) for this?



Key Trends in Systems
● System complexity

– Increasing functionality

– Increasing integration and networking interoperability

– Growing importance and reliance on software

– Increasing number of non-functional constraints

● Nature of tomorrow’s systems
– Dynamic, ever-changing, dependable, high-confidence

– Self-*(aware, adapting, repairing, sustaining)

● Cyber-Physical Systems everywhere, used by 
everyone, for everything
– Expectations : 24/7 availability, 100% reliability, 100% connectivity, 

instantaneous response, remember everything forever, ...



R&D needs
● Development of high-confidence CPS requires

– Engineering design techniques and tools
● Modeling and analysis, requirements capture, hybrid systems, testing ...
● Capture and optimization of inter-dependencies of different requirements
● Domain-specific model-based tools

– Systems Software and Network Supports
● Virtualization, RTOS, Middleware, ...
● Predictable (not best-effort) communication with QoS, predictable delay & jitter 

bounds, ...
● Trusted embedded software components

– To help structured system design and system development
– To reduce the cost of overall system development and maintenance efforts
– To support the reuse of components within product families

– Validation and Certification
● Metrics for certification/validation
● Evidence-based certification, Incremental certification



Scientific challenges
● Computations and Abstractions

– Computational abstractions

– Novel Real-time embedded systems abstractions for CPS

– Model-based development of CPS

● Compositionality
– Composition and interoperation of cyber physical systems

– Compositional frameworks for both functional, temporal, and non-functional properties

– Robustness, safety, and security of cyber physical systems

● Systems & Network Supports
– CPS Architecture, virtualization

– Wireless and smart sensor networks

– Predictable real-time and QoS guranattees at multiple scales

● New foundations
– Control (distributed, multi-level in space and time) and hybrid systems - cognition of environment and system 

state, and closing the loop

– Dealing with uncertainties and adaptability - graceful adaptation to applications, environments, and resource 
availability

– Scalability, reliability, robustness, stability of system of systems

– Science of certification - evidence-based certification, measures of verfication, validation, and testing



Sensado y actuación



Que es un sensor? Y un actuador?

• Un sensor es un dispositivo que mide una cantidad/magnitud 
física

– Es una entrada

– “Leer desde el mundo físco”

• Un actuador es un dispositivo que modifica una 
cantidad/magnitud física

– Es una salida

– “Escribir en el mundo físico”
• Conectan el mundo físico con el mundo computacional



Sensores y actuadores

• Sensores:
– Cámaras 

– Acelerómetros 

– Giroscopios

– Extensiómetro

– Micrófonos 

– Magnetómetros

– Radar/Lidar

– Sesnores químicos

– Sensores de presión

– Interruptores 

– ...

• Actuadores:
– Motores

– Soleoides

– LEDs, lasers 

– LCD

– Parlantes

– Interruptores

– Válvulas

– ...



Problemas de diseño con sensores 

• Calibración 
– Relacionar medidas con el fenómeno físico
– Puede aumentar los costos de producción dramáticamente

• No-linearidad
– Mediadas pueden no ser proporcionales al modelo físico
– Se puede requerir corrección
– Retroalimentación puede ser usada para mantener el punto de operación 

en la región de linearidad
• Muestreo

– Aliasing 
– Pérdida de eventos

• Ruido
– Signal conditioning 
– Filtrado digital introduce latencia

• Fallas
– Redundancia (problema de fusión de sensores)
– Ataques



Redes



Sopa de tecnologías



Redes cableadas

• Ethernet 
• CAN: Controller Area Network (Bosch, 1983)
• TTP: Time-Triggered Protocol (Vienna U. of Tech.)
• FlexRay (Automotive industry, deployed 2006...) 
• TTEthernet (Time-triggered Ethernet) 
• TSN (Time-sensitive networks) 

• Problemas en SCF: Control sobre latencia y timing, 
ancho de banda garantizado, redundancia, tolerancia a 
errores



Redes cableadas

• Control de acceso al medio:

– CSMA/CA

– Time Slotted (TDMA)

• Routing

– Buffering, pérdida de paquetes

– Enrutamiento

– QoS, Prioridad



Redes inalámbricas



Redes inalámbricas



Redes inalámbricas

• ¿Que tecnología uso?
• Eficiencia energética
• Topología
• Alcance
• Costo
• Accesibilidad
• QoS



Arquitectura de red



La nube

• Complejidad de los Data Centers
• SDN
• Enrutamiento específico
• Big Data
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