
Taller de Sistemas Cíber Físicos

Introducción

presentación basada en:

● Rodolfo Pellizzoni - ECE 720T5 – Waterloo
● Kang G. Shin EECS 571 - University of Michigan
● Edward A. Lee. "Resurrecting Laplace's Demon: The Case for

Deterministic Models". Talk or presentation, 4, October, 2016;
Keynote Talk: MODELS, St. Malo, France

● Introduction to Embedded Systems. Edward A. Lee. UC Berkeley.
EECS 149/249A. Fall 2016

Computing evolution

Mapa Conceptual

CPS: a definition?
● Cyber – computation, communication, and control

that are discrete, logical, and switched
● Physical – natural and human-made systems

governed by the laws of physics and operating in
continuous time

● Cyber-Physical Systems – systems in which the
cyber and physical systems are tightly integrated
at all scales and levels
– Change from cyber merely applied on physical

– Change from physical with COTS “computing as parts” mindset

– Change from ad hoc to grounded, assured development

CPS: a definition?
● Integration of physical systems and

processes with networked computing

● Computations and communications are
deeply embedded in, and interacting with
physical processes to equip physical systems
with new capabilities

● Covers a wide range of scale (pacemakers to
national power grid)

Computing in CPS

Application Domains of Cyber-
Physical Systems
● Healthcare

– Medical devices

– Health management networks

● Transportation
– Automotive electronics

– Vehicular networks and smart
highways

– Aviation and airspace
management

– Avionics

– Railroad systems

● Process control

● Large-scale
Infrastructure
– Physical infrastructure

monitoring and control

– Electricity generation and
distribution

– Building and environmental
controls

● Defense systems
● Tele-physical operations

– Telemedicine

– Tele-manipulation

Industria 4.0

CPS characteristics
● Cyber capability in every physical component
● Networked at multiple and extreme scales
● Complex at multiple temporal and spatial scales
● Constituent elements are coupled logically and physically
● Dynamically reorganizing/reconfiguring; “open systems”
● High degrees of automation, control loops closed at many

scales
● Unconventional computational & physical substrates

(such as bio, nano, chem, ...)
● Operation must be dependable, certified in some cases

Confluence of diverse areas

Realistic (Integrated) Solutions
● CPS must tolerate

– Failures

– Noise

– Uncertainty

– Imprecision

– Security attacks

– Lack of perfect synchrony

– Scale

– Openness

– Increasing complexity

– Heterogeneity

– Disconnectedness

Challenges Arise
● Assumptions underlying distributed systems

technology has changed dramatically
– New abstractions needed

– Wired => wireless

– Unlimited power => limited power

– User interface (screen/mouse) => sensors/real world
interface

– Fixed set of resources => resources are dynamically
added/deleted

– Each node is important => aggregate behavior is important

– Location unimportant => location is critical

New Theories
● Compositional
● Control Theory
● Optimization
● Real-Time
● Integration Issues
● Openness, Mobility, Uncertainty,

Concurrency, Noise, Faults, Attacks, Self-
Healing, etc.

Embedded Systems
• Embedded system: computing systems designed for a

specific purpose.
• Embedded systems are everywhere!

Embedded Systems are getting more complex

• Modern high-end cars have over
one hundred processors.

• Increasing number of sensors,
actuators, smart control, GUI..

• Intelligent data fusion.

F-35 Lightning IIF-35 Lightning II

Helmet Mounted Display SystemHelmet Mounted Display System

Optical Track.Optical Track.

… are more Interconnected

• Command-and-control
network – real-time
integration of vehicles,
people, command.

• Geotagging: useful or
scary?

+

• Many other examples
– Power Grid
– Medical systems
– Transportation
– Etc.

CPS – the next evolution
• Cyber-physical systems: integration of computation with

physical processes.
• Still build on top of embedded computing systems.
• Interaction with the physical environment is promoted to

a “first class citizen”.
• Promotes interaction and integration of subsystems

– Classic safety-critical embedded systems: black
boxes

– CPS: white-boxes, open protocols
• Main goals:

– Co-design the cyber and physical part of the system
– Engineer a “system of systems”

CPS as multidisciplinary approach
• Within ECE, CPS design requires competences in…

– Computer Architecture
– CAD & Embedded Design
– Software Engineering
– Control
– Formal Verification
– Real-Time Analysis

• … plus whatever engineering field(s) are related to the
design of the plant/actuator.

• Problem: all such field and subfields have very different
design & development conventions.

• Perhaps we need a new science of CPS design?

El proceso de diseño de un SCF

CPS Challenges – Design Abstractions

• We could argue that the biggest design challenge is in
abstractions – the entire ECE design is a stack-based
process.

(from Prof. Edward Lee)

• Unfortunately, most such
abstractions do not directly
encapsulate characteristics
of the environment such as:
– Concurrency
– Criticality
– Timing

• It is very hard to predict if
the cyber part will meet the
requirements of the
physical part!

Current Design Flow
• The picture below exemplifies a typical design flow for an

avionic subsystem.
• Analysis is required to verify that requirements are met.
• Analysis can only be performed after implementation.
• Recipe for disaster!

Reliable CPS: not so much!

• In 2007, 12 F-22s
were going from
Hawaii to Japan.

• After crossing the IDL,
all 12 experienced
multiple crashes.
– No navigation
– No fuel subsystems
– Limited

communications
– Rebooting didn’t

help

• F-22 has 1.7 million
lines of code.

F-22 RaptorF-22 Raptor

Example: Automotive Telematics

CPS Challenges - Safety
• Safety is hard to guarantee in interconnected and

interdependent systems.
1. Do not trust communication channels.

– Ex: medical plug-and-play initiative is looking to
interconnect medical devices using wireless technology.

– Problem: what happens if somebody jams the signal?
– Each subsystem must be independently safe.

2. Do not trust the users.
– Users are an (unfortunate) part of the systems.
– Users are very error prone: over 90% of avionic

accidents are caused by flight crew/controllers.
– System must be protected against user mistakes

CPS Challenges - Safety
3. Do not trust lower-criticality subsystems.

– Medical pacemaker composed of multiple subsystems.
– Life-critical functionalities: base pacing, wiring, battery
– Non-critical functionalities: adaptive pacing, logging,

programming, RF communication.
– Protect life-critical subsystem.

PacemakerPacemaker

Verification & Certification
• How do we ensure safety?
1. Formal Verification

– Build a model of the systems.
– Prove (mathematically) that the system satisfies some

safety property.
– Problem#1: no good model for the whole system.
– Problem#2: model is not implementation.

2. Certification
– Usually a process-based mechanism: show that you

have performed all process step according to some
standard (ex: DO178a/b/c, IEC 61508).

– Typically includes extensive testing.
– Very expensive.

CPS Challenges - Integration
• Putting the system together is much more challenging that

implementing the individual subsystems.
• Quiz (avionic systems): can you guess what % of $ goes in

implementation vs debugging?

20%

Implementation

80%

Debugging &
Verification

Avionic Development CostAvionic Development Cost

• Individual productivity for
safety-critical code is
reported as 6 lines/day!
– F22: 1.7 million lines / 6 =

776 man-years
– Perhaps the US$66.7billion

program cost is not a
surprise…

• Clearly the design process
must be improved…

CPS Challenges - Timing Predictability

• The biggest architectural challenge.
• The lowest abstraction layer (transistors)

is pretty deterministic – we know how to
compute exact timings.

• However, higher levels lose all concept
of timing.
– Deep pipelining, caches, out-of-order

and speculative execution…
– Thread models, locking, interrupts…

• This is fine for general purpose
computing, but not for CPS – the
physical system uses real time!

(by Prof. Edward Lee)

CPS Challenges - Timing Predictability

• We need to ensure that computation
always finishes within guarantee time
windows -> We are interested in worst-
case performance, not average
performance!

• Timing predictability
– The time that the system requires to

perform an operation should exhibit
little variation

– Such time should be easy to compute
– It should not be affected by other

parallel operations in the system.

(by Prof. Edward Lee)

Real-Time and Composability
• System correctness depends on:

– Logical correctness: system produces correct results.
– Temporal correctness: system produces results at the

right time.
• Timing (real-time) analysis = verify temporal correctness.
• Ideally, we want composable analysis

– Verify each subsystem in isolation
– Then verify that there interaction is correct

• Unfortunately, this is very hard in practice…
• Main issue: hardware and software resources shared

among multiple subsystems.

What is Required - Isolation
• Isolation: one subsystem should not affect another

unrelated subsystem.
• Current architectures are pretty good at logical isolation…

– Ex: memory protection and privilege levels in the CPU
make sure that a process can not mess with the
memory of another process or the OS.

• … but fairly poor at temporal isolation.

• Note #1: any and all hw isolation mechanisms are useless
if not supported by the OS.

• Note #1: after the first OS was created, it took a while
before hw architects started implementing protection
mechanisms. So we stand a chance!

CPS Challenges – Software Models
• Current software programming models and languages are

inadequate to support CPS design.
• C is by far the most popular language for embedded sys.
• C has no intrinsic support for concurrency, timing parameters,

synchronization, etc.
• POSIX libraries (ex: threads) are often used, but again lack any

explicit concept of timing.
• Extremely common operations in controller implementation:

– specify that I want to execute an operation after a given
amount of time

– specify that I want to complete an operation within a given
amount of time

• Why do I need to use OS constructs (times, watchdogs) for this?

Key Trends in Systems
● System complexity

– Increasing functionality

– Increasing integration and networking interoperability

– Growing importance and reliance on software

– Increasing number of non-functional constraints

● Nature of tomorrow’s systems
– Dynamic, ever-changing, dependable, high-confidence

– Self-*(aware, adapting, repairing, sustaining)

● Cyber-Physical Systems everywhere, used by
everyone, for everything
– Expectations : 24/7 availability, 100% reliability, 100% connectivity,

instantaneous response, remember everything forever, ...

R&D needs
● Development of high-confidence CPS requires

– Engineering design techniques and tools
● Modeling and analysis, requirements capture, hybrid systems, testing ...
● Capture and optimization of inter-dependencies of different requirements
● Domain-specific model-based tools

– Systems Software and Network Supports
● Virtualization, RTOS, Middleware, ...
● Predictable (not best-effort) communication with QoS, predictable delay & jitter

bounds, ...
● Trusted embedded software components

– To help structured system design and system development
– To reduce the cost of overall system development and maintenance efforts
– To support the reuse of components within product families

– Validation and Certification
● Metrics for certification/validation
● Evidence-based certification, Incremental certification

Scientific challenges
● Computations and Abstractions

– Computational abstractions

– Novel Real-time embedded systems abstractions for CPS

– Model-based development of CPS

● Compositionality
– Composition and interoperation of cyber physical systems

– Compositional frameworks for both functional, temporal, and non-functional properties

– Robustness, safety, and security of cyber physical systems

● Systems & Network Supports
– CPS Architecture, virtualization

– Wireless and smart sensor networks

– Predictable real-time and QoS guranattees at multiple scales

● New foundations
– Control (distributed, multi-level in space and time) and hybrid systems - cognition of environment and system

state, and closing the loop

– Dealing with uncertainties and adaptability - graceful adaptation to applications, environments, and resource
availability

– Scalability, reliability, robustness, stability of system of systems

– Science of certification - evidence-based certification, measures of verfication, validation, and testing

Sensado y actuación

Que es un sensor? Y un actuador?

• Un sensor es un dispositivo que mide una cantidad/magnitud
física

– Es una entrada

– “Leer desde el mundo físco”

• Un actuador es un dispositivo que modifica una
cantidad/magnitud física

– Es una salida

– “Escribir en el mundo físico”
• Conectan el mundo físico con el mundo computacional

Sensores y actuadores

• Sensores:
– Cámaras

– Acelerómetros

– Giroscopios

– Extensiómetro

– Micrófonos

– Magnetómetros

– Radar/Lidar

– Sesnores químicos

– Sensores de presión

– Interruptores

– ...

• Actuadores:
– Motores

– Soleoides

– LEDs, lasers

– LCD

– Parlantes

– Interruptores

– Válvulas

– ...

Problemas de diseño con sensores

• Calibración
– Relacionar medidas con el fenómeno físico
– Puede aumentar los costos de producción dramáticamente

• No-linearidad
– Mediadas pueden no ser proporcionales al modelo físico
– Se puede requerir corrección
– Retroalimentación puede ser usada para mantener el punto de operación

en la región de linearidad
• Muestreo

– Aliasing
– Pérdida de eventos

• Ruido
– Signal conditioning
– Filtrado digital introduce latencia

• Fallas
– Redundancia (problema de fusión de sensores)
– Ataques

Redes

Sopa de tecnologías

Redes cableadas

• Ethernet
• CAN: Controller Area Network (Bosch, 1983)
• TTP: Time-Triggered Protocol (Vienna U. of Tech.)
• FlexRay (Automotive industry, deployed 2006...)
• TTEthernet (Time-triggered Ethernet)
• TSN (Time-sensitive networks)

• Problemas en SCF: Control sobre latencia y timing,
ancho de banda garantizado, redundancia, tolerancia a
errores

Redes cableadas

• Control de acceso al medio:

– CSMA/CA

– Time Slotted (TDMA)

• Routing

– Buffering, pérdida de paquetes

– Enrutamiento

– QoS, Prioridad

Redes inalámbricas

Redes inalámbricas

Redes inalámbricas

• ¿Que tecnología uso?
• Eficiencia energética
• Topología
• Alcance
• Costo
• Accesibilidad
• QoS

Arquitectura de red

La nube

• Complejidad de los Data Centers
• SDN
• Enrutamiento específico
• Big Data

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 14
	Slide 15
	Slide 16
	Embedded Systems
	Embedded Systems are getting more complex
	… are more Interconnected
	CPS – the next evolution
	CPS as multidisciplinary approach
	Slide 23
	CPS Challenges – Design Abstractions
	Current Design Flow
	Reliable CPS: not so much!
	Slide 27
	CPS Challenges - Safety
	CPS Challenges - Safety
	Verification & Certification
	CPS Challenges - Integration
	CPS Challenges - Timing Predictability
	CPS Challenges - Timing Predictability_clipboard0
	Real-Time and Composability
	What is Required - Isolation
	CPS Challenges – Software Models
	Slide 40
	Slide 41
	Slide 42
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100

