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Computing evolution

* Mainframe computing (60’s-70’s)
+ Large computers to execute big data processing
applications

- Desktop computing & Internet (80’s-90’s) _, =

* One computer at every desk to do business/ J
personal activities

» Ubiquitous computing (00’s)
* Numerous computing devices in every place/
person
* “Invisible” part of the environment

» Millions for desktops vs. billions for embedded
processors

» Cyber Physical Systems (10’s)
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CPS: a definition?

* Cyber — computation, communication, and control
that are discrete, logical, and switched

* Physical — natural and human-made systems
governed by the laws of physics and operating in
continuous time

* Cyber-Physical Systems — systems in which the
cyber and physical systems are tightly integrated
at all scales and levels
— Change from cyber merely applied on physical
- Change from physical with COTS “computing as parts” mindset
- Change from ad hoc to grounded, assured development



CPS: a definition?

* |ntegration of physical systems and
processes with networked computing

 Computations and communications are
deeply embedded in, and interacting with
physical processes to equip physical systems
with new capabilities

* Covers a wide range of scale (pacemakers to
national power grid)



Computing in CPS
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Application Domains of Cyber-
Physical Systems

* Healthcare * Large-scale
- Medical devices Infrastructure
- Health management networks - Physical infrastructure

: monitoring and control
* Transportation J

, _ - Electricity generation and
- Automotive electronics

distribution
- Vehicular networks and smart

. - Building and environmental
highways

controls
— Aviation and airspace
management * Defense systems
- Avionics  Tele-physical operations

- Railroad systems _ Telemedicine

* Process control ~ Tele-manipulation



Industria 4.0

De la industria 1.0 a la industria 4.0

Primera
Revolucién
Industrial

basada an la introduccion da
aquipos da produccion
macanicos impulsados por
agua y la anargia de vapar

Segunda
Revolucién

Industrial

basada an la produccion en
masa qua so alcanza gracias
al concepto da divisidn de
tareas y al uso de enargia
alacirica

Tercera
Revolucién
Industrial

basada an al uso da
alectranica a informatica
{IT) para promaver la

produccidn automatizada.

2000 Presente



CPS characteristics

* Cyber capabillity in every physical component

* Networked at multiple and extreme scales

 Complex at multiple temporal and spatial scales

* Constituent elements are coupled logically and physically
* Dynamically reorganizing/reconfiguring; “open systems”

* High degrees of automation, control loops closed at many
scales

* Unconventional computational & physical substrates
(such as bio, nano, chem, ...)

* Operation must be dependable, certified in some cases



Confluence of diverse areas

Cost Scheduling
Form factor Fault-tolerance
Severe constraints Wired networks

Small-scale
Closed

| Linear
Now)‘z Adaptive
Sensing Distributed
Large-scale Decentralized

Real-time/actuation
Open

Closed



Realistic (Integrated) Solutions

* CPS must tolerate
- Failures
- Noise
— Uncertainty
— Imprecision
— Security attacks
- Lack of perfect synchrony
- Scale
- Openness
- Increasing complexity
- Heterogeneity
- Disconnectedness



Challenges Arise

* Assumptions underlying distributed systems
technology has changed dramatically

New abstractions needed
Wired => wireless
Unlimited power => limited power

User interface (screen/mouse) => sensors/real world
Interface

Fixed set of resources => resources are dynamically
added/deleted

Each node is important => aggregate behavior is important
Location unimportant => |ocation is critical



New Theories

 Compositional

* Control Theory

* Optimization

* Real-Time

* |ntegration Issues

* Openness, Mobility, Uncertainty,
Concurrency, Noise, Faults, Attacks, Self-
Healing, etc.



Embedded Systems

* Embedded system: computing systems designed for a
specific purpose.
* Embedded systems are everywhere!




Embedded Systems are getting more complex

* Modern high-end cars have over
one hundred processors.

* Increasing number of sensors,
actuators, smart control, GUI..

* Intelligent data fusion.

o 4.“ \
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otical Track.




... are more Interconnected

* Command-and-control
network — real-time
Integration of vehicles,
people, command.

* (Geotagging: useful or
scary?

* Many other examples
Srmwrtin.':f"s_; its intm:mtin 2 to observe —_ P Owe r G rld
(_}{llt'l“-‘#]_.l{} 5Hﬁ}p|_ung! :) i ]

— Medical systems
— Transportation
— Etc.




CPS - the next evolution

Cyber-physical systems: integration of computation with
physical processes.

Still build on top of embedded computing systems.

Interaction with the physical environment is promoted to
a “first class citizen”.

Promotes interaction and integration of subsystems

— Classic safety-critical embedded systems: black
boxes

— CPS: white-boxes, open protocols

Main goals:

— Co-design the cyber and physical part of the system
— Engineer a “system of systems”



CPS as multidisciplinary approach

Within ECE, CPS design requires competences in...
— Computer Architecture

— CAD & Embedded Design

— Software Engineering

— Control

— Formal Verification

— Real-Time Analysis

... plus whatever engineering field(s) are related to the
design of the plant/actuator.

Problem: all such field and subfields have very different
design & development conventions.

Perhaps we need a new science of CPS design?



El proceso de disefio de un SCF




CPS Challenges — Design Abstractions

* We could argue that the biggest design challenge is in
abstractions — the entire ECE design is a stack-based
process.

* Unfortunately, most such pm,,rm”\:“"f"’“’ \W;W\
abstractions do not directly
encapsulate characteristics \
of the environment such as:

—
— Concurrency ﬁf;n,fw N AN
.. . deﬂgns
— Criticality \me \ w
exscumbles /[ el

— Timing \
* Itis very hard to predict if ‘ secwe \ oo
the cyber part will meet the eonh mesese

reqUirementS Of the (from Prof. Edward Lee)
physical part!




Current Design Flow

* The picture below exemplifies a typical design flow for an
avionic subsystem.

* Analysis is required to verify that requirements are met.
* Analysis can only be performed after implementation.
* Recipe for disaster!

_ design & implementation analysis
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Reliable CPS: not so much!

* In 2007, 12 F-22s
were going from
Hawali to Japan.

* After crossing the IDL,
all 12 experienced
multiple crashes.

— No navigation

— No fuel subsystems

— Limited
communications

— Rebooting didn’t
help

F-22 Raptor

* F-22 has 1.7 million
lines of code.



Example: Automotive Telematics

+  In 2005, 30-90 processors per car
- Engine control, break system, airbag deployment
system
- Windshield wiper, door locks, entertainment systems
- Example: BMW 745i
+ 2,000,000 LOCs
Window CE OS
Over 60 microprocessors
- 53 8-bit, 11 32-bit, 7 16-bit
Multiple networks
Buggy?
* Cars are sensors and actuators in V2V networks
- Active networked safety alerts
- Autonomous navigation




CPS Challenges - Safety

* Safety Is hard to guarantee in interconnected and
Interdependent systems.

1. Do not trust communication channels.
— EX: medical plug-and-play initiative is looking to
Interconnect medical devices using wireless technology.
— Problem: what happens if somebody jams the signal?
— Each subsystem must be independently safe.
2. Do not trust the users.
— Users are an (unfortunate) part of the systems.

— Users are very error prone: over 90% of avionic
accidents are caused by flight crew/controllers.

— System must be protected against user mistakes



CPS Challenges - Safety

3. Do not trust lower-criticality subsystems.
— Medical pacemaker composed of multiple subsystems.
— Life-critical functionalities: base pacing, wiring, battery

— Non-critical functionalities: adaptive pacing, logging,
programming, RF communication.

— Protect life-critical subsystem.

‘ Motion Sensor —1

Pacemaker

Sensitivity Threshold — Rate Computer
Max rate — — Base rate
Min rate — — Operational Mode
Rate Filter * Internal Pacer | i
Max attack slope — EKG Sensitivity
Max decay slope — — Pace Voltage
[ 1] ]] ’—T \—l S Pl “*5-'5‘
Parameter Event Log -

Programming Sensed EKG Actuation Voltage
L I \Leads
RF | ‘““\b“

Communication ‘*\N:M\




Verification & Certification

* How do we ensure safety?
1. Formal Verification
— Build a model of the systems.
— Prove (mathematically) that the system satisfies some
safety property.
— Problem#1: no good model for the whole system.
— Problem#2: model is not implementation.

2. Certification
— Usually a process-based mechanism: show that you
have performed all process step according to some
standard (ex: DO178a/b/c, IEC 61508).

— Typically includes extensive testing.
— Very expensive.



CPS Challenges - Integration

Putting the system together is much more challenging that
Implementing the individual subsystems.

Quiz (avionic systems): can you guess what % of $ goes in
Implementation vs debugging?

Individual productivity for
safety-critical code Is
reported as 6 lines/day!

— F22: 1.7 million lines / 6 =
/76 man-years

— Perhaps the US$66.7billion
program cost is not a
surprise...

Clearly the design process

must be improved...

Implementation

20%

Debugging &
Verification

Avionic Development Cost



CPS Challenges - Timing Predictability

* The biggest architectural challenge.

* The lowest abstraction layer (transistors)

IS pretty deterministic — we know how to
compute exact timings.

* However, higher levels lose all concept
of timing.
— Deep pipelining, caches, out-of-order
and speculative execution...
— Thread models, locking, interrupts...

silicon chips

* This is fine for general purpose (by Prof. Edward Lee)
computing, but not for CPS — the
physical system uses real time!



CPS Challenges - Timing Predictability

* We need to ensure that computation
always finishes within guarantee time
windows -> We are interested in worst-
case performance, not average
performance!

* Timing predictability

— The time that the system requires to

perform an operation should exhibit
little variation

— Such time should be easy to compute

— |t should not be affected by other
parallel operations in the system.

(by Prof. Edward Lee)



Real-Time and Composability

System correctness depends on:
— Logical correctness: system produces correct results.

— Temporal correctness: system produces results at the
right time.

Timing (real-time) analysis = verify temporal correctness.
|deally, we want composable analysis

— Verify each subsystem in isolation

— Then verify that there interaction is correct
Unfortunately, this is very hard in practice...

Main issue: hardware and software resources shared
among multiple subsystems.



What is Required - Isolation

Isolation: one subsystem should not affect another
unrelated subsystem.

Current architectures are pretty good at logical isolation...

— EX: memory protection and privilege levels in the CPU
make sure that a process can not mess with the
memory of another process or the OS.

... but fairly poor at temporal isolation.

Note #1. any and all hw isolation mechanisms are useless
If not supported by the OS.

Note #1: after the first OS was created, it took a while
before hw architects started implementing protection
mechanisms. So we stand a chance!



CPS Challenges — Software Models

Current software programming models and languages are
Inadequate to support CPS design.

C is by far the most popular language for embedded sys.

C has no intrinsic support for concurrency, timing parameters,
synchronization, etc.

POSIX libraries (ex: threads) are often used, but again lack any
explicit concept of timing.
Extremely common operations in controller implementation:

— specify that | want to execute an operation after a given
amount of time

— specify that | want to complete an operation within a given
amount of time

Why do | need to use OS constructs (times, watchdogs) for this?



Key Trends in Systems

e System complexity
- Increasing functionality
- Increasing integration and networking interoperability
- Growing importance and reliance on software
- Increasing number of non-functional constraints

* Nature of tomorrow’s systems
- Dynamic, ever-changing, dependable, high-confidence
- Self-*(aware, adapting, repairing, sustaining)

* Cyber-Physical Systems everywhere, used by
everyone, for everything

- Expectations : 24/7 availability, 100% reliability, 100% connectivity,
Instantaneous response, remember everything forever, ...



R&D needs

* Development of high-confidence CPS requires

- Engineering design techniques and tools
* Modeling and analysis, requirements capture, hybrid systems, testing ...
« Capture and optimization of inter-dependencies of different requirements
* Domain-specific model-based tools

- Systems Software and Network Supports
 Virtualization, RTOS, Middleware, ...

* Predictable (not best-effort) communication with QoS, predictable delay & jitter
bounds, ...

* Trusted embedded software components
— To help structured system design and system development
— To reduce the cost of overall system development and maintenance efforts
— To support the reuse of components within product families

- Validation and Certification
* Metrics for certification/validation
 Evidence-based certification, Incremental certification



Scientific challenges

Computations and Abstractions

- Computational abstractions

- Novel Real-time embedded systems abstractions for CPS
- Model-based development of CPS

Compositionality

- Composition and interoperation of cyber physical systems

- Compositional frameworks for both functional, temporal, and non-functional properties
- Robustness, safety, and security of cyber physical systems

Systems & Network Supports

- CPS Architecture, virtualization

- Wireless and smart sensor networks
- Predictable real-time and QoS guranattees at multiple scales

New foundations

— Control (distributed, multi-level in space and time) and hybrid systems - cognition of environment and system
state, and closing the loop

- Dealing with uncertainties and adaptability - graceful adaptation to applications, environments, and resource
availability

- Scalabllity, reliability, robustness, stability of system of systems
— Science of certification - evidence-based certification, measures of verfication, validation, and testing



Sensado y actuacion



Que es un sensor? Y un actuador?

Un sensor es un dispositivo que mide una cantidad/magnitud
fisica
— Es una entrada

- “Leer desde el mundo fisco”

Un actuador es un dispositivo que modifica una
cantidad/magnitud fisica

— Es una salida

— “Escribir en el mundo fisico”
Conectan el mundo fisico con el mundo computacional



Sensores y actuadores

e Sensores:

Camaras
Acelerometros
Giroscopios
Extensiometro
Micréfonos
Magnetometros
Radar/Lidar
Sesnores quimicos
Sensores de presion

Interruptores

* Actuadores:

Motores
Soleoides
LEDs, lasers
LCD
Parlantes
Interruptores

Valvulas



Problemas de diseno con sensores

Calibracion
— Relacionar medidas con el fendmeno fisico

— Puede aumentar los costos de produccion dramaticamente
No-linearidad

— Mediadas pueden no ser proporcionales al modelo fisico
— Se puede requerir correccion

— Retroalimentacion puede ser usada para mantener el punto de operacion
en la region de linearidad
Muestreo

— Aliasing

— Peérdida de eventos
Ruido

— Signal conditioning

— Filtrado digital introduce latencia
Fallas

— Redundancia (problema de fusidon de sensores)
- Ataques



Redes



Sopa de tecnologias

1588

6LoWPAN

802.
802.
802.
AVB
BLE
CAN

154
1(AS)
11

CoAP
CSMA/CA

GSM
HART
HTTE
ol
Pv6
| TE
MAC
PAN
PTE
QoS

REST
TDMA
TSMP

TSN
Ethernet
P

WAN
WLAN
WPAN




Redes cableadas

Ethernet

CAN: Controller Area Network (Bosch, 1983)
TTP: Time-Triggered Protocol (Vienna U. of Tech.)
FlexRay (Automotive industry, deployed 2006...)
TTEthernet (Time-triggered Ethernet)

TSN (Time-sensitive networks)

Problemas en SCF: Control sobre latencia y timing,
ancho de banda garantizado, redundancia, tolerancia a
errores



Redes cableadas

* Control de acceso al medio:
- CSMA/CA
— Time Slotted (TDMA)
* Routing
— Buffering, pérdida de paquetes
— Enrutamiento
- QoS, Prioridad



Redes inalambricas

Personal Area Networks (PANSs)
Bluetooth, BLE
Local Area Networks (LANs)
WiFi (IEEE 802.11.%)
Zigbee, et al. (IEEE 802.15.4%)
Wide Area Networks (WANS)
GSM (for voice, some data)
LTE and 5G (for audio, video)
Sigfox, Lora, LTE-M (for Machine-to-Machine, M2M, |oT)



Short range (10 - 100 meter)

Bluetooth LE
ZigBee
Thread (6LoWPAN) *
Z-Wave

ANT?

WirelessHART
ISA100.11a (BloWPAN)
EnOcean
Plus more

+ NFC (EMV)
+ RFID

Wireless
Local Area
Network
(WLAN) -

Wireless
Personal Area
Network (WPAN

» Short/Medium range Medium range

(100-1000 meter)

(~5-10km)

802.11a/blg/nfac
802.11af (white space)
802.11ah & 802.11p

« Wi-SUN (BLOWPAN)
« ZigBee-NAN (BLOWPAN)

« Cellular

« 2G/3G/4G

« LTE-MTC

* 5G in the future
+ Low Power Wide Area

Note 1: No stringent definition of what is considered WPAN,

KEYSIGHT Note 2: What is shown is not a complete list of radio formats
TECHNOLOGIES

© 2015 Keysight Technologies

(LPWAN)

« SIGFOX
+ LoRa
+ Telensa
« PTC
* Plus more

Long range

{up to 100 km)

WLAN, WWAN.
Internet of Things Page 9




Redes inalambricas

¢/, Que tecnologia uso?
Eficiencia energetica
Topologia

Alcance

Costo

Accesibilidad

QoS



Arquitectura de red
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Complejidad de los Data Centers
SDN

Enrutamiento especifico

Big Data
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