Espectrograma Análisis Tiempo–Frecuencia

\mathbf{IIE}

¹Facultad de Ingeniería Universidad de la República

October 2, 2023

IIE (Facultad de Ingeniería)

Análisis Tiempo–Frecuencia

October 2, 2023

- 2 Análisis de Fourier de tiempo corto
 - Efecto del enventanado

Contenido

2 Análisis de Fourier de tiempo corto

• Efecto del enventanado

Criterios:

- Ancho del lóbulo principal.
- Caída del peso de los lóbulos secundarios.
- Peso máximo relativo de lóbulos secundarios.

Otras ventanas:

- Hamming
- Hann
- Blackman.

Efecto del enventanado

Análisis de Fourier de tiempo corto (STFT)

Efecto del enventanado

Propiedades de la ventana:

 $\bullet\,$ ancho del lóbulo principal: inversamente proporcional al largo L

Efecto del enventanado

Análisis de Fourier de tiempo corto (STFT)

Efecto del enventanado

Propiedades de la ventana:

- $\bullet\,$ ancho del lóbulo principal: inversamente proporcional al largo L
- nivel de lóbulos secundarios: independiente del largo

Análisis de Fourier de tiempo corto (STFT)

Efecto del enventanado

Propiedades de la ventana:

- $\bullet\,$ ancho del lóbulo principal: inversamente proporcional al largo L
- nivel de lóbulos secundarios: independiente del largo depende del tipo de ventana

Análisis de Fourier de tiempo corto (STFT)

Efecto del enventanado

Propiedades de la ventana:

- ancho del lóbulo principal: inversamente proporcional al largo L
- nivel de lóbulos secundarios: independiente del largo depende del tipo de ventana
 - rectangular: -13dB, $2\frac{f_s}{T}$ hanning: -31dB, $4\frac{f_s}{T}$

Análisis de Fourier de tiempo corto (STFT)

Efecto del enventanado

• compromiso entre ancho lóbulo principal y nivel lóbulos secundarios

Análisis de Fourier de tiempo corto (STFT)

Efecto del enventanado

• compromiso entre ancho lóbulo principal y nivel lóbulos secundarios

ejemplo: análisis de frecuencias cercanas (0.1 y 0.15)

æ

Efecto del enventanado

ventanas típicas: unos pocos componentes en frecuencia no nulos

æ

12/22

æ

æ

Análisis de Fourier de tiempo corto (STFT)

Efecto del enventanado

- Análisis de voz usando diferente largo de ventana
- 64 ms estructura armónica clara
- $16~\mathrm{ms}\,$ sólo se distinguen las formantes

Análisis de Fourier de tiempo corto (STFT)

Efecto del enventanado

- Análisis de voz usando diferente largo de ventana
- $64~\mathrm{ms}\,$ estructura armónica clara
- $16~\mathrm{ms}\,$ sólo se distinguen las formantes

pero las formantes pueden cambiar a lo largo de 50 m
s $\,$

Análisis de Fourier de tiempo corto (STFT)

Efecto del enventanado

- Análisis de voz usando diferente largo de ventana
- 64 ms estructura armónica clara
- 16 ms sólo se distinguen las formantes

pero las formantes pueden cambiar a lo largo de 50 ms

IIE (Facultad de Ingeniería)

Análisis Tiempo-Frecuencia

14/22

Análisis de Fourier de tiempo corto (STFT)

Espectrograma

\bullet largo L (y forma) de la ventana determina la resolución

- espectrograma de banda ancha (L chico)
- $\bullet\,$ espectrograma de banda angosta (L grande)
- resolución constante en tiempo-frecuencia

Efecto del enventanado

Análisis de Fourier de tiempo corto (STFT)

Banda ancha

- pobre resolución espectral
- buena resolución temporal

Banda angosta

- $\bullet\,$ buena resolución espectral
- pobre resolución temporal

IIE (Facultad de Ingeniería)

Análisis Tiempo-Frecuencia

16/22

Efecto del enventanado

Análisis de Fourier de tiempo corto (STFT)

Banda ancha

- pobre resolución espectral
- buena resolución temporal

Banda angosta

- buena resolución espectral
- pobre resolución temporal

Efecto del enventanado

Análisis de Fourier de tiempo corto (STFT)

Banda ancha

- pobre resolución espectral
- buena resolución temporal

Banda angosta

- buena resolución espectral
- pobre resolución temporal

Efecto del enventanado

Análisis de Fourier de tiempo corto (STFT)

Constant Q Transform

DFT:

Temporal kernels

Efecto del enventanado

Análisis de Fourier de tiempo corto (STFT)

Constant Q Transform

DFT:

$$X[k] = \sum_{n=0}^{N-1} w[n] x[n] e^{-j 2\pi k n/N}$$

Temporal kernels

Efecto del enventanado

Análisis de Fourier de tiempo corto (STFT)

Constant Q Transform

DFT:

$$X[k] = \sum_{n=0}^{N-1} w[n]x[n]e^{-j2\pi kn/N}$$

$$Q_k = f_k / \Delta f = k$$

Temporal kernels

IIE (Facultad de Ingeniería)

October 2, 2023

17/22

Efecto del enventanado

Análisis de Fourier de tiempo corto (STFT)

Constant Q Transform

CQT:

Temporal kernels

Efecto del enventanado

Análisis de Fourier de tiempo corto (STFT)

Constant Q Transform

CQT:

$$Q = f_k / \Delta f_k$$
 constante
 $N_k = Q / f_k$ variable

Temporal kernels

X

Efecto del enventanado

Análisis de Fourier de tiempo corto (STFT)

Constant Q Transform

CQT:

$$egin{array}{rcl} Q&=&f_k/\Delta f_k ext{ constante}\ N_k&=&Q/f_k ext{ variable}\ \end{array}$$

Temporal kernels

18/22

Efecto del enventanado

Análisis de Fourier de tiempo corto (STFT)

Constant Q Transform

la evaluación directa de la CQT es computacionalmente costosa

Constant Q Transform

Constant Q Transform

•
$$X^{cq}[k] = \frac{1}{N_k} \sum_{n=0}^{N_k-1} w_k[n] x[n] e^{-j2\pi Q n/N_k}$$

Constant Q Transform

la evaluación directa de la CQT es computacionalmente costosa aproximación eficientemente usando la FFT

•
$$X^{cq}[k] = \frac{1}{N_k} \sum_{n=0}^{N_k - 1} w_k[n] x[n] e^{-j2\pi Qn/N}$$

• $X^{cq} = x \cdot T^*$, multiplicación matricial con kernels temporales:

Constant Q Transform

la evaluación directa de la CQT es computacionalmente costosa aproximación eficientemente usando la FFT • $X^{cq}[k] = \frac{1}{N_k} \sum_{n=0}^{N_k-1} w_k[n] x[n] e^{-j2\pi Qn/N_k}$ • $X^{cq} = x \cdot T^*$, multiplicación matricial con kernels temporales: $T^*[n,k] = \begin{cases} \frac{1}{N_k} w_k[n] e^{-j2\pi Qn/N_k} & \text{si } n < N_k \\ 0 & \text{en otro caso} \end{cases}$

19/22

Constant Q Transform

la evaluación directa de la CQT es computacionalmente costosa aproximación eficientemente usando la FFT • $X^{cq}[k] = \frac{1}{N_k} \sum_{n=0}^{N_k-1} w_k[n] x[n] e^{-j2\pi Qn/N_k}$ • $X^{cq} = x \cdot T^*$, multiplicación matricial con kernels temporales: $T^*[n,k] = \begin{cases} \frac{1}{N_k} w_k[n] e^{-j2\pi Qn/N_k} & \text{si } n < N_k \\ 0 & \text{en otro caso} \end{cases}$

• usando la relación de Parseval para la DFT:

Constant Q Transform

•
$$X^{cq}[k] = \frac{1}{N_k} \sum_{n=0}^{N_k - 1} w_k[n] x[n] e^{-j2\pi Qn/N_k}$$

- $X^{cq} = x \cdot T^*$, multiplicación matricial con kernels temporales: $T^*[n,k] = \begin{cases} \frac{1}{N_k} w_k[n] e^{-j2\pi Qn/N_k} & \text{si } n < N_k \\ 0 & \text{en otro caso} \end{cases}$
- usando la relación de Parseval para la DFT: $X^{cq}[k] = \sum_{n=0}^{N-1} x[n]T^*[n,k] = \frac{1}{N} \sum_{k'=0}^{N-1} X[k']K^*[k',k]$

Constant Q Transform

•
$$X^{cq}[k] = \frac{1}{N_k} \sum_{n=0}^{N_k - 1} w_k[n] x[n] e^{-j2\pi Qn/N_k}$$

- $X^{cq} = x \cdot T^*$, multiplicación matricial con kernels temporales: $T^*[n,k] = \begin{cases} \frac{1}{N_k} w_k[n] e^{-j2\pi Qn/N_k} & \text{si } n < N_k \\ 0 & \text{en otro caso} \end{cases}$
- usando la relación de Parseval para la DFT: $X^{cq}[k] = \sum_{n=0}^{N-1} x[n]T^*[n,k] = \frac{1}{N} \sum_{\nu'=0}^{N-1} X[k']K^*[k',k]$ dónde X[k'] y $K[k', \cdot]$ son la DFT de x[n] y $T[n, \cdot]$ respectivamente

Constant Q Transform

•
$$X^{cq}[k] = \frac{1}{N_k} \sum_{n=0}^{N_k - 1} w_k[n] x[n] e^{-j2\pi Qn/N_k}$$

- $X^{cq} = x \cdot T^*$, multiplicación matricial con kernels temporales: $T^*[n,k] = \begin{cases} \frac{1}{N_k} w_k[n] e^{-j2\pi Qn/N_k} & \text{si } n < N_k \\ 0 & \text{en otro caso} \end{cases}$
- usando la relación de Parseval para la DFT: $X^{cq}[k] = \sum_{n=0}^{N-1} x[n]T^*[n,k] = \frac{1}{N} \sum_{k'=0}^{N-1} X[k']K^*[k',k]$ dónde X[k'] y $K[k', \cdot]$ son la DFT de x[n] y $T[n, \cdot]$ respectivamente $K[k', \cdot]$ denominados kernels espectrales

Constant Q Transform

Transformada Q - bins lineales

Constant Q Transform

Transformada Q - bins espaciados geométricamente

Análisis de Fourier de tiempo corto (STFT)

Constant Q Transform

distribución de los bins en frecuencia

• la formulación original de la CQT implica distribución geométrica

Análisis de Fourier de tiempo corto (STFT)

Constant Q Transform

distribución de los bins en frecuencia

- la formulación original de la CQT implica distribución geométrica
- se puede formular para cualquier otro espaciado, por ejemplo lineal

