
Introduction to UNIX:
Lecture Eight

8.1 Objectives

This chapter covers:

Shells and shell scripts.
Shells variables and the environment.
Simple shell scripting
Advanced shell scripting.
Start-up shell scripts.

8.2 Shells and Shell Scripts

A shell is a program which reads and executes commands for the
user. Shells also usually provide features such job control, input
and output redirection and a command language for writing shell
scripts. A shell script is simply an ordinary text file containing a
series of commands in a shell command language (just like a
"batch file" under MS-DOS).

There are many different shells available on UNIX systems (e.g. sh,
bash, csh, ksh, tcsh etc.), and they each support a different command
language. Here we will discuss the command language for the
Bourne shell sh since it is available on almost all UNIX systems
(and is also supported under bash and ksh).

8.3 Shell Variables and the Environment

A shell lets you define variables (like most programming
languages). A variable is a piece of data that is given a name. Once

you have assigned a value to a variable, you access its value by
prepending a $ to the name:

 $ bob='hello world'
 $ echo $bob
 hello world
 $

Variables created within a shell are local to that shell, so only that
shell can access them. The set command will show you a list of all
variables currently defined in a shell. If you wish a variable to be
accessible to commands outside the shell, you can export it into the
environment:

 $ export bob

(under csh you used setenv). The environment is the set of variables
that are made available to commands (including shells) when they
are executed. UNIX commands and programs can read the values
of environment variables, and adjust their behaviour accordingly.
For example, the environment variable PAGER is used by the man
command (and others) to see what command should be used to
display multiple pages. If you say:

 $ export PAGER=cat

and then try the man command (say man pwd), the page will go flying
past without stopping. If you now say:

 $ export PAGER=more

normal service should be resumed (since now more will be used to
display the pages one at a time). Another environment variable
that is commonly used is the EDITOR variable which specifies the
default editor to use (so you can set this to vi or emacs or which
ever other editor you prefer). To find out which environment
variables are used by a particular command, consult the man pages
for that command.

Another interesting environment variable is PS1, the main shell
prompt string which you can use to create your own custom
prompt. For example:

 $ export PS1="(\h) \w> "
 (lumberjack) ~>

The shell often incorporates efficient mechanisms for specifying
common parts of the shell prompt (e.g. in bash you can use \h for
the current host, \w for the current working directory, \d for the
date, \t for the time, \u for the current user and so on - see the bash
man page).

Another important environment variable is PATH. PATH is a list of
directories that the shell uses to locate executable files for
commands. So if the PATH is set to:

 /bin:/usr/bin:/usr/local/bin:.

and you typed ls, the shell would look for /bin/ls, /usr/bin/ls etc.
Note that the PATH contains'.', i.e. the current working directory.
This allows you to create a shell script or program and run it as a
command from your current directory without having to explicitly
say "./filename".

Note that PATH has nothing to with filenames that are specified as
arguments to commands (e.g. cat myfile.txt would only look for
./myfile.txt, not for /bin/myfile.txt, /usr/bin/myfile.txt etc.)

8.4 Simple Shell Scripting

Consider the following simple shell script, which has been created
(using an editor) in a text file called simple:

#!/bin/sh
this is a comment
echo "The number of arguments is $#"
echo "The arguments are $*"
echo "The first is $1"
echo "My process number is $$"
echo "Enter a number from the keyboard: "
read number
echo "The number you entered was $number"

The shell script begins with the line "#!/bin/sh" . Usually "#"
denotes the start of a comment, but #! is a special combination that
tells UNIX to use the Bourne shell (sh) to interpret this script. The #!

must be the first two characters of the script. The arguments
passed to the script can be accessed through $1, $2, $3 etc. $* stands
for all the arguments, and $# for the number of arguments. The
process number of the shell executing the script is given by $$. the
read number statement assigns keyboard input to the variable
number.

To execute this script, we first have to make the file simple
executable:

 $ ls -l simple
 -rw-r--r-- 1 will finance 175 Dec 13 simple
 $ chmod +x simple
 $ ls -l simple
 -rwxr-xr-x 1 will finance 175 Dec 13 simple
 $./simple hello world
 The number of arguments is 2
 The arguments are hello world
 The first is hello
 My process number is 2669
 Enter a number from the keyboard:
 5
 The number you entered was 5
 $

We can use input and output redirection in the normal way with
scripts, so:

 $ echo 5 | simple hello world

would produce similar output but would not pause to read a
number from the keyboard.

8.5 More Advanced Shell Scripting

if-then-else statements

Shell scripts are able to perform simple conditional branches:

if [test]
then

commands-if-test-is-true
else

commands-if-test-is-false

fi

The test condition may involve file characteristics or simple
string or numerical comparisons. The [used here is actually
the name of a command (/bin/[) which performs the
evaluation of the test condition. Therefore there must be
spaces before and after it as well as before the closing bracket.
Some common test conditions are:

-s file
true if file exists and is not empty

-f file
true if file is an ordinary file

-d file
true if file is a directory

-r file
true if file is readable

-w file
true if file is writable

-x file
true if file is executable

$X -eq $Y

true if X equals Y
$X -ne $Y

true if X not equal to Y
$X -lt $Y

true if X less than $Y
$X -gt $Y

true if X greater than $Y
$X -le $Y

true if X less than or equal to Y
$X -ge $Y

true if X greater than or equal to Y
"$A" = "$B"

true if string A equals string B
"$A" != "$B"

true if string A not equal to string B
$X ! -gt $Y

true if string X is not greater than Y
$E -a $F

true if expressions E and F are both true
$E -o $F

true if either expression E or expression F is true

for loops

Sometimes we want to loop through a list of files, executing
some commands on each file. We can do this by using a for
loop:

for variable in list
do

statements (referring to $variable)
done

The following script sorts each text files in the current
directory:

#!/bin/sh
for f in *.txt
do
 echo sorting file $f
 cat $f | sort > $f.sorted
 echo sorted file has been output to $f.sorted
done

while loops

Another form of loop is the while loop:

while [test]
do

statements (to be executed while test is true)
done

The following script waits until a non-empty file input.txt has
been created:

#!/bin/sh
while [! -s input.txt]
do
 echo waiting...
 sleep 5
done
echo input.txt is ready

You can abort a shell script at any point using the exit
statement, so the following script is equivalent:

#!/bin/sh
while true
do
 if [-s input.txt]
 echo input.txt is ready
 exit
 fi
 echo waiting...
 sleep 5
done

case statements

case statements are a convenient way to perform multiway
branches where one input pattern must be compared to
several alternatives:

case variable in
pattern1)

statement (executed if variable matches pattern1)
 ;;

pattern2)
statement

 ;;

etc.
esac

The following script uses a case statement to have a guess at
the type of non-directory non-executable files passed as
arguments on the basis of their extensions (note how the "or"
operator | can be used to denote multiple patterns, how "*"
has been used as a catch-all, and the effect of the forward
single quotes `):

#!/bin/sh
for f in $*
do
 if [-f $f -a ! -x $f]
 then
 case $f in
 core)

 echo "$f: a core dump file"
 ;;
 *.c)
 echo "$f: a C program"
 ;;
 .cpp|.cc|*.cxx)
 echo "$f: a C++ program"
 ;;
 *.txt)
 echo "$f: a text file"
 ;;
 *.pl)
 echo "$f: a PERL script"
 ;;
 .html|.htm)
 echo "$f: a web document"
 ;;
 *)
 echo "$f: appears to be "`file -b $f`
 ;;
 esac
 fi
done

capturing command output

Any UNIX command or program can be executed from a shell
script just as if you would on the line command line. You can
also capture the output of a command and assign it to a
variable by using the forward single quotes ` `:

 #!\bin\sh
 lines=`wc -l $1`
 echo "the file $1 has $lines lines"

This script outputs the number of lines in the file passed as
the first parameter.

arithmetic operations

The Bourne shell doesn't have any built-in ability to evaluate
simple mathematical expressions. Fortunately the UNIX expr
command is available to do this. It is frequently used in shell
scripts with forward single quotes to update the value of a
variable. For example:

 lines = `expr $lines + 1`

adds 1 to the variable lines. expr supports the operators +, -, *,
/, % (remainder), <, <=, =, !=, >=, >, | (or) and & (and).

8.6 Start-up Shell Scripts

When you first login to a shell, your shell runs a systemwide
start-up script (usually called /etc/profile under sh, bash and ksh
and /etc/.login under csh). It then looks in your home directory
and runs your personal start-up script (.profile under sh, bash and
ksh and .cshrc under csh and tcsh). Your personal start-up script is
therefore usually a good place to set up environment variables
such as PATH, EDITOR etc. For example with bash, to add the directory
~/bin to your PATH, you can include the line:

 export PATH=$PATH:~/bin

in your .profile. If you subsequently modify your .profile and you
wish to import the changes into your current shell, type:

 $ source .profile

or
 $. ./profile

The source command is built into the shell. It ensures that changes
to the environment made in .profile affect the current shell, and
not the shell that would otherwise be created to execute the
.profile script.

With csh, to add the directory ~/bin to your PATH, you can include
the line:

 set path = ($PATH $HOME/bin)

in your .cshrc.

(BACK TO COURSE CONTENTS)

© September 2001 William Knottenbelt (wjk@doc.ic.ac.uk)

