
Introduction to UNIX:
Lecture Three

3.1 Objectives

This lecture covers:

File and directory permissions in more detail and how
these can be changed.
Ways to examine the contents of files.
How to find files when you don't know how their exact
location.
Ways of searching files for text patterns.
How to sort files.
Tools for compressing files and making backups.
Accessing floppy disks and other removable media.

3.2 File and Directory Permissions
Permission File Directory

read
User can look at
the contents of
the file

User can list the files in the directory

write
User can modify
the contents of
the file

User can create new files and remove existing
files in the directory

execute
User can use the
filename as a
UNIX command

User can change into the directory, but cannot
list the files unless (s)he has read permission.
User can read files if (s)he has read permission
on them.

Fig 3.1: Interpretation of permissions for files and directories

1 of 13

As we have seen in the previous chapter, every file or
directory on a UNIX system has three types of permissions,
describing what operations can be performed on it by various
categories of users. The permissions are read (r), write (w) and
execute (x), and the three categories of users are user/owner
(u), group (g) and others (o). Because files and directories are
different entities, the interpretation of the permissions
assigned to each differs slightly, as shown in Fig 3.1.

File and directory permissions can only be modified by their
owners, or by the superuser (root), by using the chmod system
utility.

chmod (change [file or directory] mode)

 $ chmod options files

chmod accepts options in two forms. Firstly, permissions
may be specified as a sequence of 3 octal digits (octal is
like decimal except that the digit range is 0 to 7 instead of
0 to 9). Each octal digit represents the access permissions
for the user/owner, group and others respectively. The
mappings of permissions onto their corresponding octal
digits is as follows:

--- 0

--x 1

-w- 2

-wx 3

r-- 4

r-x 5

rw- 6

rwx 7

For example the command:

 $ chmod 600 private.txt

sets the permissions on private.txt to rw------- (i.e. only
the owner can read and write to the file).

2 of 13

Permissions may be specified symbolically, using the
symbols u (user), g (group), o (other), a (all), r (read), w
(write), x (execute), + (add permission), - (take away
permission) and = (assign permission). For example, the
command:

 $ chmod ug=rw,o-rw,a-x *.txt

sets the permissions on all files ending in *.txt to rw-rw----
(i.e. the owner and users in the file's group can read and
write to the file, while the general public do not have any
sort of access).

chmod also supports a -R option which can be used to
recursively modify file permissions, e.g.

 $ chmod -R go+r play

will grant group and other read rights to the directory
play and all of the files and directories within play.

chgrp (change group)

 $ chgrp group files

can be used to change the group that a file or directory
belongs to. It also supports a -R option.

3.3 Inspecting File Content

Besides cat there are several other useful utilities for
investigating the contents of files:

file filename(s)

file analyzes a file's contents for you and reports a
high-level description of what type of file it appears to be:

 $ file myprog.c letter.txt webpage.html
 myprog.c: C program text
 letter.txt: English text
 webpage.html: HTML document text

3 of 13

file can identify a wide range of files but sometimes gets
understandably confused (e.g. when trying to
automatically detect the difference between C++ and
Java code).

head, tail filename

head and tail display the first and last few lines in a file
respectively. You can specify the number of lines as an
option, e.g.

 $ tail -20 messages.txt
 $ head -5 messages.txt

tail includes a useful -f option that can be used to
continuously monitor the last few lines of a (possibly
changing) file. This can be used to monitor log files, for
example:

 $ tail -f /var/log/messages

continuously outputs the latest additions to the system log
file.

objdump options binaryfile

objdump can be used to disassemble binary files - that is it
can show the machine language instructions which make
up compiled application programs and system utilities.

od options filename (octal dump)

od can be used to displays the contents of a binary or text
file in a variety of formats, e.g.

 $ cat hello.txt
 hello world
 $ od -c hello.txt
 0000000 h e l l o w o r l d \n
 0000014
 $ od -x hello.txt

4 of 13

 0000000 6865 6c6c 6f20 776f 726c 640a
 0000014

There are also several other useful content inspectors that are
non-standard (in terms of availability on UNIX systems) but
are nevertheless in widespread use. They are summarised in
Fig. 3.2.

File type Typical extension Content viewer

Portable Document Format .pdf acroread

Postscript Document .ps ghostview

DVI Document .dvi xdvi

JPEG Image .jpg xv

GIF Image .gif xv

MPEG movie .mpg mpeg_play

WAV sound file .wav realplayer

HTML document .html netscape

Fig 3.2: Other file types and appropriate content viewers.

3.4 Finding Files

There are at least three ways to find files when you don't know
their exact location:

find

If you have a rough idea of the directory tree the file
might be in (or even if you don't and you're prepared to
wait a while) you can use find:

 $ find directory -name targetfile -print

find will look for a file called targetfile in any part of the
directory tree rooted at directory. targetfile can include
wildcard characters. For example:

 $ find /home -name "*.txt" -print 2>/dev/null

will search all user directories for any file ending in ".txt"
and output any matching files (with a full absolute or

5 of 13

relative path). Here the quotes (") are necessary to avoid
filename expansion, while the 2>/dev/null suppresses error
messages (arising from errors such as not being able to
read the contents of directories for which the user does
not have the right permissions).

find can in fact do a lot more than just find files by name.
It can find files by type (e.g. -type f for files, -type d for
directories), by permissions (e.g. -perm o=r for all files and
directories that can be read by others), by size (-size) etc.
You can also execute commands on the files you find. For
example,

$ find . -name "*.txt" -exec wc -l '{}' ';'

counts the number of lines in every text file in and below
the current directory. The '{}' is replaced by the name of
each file found and the ';' ends the -exec clause.

For more information about find and its abilities, use man
find and/or info find.

which (sometimes also called whence) command

If you can execute an application program or system
utility by typing its name at the shell prompt, you can use
which to find out where it is stored on disk. For example:

 $ which ls
 /bin/ls

locate string

find can take a long time to execute if you are searching a
large filespace (e.g. searching from / downwards). The
locate command provides a much faster way of locating all
files whose names match a particular search string. For
example:

 $ locate ".txt"

6 of 13

will find all filenames in the filesystem that contain ".txt"
anywhere in their full paths.

One disadvantage of locate is it stores all filenames on the
system in an index that is usually updated only once a day.
This means locate will not find files that have been created
very recently. It may also report filenames as being
present even though the file has just been deleted. Unlike
find, locate cannot track down files on the basis of their
permissions, size and so on.

3.5 Finding Text in Files

grep (General Regular Expression Print)

 $ grep options pattern files

grep searches the named files (or standard input if no files
are named) for lines that match a given pattern. The
default behaviour of grep is to print out the matching lines.
For example:

 $ grep hello *.txt

searches all text files in the current directory for lines
containing "hello". Some of the more useful options that
grep provides are:
-c (print a count of the number of lines that match), -i
(ignore case), -v (print out the lines that don't match the
pattern) and -n (printout the line number before printing
the matching line). So

 $ grep -vi hello *.txt

searches all text files in the current directory for lines
that do not contain any form of the word hello (e.g. Hello,
HELLO, or hELlO).

If you want to search all files in an entire directory tree
for a particular pattern, you can combine grep with find
using backward single quotes to pass the output from find

7 of 13

into grep. So

 $ grep hello `find . -name "*.txt" -print`

will search all text files in the directory tree rooted at the
current directory for lines containing the word "hello".

The patterns that grep uses are actually a special type of
pattern known as regular expressions. Just like
arithemetic expressions, regular expressions are made up
of basic subexpressions combined by operators.

The most fundamental expression is a regular expression
that matches a single character. Most characters,
including all letters and digits, are regular expressions
that match themselves. Any other character with special
meaning may be quoted by preceding it with a backslash
(\). A list of characters enclosed by '[' and ']' matches any
single character in that list; if the first character of the
list is the caret `^', then it matches any character not in
the list. A range of characters can be specified using a
dash (-) between the first and last items in the list. So
[0-9] matches any digit and [^a-z] matches any character
that is not a digit.

The caret `^' and the dollar sign `$' are special characters
that
match the beginning and end of a line respectively. The
dot '.' matches any character. So

 $ grep ^..[l-z]$ hello.txt

matches any line in hello.txt that contains a three
character sequence that ends with a lowercase letter from
l to z.

egrep (extended grep) is a variant of grep that supports
more sophisticated regular expressions. Here two regular
expressions may be joined by the operator `|'; the
resulting regular expression matches any string matching
either subexpression. Brackets '(' and ')' may be used for

8 of 13

grouping regular expressions. In addition, a regular
expression may be followed by one of several repetition
operators:

`?' means the preceding item is optional (matched at most
once).
`*' means the preceding item will be matched zero or
more times.
`+' means the preceding item will be matched one or
more times.
`{N}' means the preceding item is matched exactly N
times.
`{N,}' means the preceding item is matched N or more
times.
`{N,M}' means the preceding item is matched at least N
times, but not more than M times.

For example, if egrep was given the regular expression

 '(^[0-9]{1,5}[a-zA-Z]+$)|none'

it would match any line that either:

begins with a number up to five digits long, followed
by a sequence of one or more letters or spaces, or
contains the word none

You can read more about regular expressions on the grep
and egrep manual pages.

Note that UNIX systems also usually support another grep
variant called fgrep (fixed grep) which simply looks for a
fixed string inside a file (but this facility is largely
redundant).

3.6 Sorting files

There are two facilities that are useful for sorting files in
UNIX:

sort filenames

9 of 13

sort sorts lines contained in a group of files alphabetically
(or if the -n option is specified) numerically. The sorted
output is displayed on the screen, and may be stored in
another file by redirecting the output. So

 $ sort input1.txt input2.txt > output.txt

outputs the sorted concentenation of files input1.txt and
input2.txt to the file output.txt.

uniq filename

uniq removes duplicate adjacent lines from a file. This
facility is most useful when combined with sort:

 $ sort input.txt | uniq > output.txt

3.7 File Compression and Backup

UNIX systems usually support a number of utilities for
backing up and compressing files. The most useful are:

tar (tape archiver)

tar backs up entire directories and files onto a tape device
or (more commonly) into a single disk file known as an
archive. An archive is a file that contains other files plus
information about them, such as their filename, owner,
timestamps, and access permissions. tar does not perform
any compression by default.

To create a disk file tar archive, use

 $ tar -cvf archivenamefilenames

where archivename will usually have a .tar extension.
Here the c option means create, v means verbose (output
filenames as they are archived), and f means file.To list
the contents of a tar archive, use

 $ tar -tvf archivename

10 of 13

To restore files from a tar archive, use

 $ tar -xvf archivename

cpio

cpio is another facility for creating and reading archives.
Unlike tar, cpio doesn't automatically archive the contents
of directories, so it's common to combine cpio with find
when creating an archive:

$ find . -print -depth | cpio -ov -Htar > archivename

This will take all the files in the current directory and the
directories below and place them in an archive called
archivename.The -depth option controls the order in which
the filenames are produced and is recommended to
prevent problems with directory permissions when doing
a restore.The -o option creates the archive, the -v option
prints the names of the files archived as they are added
and the -H option specifies an archive format type (in this
case it creates a tar archive). Another common archive
type is crc, a portable format with a checksum for error
control.

To list the contents of a cpio archive, use

 $ cpio -tv < archivename

To restore files, use:

 $ cpio -idv < archivename

Here the -d option will create directories as necessary. To
force cpio to extract files on top of files of the same name
that already exist (and have the same or later
modification time), use the -u option.

compress, gzip

compress and gzip are utilities for compressing and

11 of 13

decompressing individual files (which may be or may not
be archive files). To compress files, use:

 $ compress filename
or
 $ gzip filename

In each case, filename will be deleted and replaced by a
compressed file called filename.Z or filename.gz. To
reverse the compression process, use:

 $ compress -d filename

or
 $ gzip -d filename

3.8 Handling Removable Media (e.g. floppy disks)

UNIX supports tools for accessing removable media such as
CDROMs and floppy disks.

mount, umount

The mount command serves to attach the filesystem found
on some device to the filesystem tree. Conversely, the
umount command will detach it again (it is very important
to remember to do this when removing the floppy or
CDROM). The file /etc/fstab contains a list of devices and
the points at which they will be attached to the main
filesystem:

$ cat /etc/fstab
/dev/fd0 /mnt/floppy auto rw,user,noauto 0 0
/dev/hdc /mnt/cdrom iso9660 ro,user,noauto 0 0

In this case, the mount point for the floppy drive is
/mnt/floppy and the mount point for the CDROM is
/mnt/cdrom. To access a floppy we can use:

$ mount /mnt/floppy
$ cd /mnt/floppy

$ ls (etc...)

12 of 13

To force all changed data to be written back to the floppy
and to detach the floppy disk from the filesystem, we use:

$ umount /mnt/floppy

mtools

If they are installed, the (non-standard) mtools utilities
provide a convenient way of accessing DOS-formatted
floppies without having to mount and unmount
filesystems. You can use DOS-type commands like "mdir
a:", "mcopy a:*.* .", "mformat a:", etc. (see the mtools manual
pages for more details).

(BACK TO COURSE CONTENTS)

© September 2001 William Knottenbelt (wjk@doc.ic.ac.uk)

13 of 13

