Introduction to UNIX:
Lecture Two

2.1 Objectives

This lecture covers:

e The UNIX filesystem and directory structure.

e File and directory handling commands.

e How to make symbolic and hard links.

e How wildcard filename expansion works.

e What argument quoting is and when it should be used.

2.2 The UNIX Filesystem

The UNIX operating system is built around the concept of a filesystem
which is used to store all of the information that constitutes the
long-term state of the system. This state includes the operating system
kernel itself, the executable files for the commands supported by the
operating system, configuration information, temporary workfiles, user
data, and various special files that are used to give controlled access to
system hardware and operating system functions.

Every item stored in a UNIX filesystem belongs to one of four types:

1. Ordinary files

Ordinary files can contain text, data, or program information. Files
cannot contain other files or directories. Unlike other operating
systems, UNIX filenames are not broken into a name part and an
extension part (although extensions are still frequently used as a
means to classify files). Instead they can contain any keyboard
character except for '/' and be up to 256 characters long (note
however that characters such as *?,# and & have special meaning

10f11



2 of 11

in most shells and should not therefore be used in filenames).
Putting spaces in filenames also makes them difficult to manipulate
- rather use the underscore '’

2. Directories

Directories are containers or folders that hold files, and other
directories.
3. Devices

To provide applications with easy access to hardware devices, UNIX
allows them to be used in much the same way as ordinary files.
There are two types of devices in UNIX - block-oriented devices
which transfer data in blocks (e.g. hard disks) and character-
oriented devices that transfer data on a byte-by-byte basis (e.g.
modems and dumb terminals).

4. Links

A link is a pointer to another file. There are two types of links - a
hard link to a file is indistinguishable from the file itself. A soft
link (or symbolic link) provides an indirect pointer or shortcut to a
file. A soft link is implemented as a directory file entry containing a
pathname.

2.3 Typical UNIX Directory Structure

The UNIX filesystem is laid out as a hierarchical tree structure which is
anchored at a special top-level directory known as the root (designated
by a slash '/'). Because of the tree structure, a directory can have many
child directories, but only one parent directory. Fig. 2.1 illustrates this
layout.



3o0f11

work play

Fig. 2.1: Part of a typical UNIX filesystem tree

To specify a location in the directory hierarchy, we must specify a path
through the tree. The path to a location can be defined by an absolute
path from the root /, or as a relative path from the current working
directory. To specify a path, each directory along the route from the
source to the destination must be included in the path, with each
directory in the sequence being separated by a slash. To help with the
specification of relative paths, UNIX provides the shorthand "." for the
current directory and ".." for the parent directory. For example, the
absolute path to the directory "play" iS /home/will/play, while the relative
path to this directory from "zeb" is ../will/play.

Fig. 2.2 shows some typical directories you will find on UNIX systems
and briefly describes their contents. Note that these although these
subdirectories appear as part of a seamless logical filesystem, they do
not need be present on the same hard disk device; some may even be
located on a remote machine and accessed across a network.

Directory Typical Contents

/ The "root" directory

/bin Essential low-level system utilities

/usr/bin Higher-level system utilities and application programs

Superuser system utilities (for performing system

/sbin administration tasks)



Program libraries (collections of system calls that can be

/1ib included in programs by a compiler) for low-level system
utilities

/usr/lib Program libraries for higher-level user programs

/tmp Temporary file storage space (can be used by any user)

/home or User home directories containing personal file space for each

/homes user. Each directory is named after the login of the user.

/etc UNIX system configuration and information files

/dev Hardware devices

A pseudo-filesystem which is used as an interface to the
/proc kernel. 1Includes a sub-directory for each active program (or
process).

Fig. 2.2: Typical UNIX directories

When you log into UNIX, your current working directory is your user
home directory. You can refer to your home directory at any time as "~"
and the home directory of other users as "~<login>". SO ~will/play is
another way for user jane to specify an absolute path to the directory
/homes/will/play. User will may refer to the directory as ~/play.

2.4 Directory and File Handling Commands

This section describes some of the more important directory and file
handling commands.

e pwd (print [current] working directory)

pwd displays the full absolute path to the your current location in the
filesystem. So

$ pwd ¢
/usr/bin

implies that /usr/bin is the current working directory.

e 1s (list directory)

1s lists the contents of a directory. If no target directory is given,
then the contents of the current working directory are displayed.
So, if the current working directory is /,

$ 1s ¢

bin dev home mnt share usr var
boot etc 1lib proc sbin tmp vol

4 0of 11



Actually, 1s doesn't show you all the entries in a directory - files and
directories that begin with a dot (.) are hidden (this includes the
directories ." and '.." which are always present). The reason for this
is that files that begin with a . usually contain important
configuration information and should not be changed under
normal circumstances. If you want to see all files, 1s supports the -a
option:

$ 1s -a¢-

Even this listing is not that helpful - there are no hints to properties
such as the size, type and ownership of files, just their names. To
see more detailed information, use the -1 option (long listing),
which can be combined with the -a option as follows:

$ 1s -a -14¢-
(or, equivalently,)
$ 1s -al ¢~

Each line of the output looks like this:

permissions owner group date
C ey ) T TS (o) T
l‘er h':laks si|ze nalme
where:

o type is a single character which is either 'd' (directory), '-'
(ordinary file), 1' (symbolic link), 'b' (block-oriented device) or
'c’' (character-oriented device).

o permissions is a set of characters describing access rights.
There are 9 permission characters, describing 3 access types
given to 3 user categories. The three access types are read ('r'),
write (‘'w') and execute ('x'), and the three users categories are
the user who owns the file, users in the group that the file
belongs to and other users (the general public). An 'r', 'w' or 'X'
character means the corresponding permission is present; a '-'
means it is absent.

o links refers to the number of filesystem links pointing to the
file/directory (see the discussion on hard/soft links in the next
section).

o owner is usually the user who created the file or directory.

50f11



6 of 11

o group denotes a collection of users who are allowed to access
the file according to the group access rights specified in the
permissions field.

o size is the length of a file, or the number of bytes used by the
operating system to store the list of files in a directory.

o date is the date when the file or directory was last modified
(written to). The -u option display the time when the file was
last accessed (read).

o name is the name of the file or directory.

1s supports more options. To find out what they are, type:
$ man 1s ¢~

man 1S the online UNIX user manual, and you can use it to get help
with commands and find out about what options are supported. It
has quite a terse style which is often not that helpful, so some users
prefer to the use the (non-standard) info utility if it is installed:

$ info 1s ¢

cd (change [current working] directory)
$ cd path

changes your current working directory to path (which can be an
absolute or a relative path). One of the most common relative paths
to use is ".." (i.e. the parent directory of the current directory).

Used without any target directory

$ cd ¢

resets your current working directory to your home directory
(useful if you get lost). If you change into a directory and you
subsequently want to return to your original directory, use

$ cd - ¢

mkdir (make directory)
$ mkdir directory

creates a subdirectory called directoryin the current working



7 of 11

directory. You can only create subdirectories in a directory if you
have write permission on that directory.

rmdir (remove directory)
$ rmdir directory

removes the subdirectory directory from the current working
directory. You can only remove subdirectories if they are
completely empty (i.e. of all entries besides the "."and ".."
directories).

cp (copy)

cp 1s used to make copies of files or entire directories. To copy files,
use:

$ cp source-file(s) destination

where source-file(s) and destination specify the source and
destination of the copy respectively. The behaviour of cp depends
on whether the destination is a file or a directory. If the destination
is a file, only one source file is allowed and cp makes a new file
called destination that has the same contents as the source file. If
the destination is a directory, many source files can be specified,
each of which will be copied into the destination directory. Section
2.6 will discuss efficient specification of source files using wildcard
characters.

To copy entire directories (including their contents), use a recursive
copy:

$ cp -rd source-directories destination-directory

mv (Mmove/rename)

mv 1S used to rename files/directories and/or move them from one
directory into another. Exactly one source and one destination must
be specified:

$ mv source destination

If destination is an existing directory, the new name for source
(whether it be a file or a directory) will be destination/source. If



8 of 11

source and destination are both files, source is renamed destination.
N.B.: if destination is an existing file it will be destroyed and
overwritten by source (you can use the -i option if you would like to
be asked for confirmation before a file is overwritten in this way).

rm (remove/delete)
$ rm target-file(s)

removes the specified files. Unlike other operating systems, it is
almost impossible to recover a deleted file unless you have a
backup (there is no recycle bin!) so use this command with care. If
you would like to be asked before files are deleted, use the -i
option:

$ rm -i myfile ¢~
rm: remove 'myfile'?

rm can also be used to delete directories (along with all of their
contents, including any subdirectories they contain). To do this, use
the -r option. To avoid rm from asking any questions or giving
errors (e.g. if the file doesn't exist) you used the -f (force) option.
Extreme care needs to be taken when using this option - consider
what would happen if a system administrator was trying to delete
user will's home directory and accidentally typed:

$ rm -rf / home/will ¢

(instead of rm -rf /home/will).

cat (catenate/type)
$ cat target-file(s)

displays the contents of target-file(s) on the screen, one after the
other. You can also use it to create files from keyboard input as
follows (> is the output redirection operator, which will be
discussed in the next chapter):

$ cat > hello.txt ¢
hello world! ¢~
[ctrl-d]

$ 1s hello.txt ¢
hello.txt

$ cat hello.txt ¢



9 of 11

hello world!
$

e more and less (catenate with pause)
$ more target-file(s)

displays the contents of target-file(s) on the screen, pausing at the
end of each screenful and asking the user to press a key (useful for
long files). It also incorporates a searching facility (press '/' and
then type a phrase that you want to look for).

You can also use more to break up the output of commands that
produce more than one screenful of output as follows (| is the pipe
operator, which will be discussed in the next chapter):

$ 1s -1 | more¢—

less 1s just like more, except that has a few extra features (such as
allowing users to scroll backwards and forwards through the
displayed file). 1ess not a standard utility, however and may not be
present on all UNIX systems.

2.5 Making Hard and Soft (Symbolic) Links

Direct (hard) and indirect (soft or symbolic) links from one file or
directory to another can be created using the 1n command.

$ 1n filename linkname

creates another directory entry for filename called linkname (i.e.
linkname is a hard link). Both directory entries appear identical (and
both now have a link count of 2). If either filename or linkname is
modified, the change will be reflected in the other file (since they are in
fact just two different directory entries pointing to the same file).

$ 1n -s filename linkname

creates a shortcut called linkname (i.e. linkname is a soft link). The
shortcut appears as an entry with a special type ('1'):

$ 1In -s hello.txt bye.txt ¢~

$ 1s -1 bye.txt ¢~

Irwxrwxrwx 1 will finance 13 bye.txt -> hello.txt
$



10 of 11

The link count of the source file remains unaffected. Notice that the
permission bits on a symbolic link are not used (always appearing as
rwxrwxrwx). Instead the permissions on the link are determined by the
permissions on the target (hello.txt in this case).

Note that you can create a symbolic link to a file that doesn't exist, but
not a hard link. Another difference between the two is that you can
create symbolic links across different physical disk devices or partitions,
but hard links are restricted to the same disk partition. Finally, most
current UNIX implementations do not allow hard links to point to
directories.

2.6 Specifying multiple filenames

Multiple filenames can be specified using special pattern-matching
characters. The rules are:

e '2' matches any single character in that position in the filename.

e '*'matches zero or more characters in the filename. A '+' on its own
will match all files. '*.*' matches all files with containing a ".".

e Characters enclosed in square brackets ('[' and ']') will match any
filename that has one of those characters in that position.

e A list of comma separated strings enclosed in curly braces ("{" and
"}") will be expanded as a Cartesian product with the surrounding
characters.

For example:

??? matches all three-character filenames.

?el1? matches any five-character filenames with 'e11' in the middle.
he* matches any filename beginning with 'ne'.

[m-z1*[a-1] matches any filename that begins with a letter from 'm' to
'z" and ends in a letter from 'a" to 1.

5. {/usr,}{/bin,/1lib}/file eXpands to /usr/bin/file /usr/lib/file
/bin/file and /lib/file.

LN e

Note that the UNIX shell performs these expansions (including any
filename matching) on a command's arguments before the command is
executed.

2.7 Quotes

As we have seen certain special characters (e.g. '*', '-','{' etc.) are



interpreted in a special way by the shell. In order to pass arguments that
use these characters to commands directly (i.e. without filename
expansion etc.), we need to use special quoting characters. There are
three levels of quoting that you can try:

1. Try insert a "\" in front of the special character.

2. Use double quotes (") around arguments to prevent most
expansions.

3. Use single forward quotes (') around arguments to prevent all
expansions.

There is a fourth type of quoting in UNIX. Single backward quotes () are
used to pass the output of some command as an input argument to
another. For example:

$ hostname ¢+~

rose

$ echo this machine is called “hostname’ 4~
this machine is called rose

(BACK TO COURSE CONTENTS)

© September 2001 William Knottenbelt (wjk@doc.ic.ac.uk)

11 of 11



