10f10

: ¢ 00
Introduction to UNIX: PN

Lecture One

1.1 Objectives

This lecture covers:

e The concept of an operating system.

e The internal architecture of an operating system.

e The evolution of the UNIX operating system into two broad
schools (BSD and SYSV) and the development of Linux, a
popular open source operating system.

e The architecture of the Linux operating system in more
detail.

e How to log into (and out of) UNIX and change your
password.

e The general format of UNIX commands.

1.2 What is an Operating System?

An operating system (OS) is a resource manager. It takes the
form of a set of software routines that allow users and
application programs to access system resources (e.g. the CPU,
memory, disks, modems, printers network cards etc.) in a safe,
efficient and abstract way.

For example, an OS ensures safe access to a printer by allowing
only one application program to send data directly to the
printer at any one time. An OS encourages efficient use of the
CPU by suspending programs that are waiting for I/O operations
to complete to make way for programs that can use the CPU
more productively. An OS also provides convenient
abstractions (such as files rather than disk locations) which



20f10

Users

Shell or GUI

Application System
Programs Utilities

System call library

Operating System
Kemel

isolate application programmers and users from the details of
the underlying hardware.

Shell or GUI

Application System
Programs Utilities

System call library

Operating System
Kemel

Single processor Dual processor
workstation with server with
128MB RAM, 512MB RAM,
16GB Hard Disk 100GB RAID amray
System A System B

Fig. 1.1: General operating system architecture

Fig. 1.1 presents the architecture of a typical operating system
and shows how an OS succeeds in presenting users and
application programs with a uniform interface without regard
to the details of the underlying hardware. We see that:

e The operating system kernel is in direct control of the
underlying hardware. The kernel provides low-level device,
memory and processor management functions (e.g. dealing
with interrupts from hardware devices, sharing the
processor among multiple programs, allocating memory for
programs etc.)

e Basic hardware-independent kernel services are exposed to
higher-level programs through a library of system calls
(e.g. services to create a file, begin execution of a program,
or open a logical network connection to another computer).

e Application programs (e.g. word processors,
spreadsheets) and system utility programs (simple but



useful application programs that come with the operating
system, e.g. programs which find text inside a group of
files) make use of system calls. Applications and system
utilities are launched using a shell (a textual command line
interface) or a graphical user interface that provides
direct user interaction.

Operating systems (and different flavours of the same operating
system) can be distinguished from one another by the system
calls, system utilities and user interface they provide, as well as
by the resource scheduling policies implemented by the kernel.

1.3 A Brief History of UNIX

UNIX has been a popular OS for more than two decades because
of its multi-user, multi-tasking environment, stability, portability
and powerful networking capabilities. What follows here is a
simplified history of how UNIX has developed (to get an idea for
how complicated things really are, see the web site
http://www.levenez.com/unix/).

30f10



40f10

Fifth Edition
(1973)

Seventh Edition
(1978)

BSD
(1979)

Solaris/SunOs 5.x (SUN)
AlX (IBM)

IRIX (SGI)
HP-UX (HP)
Digitial UNIX (DEC)
SCO Unix (SCO)
UnixWare (SCO)

SunOs 4.x (SUN)
ULTRIX (DEC)
NextStep (NeXT)
FreeBSD (Open Source)
NetBSD (Open Source)
OpenBSD (Open Source)

Fig. 1.2: Simplified UNIX FamilyTree

In the late 1960s, researchers from General Electric, MIT and
Bell Labs launched a joint project to develop an ambitious
multi-user, multi-tasking OS for mainframe computers known
as MULTICS (Multiplexed Information and Computing System).
MULTICS failed (for some MULTICS enthusiasts "failed" is
perhaps too strong a word to use here), but it did inspire Ken
Thompson, who was a researcher at Bell Labs, to have a go at
writing a simpler operating system himself. He wrote a simpler
version of MULTICS on a PDP7 in assembler and called his
attempt UNICS (Uniplexed Information and Computing System).
Because memory and CPU power were at a premium in those
days, UNICS (eventually shortened to UNIX) used short
commands to minimize the space needed to store them and the




time needed to decode them - hence the tradition of short UNIX
commands we use today, e.g. 1s, cp, rm, mv etc.

Ken Thompson then teamed up with Dennis Ritchie, the author
of the first C compiler in 1973. They rewrote the UNIX kernel in
C - this was a big step forwards in terms of the system's
portability - and released the Fifth Edition of UNIX to
universities in 1974. The Seventh Edition, released in 1978,
marked a split in UNIX development into two main branches:
SYSV (System 5) and BSD (Berkeley Software Distribution). BSD
arose from the University of California at Berkeley where Ken
Thompson spent a sabbatical year. Its development was
continued by students at Berkeley and other research
institutions. SYSV was developed by AT&T and other commercial
companies. UNIX flavours based on SYSV have traditionally
been more conservative, but better supported than BSD-based
flavours.

The latest incarnations of SYSV (SVR4 or System 5 Release 4) and
BSD Unix are actually very similar. Some minor differences are
to be found in file system structure, system utility names and
options and system call libraries as shown in Fig 1.3.

Feature Typical SYSV Typical BSD
kernel name /unix /vmunix
boot init /etc/rc.d directories /etc/rc.* files
mounted FS /etc/mnttab /etc/mtab
default shell sh, ksh csh, tcsh
FS block size 512 bytes->2K 4K->8K
print subsystem 1lp, lpstat, cancel lpr, 1lpq, lprm
echo command echo "\c" echo -n
(no new line)
ps command ps -fae ps -aux
multiple wait poll select
syscalls
memory access memset, memcpy bzero, bcopy
syscalls

Fig. 1.3: Differences between SYSV and BSD

Linux is a free open source UNIX OS for PCs that was originally
developed in 1991 by Linus Torvalds, a Finnish undergraduate
student. Linux is neither pure SYSV or pure BSD. Instead,
incorporates some features from each (e.g. SYSV-style startup
files but BSD-style file system layout) and aims to conform with
a set of IEEE standards called POSIX (Portable Operating System

50f10



6 0f 10

Interface). To maximise code portability, it typically supports
SYSV, BSD and POSIX system calls (e.g. poll, select, memset,
memcpy, bzero and bcopy are all supported).

The open source nature of Linux means that the source code for
the Linux kernel is freely available so that anyone can add
features and correct deficiencies. This approach has been very
successful and what started as one person's project has now
turned into a collaboration of hundreds of volunteer developers
from around the globe. The open source approach has not just
successfully been applied to kernel code, but also to application
programs for Linux (see e.g. http://www.freshmeat.net).

As Linux has become more popular, several different
development streams or distributions have emerged, e.g.
Redhat, Slackware, Mandrake, Debian, and Caldera. A
distribution comprises a prepackaged kernel, system utilities,
GUI interfaces and application programs.

Redhat is the most popular distribution because it has been
ported to a large number of hardware platforms (including
Intel, Alpha, and SPARC), it is easy to use and install and it
comes with a comprehensive set of utilities and applications
including the X Windows graphics system, GNOME and KDE GUI
environments, and the StarOffice suite (an open source
MS-Office clone for Linux).

1.4 Architecture of the Linux Operating System

Linux has all of the components of a typical OS (at this point you
might like to refer back to Fig 1.1):

e Kernel

The Linux kernel includes device driver support for a large
number of PC hardware devices (graphics cards, network
cards, hard disks etc.), advanced processor and memory
management features, and support for many different
types of filesystems (including DOS floppies and the
ISO9660 standard for CDROMs). In terms of the services
that it provides to application programs and system
utilities, the kernel implements most BSD and SYSV system



70f10

calls, as well as the system calls described in the POSIX.1
specification.

The kernel (in raw binary form that is loaded directly into
memory at system startup time) is typically found in the file
/boot/vmlinuz, while the source files can usually be found
in /usr/src/linux.The latest version of the Linux kernel
sources can be downloaded from http://www.kernel.org.

Shells and GUIs

Linux supports two forms of command input: through
textual command line shells similar to those found on most
UNIX systems (e.g. sh - the Bourne shell, bash - the Bourne
again shell and csh - the C shell) and through graphical
interfaces (GUIs) such as the KDE and GNOME window
managers. If you are connecting remotely to a server your
access will typically be through a command line shell.

System Utilities

Virtually every system utility that you would expect to find
on standard implementations of UNIX (including every
system utility described in the POSIX.2 specification) has
been ported to Linux. This includes commands such as 1s,
cp, grep, awk, sed, bc, wc, more, and so on. These system
utilities are designed to be powerful tools that do a single
task extremely well (e.g. grep finds text inside files while wc
counts the number of words, lines and bytes inside a file).
Users can often solve problems by interconnecting these
tools instead of writing a large monolithic application
program.

Like other UNIX flavours, Linux's system utilities also
include server programs called daemons which provide
remote network and administration services (e.g. telnetd
and sshd provide remote login facilities, 1pd provides
printing services, httpd serves web pages, crond runs regular
system administration tasks automatically). A daemon
(probably derived from the Latin word which refers to a
beneficient spirit who watches over someone, or perhaps
short for "Disk And Execution MONitor") is usually



80f10

spawned automatically at system startup and spends most
of its time lying dormant (lurking?) waiting for some event
to occur.

o Application programs

Linux distributions typically come with several useful
application programs as standard. Examples include the
emacs editor, xv (an image viewer), gcc (a C compiler), g++ (a
C++ compiler), xfig (a drawing package), latex (a powerful
typesetting language) and soffice (StarOffice, which is an
MS-Office style clone that can read and write Word, Excel
and PowerPoint files).

Redhat Linux also comes with rpm, the Redhat Package
Manager which makes it easy to install and uninstall
application programs.

1.5 Logging into (and out of) UNIX Systems

Text-based (TTY) terminals:

When you connect to a UNIX computer remotely (using telnet)
or when you log in locally using a text-only terminal, you will
see the prompt:

login:

At this prompt, type in your usename and press the
enter/return/ ¢ key. Remember that UNIX is case sensitive (i.e.
Will, WILL and will are all different logins). You should then be
prompted for your password:

login: will
password:

Type your password in at the prompt and press the
enter/return/ ¢ key. Note that your password will not be
displayed on the screen as you type it in.

If you mistype your username or password you will get an
appropriate message from the computer and you will be
presented with the login: prompt again. Otherwise you should



be presented with a shell prompt which looks something like
this:

$

To log out of a text-based UNIX shell, type "exit" at the shell
prompt (or if that doesn't work try "logout"; if that doesn't work
press ctrl-d).

Graphical terminals:

If you're logging into a UNIX computer locally, or if you are
using a remote login facility that supports graphics, you might
instead be presented with a graphical prompt with login and
password fields. Enter your user name and password in the
same way as above (N.B. you may need to press the TAB key to
move between fields).

Once you are logged in, you should be presented with a
graphical window manager that looks similar to the Microsoft
Windows interface. To bring up a window containing a shell
prompt look for menus or icons which mention the words
"shell", "xterm", "console" or "terminal emulator".

To log out of a graphical window manager, look for menu
options similar to "Log out" or "Exit".

1.6 Changing your password

One of the things you should do when you log in for the first
time is to change your password.

The UNIX command to change your password is passwd:
$ passwd ¢

The system will prompt you for your old password, then for
your new password. To eliminate any possible typing errors you
have made in your new password, it will ask you to reconfirm
your new password.

Remember the following points when choosing your password:
o Avoid characters which might not appear on all keyboards, e.g.

£

90f10



10 of 10

o The weakest link in most computer security is user passwords

so keep your password a secret, don't write it down and don't
tell it to anyone else. Also avoid dictionary words or words
related to your personal details (e.g. your boyfriend or
girlfriend's name or your login).

o Make it at least 7 or 8 characters long and try to use a mix of
letters, numbers and punctuation.

1.7 General format of UNIX commands

A UNIX command line consists of the name of a UNIX command
(actually the "command" is the name of a built-in shell
command, a system utility or an application program) followed
by its "arguments" (options and the target filenames and/or
expressions). The general syntax for a UNIX command is

$ command -options targets ¢~

Here command can be though of as a verb, options as an adverb
and targets as the direct objects of the verb. In the case that the
user wishes to specify several options, these need not always be
listed separately (the options can sometimes be listed altogether
after a single dash).

(BACK TO COURSE CONTENTS)

© September 2001 William Knottenbelt (wjk@doc.ic.ac.uk)



