Práctico 3

Semántica de la Lógica Proposicional

Ejercicio 1 (Valuaciones)

Demuestre que toda valuación v cumple que:

a.
$$v(\varphi \wedge \psi) = v(\varphi).v(\psi)$$

b.
$$v(\varphi \leftrightarrow \psi) = 1 - |v(\varphi) - v(\psi)|$$

c.
$$v(\varphi \lor \psi) = v(\varphi) + v(\psi) - v(\varphi) \cdot v(\psi)$$

d.
$$v(\varphi \to \psi) = 1 - v(\varphi) + v(\varphi) \cdot v(\psi)$$

e.
$$v(\varphi \to \psi) = 1$$
 si y solo si $v(\varphi) < v(\psi)$

Ejercicio 2 (Tautologías)

Investigue cuáles de las siguientes proposiciones son tautologías.

a.
$$(\neg p \lor q) \leftrightarrow (q \to p)$$

b.
$$(p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$$

c.
$$\perp \rightarrow p$$

d.
$$(p \to q) \lor (\neg p \to r)$$

Ejercicio 3 (Tautologías e implicación)

Coloque letras proposicionales en lugar de ¿? de forma de que la fórmula obtenida sea una tautología. ¿Puede realizar esta tarea en todos los casos? Justifique.

a.
$$p \rightarrow i$$
?

b.
$$(p \to q) \to ((q \to i?) \to (p \to r))$$

c.
$$(p \to (q \to r)) \to (i? \to (p \to i?))$$

d.
$$(p \rightarrow q) \rightarrow i$$
?

e.
$$(p \to (q \to r)) \to ((i,? \to q) \to (p \to r))$$

f.
$$((p \rightarrow q) \rightarrow p) \rightarrow i$$
?

Ejercicio 4 (Sustitución)

Calcule $\varphi[\neg p_0 \to p_3/p_0]$ para:

a.
$$\varphi = p_1 \wedge p_0 \rightarrow (p_0 \rightarrow p_3)$$

b.
$$\varphi = (p_3 \leftrightarrow p_0) \lor (p_2 \rightarrow \neg p_0)$$

Ejercicio 5 (Tautologías)

Demuestre, usando al menos dos estrategias diferentes, que:

a.
$$\models (\varphi \rightarrow \psi) \leftrightarrow (\neg \psi \rightarrow \neg \varphi)$$
 (contraposición)

b.
$$\models (\varphi \to \psi) \land (\psi \to \sigma) \to (\varphi \to \sigma)$$
 (transitividad de \to)

c.
$$\models ((\varphi \rightarrow \psi) \rightarrow \varphi) \rightarrow \varphi$$
 (Ley de Pierce)

d.
$$\models (\varphi \to (\psi \land \neg \psi)) \to \neg \varphi$$

e.
$$\models (\varphi \rightarrow \neg \varphi) \rightarrow \neg \varphi$$

f.
$$\models \neg(\varphi \land \neg\varphi)$$

g.
$$\models \varphi \rightarrow (\psi \rightarrow \varphi \land \psi)$$

Ejercicio 6 (Consecuencia semántica)

Demuestre que:

a.
$$\varphi \models \varphi$$

b.
$$\varphi \lor \psi, \neg \psi \models \varphi$$

c.
$$\varphi \leftrightarrow \psi, \neg \varphi \models \neg \psi$$

d.
$$(\varphi \wedge \psi), (\psi \wedge \sigma) \models (\varphi \wedge \sigma)$$

e.
$$(\varphi \to \psi), (\neg \varphi \to \psi) \models \psi$$

f. Si
$$\varphi \models \psi$$
 y $\psi \models \sigma$ entonces $\varphi \models \sigma$

g. Si
$$\models \varphi \rightarrow \psi$$
 entonces $\varphi \models \psi$

h. Si
$$\models \neg \varphi$$
 y $\psi \models \varphi$ entonces $\models \neg \psi$

i. Si
$$\Gamma \models \varphi$$
 y $\Gamma \models \neg \psi$ entonces $\Gamma \models \neg (\neg \varphi \lor \psi)$ (donde $\Gamma \subseteq PROP$)

Ejercicio 7 (Examen de Julio 2006)

Para cada una de las siguientes afirmaciones, justifique cuál tiene una única valuación v que la satisface, cuál tiene varias y cuál no tiene ninguna.

- a. Para toda $\varphi \in PROP$, existe $i \in \mathbb{N}$, tal que $v(\varphi \to p_i) = 1$
- b. Para toda $\varphi \in PROP$, existe $i \in \mathbb{N}$, tal que $v(\varphi \to p_i) = 0$
- c. Para todo $i \in \mathbb{N}$, existe $\varphi \in \mathtt{PROP}$, tal que $v(\varphi \to p_i) = 0$

Ejercicio 8 (Simplificación)

Simplifique las siguientes proposiciones (esto es, encuentre una proposición equivalente más corta). Justifique cada caso.

a.
$$(\varphi \to \psi) \land \varphi$$

b.
$$(\varphi \to \psi) \lor \neg \varphi$$

c.
$$(\varphi \to \psi) \to \psi$$

d.
$$\varphi \to (\varphi \wedge \psi)$$

e.
$$(\varphi \wedge \psi) \vee \varphi$$

f.
$$(\varphi \to \psi) \to \varphi$$

Ejercicio 9 (Conectivas)

a. Denotamos por "|" la barra de Sheffer cuya función de valuación es la siguiente:

$$v(\varphi|\psi) = 0 \text{ sii } v(\varphi) = v(\psi) = 1.$$

Denotamos por "↓" el conectivo cuya función de valuación es la siguiente:

$$v(\varphi \downarrow \psi) = 1 \operatorname{sii} v(\varphi) = v(\psi) = 0 (\operatorname{ni} \varphi \operatorname{ni} \psi)$$

Demuestre que los conjuntos de conectivos $\{|\}$ y $\{\downarrow\}$ son funcionalmente completos. (Sugerencia: Pruebe que $(\neg p_1)$ eq $(p_1 \mid p_1)$ y que $(\neg p_1)$ eq $(p_1 \downarrow p_1)$)

 b. Considere la conectiva ternaria \$ cuya función de valuación es la siguiente (conectiva mayoría):

$$v(\$(\varphi_1, \varphi_2, \varphi_3)) = 1 \sin v(\varphi_1) + v(\varphi_2) + v(\varphi_3) \ge 2$$

Exprese \$ en términos de \lor y \neg .

c. Considere el conectivo # cuya función de valuación es la siguiente:

$$v(\varphi \# \psi) = 1 \text{ ssi } v(\varphi) \neq v(\psi)$$

Exprese # en términos de \vee y \neg .

d. Demuestre que el conjunto $\{\land, \bot\}$ no es funcionalmente completo. (Sugerencia: Pruebe que ninguna fórmula que use solamente esos conectivos puede ser una tautología).

Ejercicio 10 (Formas normales)

Determine las formas normales conjuntivas y disyuntivas para las siguientes fórmulas:

- a. $\neg(p \leftrightarrow q)$
- b. $((p \to q) \to q) \to q$
- c. $(p \to (p \land \neg q)) \land (q \to (q \land \neg p))$

Ejercicio 11 (Formas normales y criterios)

Indique una condición necesaria y suficiente para que una forma normal conjuntiva sea una tautología. En forma dual, indique una condición necesaria y suficiente para que una forma normal disyuntiva sea una contradicción.

Ejercicio 12 (Mas formas normales)

- a. Defina una función f que elimina las conectivas \to y \leftrightarrow de una fórmula preservando la equivalencia semántica. Por ejemplo, $f((p \to q)) = (\neg p \lor q)$.
- b. Defina una función g que, dada una fórmula sin las conectivas $\to y \leftrightarrow$, devuelve una fórmula donde la conectiva \neg solamente actúa sobre expresiones atómicas, preservando la equivalencia semántica. Por ejemplo, $g((\neg(p \lor q))) = (\neg p \land \neg q)$. Llamamos a esta expresión una forma normal negada. Demuestre que el resultado de aplicar la función g a una fórmula β es equivalente a la fórmula β .
- c. Defina una función que, dada una fórmula en forma normal negada, devuelve una forma normal conjuntiva preservando la equivalencia semántica. Análogo para formas normales disyuntivas.

Ejercicio 13 (Conjunto característico)

Considere el conjunto V de todas las valuaciones y la función $\|\cdot\|$: PROP $\to Pot(V)$ tal que $\|\varphi\| = \{v \in V | v(\varphi) = 1\}$. Llamamos a $\|\varphi\|$ el conjunto característico de φ .

a. Demuestre que :

```
I. \|\varphi \lor \psi\| = \|\varphi\| \cup \|\psi\|

II. \|\varphi \land \psi\| = \|\varphi\| \cap \|\psi\|

III. \|\neg \varphi\| = \|\varphi\|^c

IV. \models \varphi \text{ ssi } \|\varphi\| = V

V. \|\bot\| = \emptyset
```

VI. $\models \varphi \rightarrow \psi$ ssi $\|\varphi\| \subseteq \|\psi\|$

b. Extendemos la función $\| \|$ al conjunto de proposiciones Γ de la siguiente forma:

$$\|\Gamma\|=\{v|v(\varphi)=1 \text{ para cualquier } \varphi\in\Gamma\}.$$

Pruebe que : $\Gamma \models \varphi$ ssi $\|\Gamma\| \subseteq \|\varphi\|$.

Ejercicio 14 (Orden)

En este ejercicio definimos una relación " \ll " entre proposiciones. Definimos la relación \ll de la siguiente manera : $\varphi \ll \psi$ ssi $\models \varphi \rightarrow \psi$ y no se cumple $\models \psi \rightarrow \varphi$

- a. Pruebe que la relación "«" es densa en PROP. Esto es : Para cada φ , ψ tales que $\varphi \ll \psi$, encuentre σ tal que $\varphi \ll \sigma \ll \psi$. (Sugerencia : Considere una variable p_i que no ocurra en φ ni en ψ . Utilice esta variable para construir σ . Considere una valuación v y analice las restricciones que $v(\varphi)$, $v(\psi)$, $v(p_i)$ y $v(\sigma)$ deben cumplir para que $\varphi \ll \sigma \ll \psi$. Construya σ en base a dichas restricciones.)
- b. Halle un elemento maximal y uno minimal de la relación "«".
- c. Sea la fórmula p_1 . Encuentre una secuencia de fórmulas $\varphi_1, \varphi_2, \varphi_3, \dots$ tales que $p_1 \ll \varphi_1 \ll \varphi_2 \ll \varphi_3 \ll \dots$
- d. Muestre que hay al menos una pareja de fórmulas φ, ψ que son incomparables según la relación " \ll ".

Ejercicio 15 (Sustitución)

Sea φ una proposición que contiene al átomo p. Por comodidad , escribiremos $\varphi(\sigma)$ en vez de $\varphi[\sigma/p]$. Abreviaremos como \top a la proposición $\neg \bot$.

- a. Demuestre que para toda valuación v se cumple que:
 - I. Si $v(\varphi_1) = v(\varphi_2)$ entonces $v(\psi(\varphi_1)) = v(\psi(\varphi_2))$.
- b. Utilice el resultado de la parte (1) para demostrar las siguientes propiedades:
 - I. $\varphi(\top) \models \varphi(\varphi(\top))$
 - II. $\varphi(p) \models \varphi(\varphi(\top))$
 - III. $\varphi(p), \neg \varphi(\top) \models p \leftrightarrow \bot$
 - IV. $\varphi(p), \neg \varphi(\top) \models \varphi(\varphi(\top))$