

Introduction to Subspace Clustering

René Vidal

THE DEPARTMENT OF BIOMEDICAL ENGINEERING

The Whitaker Institute at Johns Hopkins

Subspace Clustering Problem

- Given a set of points lying in multiple subspaces, identify
 - The number of subspaces and their dimensions
 - A basis for each subspace
 - The segmentation of the data points
- Challenges
 - Model selection
 - Nonconvex
 - Combinatorial
- More challenges
 - Noise
 - Outliers
 - Missing entries

Subspace Clustering Problem: Challenges

Sa

 \mathcal{S}_1

- Even more challenges
 - Angles between subspaces are small
 - Nearby points are in different subspaces

Prior Work: Iterative-Probabilistic Methods

• Approach

- Given segmentation, estimate subspaces
- Given subspaces, segment the data
- Iterate till convergence
- Representative methods
 - K-subspaces (Bradley-Mangasarian '00, Kambhatla-Leen '94, Tseng'00, Agarwal-Mustafa '04, Zhang et al. '09, Aldroubi et al. '09)
 - Mixtures of PPCA (Tipping-Bishop '99, Grubber-Weiss '04, Kanatani '04, Archambeau et al. '08, Chen '11)

Advantages	Disadvantages / Open Problems
Simple, intuitive	Known number of subspaces and dimensions
Missing data	Sensitive to initialization and outliers

Prior Work: Algebraic-Geometric Methods

• Approach

- Number of subspaces = degree of polynomial
- Subspaces = factors of polynomial

Representative methods

- Factorization (Boult-Brown'91, Costeira-Kanade'98, Gear'98, Kanatani et al.'01, Wu et al.'01, Sekmen'13)
- GPCA (Shizawa-Maze '91, Vidal et al. '03 '04 '05, Huang et al. '05, Yang et al. '05, Derksen '07, Ma et al. '08, Ozay et al. '10)

Advantages	Disadvantages / Open Problems
Closed form	Complexity
Arbitrary dimensions	Sensitive to noise, outliers, missing entries

0 00

Prior Work: Spectral-Clustering Methods

• Approach

- Data points = graph nodes
- Pairwise similarity = edge weights
- Segmentation = graph cut
- Representative methods
 - Local (Zelnik-Manor '03, Yan-Pollefeys '06, Fan-Wu '06, Goh-Vidal '07, Sekmen'12)
 - Global (Govindu '05, Agarwal et al. '05, Chen-Lerman '08, Lauer-Schnorr '09, Zhang et al. '10)

Advantages	Disadvantages / Open Problems
Efficient	Known number of subspaces and dimensions
Robust	Global methods are complex

Prior Work: Sparse and Low-Rank Methods

- Approach
 - Data are self-expressive
 - Global affinity by convex optimization
- Representative methods
 - Sparse Subspace Clustering (SSC) (Elhamifar-Vidal '09 '10 '13, Candes '12 '13)
 - Low-Rank Subspace Clustering (LRSC) (Liu et al. '10 '13, Favaro-Vidal '11 '13)
 - Sparse + Low-Rank (Wang '13)

Advantages	Disadvantages / Open Problems
Efficient, Convex	Low-dimensional subspaces
Robust	Missing entries

