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Subspace Clustering Problem
• Given a set of points lying in multiple subspaces, identify 

– The number of subspaces and their dimensions 
– A basis for each subspace 
– The segmentation of the data points 

• Challenges 
– Model selection  
– Nonconvex 
– Combinatorial 

• More challenges 
– Noise 
– Outliers 
– Missing entries



Subspace Clustering Problem: Challenges
• Even more challenges 

– Angles between subspaces are small 
– Nearby points are in different subspacesCHAPTER 3. SPARSE SUBSPACE CLUSTERING
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Figure 3.9: Left: percentage of pairs of subspaces whose smallest principal angle is smaller
than a given value. Right: percentage of data points in pairs of subspaces whose K nearest
neighbors contain points from the other subspace.

solution of the low-rank optimization program prior to clustering.

Implementation details. We implement the SSC optimization algorithm in (3.55)

using the Alternating Direction Method of Multipliers (ADMM) framework [92, 93]

described in Section 3.5. In all motion segmentation experiments, we set (�e,�z) =

(+�, 10/µz) and in all face clustering experiments, we set (�e,�z) = (20/µe,+�).

For the state of the art, we use the codes provided by their authors. As LSA and

SCC need to know the number of subspaces a priori and determining the number

of subspaces from eigenspectrum in the noisy setting is more di�cult, in order to

have a fair comparison, we provide the number of subspaces as an input to all the

algorithms.

Datasets and some statistics. For the motion segmentation problem, we consider

the Hopkins 155 dataset [94], which consists of 155 video sequences with 2 or 3 motions

in each video corresponding to 2 or 3 low-dimensional subspaces [2, 95]. For the face
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Prior Work: Iterative-Probabilistic Methods
• Approach 

– Given segmentation, estimate subspaces 
– Given subspaces, segment the data 
– Iterate till convergence 

• Representative methods 
– K-subspaces (Bradley-Mangasarian ’00, Kambhatla-Leen ’94,  

Tseng’00, Agarwal-Mustafa ’04, Zhang et al. ’09, Aldroubi et al. ’09) 
– Mixtures of PPCA (Tipping-Bishop ’99, Grubber-Weiss ’04,  

Kanatani ’04, Archambeau et al. ’08, Chen ’11)

Advantages Disadvantages / Open Problems

Simple, intuitive Known number of subspaces and dimensions

Missing data Sensitive to initialization and outliers



Prior Work: Algebraic-Geometric Methods
• Approach 

– Number of subspaces = degree of polynomial 
– Subspaces = factors of polynomial 

• Representative methods 
– Factorization (Boult-Brown’91, Costeira-Kanade’98, Gear’98,  

Kanatani et al.’01, Wu et al.’01, Sekmen’13)  

– GPCA (Shizawa-Maze ’91, Vidal et al. ’03 ’04 ’05, Huang et al. ’05,  
Yang et al. ’05, Derksen ’07, Ma et al. ’08, Ozay et al. ‘10)

Advantages Disadvantages / Open Problems

Closed form Complexity

Arbitrary dimensions Sensitive to noise, outliers, missing entries



Prior Work: Spectral-Clustering Methods
• Approach 

– Data points           = graph nodes 
– Pairwise similarity = edge weights 
– Segmentation       = graph cut 

• Representative methods 
– Local (Zelnik-Manor ’03, Yan-Pollefeys ’06, Fan-Wu ’06, Goh-Vidal ’07, Sekmen’12) 
– Global (Govindu ’05, Agarwal et al. ’05, Chen-Lerman ’08, Lauer-Schnorr ’09, Zhang et al. ’10)

Advantages Disadvantages / Open Problems

Efficient Known number of subspaces and dimensions

Robust Global methods are complex



Prior Work: Sparse and Low-Rank Methods
• Approach 

– Data are self-expressive 
– Global affinity by convex optimization 

• Representative methods 
– Sparse Subspace Clustering (SSC)  

(Elhamifar-Vidal ’09 ’10 ‘13, Candes ’12 ‘13)  

– Low-Rank Subspace Clustering (LRSC) 
(Liu et al. ’10 ‘13, Favaro-Vidal ’11 ’13) 

– Sparse + Low-Rank (Wang ‘13)

Advantages Disadvantages / Open Problems

Efficient, Convex Low-dimensional subspaces

Robust Missing entries


