
How, and Why, Process Metrics Are Better

Foyzur Rahman

University of California, Davis, USA

mfrahman@ucdavis.edu

Premkumar Devanbu

University of California, Davis, USA

ptdevanbu@ucdavis.edu

Abstract—Defect prediction techniques could potentially help
us to focus quality-assurance efforts on the most defect-prone
files. Modern statistical tools make it very easy to quickly
build and deploy prediction models. Software metrics are at the
heart of prediction models; understanding how and especially
why different types of metrics are effective is very important
for successful model deployment. In this paper we analyze the
applicability and efficacy of process and code metrics from several
different perspectives. We build many prediction models across
85 releases of 12 large open source projects to address the
performance, stability, portability and stasis of different sets of
metrics. Our results suggest that code metrics, despite widespread
use in the defect prediction literature, are generally less useful
than process metrics for prediction. Second, we find that code
metrics have high stasis; they don’t change very much from
release to release. This leads to stagnation in the prediction
models, leading to the same files being repeatedly predicted as
defective; unfortunately, these recurringly defective files turn out
to be comparatively less defect-dense.

I. INTRODUCTION

Software-based systems pervade and greatly enhance modern

life. As a result, customers demand very high software quality.

Finding and fixing defects is expensive; defect prediction mod-

els promise greater efficiency by prioritizing quality assurance

activities. Since defect distribution is highly skewed [11, 27],

such models can usefully finger the most defective bits of code.

Typically defect prediction models rely on supervised learn-

ers, which use a labeled training dataset to learn the association

between measured entity properties (e.g., metrics calculated on

files or methods), with the defect proneness of these entities.

Careful choice of metrics can improve prediction performance.

Researchers have mostly focused on two broad classes of

metrics for defect prediction: code metrics, which measure

properties of the code (e.g., size and complexity), and process

metrics (e.g., number of changes, number of developers).

Researchers have long been interested in which class of metrics

(process or code) are better for defect prediction.

Moser et al. [18] compared the power of code and process

metrics on Eclipse project and found that process metrics

outperform code metrics. However, Menzies et al. [16] report

that code metrics are useful for defect prediction. Arisholm

et al. found that process and code metrics perform similarly in

terms of AUC but code metrics may not be cost-effective [2].

Our work deviates from existing approaches in two important

ways. Firstly, (and most importantly) we seek to understand

how and why process metrics are better for defect prediction.

Secondly, our methodology is squarely based on a prediction

setting. Existing studies mostly evaluate different types of

metrics using cross-validations on few projects. However,

the most attractive use of models is in a prediction setting;

such models can be used to focus cost-constrained quality

control efforts. In a release oriented development process, this

means training models on earlier releases to predict defects of

latter release. We build and compare prediction models across

multiple projects and releases, using different combinations

of metrics and learning techniques, using a broad range of

settings. Our experiments lead to the following contributions:

• We compare the performance of different models in terms

of both traditional measures such as AUC and F-score,

and the newer cost-effectiveness [1] measures.

• We compare the stability of prediction performance of

the models across time and over multiple releases.

• We compare the portability of prediction models: how do

they perform when trained and evaluated on completely

different projects.

• We study stasis, viz.., the degree of change (or lack thereof)

in the different metrics, and the corresponding models

over time. We then relate these changes with their ability

to predict defects.

• We investigate whether prediction models tend to favor

recurringly defective files; we also examine whether such

files are relatively more defect-dense, and thus good targets

of inspection efforts.

II. BACKGROUND AND THEORY

Defect prediction models are mostly built using supervised

learning techniques: logistic regression, SVM, decision trees

etc.. During training, the model systematically learns how to

associate various properties of the considered software entities

(e.g., methods, files and packages) with the defect proneness

of these entities. Researchers have historically hypothesized

that properties of the code, measured using code metrics, could

usefully predict defect-proneness. Code metrics could measure

size (larger files may be more defect-prone), or complexity

(more complicated files may be more defect-prone). The value

of code metrics in defect prediction has been well-explored [12,

16, 29].

However, software development processes, per se, can be

quite complex. Lately, researchers have been interested in the

impact of development process on software quality. Recent

studies [4, 19, 21, 23, 26] suggest that an entity’s process

properties (e.g., developer count, code ownership, developer

experience, change frequency) may be important indicators of

defect proneness.

978-1-4673-3076-3/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA432

Clearly, the relative efficacy of these metrics in defect

prediction is of vital concern to the practitioner. Should she

use all types of metrics? Should she mix different types of

metrics? Moser et al. [18] compared the prediction performance

of code and process metrics in three releases of Eclipse and

found that process metrics may outperform code metrics in

defect prediction. Arisholm et al. [2] compared various metrics

and prediction techniques on several releases of a legacy

Java middleware system named COS and found that code

metrics may perform well in terms of traditional performance

measures such as AUC while it may not be cost-effective.

Menzies et al. [16] found code metrics very effective for defect

prediction.

Existing studies mostly limit themselves to a cross-validation

based model evaluation on a limited set of projects. However,

many projects align their development and quality assurance

activities with releases. Therefore, a release-based evaluation of

model performance may be more appropriate for such settings.

Research Question 1: In release-based prediction settings,

how do the process and code metrics compare to predict

defect locations?

Release-based prediction performance may, however, desta-

bilize after a major shift of activities between releases. For

example, a release comprising a burst of new features might

be followed-up by a series of incremental quality-improving

releases. The process aspects that cause defects may also

shift, thus confounding prediction performance. Ekanayake

et al. [6] found that defect prediction models destabilize, viz..,

perform poorly over time due to project phase changes. We

therefore evaluate how process and product metrics affect the

prediction stability of models. Presumably, a more stable model

would also adapt better to project phase changes; armed with

this information, a practioner can then more effectively select

prediction metrics based on specific project dynamics.

Research Question 2: Are process metrics more/less

stable than code metrics?

Another interesting way of comparing process and code

metrics would be the portability of the learned prediction

models between different projects. Portability would be use-

ful for smaller software companies, without large, available

portfolios of software for training prediction models. Even big

companies with diverse product portfolios may find it useful

to port their prediction models to a new product. Portability

(also called “cross-project prediction”) recently attracted quite

a bit of attention [14, 22, 24, 25, 28]; but we have not found

any that compare the portability of different types of metrics.

Research Question 3: Are process metrics more/less

portable than code metrics?

Besides exploring the practical utility of metrics in defect

prediction models, we also seek to understand why one class

of metrics outperforms another, by exploring the distribution

of metrics values in more detail. One important property of

metrics is stasis. One can reasonably expect that, as a system

evolves, the distribution of defects does not remain unchanged.

Therefore, we might expect that the values of useful metrics

(ones with defect-prediction power) would also tend to vary

with release. Metrics whose values remain unchanged would

willy-nilly tend to predict the same files as defective, release

after release.

Research Question 4: Are process metrics more/less

static than code metrics?

The above question asks if metrics change (or fail to

change) as software evolves; but even a very dynamic metric

is a useful predictor only if it co-evolves significantly with

defect occurrence. Furthermore, usually, many metrics are used

together as a group in a prediction model. Even if a single

metric isn’t very dynamic, it might synergistically work together

with other (also static) metrics to form a good prediction model.

It is therefore important to understand whether models stagnate,

viz.., they tend to repeatedly predict the same files as defective.

Research Question 5: Do models built from different

sets of metrics stagnate across releases?

Of course, it is possible that even stagnant models work: if

the same files are recurringly defective, across multiple releases,

then a stagnant model that selects these defect-prone files will

be reasonably successful. We hypothesize that stagnant models

predict defect distributions close to those they originally learned.

Perhaps they flag mostly the defective entities which don’t

change much, e.g., complicated files which repeatedly become

defective. We consider such defective entities (defective in

both training release and test release) as recurringly defective

and the rest as incidentally defective. We hypothesize that a

stagnant model would predict mostly the recurringly defective

entities.

Research Question 6: Do stagnant models (based on

stagnant metrics) tend to predict recurringly defective

entities?

Arisholm et al. [2] report that code metrics perform well

(as well as process metrics) when considering cost-insensitive,

entity-based measures such as AUC, but not as well when

considering cost. While Arisholm et al. don’t explore the

reasons for this result, we believe this arises from prediction

bias away from defect density. Larger files are more expensive

to inspect; if such investment does not pay off in terms

of number of defects uncovered, it’s not cost-effective. We

433

TABLE I: Studied Projects and Release Information

Project Description Releases Avg Files Avg SLOC

CXF Services Framework 2.1, 2.2, 2.3.0, 2.4.0, 2.5.0, 2.6.0 4038.33 358846.67

Camel Enterprise Integration Framework 1.4.0, 1.5.0, 1.6.0, 2.0.0, 2.2.0, 2.4.0, 2.7.0, 2.9.1 4600.38 241668.12

Derby Relational Database 10.2.2.0, 10.3.1.4, 10.4.1.3, 10.5.1.1, 10.6.1.0, 10.7.1.1, 10.8.2.2 2497.29 530633.00

Felix OSGi R4 Implementation 1.0.3, 1.2.0, 1.4.0, 1.6.0, 2.0.0, 2.0.3, 3.0.0, 3.2.0, 4.0.2 2740.56 249886.22

HBase Distributed Scalable Data Store 0.16.0, 0.18.0, 0.19.0, 0.20.0, 0.20.6, 0.90.1, 0.90.4, 0.94.0 934.75 187953.38

HadoopC Common libraries for Hadoop 0.15.0, 0.16.0, 0.17.0, 0.18.0, 0.19.0, 0.20.1 1047.17 142257.33

Hive Data Warehouse System for Hadoop 0.3.0, 0.4.0, 0.5.0, 0.6.0, 0.7.0, 0.8.0, 0.9.0 966.29 152079.86

Lucene Text Search Engine Library 2.0.0, 2.1.0, 2.2.0, 2.3.0, 2.4.0, 2.9.0, 3.0.0 990.86 122527.00

OpenEJB Enterprise Java Beans 3.0, 3.1, 3.1.1, 3.1.2, 3.1.3, 3.1.4, 4.0.0 2895.43 225018.43

OpenJPA Java Persistence Framework 1.0.0, 1.0.2, 1.1.0, 1.2.1, 1.2.2, 2.0.1, 2.1.0, 2.2.0 3181.50 321033.50

Qpid Enterprise Messaging system 0.5, 0.6, 0.8, 0.10, 0.12, 0.14, 0.16 1724.00 198311.86

Wicket Web Application Framework 1.4.0, 1.4.5, 1.4.9, 1.5.0, 6.0.0b2 2295.20 152565.40

TABLE II: Process Metrics

Short Name Description

COMM Commit Count
ADEV Active Dev Count
DDEV Distinct Dev Count
ADD Normalized Lines Added
DEL Normalized Lines Deleted
OWN Owner’s Contributed Lines
MINOR Minor Contributor Count
SCTR Changed Code Scattering
NADEV Neighbor’s Active Dev Count
NDDEV Neighbor’s Distinct Dev Count
NCOMM Neighbor’s Commit Count
NSCTR Neighbor’s Change Scattering
OEXP Owner’s Experience
EXP All Committer’s Experience

examine whether code metrics have a prediction bias towards

larger files (and thus, ones with lower defect density), and

whether such prediction bias emanates from the stagnation of

the models as discussed earlier.

Research Question 7: Do stagnant models have a predic-

tion bias towards larger, less-defect-dense files?

III. EXPERIMENTAL METHODOLOGY

A. Projects Studied

Our 12 sample projects are listed in Table I. All are Java-

based, and maintained by Apache Software Foundation (ASF);

however, they come from a very diverse range of domains.

For each project we extracted the commit history from its GIT

repository1. We also used GIT BLAME on every file at each

release to get the detailed contributor information. Our BLAME

process uses copy and move detection and ignores whitespace

changes, to identify the correct provenance of each line.

All 12 projects use JIRA
2 issue tracking system. From JIRA,

we extracted the defect information and the fixing commits

for fixed defects. Then, for each fixing commit, we extract

1http://git.apache.org
2https://issues.apache.org/jira/

the changed lines, author, etc. from GIT. Any files modified in

these defect-fixing commits are considered as defective.

B. Predicting Defects

Our defect-prediction studies are at file-level. We choose

file-level predictive (code and process) metrics that have been

widely used in defect prediction literature. We used a wide

range of learning techniques: Logistic Regression, J48, SVM,

and Naive Bayes, all from WEKA3. This reduces the risk of

dependence on a particular learning technique. Note, in the

default setting, J48 and SVM do not provide a probability

of defect proneness, which is important for cost-effectiveness

comparison. However, WEKA provides settings for J48 and

SVM that do yield probabilities4. As did Arisholm et al. [2],

we find that the prediction performance depends mostly on

the types of metrics used, and not on the learning technique.

Therefore, for brevity, we typically just report the findings

from Logistic Regression, and mention deviations in other

techniques, if any.

All of our models are binary classifiers (predicted defec-

tive|clean). However, a file may have zero or more defects

fixed during a release. As in prior work, we declare a file as

defective if it had at least one defect-fix, or clean otherwise.

Using both code and process metrics, we build models in a

release-based prediction setting: we train the model on a given

release and evaluate its performance on the next release. So,

e.g. a model trained on the k-th release, is only tested on

the k + 1-th release. However, as discussed in section IV, for

stability we evaluate the model on all future releases following

a training release. For sensitivity analysis of other research

questions, we also evaluated all of our models using all future

releases instead of just the immediately succeeding release and

found consistent results.

For portability, we evaluated models trained on one project

on all releases of other projects, ignoring time-ordering.

3http://www.cs.waikato.ac.nz/ml/weka/
4 For J48, an option to use unpruned decision tree with Laplace smoothing

is available to find the estimate of defect proneness of each file. Similarly,
WEKA’s SVM implementation allowed us to fit a logistic models to SVM
output to find the probability of defect proneness.

434

TABLE III: Code Metrics

Type Metrics Count

File CountDeclMethodPrivate, AvgLineCode, CountLine, MaxCyclomatic, CountDeclMethodDefault, AvgEssential, CountDeclClass-
Variable, SumCyclomaticStrict, AvgCyclomatic, AvgLine, CountDeclClassMethod, AvgLineComment, AvgCyclomaticModified,
CountDeclFunction, CountLineComment, CountDeclClass, CountDeclMethod, SumCyclomaticModified, CountLineCodeDecl,
CountDeclMethodProtected, CountDeclInstanceVariable, MaxCyclomaticStrict, CountDeclMethodPublic, CountLineCodeExe, Sum-
Cyclomatic, SumEssential, CountStmtDecl, CountLineCode, CountStmtExe, RatioCommentToCode, CountLineBlank, CountStmt,
MaxCyclomaticModified, CountSemicolon, AvgLineBlank, CountDeclInstanceMethod, AvgCyclomaticStrict

37

Class PercentLackofCohesion, MaxInheritanceTree, CountClassDerived, CountClassCoupled, CountClassBase 5

Method CountInput, CountOutput, CountPath, MaxNesting 12

C. Process Metrics

Our file-based process metrics are listed in Table II. All

process metrics are release-duration. COMM measures the

number of commits made to a file. ADEV is the number of

developers who changed the file. DDEV is the cumulative

number of distinct developers contributed to this file up to this

release. ADD and DEL are the normalized (by the total number

of added and deleted lines) added and deleted lines in the file.

OWN measures the percentage of the lines authored by the

highest contributor of a file. MINOR measures the number of

contributors who authored less than 5% [4] of the code in that

file. OEXP measures the experience of the highest contributor

of that file using the percent of lines he authored in the project

at a given point in time. EXP measures the geometric mean

of the experiences of all the developers. All these metrics are

drawn from prior research [2, 4, 17, 20].

We also used a simple line based change entropy metric [8],

derived from the location of the changes made: SCTR measures

the scattering of changes to a file; scattered changes could be

more complex to manage, and thus more likely to induce

defects. SCTR is the standard position deviation of changes

from the geographical centre thereof.

Kim et al. [10]’s celebrated BugCache is populated using

a simple co-commit history. This work suggests a range of

different process metrics based on co-commit-neighbors. For a

given file F and release R, these metrics are based on the list

of files co-committed with F , weighted by the frequency of

co-commits during R. NADEV, NDDEV, NCOMM and NSCTR

are just the co-commit-neighbor measures of ADEV, DDVEV,

COMM and SCTR. We measured the usefulness of all the

neighbor based metrics, as well as SCTR using single variable

predictor models, and found them to be highly significant

defect predictors with a median AUC of around 0.8. All of our

process metrics are cumulated and measured on a per-release

basis.

In this paper, we focus on measuring prediction performance,

rather than testing hypotheses. Therefore issues such as VIF,

goodness of fit, variable significance etc. were not such a

concern and following the suggestion of Menzies et al. [16],

we simply use all the available variables.

D. Code Metrics

We used UNDERSTAND from Scitools5 to compute code

metrics. All 54 code metrics are listed in Table III. Our metrics

set includes complexity metrics such as Cyclomatic complexity,

essential complexity, number of distinct paths, fan in, fan

out etc.; Volume metrics such as lines of code, executable

code, comment to code ratio, declarative statement etc.; and

Object oriented metrics such as number of base classes, number

of children, depth of inheritance tree etc. Space limitations

inhibit a detailed description; however, these metrics are well

documented at the UNDERSTAND website6. Most metrics are

file-level; some metrics, (e.g. OO metrics) are class level. Since

all projects are Java-based, most files contain a single class;

so we aggregate class level metrics to file level using max.

Similarly some metrics are available only at method level

(such as fan-in, fan-out) and we aggregate those at file level

using min, max and mean.

E. Evaluation

All of our prediction models output probabilities of defect

proneness of files. To classify a file as defective, one can use

varying minimum thresholds on the probability value. Most

models are fallible; thus different choices of threshold will

give varying rates of false positives/negatives (FP/FN), and

true classifications (TP/TN)

Accuracy of the model is the proportion of correct predictions,

and is defined as TP+TN

TP+FP+TN+FN
. Ma et al. [13] noted, that

in a highly class imbalanced data set with very few defective

entities, accuracy is not a useful performance measure: even

a poor model that declares all files as clean will have high

accuracy.

Precision measures the percentage of model declared defective

entities that are actually defective. PRECISION is defined as
TP

TP+FP
. Low-precision models would waste precious quality-

control resources.

Recall identifies the proportion of actually defective entities

that the model can successfully identify. Model with low recall

5http://www.scitools.com/
6http://www.scitools.com/documents/metricsList.php?

435

100

75

50

25

100755025

Percent of LOC

P
e

rc
e

n
t
o

f
B

u
g

s
 F

o
u

n
d

O

P

R 75

50

25

100755025

Percent of LOC
P

e
rc

e
n

t
o

f
B

u
g

s
 F

o
u

n
d

100
20%

P1

P2

R

Fig. 1: Cost Effectiveness Curve. On the left, O is the optimal, R
is random, and P is a possible, practical, predictor model. On the
right, we have two different models P1 and P2, with the same overall
performance, but P2 is better when inspecting 20% of the lines or
less. Figure quoted from our FSE 2011 paper [23]

would be unable to find most of the defects. Recall is identified

as TP

TP+FN
.

A good model yields both high PRECISION and high

RECALL. But, it is well known that increasing one often reduces

the other; hence the F-measure.

F-Measure is the harmonic mean of PRECISION and RECALL.

All of these measures require the use of a minimum

probability threshold to declare a file defective. Lessermann

et al. [12] decry the use of performance measures that require

an arbitrary threshold. Mende et al. [15] argue that threshold

based performance measures make replication difficult. Ar-

isholm et al. [2] argues that in the context of SE considering

defect proneness as continuous and prioritizing resources in

the order of the predicted defect proneness is more suitable.

This brings us to measures that are threshold invariant.

ROC Receiver operating characteristic (ROC) is a curve

that plots the true positive rates (TPR = TP

TP+FN
) against

False Positive Rates for all possible thresholds between 0
and 1. This threshold invariant measure gives us a 2-D curve,

which passes through (0, 0) and (1, 1). The best possible model

would have the curve close to y = 1, with and area under the

curve (AUC) close to 1.0. AUC always yields an area of 0.5
under random-guessing. This enables comparing a given model

against random prediction, without worrying about arbitrary

thresholds, or the proportion of defective files.

Cost-Effectiveness The above measures ignore cost-

effectiveness. Consider a model that accurately predicts defec-

tive files, but orders those files in increasing order of defect

density. Then we might allocate resources (e.g., code inspectors)

to the least defect dense files. Assuming cost proportional to

the size of the file, this would be undesirable. In contrast, a cost-

effective model would not only accurately predict defective

files, but also order those files in decreasing order of defect

density.

Analogous to ROC, we can have a cost-effectiveness curve

(refer to left plot of figure 1), plotting the proportion of

defects against proportion of SLOC coming from the ordered

(using predicted defect proneness) set of files. Unlike ROC,

however, we only consider a small portion of area under the

cost-effectiveness curve (AUCEC), tailored for the resource

constraints. Thus, during deadlines, we may only consider

the cost-effectiveness for at most 10% SLOC, while other

times we may consider 20% SLOC. Based on the choice of

the maximum proportion of SLOC that a manager may be

interested to consider, different models may become more or

less competitive. E.g., in the right plot of figure 1, P2 is a

better cost-effective model up to around 50% SLOC, after that

P1 performs better.

In this paper we use AUC, AUCEC at 10% (AUCEC10) and

20% (AUCEC20) SLOC to compare the models’ performance

in a threshold invariant manner. However, to give readers a

way to compare with existing literature, we initially report

F-Measure at 0.5 threshold (F50), as used by the influential

Zimmermann et al. paper [29].

To compare process and code metrics, we evaluate 4

combinations of metrics. First, we build the model with only

process metrics. Next we build the model with just code

metrics. We then build the model with process metrics and size

(CountLineCode in table III). Size is a very important metric

by itself and there is a considerable body of evidence that

size is highly correlated with most product metrics including

McCabe and Halstead metrics [7, 9]. This is to ensure that

we can separate the influence of the combination of size and

process metrics from the entire collection of process and code

metrics. Finally, we build the model with the entire collection

of process and code metrics. Following Menzies et al. [16]

and others, we Log transformed all of our process and code

metrics. This transformation significantly improves prediction

performance.

IV. RESULTS

We begin with comparing the performance of process and

code metrics in release based prediction settings using AUC,

AUCEC and F50.

RQ 1: In release based prediction settings, how do the process

and code metrics compare to predict defect locations?

Figure 2 compares the AUC of different types of metrics

for four different classifiers. The metrics are marked in x-axis

as “P”: Process, “C”: Code, “S”: Process & Size, and “A”:

All (process and code metrics combined). We compared the

AUC performance for all types of metrics for a given learning

technique using Wilcoxon tests and corrected the p-values using

Benjamini-Hochberg (BH) correction. We also do the same to

compare the performance of different learning techniques for

a given set of metrics. We find that process metrics always

perform significantly better than code metrics across all learning

techniques, with very low p value (p < 0.001). However,

process metrics and size together may not perform any better

than process metrics alone (all p values were insignificant).

Combining process and code metrics together also doesn’t yield

436

Logistic J48 SVM NaiveBayes

0.4

0.6

0.8

1.0

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

P C S A P C S A P C S A P C S A

A
U

C

Process Code Process+Size All

(a) AUC performance

Logistic J48 SVM NaiveBayes

0.0

0.2

0.4

0.6

0.8

●

●

●

●●●

●

●

P C S A P C S A P C S A P C S A

F
_

5
0

Process Code Process+Size All

(b) F50 performance

Logistic J48 SVM NaiveBayes

0.00

0.05

0.10

0.15
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●
●

P C S A P C S A P C S A P C S A

A
U

C
E

C
_

2
0

Process Code Process+Size All

(c) AUCEC20 performance

Fig. 2: Performance of different classifiers and metrics

any better performance than process metrics alone. Similar to

Menzies et al. [13], we find that for code metrics, NaiveBayes

works best, while J48 and SVM may not perform as well.

However, Logistic regression performs well for all types of

metrics and is at a statistical dead heat with NaiveBayes for

code metrics (p = 0.664).

We also present the F50 and AUCEC20 in figure 2. Again, we

compare different classifiers and set of metrics and found that

process metrics easily outperform code metrics in terms of both

F50 and AUCEC (p < 0.001 in both cases). Particularly, similar

to Arisholm et al.’s findings [2], we found code metrics are

less effective for cost-effective prediction. Interestingly, while

NaiveBayes is the best classifier for code metrics [16] when

measured using AUC, but does worst for AUCEC (p < 0.05
after BH correction against all other classifiers).

In general, our results show models using code metrics

provide reasonable AUC, albeit not as good as models using

process metrics. For AUCEC20, code metrics don’t do much

better than random: different learning techniques don’t help

much either. Therefore, for brevity, we only report results

only from Logistic regression (LR), which does well for both

process and code metrics; indeed LR yields better AUCEC than

NaiveBayes for code-metrics based models.

Next we report results on the stability of prediction models:

as discussed in [5], models with stable prediction performance

are more useful in practice, specially so in rapidly evolving

projects.

RQ 2: Are process metrics more/less stable than code metrics?

We evaluate stability by using all available older releases to

predict newer ones. Development activity on a project evolves

with time, and older releases may be quite different from newer

ones; this approach is a good test of the prediction stability of

a set of metrics. Therefore, for this RQ, rather than predicting

an immediately subsequent release, we predict all releases in

a project following a training release.

Process Code All

0.4

0.6

0.8

1.0

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Release Difference

A
U

C

(a) AUC Stability

Process Code All

0.00

0.05

0.10

0.15
●

●

●

●

●●●

●

● ●●

●

●

●

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Release Difference

A
U

C
E

C
_
2
0

(b) AUCEC20 Stability

Fig. 3: Stability of different metrics

Figure 3a shows the stability of AUC when predicting 1 thru

5 releases in the future. For brevity, only results from LR are

presented; other learning models give similar results. We see a

perceptible downward trend in performance as we train on older

releases to predict newer releases. However, 2-sample Wilcox

tests on all pairs of boxplots (viz., for both consecutive and

non-consecutive releases) for each types of metrics provide no

statistical significance of this trend. We observe similar result

in terms of AUCEC10 and AUCEC20 (figure 3b), for either code

or process metrics. Earlier findings of instability were based

on a continuous time line [5]. Releases may be capturing more

wholesome encapsulations of similar activities, than do equal

time-intervals; although some releases may take longer than

others, all releases may group activities in the same way. Thus,

inherently, release-based models may be less susceptible to

concept drift [5].

Portability of prediction models across projects may be quite

important for some organizations, specially newer or rapidly

changing organizations. Cross-project defect prediction recently

attracted quite a bit of attention [14, 24, 25, 28]; however, to

our knowledge, none compare the relative merits of different

types of metrics in such settings.

437

Process Code All

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●●●●

●

●
●
●
●

●

●
●

●●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●●●

●

●

●

●

●
●●

●●●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Within Cross Within Cross Within Cross
Portability

A
U

C

(a) AUC Portability

Process Code All

0.00

0.05

0.10

0.15
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●
●●●
●●●
●
●
●●●●
●●
●●
●●●●
●

●

●

●

●

●●
●
●
●
●●●

●●
●

●●●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

Within Cross Within Cross Within Cross
Portability

A
U

C
E

C
_
2
0

(b) AUCEC20 Portability

Fig. 4: Portability of different metrics

RQ 3: Are process metrics more/less portable than code metrics?

Figure 4a and 4b compares the portability of models

for different sets of metrics in terms of AUC and AUCEC20.

Performance degrades in cross-project settings for both process

and code metrics; the degradation is statistically significant with

low p-values (less than 0.001). It’s also clear that code metrics

show a larger decline of performance than process metrics and

the notches of code metrics based boxplots are nearly non-

overlapping. We do see a large number of outliers in process

metrics, suggesting less portability in some cases. We observed

similar pattern for AUCEC10 (p value from Wilcox test is less

than 0.001 for code metrics, 0.024 for process metrics, and

0.009 for all metrics) and AUCEC20 (p value from Wilcox test

is less than 0.001 for code metrics, 0.031 for process metrics,

and 0.006 for all metrics), with process metrics showing more

portability than code metrics.

Our findings so far indicate that code metrics are less

stable and less portable than process metrics. Why do code

metrics show such high “resistance to change”? We guessed

that common code metrics are less responsive to development

activities, and thus less tied to factors that influence defect-

proneness. For example, a defect introduced by replacing

a strncp call with a strcp, wouldn’t affect code metrics,

but would affect process attributes such as the modification

time, number of active developers, ownership, etc.. The joint

distribution of metrics and defects are estimated and exploited

by most learning algorithms; relatively “change-resistant” (more

static) metrics might do poorly at tracking changes in defect

occurrence.

RQ 4: Are process metrics more/less static than code metrics?

We use the Spearman correlation of each metric of every

file between two successive releases as a measure of stasis.

We then combine all the correlations in a violin plot for each

group of metrics. This would tell us how similar a group of

metrics look in two successive releases. Figure 5a presents

the comparison of our Spearman-correlation stasis measure for

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Process Code

S
p
e
a
rm

a
n
 C

o
rr

e
la

ti
o
n
s

(a) Stasis of Metrics

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●

●

●

●

●

●

Process Code All

S
p
e
a
rm

a
n
 C

o
rr

e
la

ti
o
n
s

(b) Stasis of Models

Fig. 5: Comparing stasis of different metrics and models

process and code metrics. As we can see from the figure, code

metrics are highly correlated, and therefore changes very little

over releases. Process metrics, on the other hand, show quite

a range of stasis. While the median value of stasis in process

metrics is under 0.5, the top quartile is over 0.9!

To examine this disparity further, we ranked the process

metrics using the median value of our stasis measure for that

metric. The ranking of metrics, in decreasing order of stasis,

was OEXP, EXP, OWN, MINOR, DDEV, SCTR, COMM,

ADEV, NSCTR, NCOMM, NDDEV, NADEV, DEL, and ADD.

Interestingly, the top 5 (OEXP thru DDEV) have a very high

median stasis score of over 0.93 while the rest 9 have a median

stasis score of under 0.32. This disparity between mean and top-

quartile prompted us to examine in more detail the effects of

process-metrics stasis on predictive power. There are 5 metrics

with high stasis, and 9 that show low stasis. We hypothesized

that stasis is important for predictive power and that low-stasis

measures make better predictors.

For comparison purpose, we chose all 5 high-stasis process

metrics, and chose different groups of 5 from the low-stasis

process metrics. We used a sliding window based approach to

select 5 groups of 5 low-stasis metrics: the 5 groups were the

metrics ranked 1 . . . 5 (by stasis of low to high correlations),

and then those ranked 2 . . . 6, all the way up to 5 . . . 9. We then

built prediction models from all groups of 5 and additionally

the high stasis metrics group of ranks 10 . . . 14. This gave

us a total of 6 models, 5 based on low stasis metrics and 1
based on high stasis metrics. We found that the median AUC of

models built from metrics with low correlations are over 0.9,

while the AUC of models built from highly correlated process

metrics are barely around 0.8. A paired Wilcox test of each

of the models of low stasis metrics against the model from

high stasis metrics suggests that models of low stasis metrics

are statistically significantly better predictors than models with

high stasis metrics for all performance criteria (AUC, AUCEC10,

AUCEC20, and F50) with very low p-values (less than 0.001).

This case-study above suggests that stasis plays an important

role in predictive power. We attempted to replicate this study

for code metrics, comparing high-stasis and low-stasis code

metrics; but unfortunately, code metrics generally have very

high stasis, around 0.96. This suggests that models based

438

Recurring Training Only Test Only

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

P C A P C A P C A

A
ve

ra
g
e
 N

o
rm

a
liz

e
d
 R

a
n
k

(a) Ability to rank files according
to the change of defect proneness

4.0

4.5

5.0

5.5

6.0

6.5

0.01

0.02

0.03

0.04

●●●

●

●

L
o

g
 S

L
O

C
D

e
fe

c
t D

e
n

s
ity

Recurring Test Only

(b) SLOC and defect density for
change of defect proneness

Fig. 6: Ranking ability, Log SLOC and defect density for change of
defect pronenes

on code metrics would also have high stasis: these models

would repeatedly predict the same files over and over again as

defective.

Prediction models learn the joint distribution of metrics

and defect proneness from the training release, and use this

knowledge to predict defects in the test release. The probability

assigned by models to files in the test release reflect this learned

defect distribution. In an active project, as different parts of

the system become foci of attention and activity, defects gets

introduced into different parts. There is thus every reason to

expect that the defect distribution in subsequent releases should

differ: file f that was buggy in release k isn’t necessarily also

buggy in k + 1 and vice versa. We would therefore expect

that a good model wouldn’t stagnate, viz., it would generally

indicate a change of defect probability in files from release to

release.

RQ 5: Do models built from different sets of metrics stagnate

across releases?

The rank correlation between the predicted probabilities

(from test set) and the learned probabilities (from training set)

is one measure on the model’s adaptation in an active project.

A high rank correlation suggests that the model is probably

predicting the same set of files as defective. Figure 5b, shows

the value range of Spearman correlations between probabilities

of defect proneness across all pairs of training-test releases.

The difference is stark: the code metrics based models are

essentially spitting out the original probabilities it learned from

the training data. This clearly indicates that the stasis of code

metrics leads to stagnant prediction models, that predict the

same files as defective over and over again.

To be fair, even stagnant models might be useful in a project

where same set of files become recurringly defective: identify-

ing a critical set of recurringly defective files unambiguously

might still help focus testing and inspection.

RQ 6: Do stagnant models (based on stagnant metrics) tend to

predict recurringly defective entities?

To evaluate the effect of stagnation, we partition the set of

files in three sets, based on how much their defect-proneness

changes. Included in Set 1 are files which are defective in both

training and test; these recurring files should be “easy prey”

for stagnant models. In contrast (set 2) files which are defective

in the training set but not in the test set, are bait which might

trap a stagnant model into a false positive prediction. Finally

files which are defective in the test set, but not in the training

set, are decoys, which might mislead a stagnant model into a

false negative prediction.

For each type of metrics and every test release, we rank the

files in that release by their predicted defect proneness. We then

normalize these ranks using the maximum possible rank (which

is the number of files in the associated test release) and partition

the normalized ranks in three sets as discussed above. We can

then compare the averaged normalized ranks (averaged by the

size of the partition) across different partitions for different test

releases and metrics types. Normalization allows comparison

between releases with varying numbers of files. A better model

produces a higher normalized ranks for defective files.

Figure 6a compares average normalized ranks for different

types of metrics for different defect occurrences. As we can

see from the figure, even for just the recurringly defective

files (left plot), process metrics outperform code metrics.

Process metrics also (middle plot) avoid ranking “training only”

defective files higher, thus doing better at avoiding such false

positives. Finally, process metrics can sniff out the files with

newly introduced defects (“test only”) better. We compared

the average normalized rank of the models from each pair of

metrics using Wilcoxon test and corrected the p-values using

BH correction. The p-values confirm statistical significance of

the superiority of process metrics over code metrics. Process

metrics were always better (lower normalized rank for “training

only”, and higher normalized rank for other two cases) than

code metrics (p < 0.001). Process metrics also outperformed

all metrics with lower “training only” ranking (p < 0.001).

This suggests that in all three defect occurrence scenarios,

process metrics are better-suited for prediction models.

All our findings clearly indicate that process metrics are

superior to code metrics for building prediction models. Still

code metrics are easy to use: multiple tools support easy

gathering of code metrics. Their AUC (around 0.8) performance,

though inferior to process metrics, is not bad. If process metrics

are hard to use, should one use code metrics instead?

Prior work by Arisholm et al. [2], in a cross-validation

evaluation suggests that in a cost-constrained setting, code

metrics are not as useful, and indeed, when measured with

AUCEC, don’t do much better than random. We supplement

Arisholm et al. with evaluation in a prediction setting, to

understand why code metrics perform so poorly in terms

of AUCEC, while giving reasonable AUC. As both AUC and

439

AUCEC rely on the ordering of defective entities based on the

predicted defect probabilities, we conjecture that code metrics

based models are clearly prioritizing less defect dense files.

Furthermore, our findings suggest that code-metrics models are

fairly good at predicting recurringly defective files. These two

pieces of evidence suggests that code metrics tend to predict

recurringly defective, but not very defect-dense files.

Question: Are recurringly defective files larger and less defect

dense, thereby rendering the models, with prediction bias

towards such files, less cost- effective?

Figure 6b compares the Log SLOC and defect density of

files that were recurringly defective (defective in both training

and test release), with the files that only became defective in the

test release. As is evident from the figure, larger files are less

defect dense and more likely to stay defective in subsequent

releases. We also confirmed the statistical significance of

this phenomenon using Wilcoxon test with BH correction.

Recurringly defective files are statistically significantly larger

(p < 0.001) than files that are only defective in the test set. At

the same time, files that are defective only in the test set, have

statistically significantly higher defect density (p < 0.001).

Given our observed prediction bias of code metrics based

models towards recurringly defective files, such models would

be at a disadvantage to predict cost-effectively. Moreover, the

inability of code metrics based prediction models to predict

newly introduced defects, which may be more defect dense,

would only worsen the cost-effectiveness of such models.

V. THREATS TO VALIDITY

Data Quality We use a large selection of projects from

different domains. All projects use a high-fidelity process to

link bug-fixing commits to issues in JIRA issue tracking system.

Our projects have a median defect linking rate of over 80%,

which is much higher than reported (typically under 50%) in

the literature [3].

Completeness of Code Metrics We only used code

metrics as available from Scitool’s popular UNDERSTAND tool.

UNDERSTAND does not generate all possible code metrics ever

reported or used in literature. However, it does produce a large

set of diverse code metrics. Furthermore, the AUC of our code

metrics based models are similar or better than that reported

by Arisholm et al. [2]. Our comparisons of process and code

metrics based models have large effect sizes; thus our results

appear fairly robust to the choice of code metrics.

Completeness of Process Metrics Our set of process

metrics are easily obtained, and based on a single release.

We used a diverse set of process metrics widely used in

the literature ranging from code ownership and developer

experience to file activities. Our neighborhood-based metrics

are motivated by highly cited research of Kim et al. [10]. Our

location of change metric (SCTR) measures simple change

entropy [8]. We therefore argue that our set of process metrics

are comprehensive.

Stability Analysis We study stability in the context of

releases, instead of a continuously shifting time window like

Ekanayake et al. [5]. We argue that each release is a self

contained logically defined epoch, more easily comparable to

other releases; furthermore many budgeting/resource decisions

are based on a release granularity. Thus we believe this is a

suitable granuarity for evaluating prediction models.

Generalizability We use large number of projects consisting

of 85 releases. We observed small variances in all of our

findings. To avoid ecological fallacy [20], we also compared

our findings in a per project setting, and got very similar

results. Therefore we believe our result should be generalizable

in similar application domains and development dynamics

in a release oriented prediction context. However, all of our

projects are developed in Java, and are OSS. There is a definite

threat to generalizability based on the fact that all are Apache

projects; however, we believe this threat is ameliorated by

the diversity of the chosen projects. Also, our findings may

be less generalizable for commercial projects, which have a

completely different governance style, and may demonstrate

different influence of process metrics on defect-proneness of

files. Therefore we hope other researchers with access to

commercial data would replicate our findings.

VI. CONCLUSION

We studied the efficacy of process and code metrics for

defect prediction in a release-oriented setting across a large

number of releases from a diverse set of projects. We compared

models from different types of metrics using both cost-

sensitive and AUC based evaluation across different objectives

of performance, stability and portability to understand “when”

a set of metrics may be suitable for an organization. Our

results strongly suggest the use of process metrics instead

of code metrics. We also try to understand “why” a set of

metrics may predict a type of defect occurrence by focusing

on the stasis of metrics. Our findings surprisingly show that

code metrics, which is widely used in the literature, may not

evolve with the changing distribution of defects, which leads

code-metric-based prediction models stagnating, and tending

to focus on files which are recurringly defective. Finally, we

observed that such recurringly defective files are larger and

less defect dense, therefore these large files may compromise

the cost-effectiveness of the stagnant code-metric-based models

with a prediction bias towards such files.

REFERENCES

[1] E. Arisholm, L. C. Briand, and M. Fuglerud. Data mining

techniques for building fault-proneness models in telecom

java software. In ISSRE, pages 215–224. IEEE Computer

Society, 2007.

[2] E. Arisholm, L. C. Briand, and E. B. Johannessen. A

systematic and comprehensive investigation of methods to

build and evaluate fault prediction models. JSS, 83(1):2–

17, 2010.

[3] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,

V. Filkov, and P. Devanbu. Fair and balanced?: bias in

bug-fix datasets. In Proceedings of the the 7th FSE, pages

121–130. ACM, 2009.

440

[4] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. T.

Devanbu. Don’t touch my code!: examining the effects

of ownership on software quality. In T. Gyimóthy and

A. Zeller, editors, SIGSOFT FSE, pages 4–14. ACM,

2011.

[5] J. Ekanayake, J. Tappolet, H. C. Gall, and A. Bernstein.

Tracking concept drift of software projects using defect

prediction quality. In Proceedings of the 2009 6th IEEE

International Working Conference on Mining Software

Repositories, MSR ’09, pages 51–60, Washington, DC,

USA, 2009. IEEE Computer Society.

[6] J. Ekanayake, J. Tappolet, H. C. Gall, and A. Bernstein.

Time variance and defect prediction in software projects -

towards an exploitation of periods of stability and change

as well as a notion of concept drift in software projects.

Empirical Software Engineering, 17(4-5):348–389, 2012.

[7] K. El Emam, S. Benlarbi, N. Goel, and S. Rai. The

confounding effect of class size on the validity of object-

oriented metrics. IEEE TSE, 27(7):630–650, 2001.

[8] A. E. Hassan. Predicting faults using the complexity of

code changes. In ICSE, pages 78–88. IEEE, 2009.

[9] T. Khoshgoftaar and J. Munson. Predicting software

development errors using software complexity metrics.

Selected Areas in Communications, IEEE Journal on,

8(2):253–261, 1990.

[10] S. Kim, T. Zimmermann, E. Whitehead Jr, and A. Zeller.

Predicting faults from cached history. In Proceedings of

the 29th ICSE, pages 489–498. IEEE Computer Society,

2007.

[11] A. G. Koru and H. Liu. Identifying and characterizing

change-prone classes in two large-scale open-source

products. Journal of Systems and Software, 80(1):63–

73, 2007.

[12] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.

Benchmarking classification models for software defect

prediction: A proposed framework and novel findings.

IEEE TSE, 34(4):485–496, July 2008.

[13] Y. Ma and B. Cukic. Adequate and precise evaluation

of quality models in software engineering studies. In

Proceedings of the 29th ICSE Workshops, ICSEW ’07,

pages 68–, Washington, DC, USA, 2007. IEEE Computer

Society.

[14] Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer learning

for cross-company software defect prediction. Information

and Software Technology, 54(3):248–256, 2012.

[15] T. Mende. Replication of defect prediction studies:

problems, pitfalls and recommendations. In T. Menzies

and G. Koru, editors, PROMISE, page 5. ACM, 2010.

[16] T. Menzies, J. Greenwald, and A. Frank. Data mining

static code attributes to learn defect predictors. IEEE

TSE, 33(1):2–13, 2007.

[17] A. Mockus and D. M. Weiss. Predicting risk of software

changes. Bell Labs Technical Journal, 5(2):169–180,

2000.

[18] R. Moser, W. Pedrycz, and G. Succi. A comparative

analysis of the efficiency of change metrics and static

code attributes for defect prediction. In W. Schäfer, M. B.

Dwyer, and V. Gruhn, editors, ICSE, pages 181–190.

ACM, 2008.

[19] N. Nagappan and T. Ball. Using software dependencies

and churn metrics to predict field failures: An empirical

case study. In ESEM, pages 364–373. IEEE Computer

Society, 2007.

[20] D. Posnett, V. Filkov, and P. Devanbu. Ecological

inference in empirical software engineering. In ASE’2011,

pages 362–371. IEEE, 2011.

[21] F. Rahman and P. T. Devanbu. Ownership, experience

and defects: a fine-grained study of authorship. In R. N.

Taylor, H. Gall, and N. Medvidovic, editors, ICSE, pages

491–500. ACM, 2011.

[22] F. Rahman, D. Posnett, and P. Devanbu. Recalling the

“imprecision” of cross-project defect prediction. In the

20th ACM SIGSOFT FSE, pages –. ACM, 2012.

[23] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu.

Bugcache for inspections: hit or miss? In FSE, pages

322–331. ACM, 2011.

[24] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano.

On the relative value of cross-company and within-

company data for defect prediction. Empirical Softw.

Engg., 14(5):540–578, Oct. 2009.

[25] B. Turhan, A. T. Misirli, and A. B. Bener. Empirical

evaluation of mixed-project defect prediction models. In

EUROMICRO-SEAA, pages 396–403. IEEE, 2011.

[26] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Do too many

cooks spoil the broth? using the number of developers to

enhance defect prediction models. ESE, 13(5):539–559,

2008.

[27] H. Zhang. On the distribution of software faults. IEEE

TSE, 34(2):301–302, March-April 2008.

[28] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and

B. Murphy. Cross-project defect prediction: a large scale

experiment on data vs. domain vs. process. In H. van

Vliet and V. Issarny, editors, ESEC/SIGSOFT FSE, pages

91–100. ACM, 2009.

[29] T. Zimmermann, R. Premraj, and A. Zeller. Predicting de-

fects for eclipse. In Proceedings of the Third International

Workshop on Predictor Models in Software Engineering,

PROMISE ’07, pages 9–, Washington, DC, USA, 2007.

IEEE Computer Society.

441

Copyright of ICSE: International Conference on Software Engineering is the property of
Association for Computing Machinery and its content may not be copied or emailed to
multiple sites or posted to a listserv without the copyright holder's express written permission.
However, users may print, download, or email articles for individual use.

