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We present the first polynornial-time approximation algorithm for finding a minimum-cost 
subgraph having at least a specified number of edges in each cut. This class of problems includes, 
among others, the generalized Steiner network problem, also called the survivable network design 
problem. If k is the maximum cut requirement of the problem, our solution comes within a factor 
of 2k of optimal. Our algorithm is primal-dual and shows the importance of this technique in 
designing approximation algorithms. 

1. Introduction 

We consider the class of problems of finding a minimum-cost subgraph such 
that  the number of edges crossing each cut is at least a specified requirement, which 
is some function of the cut. More formally, given an undirected graph G =  (V,E), 
a non-negative cost function c : E --~ Q+, and a function f : 2 V --, N, this class of 
problems can be formulated as the following integer program: 

Min Z CeXe 
eEE 

subject to: 

(IP) ~ Xe>_f(S) O r  
e~6(S) 
x~ ~ {0, 1} e ~ E 

where 5(S) denotes the set of edges having exactly one endpoint in S. 
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In this paper, we shall impose the condition that the function f is proper, i.e. 
f satisfies: 

�9 [Symmetry] f ( S ) : f ( V - S )  for all SCV;  and 
�9 [Maximality] If A and B are disjoint, then f (AUB)<max{ f (A ) , f (B ) } .  

We also require that  f ( V ) =  0 for all proper functions f .  We shall motivate 
this definition later on, by showing that  it implies certain uncrossing properties of 
cuts. 

The formulation (IP) captures a vast class of graph connectivity problems. For 
example, it encompasses the problem of finding a minimum-cost k-edge-connected 
subgraph (by using f (S)  = k, for all 0 C S C V, and consequently ensuring that  
there are k edge-disjoint paths between any pair of vertices i and j) .  It also 
encompasses a well-known generalization of both the k-edge-connectivity problem 
and the Steiner tree problem called the generalized Steiner network problem or the 
survivable network design problem. In this problem, given requirements rij for each 
pair i,j of vertices, we need to find a minimum-cost subgraph that  has rij edge- 
disjoint paths between i and j .  This problem is modelled by (IP) with the function 
f (S)  =-maxiEs,j~srij, which can be easily seen to be proper. This problem has a 
number of important practical applications. It comes up, for instance, in the design 
of networks which can "survive" certain edge failures (e.g. see [9]). 

Solving (IP) optimally is well known to be NP-ha rd  even under many restric- 
tions. For example, the Steiner tree problem is NP-ha rd  even when the cost func- 
tion satisfies the Euclidean metric, and the minimum 2-edge connected subgraph 
problem is NP-ha rd  even if all edge weights are unity. Efficient approximation 
algorithms for (IP) were known only for very special cases. 

Our main result is the first polynomial time approximation algorithm for (IP). 
Our algorithm finds a solution within a factor of 2k of the optimal, where k = 
max S f(S).  We should stress that,  in our model, each edge is used at most once. 
The running time is dominated by O(k[VI 3) maximum flow computations, given 
that f is an oracle to which the algorithm has free access. 

If the function f takes only l distinct values 0 = Po < Pl (P2 ( . . .  < Pl, then the 
l 

performance guarantee is improved to 2 ~ 3{(pi- Pi-1), where g is the harmonic 
i=l 

1 i 1 In particular, for the minimum k-edge-connected function 3{ (k) = 1+ ~ + ~ + . . .  + ~. 
subgraph problem (or its Steiner version where only a subset of the vertices need 
to be k-edge-connnected), the approximation factor is 23{(k),~ 2 ink. Furthermore, 

l 
when Pl = 1 and 1 >_ 2, the bound can be improved to 2 ~ J~(Pi - Pi-1) - 1. Our 

i=1 
algorithm immediately extends to augmentation versions of these problems, where 
one needs to augment a given graph so as to satisfy a proper function f at minimum 
cost. The algorithm has the same performance guarantee, or sometimes even better  
if the given graph partially meets the connectivity requirements. 

Perhaps the most significant aspect of this work lies in the methodology un- 
derlying our algorithm, which is based on a primal-dual approach. The power of 
this approach has been utilized extensively for solving problems in P. In fact, the 
most efficient known algorithms for some of the cornerstone problems in combina- 
torial optimization, including matching, flow and shortest paths, are based on this 
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approach [14]. Some of these algorithms, e.g., Dijkstra's shortest path algorithm, 
can be described without referring to the primal-dual framework. In other cases, 
though, such as Edmonds' algorithm for the minimum-weight non-bipartite match- 
ing problem, the primal-duM approach appears to be crucial. The method consists 
of performing alternate primal and dual improvement steps until an optimal solu- 
tion is found. The special combinatorial structure of the particular problem is used 
for designing procedures for the improvement step, thus resulting in an efficient 
algorithm. 

The primal-dual approach can also be used to derive good approximation al- 
gorithms for NP-hard optimization problems; in this context, the primal and dual 
improvement steps attempt at homing in on a "good" approximate integral solu- 
tion. Many known approximation algorithms can be interpreted as primal-dual. 
Goemans and Williamson [8], motivated by an earlier result of Agrawal, Klein, and 
Ravi [1], show that the primal-dual technique can be applied to a large class of 
graph problems. They present a 2-approximation algorithm for (IP),  provided f 
ranges in {0,1}, by using an algorithm that successively improves primal and dual 
solutions to the LP relaxation of ([P). Furthermore, for several NP-hard problems 
the primal-dual algorithm in [8] is the only known method yielding polynomial-time 
approximations with good performance guarantees. On the other hand, for opti- 
mization problems in P, the primal-dual approach is simply an efficient method 
for solving the corresponding linear programs. For this reason, the primal-dual ap 
proach seems to hold even more promise in the context of approximation algorithms 
than in the design of exact algorithms. In the next section we present elements of 
the primal-dual approach to approximation algorithms. This will also help state 
the high level idea behind our algorithm for approximating (IP). 

In addition to the primal-dual approach, our algorithm uses the idea of satisfy- 
ing f in "phases". This idea has been used previously in several graph algorithms, 
including the 2-phase approximation algorithm of Frederickson and Ja'Ja' [4] and 
an exact algorithm for the unweighted graph augmentation problem due to Naor, 
Gusfield and Martel [13]. In the context of (IP),  the use of phases was introduced 
by Klein and Ravi [12] who gave the first 3-approximation algorithm for proper 
functions with range {0,2}. Their approach, though, does not seem to extend to 
the general case since their analysis relies heavily on properties of 2-edge-connected 
graphs. 

The only previous related approximation results that we are aware of are the 
following. Both Dobson [3] (see also Rajagopalan and Vazirani [15] for a recent 
variant with an improved performance guarantee) and Hall and Hochbamn [10] have 
given approximation algorithms for polynomially-sized covering integer programs 
similar to (IP).  Dobson's algorithm does not seem to generalize to the exponentially 
large integer programs like (IP).  Hall and Hochbamn's algorithm can be applied 
to ( IP)  with proper functions in polynomial time if there exists a polynomial-time 
subroutine to find a violated constraint; we introduce such a subroutine in this work. 
Given the subroutine, their algorithm becomes an m-approximation algorithm for 
(IP).  Other than this algorithm, the only approximation algorithms known were 
for special cases of the generalized Steiner network problem. For the Steiner tree 
problem (the case where r i 6 {0,1} for all i, and s ( s ) r i - = rain ri,r .) , the previously 
best bound of 2 was first improved by Zelikovsky [17] and then refined to 16/9 by 
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Berman and Ramaiyer [21. Goemans and Bertsimas [6] showed an approximation 
algorithm for the generalized Steiner network problem where rij = min(ri, rj) and 
multiple copies of edges are allowed. Agrawal, Klein, and Ravi [1] derived a 2- 
approximation algorithm for the generalized Steiner tree problem (rij E {0,1}) and 
used it to derive an approximation algorithm for the generalized Steiner network 
problem in the case where multiple copies of edges are allowed. Goemans and 
Williamson [8] generalized this result to apply to all proper functions with range 
{0,1}. Saran, Vazirani and Young [16] applied the technique of Goemans and 
Williamson to the 2-edge-connected problem, achieving the same guarantee as an 
earlier algorithm of Frederickson and Ja'Ja' [4]. Klein and Ravi [121 generalized 
the work of Goemans and Williamson to proper functions with range {0,2}. For 
k-edge-connectivity problems, Khuller and Vishkin [11] have shown a very simple 
2-approximation algorithm for the k-connected subgraph problem. However, their 
algorithm does not seem to extend even to the case where ri 6 {0,k} and rij - 
min(ri,rj). Notice that even for generalized Steiner network problems with r i j  6 
{0,1,2} no polynomial-time approximation algorithm was known prior to our work. 

The rest of the paper is structured as follows. In Sections 2 and 3, we 
present the primal-dual method for approximation algorithms and give a detailed 
presentation of our algorithm. We prove that the algorithm runs in polynomial 
time in Section 4. Sections 5 and 6 give a proof of its performance guarantee. We 
conclude with a few remarks in Section 7. 

2. The Primal-Dual Method for Approximation Algorithms 

A fundamental fact of linear programming duality is that a primal feasible 
and a dual feasible solution are both optimal if and only if they satisfy all the 
complementary slackness conditions. For problems in P, the primal-dual method 
starts with arbitrary primal infeasible and dual feasible solutions and iteratively 
improves the value of the dual solution and the feasibility of the primal solution. 
Throughout the execution, the complementary slackness conditions are imposed 
and guide the improvement steps. The algorithm stops as soon as the primal 
solution is feasible. The two solutions evolve hand-in-hand; improvements to the 
primal solution are based on the current dual solution, and vice versa. 

When applied to approximation algorithms, the primal-dual method appears 
to allow for a richer range of operating mechanisms. For concreteness, consider 
the LP relaxation of ( IP)  stated in the introduction, under the assumpion that f 
ranges in {0,1}, i.e., the original Goemans and Williamson setting [8]. This setting 
is simpler than ours because in the LP relaxation the variables xe do not need to 
be explicitly bounded above by 1. The LP relaxation (primal) and its dual are: 

Min E cexe Max E f ( S ) y s  
e6E S 

~:~(s) s:~c~(s) 

Xe>_O e6E Y s > O  

e E E  

~#s#v. 
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Notice tha t  the dual LP  is seeking an opt imal  packing of cuts. 
Since we wish to find an integral solution to the primal, obviously we should not 

be t ry ing  to satisfy all the complementary  slackness conditions. These conditions 
are of  two types: 

(a). Pr imal  complementary  slackness conditions: these correspond to the 
primal variables: 

: Xe > 0 ~ Z YS = Ce" Ve 

S:e~5(S) 

(b). Dual  complementary  slackness conditions: these correspond to the dual 
variables: 

vs:vs>0  xo--f(s). 
ec~(S) 

Pr imal-dual  approximat ion algorithms generally operate by ensuring the first 
set of  conditions and relaxing the second set to 

(bt). VS: VS > 0 :=> f ( S )  <_ Z Xe <_ oef(S),  

for some constant  c~. Thus the primal solution found is within a factor of c~ of the 
opt imal  primal LP solution, and therefore also within a factor of c~ of the opt imal  
solution to ( IP ) .  

The primal-dual  a lgori thm of Goemans and Williamson is somewhat  different. 
Init ial ly it s tarts  with the feasible dual solution y = 0, and its dual improvement  
step only increases the y variables. Unlike other primal-dual  algorthms it ensures 
conditions (b I) only when averaged over the sets S whose dual variables VS are 
being raised dur ing a given dual improvement  step. 

Input: An undirected graph G = (V, E), edge costs Ce _> 0, a proper function f, and k = max S f (S) 
Output :  A set of edges F~;= 
1 FO ~-- 0 
2 For p~-- 1 to k 
3 Comment: Phase p. 
4 gp(S)=min{f(S),p} for all SCV.  
5 h(S) = 1 if gp(S)=p and thFp_l (S)I = p -  1; h(S) = 0 otherwise. 
6 Eh~--E-Fp_ 1 
7 Apply algorithm for uncrossable functions (Fig. 2) to G = (V, Eh) , edge costs Cc, and 

function h, yielding F '  
8 Fp~---Fp_IUF' 
9 Output F k 

Fig. 1. The approximation algorithm for (IP) 

The situation with our algorithm is more involved. We do not know how to 
perform the primal-dual improvement steps to approximately solve (IP) directly, 
as the LP relaxation is more complicated because of inequalities ensuring that each 
edge is selected at most once. Instead, we decompose the task into k phases, where 
k = m a x  S f ( S ) ,  as follows (see also Figure 1). In phase p, define the pth t runcat ion 
of a proper  function f to be the function g p ( S ) = m i n { f ( S ) , p } .  Notice tha t  gp is 
also a proper  function. We shall ensure tha t  the union of edges chosen in the first 
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p phases, Fp, satisfies gp in the sense that  for all S C V, [fiFp(S)[ >_ gp(S), where 
5A(S) is defined as 5 (S)nA.  

In order to augment the edge set Fp-1 to a set Fp satisfying gp, we need to cover 
all cuts 6(S) for which gp(S)--p and 16Fv_I(S)[ = p - 1  with edges from E - F p - 1 .  

For convenience, we define h :  2 V -* {0,1} to be the function that  sets h(S) = ] 
iff 9p(S) = p and [SFp_I(S)I = p - 1 .  This function has the following interesting 
uncrossing property, which we will prove in Theorem 3.5 in the next section. If 
h(A) = h(B) = 1 then either h(A - B) = h(B - A) = 1 or h(A n B) = h(A u B) = 1. 
Any function with these properties and the property that  h(V) = 0 will be called 
an uncrossable function. Now, in the pth phase, the algorithm chooses edges from 
E h : E -  Fp_ 1 so as to satisfy h. 

The minimum-cost way of augmenting Fp-1 to Fp can be formulated as an 

integer program, (IPh). In the pth phase, our algorithm finds a "good" approximate 
solution to (IPh) and a corresponding packing of cuts for the dual of the LP 
relaxation: 

Min  cexo Max Zh(S)ys 
e6Eh S 

(zP, d ,.t. ~ xe>h(s) o # s # v  ~.t. Z ys<_~, 
eES(S) S:e66(S) 

xe e {0,1} e E E h YS >- 0 

e 6 E  h 

O#s#v. 

An approximation algorithm for (IPh) for any uncrossable function h is de- 
scribed in the following section. In much the same way as [8] it finds a set of 
edges F I that  satisfies h and a feasible dual solution y such that  the primal com- 
plementary slackness conditions will be enforced exactly, and the dual ones will be 
relaxed, and enforced in an average sense (for a = 2). We will derive the following 
key lemma. 

Lemma 2.1. [Main Lemma] Let F' be the set of edges and y the dual feasible 
solution constructed by the algorithm for (IPh). Then 

eEF' SCV 

<where s is the maximum number of disjoint sets S of V for which h( S) = 1. 

The proof of the Iemma is more involved than the proof of the corresponding 
lemma in [8]. We further show that  the dual solution found can be transformed 
into a feasible dual solution for the linear programming relaxation of (IP) of at 
least the same value. Therefore, the edges picked in the pth phase F '  have weight 
within 2 ~ h(S)vs < 2.Z~p, where Z i p  is the cost of the optimal solution to (IP). 

SCV 
Summing over all phases, we obtain a solution to (IP) which is within 2k.Z~p. 
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3. Approximation Algorithm for an Uncrossable Function 

In this section, we describe an approximation algorithm for (IPh) for any un- 
crossable function h. As stated in the previous section, the use of phases reduces 
the problem of approximating (IP) to approximating (IPh) for a particular un- 
crossable function h on the edge set E h = E - F p _  1 in each phase p. We show that  
these functions h are uncrossable at the end of the section. 

Given an uncrossable function h and edge set Eh, the algorithm consists of two 
stages. In the first stage, the algorithm starts with an empty forest F and iteratively 
adds edges until the resulting forest F is feasible. In this context, feasibility means 
that  there are no "violated sets" with respect to h, where a violated set is a set S 
with h(S )=  1 and 5F(S ) =0.  In the second stage the algorithm deletes redundant 
edges. 

A central fact that  is used both by the algorithm and in its analysis is that  the 
minimal violated sets with respect to h are disjoint. By a "minimal" violated set, 
we mean that  none of its proper subsets are violated. 

Theorem 3.1. Let h be an uncrossable function and let F be any subset of E h. 
Then the minimal violated sets with respect to h are disjoint. 

Proof. Suppose A ,B  are minimal violated sets and A and B are not disjoint. Since 
A,B  are violated sets, h(A)=  h ( B ) =  1. By definition of an uncrossable function, 
we know tha t  either h ( A - B ) =  h ( B - A ) =  1 or h(AUB)= h(AC~B)= 1. Suppose that  
the second case holds (the proof of the other case is similar). By submodulari ty of 
15F(s)I, we have 

15F(A)I + I F(B)I _> 15r(d n B)I + u B)I. 

Our assumption that  A and B are violated implies that  thF(A)I = ]hF(B)I = O. 
Therefore, ]hF(AMB)] = ]hF(AUB)[ = 0  and, hence, A A B  and AI_JB are violated 
sets. This contradicts the minimality of A and B, however, so that  it must be the 
case that  A and B are disjoint. | 

We are now ready to describe the algorithm for approximating (IPh) in more 
detail (see also Figure 2). In the first stage, the algorithm begins with the primal 
infeasible solution F = I~ and the dual feasible solution YS = 0 for all S. As long as 
there exist violated sets with respect to h (that is, the primal solution is infeasible), 
the algorithm iteratively performs a primal-dual improvement step. In such a step, 
the algorithm first identifies all minimal violated sets for F. We will refer to these 
sets as active. Let $ denote the collection of active sets in this iteration. The 
algorithm then uniformly raises the variables YC corresponding to the active sets 
C E $  until the dual constraint for some edge e E E  h becomes tight, i.e., 

ce = ~ YS. 
S:eE~(S) 

Edge e is then added to F. If  F becomes feasible for (IPh), the algorithm goes on 
to the second stage, otherwise it iterates the primal-dual improvement step. At the 
end of the first stage, the algorithm has both a primal and a dual feasible solution 
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for ( I P h )  such tha t  the primal complementary  slackness conditions hold ( that  is, 
Ce = ~ YS for all e E F) .  

S:e~5(S) 

The second stage of the algorithm, called reverse  delete,  deletes redundant  
edges from F .  As will prove crucial, we consider edges for deletion in the reverse 
of the order in which they were added to F .  W h e n  edge e is considered, it is 
removed from the current set F if F -  e still satisfies h. At the end of the reverse 
delete stage, the remaining set of edges, F z, is still primal feasible and the primal 
complementa ry  slackness conditions still hold. In addition, the dual complementary  
slackness conditions will now hold in the average sense described in the previous 
section. Proving this fact will result in the proof of the Main Lemma,  as will be 
shown in Section 5. 

The  a lgor i thm is formally described in Figure 2. As can be seen from the figure, 
the dual variables y need not be explicitly maintained. Instead,  we only need to 
keep t rack of the variables d(v ) ,  which can be shown to be equal to ~ YS at 

S:vES 
the beginning of each i teration of the first stage. The ability to implement  this 
a lgor i thm in polynomial  t ime crucially depends on whether the active sets can be 
found efficiently. In  the next section, we show tha t  it is possible to find these sets for 
uncrossable functions tha t  arise in our algori thm for ( I P ) .  Other  implementat ion 
issues (such as finding the next edge to add to F)  can be handled efficiently as in 
Goemans  and Will iamson [8]. 

Input :  An undirected graph G = (V, Eh) , edge costs ce > O, and an uncrossable function h 
Output :  A set of edges F ~ 
1 F ~ O  
2 Comment: Implicitly set YS +-- 0 for all S C V 
3 i+-O 
4 d(v) ~ 0 for all v 6 V 
5 E~-- all active sets C (minimal sets not satisfying h(S)). 
6 While I~l>0 
7 i , - - - i+l  
8 Comment: Begin iteration i, 
9 For all v C C C g, increase d(v) uniformly by e until some edge e i =- (u, v) E E h and e i C 6(C) 

for some CE~ satisfies d(u)+d(v )=cuv .  
10 Comment: Implicitly set YC ~ YC + �9 for all C E }g. 
11 F * - F U { e i }  
12 Update ~' 
13 Comment: End iteration i. 
14 Comment: Reverse delete stage 
15 F ~ *--F 
16 For j+--i downto 1 
17 If F t - {e j}  satisfies h 
18 F ' ~ - - F ' - { e j }  
19 Output F ~ 

Fig. 2. The algorithm for uncrossable functions h. 

I t  remains to show tha t  the function h as defined in the algori thm for ( I P )  is 
in fact uncrossable. We do this in Theorem 3.5 below. 
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Observation 3.2. Let f be a proper function, and let A,B, C form a partit ion of V. 
Then the maximum of f (A),  f (B) ,  and f (C) is not uniquely attained. 

Proof. Let C attain the maximum. The observation follows from the symmetry 
property applied to V - C  and the maximality property applied to A, B, and AUB = 
v - c .  | 

Corollary 3.3. Let f be a proper function. For disjoint sets A and B, the maximum 
of f (A ) , f (B ) ,  and S(AUB) is not uniquely attained. 

Lemma 3.4. Let f be a proper function. Let A and t3 be sets of vertices such that 
f(A)>_p and f(B)>_p. Then, either f (A-B)>_p  and ](B-A}>__p, or f (Ar~B)>p 
and f ( A U B )  >_p. 

Proof. Assume for example that  f ( A -  B) < p. Then, by applying the corollary 
above to A - B ,  ANB,  and A, we see that f(ANB)>__p. Applying the corollary to 
A - B , B ,  and A u B  gives f (AUB)>p .  The other cases can be treated similarly. | 

Theorem 3.5. Let Fp-1 be a set of edges such that 15G_I(S)I >_gp-l(S) for a11 SO_ 
V. Let h(S) = 1 if gp(S) =p and 15G_1 (S)I = p - l ,  and let h(S) =0  otherwise. Then 
h is an uncrossable function. 

Proof. It is not hard to see that h (V)=0 ,  since gp(V)=0.  Let A and B be sets of 
vertices such that h(A) = h(B) = 1. Since gp is a proper function, Lemma 3.4 implies 
tha t  either gp(AuB)=gp(ANB)=p or g p ( A - B ) = g p ( B - A ) = p .  Suppose that the 
first case holds. Since Fp-1 satisfies gp-l, we must have that  15G_1 (AUB)I > p - 1  
and 16Fp_~ (AClB)] _>p-1.  But, by submodularity of lhG_I (S)[, we have 

I~Fp_l (A)I q- l~Fp_l (B)] _> }6G_ ~ (A n B)I + ]hG_, (A u B)I. 

Hence, we must have I@,,_~(ANB)I = I@~_,(AuB)I = p - 1 .  Thus h(AnB)= 
h(A U B ) =  1. The other case is identical. | 

4. Finding Active Sets 

In order to establish a polynomial running time for our approximation algo- 
r i thm for (IY), we need to show that active sets can be identified and reverse 
deletes can be performed in polynomial time. Notice that the latter task reduces 
to the former: an edge e can be deleted if its removal does not create any violated 
(and hence minimal violated) set. Below, we show that active sets can be found 
using network flow theory for uncrossable functions that arise from the algorithm 
of Figure 1. 

The manner in which we decompose the problem into phases ensures that  
minimal violated sets have special structural properties. Consider some phase p of 
the algorithm, and let F denote the set of currently selected edges. Theorem 4.3 
proves that  for any active set S there is a choice of vertices u E S and v E S such 
that  the u-v max flow in the graph (V, FuFp_I)  will help identify S; in particular, 
S will be the minimal u-v mincut containing u. Once this is established, the 
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implementat ion will follow from well-known max flow techniques. Theorem 4.3 is 
based on Lemmas 4.1 and 4.2. In Lemma 4.1 we prove that  there is a vertex uE S 
such tha t  the u-5' mincut (i.e., the mincut in the graph obtained by contracting 
to a single vertex) is S itself and is unique. In Lemma 4.2 we prove that  there is a 
vertex v in S such that  the S-v max flow has value p -  1. 

Recall that  S is violated in the current iteration of the algorithm if h(S) = 
1 but  5 F ( S  ) = 0. Given the definition of h, this is equivalent to f ( S )  >_ p and 
15F,,_,uF(S)I =p-- 1. 

Lemma 4.1. Let S be a minimal violated set with respect to the set of edges H = 
Fp-1 U F and the proper function gp. Then there exists some u E S, f (u)  kP,  such 
that there is no T C  S, u E T ,  with [hH(T)I <_p-  1. 

Proof. By contradiction. Suppose that  for every ui E S with f(ui)~_ p there exists 
a set Ti C S such tha t  15H(Ti)I _<p-  1. We claim that  f ( U T / )  _<p-  1. If this claim 
is true, then since f ( S )  _> p, it must be the case that  f ( S  - UTi) = f ( S )  ~ p by 
Corollary 3.3. But then by maximali ty there must exist some u E ( S -  UTi) with 
f (u)  >p,  a contradiction. 

Now to prove the claim. By submodularity, for any pair Ti and Tj in the 
collection of sets {Ti}, we have ]hH(Ti) [ + ]hH(Tj) [ >__ [~H(Ti - Tj)] + [hH(T j -- Ti)l. 
Since both  I~H(ZiDI ___ p - 1  and I~H(Tj)I ___ P - 1 ,  it must be the case that  either 
[hH(T i - Tj)] _< p -  1 or ]hH(Tj - Ti)] < p -  1. Without  loss of generality, suppose 
the former is true. Then replace Ti in the collection with T i - T j .  Notice that  
UTi remains the same. Continue this process until {T/'} is a collection of pairwise 
disjoint sets with U T [ = U T i .  Since a set is always replaced by a smaller set, this 
process terminates. Each T[ has lhH(T/I)I _<p--1, and since S is a minimal violated 
set, it must be the case that  f (T f )  _<p-  1. Hence by the maximMity property of a 
proper f ,  f (UT~) < p -  1, which implies that  f (UTi )  <_p- 1. I 

Lemma 4.2. Let S be a violated set with respect to the set of edges H = Fp_ I U F 
and the proper function gp. Then there exists some u E S, f (u)  >_p, such that  there 
is no T c S ,  u E T ,  with [hH(T)I_<p-2.  

Proof. As above. In the proof above we used the minimality of S to assert that  if 
[hH(Tf)[ _<p- l ,  then f (Tf )  <_p-1. In this proof, when [hH(Tf) I < p - X ,  the fact that  
H satisfies the requirement for each cut S with f ( S )  <_ p -  1 implies that  f(T[) < 
p - 1 .  I 

Theorem 4.3. Given any minimal violated set S with respect to H= Fp - 1  U F and 
the proper function gp, there exists a pair u E S, v qf S such that the u-v max flow 
has value p -  1 and S is the minimal u-v mincut containing u. 

Proof. Let u be the vertex in S specified by Lemma 4.1. Let v be the vertex in 
V - S  specified by Lemma 4.2 (note that  V - S  is violated because f ( V - S )  = f ( S )  > 
p). Therefore, there is no T C S such that  u E T and 15H(T)[ _ < p - 1 ,  and no T C 
V - S  such that  v E T and 15H(T)I < p - 2 .  Consider the maximum flow from u to 
v. Because [hH(S)[ = p - 1 ,  the flow can be no greater than p - 1 .  Suppose that  
the flow is L _ < p - 1 ,  and that  C is the smallest cut containing u. By hypothesis, it 
cannot be the case that  C C S. If C M S r S, then because 

L + ( p -  1) = [5//(C)[ + [5/-/(S)1 > ]hH(C M S)I + [hH(C U S)I , 
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and because 15H(CnS)I >_p, it would follow that  15H(CUS) I < L. But CUS separates 
u and v; this contradicts the fact that  C is a minimum cut. So it must be the case 
that  SC_C. Since V - C C _ V - S  and v E V - C ,  Lemma 4.2 implies that  15H(C)I: 
p -  1. Since the max flow value is p -  1 and S _C C, S must be the minimal mincut 
containing u. | 

Thus we can identify an active set S with one max flow computation,  given 
a good choice of vertices u and v: namely, we compute the u-v max flow, and in 
the resulting residual graph, select the set of vertices reachable from u. In order 
to identify all active sets, we first compute the u-v max flow for each ordered pair 
of vertices u, v, and retain all the minimal mincuts which are of value p -  1. We 
extract  from this family the minimal sets under inclusion. We are guaranteed by 
Theorem 4.3 that  the active sets will be among the remaining sets. We then call 
an oracle for f to determine which of the sets S have value f (S)  >_ p. These sets 
will be all the active sets for this iteration of phase p. 

The above computat ion is done at the start  of each iteration in a phase. Since 
a phase has at most n iterations, this requires O(n 3) maximum flow computat ions 
per phase. At the end of a phase, reverse delete is performed on the selected 
edges, which are at most n in number. For testing an edge, we remove it from 
the graph, and check if there are any minimal violated sets. Therefore, the reverse 
delete stage also takes O(n 3) maximum flow computations per phase. Hence the 
running tinle of our algorithm is essentially the time taken to compute O(kn 3) max 
flows, since these computations dominate the running time of all other operations. 
Recently, Gabow, Goemans, and Williamson [5] have shown how to improve the 
overall running t ime to O(k2n 3) time. 

We have now completed the description of the algorithm and its implementa- 
tion. The last two sections are devoted to the proof of the performance guarantee. 

5. P roof  of Lemma 2.1 

In this section, we prove Lemma 2.1. Since the algorithm for (IPh) maintains 
the primal complementary slackness conditions, we know that  for any edge e E F,  

YS-= ce. Thus the cost of the solution F / is 
S:e~6(S) 

eEF I eEF I S:eG6(S) 

We can rewrite the double sum as ~ YS" I~F'(S)I �9 To prove the lemma, we will 
ScV 

show by induction on the while loop that  

Scv  ScV 

Since YS > 0  only when h(S)= 1, the sum on the right-hand side is effectively ~ Y s .  
s 

Certainly the inequality holds before the first iteration of the loop, since initially 
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all YS = 0. Consider the set ~ of active sets at the beginning of some iteration of 
the loop. The left-hand side of the inequality will increase by ~ e.15F, (C) I in this 

CE$ 
iteration while the increase of the right-hand side will be ( 2 -  ~)~. I~1. 

The inductive proof will follow from a proof that  at any iteration, 

CE~ 

In other words, we show that  the average degree of the active sets with respect to 
F I is no more than 2 -  2" The proof can be viewed as a charging scheme in which we 
show that  there are many degree one active sets that  compensate for high degree 
active sets. For the remainder of this section, we will concentrate on the active sets 
6' E ~ of some particular iteration of the algorithm, which we will call the current 
iteration. 

Define H --- U ~SF'(C); that  is, all the edges in F I coming out of active 

sets. Notice that  all these edges must have been added during or after the current 
iteration. 

Lemma 5.1. For any edge e E H there exists a witness set Se C V such that 
1. h(Se)=l, 
2. 
3. For all CE$  either CC_Se or C MS e= 0 .  

Proof. Any edge e E H is also in F I, and thus during the reverse delete stage the 
removal of e causes h to be violated for some S. In other words, there can exist no 
other e I E F t that  is also in ~(S). This set S will be the witness set Se for e, and 
clearly satisfies (1) and (2). Now let Fb be all the edges added before the current 
iteration. To show (3), notice that  when considering edge e in the reverse delete 
stage, no edge in F b had yet been removed. Hence Se is violated even if all the 
edges of F b are included; that  is, Se is violated in the current iteration. Thus (3) 
follows by the minimality of the active sets C. I 

Consider a collection of sets Se satisfying the conditions of the preceeding 
lemma, taken over all the edges e in H. Call such a collection a witness family. 
Any collection of sets is called laminar if for any pair of sets A,B in the collection 
either AC_B, BC_A, or AnB=O. 

Lemma 5.2. There exists a laminar witness family. 

Proof. By the previous lemma, there exists a witness family. From this collection 
of sets we can form a laminar collection of sets as follows. We maintain that  all sets 
S in the collection have h(S) -- 1. If the collection is not laminar, there exists a pair 
of sets A,B such that  A~=B, Bfs  and A n B ~ .  We say that  A and B cross. 
Because h( A)=h(B)= l, either h ( A - B ) = h ( B -  A)= I or h(AU B)=h(AMB)=1. 
If the latter is true, we "uncross" A and B by replacing them in the collection with 
AU B and A N B (the other case is analogous). This procedure terminates with a 
laminar collection since whenever two sets are uncrossed, the total  number of pairs 
of sets tha t  cross is reduced. To see this, note that  if a set X in the collection 
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crosses both  A and B, then replacing A and B with A - B  and B - A ,  or A N B  and 
A UB cannot increase the total number of sets that  X crosses. If  X crosses only A 
and is not contained in B, then it cannot cross B - A  or A A B .  If X crosses only A 
and is contained in B, then it cannot cross A - B  or AUB,  and so again uncrossing 
A and B cannot increase the total number of sets that  X crosses. Thus uncrossing 
A and B does not increase the total number of pairs of sets that  cross, and in fact 
decreases the total  by at least one, since A no longer crosses/3. 

We claim that  the resulting laminar collection forms a witness fanfily. This 
claim can be proven by induction on the uncrossing process. Obviously property (3) 
continues to hold when any two sets are uncrossed. Suppose we have two witness 
sets S1 and $2 corresponding to edges el and e2 such that  $1 and $2 cross. Since 
h is uncrossable, either h(S1 US2) = h(S1 AS2) = 1 or h(S1 - S2) = h(S2 - S1) = 1. 
Without  loss of generality, suppose h(S1 U S 2 ) = h ( S i  N $2)=  1. By submodularity, 
2--16F, ($1)1 + [@, (S2)f > 16F, (Sj n S2)l + ]@, (Sl U ~2)1. B e c a u s e  h(S  1 U S2) = 1, it 
is not the case ~}~at S1 uS2  = V. Tiros by tl~e feasibility of F ' ,  15F,(S1 NS2)I _> I 
and ]6 F, (S1 US2)I _> 1. Hence it must be the case that  if h(St  U $2) = h(S1 MS2) = 1, 
then tOF, (S1 N $2)t = 1~hF ' (S1 U $2)1 = 1. Therefore either S1 N $2 is a witness set for 
e~ and S1 US2 is a witness set for e2, or vice versa. II 

Let b ~ be a laminar witness fanfily. Augment the family with the vertex set 
V. The family can be viewed as defining a tree P with a vertex v S for each S E b ~ 
and edge (vX,vT) if T is the smallest element o fb  ~ properly containing S. To each 
active set C E ~  we correspond the smallest set S E a  r that  contains it. We will call 
a vertex v S active if S is associated with some active set C 

Lemma 5.3. The tree P has no inactive leaf. 

Proof. Only V and the minimal (under inclusion) witness sets can correspond 
to leaves, Any minimal witness set is a violated set, and thus must contain an 
active set which corresponds to it, Let S be any maximal  witness set. Both S and 
V - S  are violated sets, and thus contain active sets C. Therefore, vv cannot be 
simultaneously a leaf and inactive. | 

Lemma 5.4. The degree of an active vertex in P is at least the sum of the [hF,(C)I 
of the C E ~ to which it corresponds. 

Proof. Note that  the one-to-one mapping between the edges of H and the witness 
sets implies a one-to-one mapping between the edges of H and the edges of P:  each 
witness set S defines a unique edge (vs, VT) of P,  where T contains S. Consider any 
edge e ~ dF, (C) for some C E if- Let (vs~ , vT) be the edge defined by the witness set 
Se. Either vs~ or VT must be the active vertex corresponding to C, By summing 
over all edges e E 5F' (C) for all active sets C corresponding to an active vertex of 
P, we obtain the lemma. | 

Let Pa denote the set of active vertices in P and let dv denote the degree of a 
vertex v. Then, as is also shown in [8], 

Z d v = Z d v -  Z dv 
vEP,,, vE P  vEP--P,~ 

<_ 2(IP [ - 1) - 2(IP [ - [P~I) 

= 2 I P ~ I  - 2 .  
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This inequality holds since P is a tree with IPI - 1 edges, and since each vertex in 
P - P a  has degree at least 2. The lemma above implies that  ~ tbF:(C)I < ~ dr, 

CE~ vEP,~ 
while clearly IPa[ < t~1. Thus 

leF,(C)l _< 21vl- 2 

Since IV[ <~, we have that  ~ 15F,(C)] < ( 2 -  ~)[~[, as desired. 
CE$ 

6. Overall Performance Guarantee 

Let A = {v E V:  f({v})  >_ 1}. We are now ready to establish the performance 
guarantee. 

Theorem 6.1. I f  the function f takes only I distinct values 0 = Po < Pl < P2 <.. .  < 
Pl, then the algorithm in Figure 1 produces a feasible set of edges F k such that 

( )' 
where ~ is the harmonic function ~ ( k ) =  1 + 1 + 1 + . . .  + 1 and where Zip  and 
Z*Lp are respectively the optimum values to (IP) and its LP relaxation. 

In order to prove Theorem 6.1 from Lemma 2.1, we first show that  the dual 
solution y constructed in phase p by the algorithm can be mapped to a feasible 
solution to the dual of the linear programming relaxation of (IP). This dual is: 

Max S(s)ys-  }2  
S C V  eEE 

(D) subject to: 

E YS <-ce+ze e E E ,  
(1) s:~ee(s) 

y s > O  0 7 ~ S c V ,  
ze_>0 e E E .  

Given the dual variables y constructed by the algorithm in phase p, define ze = 
YS for all e E Fp_ 1, and Ze = 0 otherwise. 

S:eE6(S) 

Lemlna 6.2. The vector (p,z) is a feasible solution for (O) and ~ Y S  = ~ g p ( S ) y s -  
s S 

2 Ze<-~ f (S )Ys  - ~ Ze. 
eEE S eEE 

Proof. By the construction of y, for e E Eh = E - F p - 1 ,  we know that  ~ YS < 
S:eeb(S) 

ce. Thus the constraints (1) hold for e ~ Fp-1. For e E Fp-1, the definition of ze 
ensures that  the constraint (1) holds. This proves that  (y,z) is feasible. 
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By the construction of y, YS > 0 implies that  ]Si<p_1 (S)I =P--I" By the definition 
of  Z e 

eE E  eEFp-1  S:eCS(S)  

s 

- - - ( p -  1) E y  S. 
S 

Hence Egp(S)ys  - E Ze = P E Y S  - (P- 1) EYS = EYS,  since YS > 0 only when 
s eEE S S S 

gp(S)=p. The final inequality of the lemma follows since f(S)>>_gp(S) for all S. | 

We now provide a proof of Theorem 6.1. 

Proof, Consider p such that  Pi-1 < P <_ Pi. From Lemmas 2.1 and 6.2, we know 
that in phase p 

- = - p ,  y s -  1)y  E Ce < 2 -  7 p i - ( p - 1 )  \ S 
e E F  I S S 

< 2 -  f ( S ) Y S -  E Ze 
- P i - ( p - 1 )  \ S eCE 

< 2 -  - p i _ ( p _ l )  LP, 

where we have used that  YS =0  if f(S)<Pi. Summing over all p, we obtain that 

I 1 , 

E Ce< 2 - 2  E E p i _ ( p _ l )  ZLP 
eEF~: i=1 p = p i - l  + l 

i=1 

proving the desired result since Z~p <_ Zip. | 

The same bound can be shown to hold even if each edge is allowed some 
specified number of copies. To prove this, we merely add a distinct primal variable 
for each copy of the edge. 

Theorem 6.1 also applies to the augmentation version: Given an initial set of 
edges F0, find a minimum-cost set of edges to add to F0 such that the resulting 
graph satisfies the proper function f .  The only change of the algorithm is in line 
1 of Figure 1. The proof of the following theorem is identical to the proof of 
Theorem 6.1 and is therefore omitted. 
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Theorem 6.3. I f  the initiM graph satisfies the proper function gp for some p > 0 and 
the values greater or equal to p that f can take are p = Po < Pl <: P2 < . . .  ~ ill, then 
the algorithm in Figure 1 (with step 1 modified) produces a feasible set of edges Fk 
such that 

l 

Ece< 
eCFk i=1 

where Z i p  denotes the optimal value of the augmentation problem. I 

Theorem 6.1 can be improved by a unit when Pl = 1 and l > 2, as shown in 
the theorem below. The theorem shows, for example, that  the algorithm is a 3- 
approximation algorithm for the generalized Steiner network problem with rij E 
{0,1,2}. 

Theorem 6.4. I f  the function f takes on values 0 = Po < Pl = 1 < P2 <. . .  < Pl, l ~ 2, 
then the algorithm in Figure 1 produces a feasible set of edges Fk such that 

) 
Proof. In the proof of Theorem 6.1, we have shown that  the cost of the edges added 
in phase p for Pi-1 <P<-Pi is at most 

1 

eCE / 

where (y,z) denotes the dual solution constructed in that  phase. By duality, 
~ P i Y S  - ~ Ze is at most the opt imum value Z[  of the linear program: 
S eEE 

Min 

subject to: 

E CeXe 

e c E  

(LPi) E xe>_pi S : f ( S ) > p i  
~ ( s )  

0 _ < x e < l  eE  E. 

As in Theorem 6.1, we derive by summing over all phases that  

l 

eCFk i=1 

(2) 2 - N 
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In the proof of Theorem 6.1, we used the fact that Z~p >_ Z* for all i. We claim 
that  the following inequality is also true: 

�9 �9 1 Z ,  ZIP >-- Z1 }- -~ 2" 

To see this, consider the optimal solution x* to (IP) and let H be the corresponding 
set of edges. This optimal network consists of several maximal 2-connected blocks 
interconnected by bridges. Let C denote the set of bridges of H. We decompose 
x* into the sum of two vectors a and ~ where: 

d e : {  ~ i f e~C 
0 otherwise 

and 

x e otherwise. 

Clearly, x * =  a+ /9 .  We assert that ,  by definition of C, /3 is a feasible solution to 
(LP1), and 2a is a feasible solution to (LP2). The first assertion is easy to see; we 
defer the proof of the second for a moment.  Given these assertions, 

�9 1 Z ,  

e6E e6E e6E 
The result now follows easily from (2) and the above observations: 

{ } e6FkE Ce--< (2-- ~2 ) Z{.j_EoT~(pi_Pi_l) Z ; i : 2  

< 2 - ] - ~  ~ 2 +  2 6 ( p 2 - 1 ) -  Z{+E,]f(pi-Pi_l)  Z* 
i=3 

<_ 2-~i 1+ z(p2-1)- +~z(p{-p{_~) z;p 
i=3 

= 2 - -~1 ;{ (~ , i  - p i - 1 )  - -~ Z i p .  

To conclude we must show that  24 is a feasible solution for (LP2). Let S be 
a set of vertices with f(S) > P2. If none of the edges in 5H(S ) belongs to the set 
C of bridges then 2 ~ cte = 16H(S)I >_ f(S)>_P2. Suppose, however, that  6H(S ) 

contains a bridge, say edge e. Let U be the connected component of H-e containing 
the endpoint of e not in S. Since t6H(U)] = 1, we have f(U) < 1. We claim that  
either f(SUU) > f(S) or f(SC]U) > f(S) (or both). Indeed, if f(SNU) < f(S) 
then by Corollary 3.3 we derive that  f(S-U)=f(S). Corollary a.a now applied to 
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S - U  and U implies that f (SU U)= f ( S -  U)= f(S) since f(U) < 1 < f(S), thus 
proving the claim. Observe that both T = S N U and T = S U U satisfy ~H(T)  C 
~ H ( S ) - { e } .  By repeating this process, we can thus find a set R such that  f (R)> 
f(S) and ~H(R) C_ ~H(S) - C. Therefore, 

2 ~ c~e>2 ~ c~e=I~H(R)I>f(R)>f(S)>p2, 

proving that  2a is a feasible solution to (LP2). 

7. Concluding Remarks 

The results above also imply a worst-case bound on the relative duality gap 
of ( IP) ;  that  is, Z~p and Z~p, the optimal solution to the linear programming 
relaxation of (IP), are always within a factor of 2k (or less) of each other for 
proper functions, and within a factor of 2 for uncrossable functions. 

Recently, Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson [7] 
devised a 2o~(k)-approximation for (IP) with any proper function. Their algorithm 
also works in k phases, and calls our algorithm for uncrossable functions as a 
subroutine. The algorithm tightens the bound on the relative duality gap to 2~(k) .  
Observe that  the bound of 2~(k)  is never larger than the bounds given in Theorems 
6.1 or 6.4. 

Extending our algorithm to handle non-uncrossable functions remains a chal- 
lenging open problem. The key feature of unerossable functions is that  there exists 
an optimal dual solution y which is laminar: that is, the sets S such that  YS > 0 
form a laminar family. This property characterizes uncrossable functions. Handling 
all non-uncrossable functions is ruled out by the fact that  there exist instances cor- 
responding to non-uncrossable {0,1} functions whose relative duality gap is larger 
than any constant. 

A larger open issue is to explore further the power of the primal-dual approach 
for obtaining approximation algorithms for other combinatorial optimization prob- 
lems. This appears to be quite promising. 
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