
COMBINATORICA
Akad6miai Kiad6 - Springer-Verlag

COMBINATORICA 15 (3) (1995) 435-454

A P R I M A L - D U A L A P P R O X I M A T I O N A L G O R I T H M F O R

G E N E R A L I Z E D S T E I N E R N E T W O R K P R O B L E M S

DAVID P. WILLIAMSON*, MICHEL X. GOEMANS~, MILENA MIHAIL and
VIJAY V. VAZIRANI$

Received July 27, 1993

Revised April 20, 1994

We present the first polynornial-time approximation algorithm for finding a minimum-cost
subgraph having at least a specified number of edges in each cut. This class of problems includes,
among others, the generalized Steiner network problem, also called the survivable network design
problem. If k is the maximum cut requirement of the problem, our solution comes within a factor
of 2k of optimal. Our algorithm is primal-dual and shows the importance of this technique in
designing approximation algorithms.

1. Introduction

We consider the class of problems of finding a minimum-cost subgraph such
that the number of edges crossing each cut is at least a specified requirement, which
is some function of the cut. More formally, given an undirected graph G = (V,E),
a non-negative cost function c : E --~ Q+, and a function f : 2 V --, N, this class of
problems can be formulated as the following integer program:

Min Z CeXe
eEE

subject to:

(IP) ~ Xe>_f(S) O r
e~6(S)
x~ ~ {0, 1} e ~ E

where 5(S) denotes the set of edges having exactly one endpoint in S.

Mathematics Subject Classification (1991): 05 C 40, 68 Q 25, 90 C 10, 90 C 35

* Research supported by an NSF Graduate Fellowship, DARPA contracts N00014-91-J-1698
and N00014-92-J-1799, and AT&T Bell Laboratories.

Research supported in part by Air Force contract F49620-92-J-0125 and DARPA contract
N00014-92-J-1799.

:~ Part of this work was done while the author was visiting AT&T Bell Laboratories and
BeIlcore.

0209 9683/95/$6.00 @1995 Akad~miai Kiad6, Budapest

436 DAVID P. WILLIAMSON, MICHEL X. GOEMANS, MILENA MIHAIL, VIJAY V. VAZIRANI

In this paper, we shall impose the condition that the function f is proper, i.e.
f satisfies:

�9 [Symmetry] f (S) : f (V - S) for all SCV; and
�9 [Maximality] If A and B are disjoint, then f (AUB)<max{ f (A) , f (B) } .

We also require that f (V) = 0 for all proper functions f . We shall motivate
this definition later on, by showing that it implies certain uncrossing properties of
cuts.

The formulation (IP) captures a vast class of graph connectivity problems. For
example, it encompasses the problem of finding a minimum-cost k-edge-connected
subgraph (by using f (S) = k, for all 0 C S C V, and consequently ensuring that
there are k edge-disjoint paths between any pair of vertices i and j) . It also
encompasses a well-known generalization of both the k-edge-connectivity problem
and the Steiner tree problem called the generalized Steiner network problem or the
survivable network design problem. In this problem, given requirements rij for each
pair i,j of vertices, we need to find a minimum-cost subgraph that has rij edge-
disjoint paths between i and j . This problem is modelled by (IP) with the function
f (S) =-maxiEs,j~srij, which can be easily seen to be proper. This problem has a
number of important practical applications. It comes up, for instance, in the design
of networks which can "survive" certain edge failures (e.g. see [9]).

Solving (IP) optimally is well known to be NP-ha rd even under many restric-
tions. For example, the Steiner tree problem is NP-ha rd even when the cost func-
tion satisfies the Euclidean metric, and the minimum 2-edge connected subgraph
problem is NP-ha rd even if all edge weights are unity. Efficient approximation
algorithms for (IP) were known only for very special cases.

Our main result is the first polynomial time approximation algorithm for (IP).
Our algorithm finds a solution within a factor of 2k of the optimal, where k =
max S f(S). We should stress that, in our model, each edge is used at most once.
The running time is dominated by O(k[VI 3) maximum flow computations, given
that f is an oracle to which the algorithm has free access.

If the function f takes only l distinct values 0 = Po < Pl (P2 (. . . < Pl, then the
l

performance guarantee is improved to 2 ~ 3{(pi- Pi-1), where g is the harmonic
i=l

1 i 1 In particular, for the minimum k-edge-connected function 3{ (k) = 1+ ~ + ~ + . . . + ~.
subgraph problem (or its Steiner version where only a subset of the vertices need
to be k-edge-connnected), the approximation factor is 23{(k),~ 2 ink. Furthermore,

l
when Pl = 1 and 1 >_ 2, the bound can be improved to 2 ~ J~(Pi - Pi-1) - 1. Our

i=1
algorithm immediately extends to augmentation versions of these problems, where
one needs to augment a given graph so as to satisfy a proper function f at minimum
cost. The algorithm has the same performance guarantee, or sometimes even better
if the given graph partially meets the connectivity requirements.

Perhaps the most significant aspect of this work lies in the methodology un-
derlying our algorithm, which is based on a primal-dual approach. The power of
this approach has been utilized extensively for solving problems in P. In fact, the
most efficient known algorithms for some of the cornerstone problems in combina-
torial optimization, including matching, flow and shortest paths, are based on this

APPROXIMATION FOR STEINER NETWORK PROBLEMS 437

approach [14]. Some of these algorithms, e.g., Dijkstra's shortest path algorithm,
can be described without referring to the primal-dual framework. In other cases,
though, such as Edmonds' algorithm for the minimum-weight non-bipartite match-
ing problem, the primal-duM approach appears to be crucial. The method consists
of performing alternate primal and dual improvement steps until an optimal solu-
tion is found. The special combinatorial structure of the particular problem is used
for designing procedures for the improvement step, thus resulting in an efficient
algorithm.

The primal-dual approach can also be used to derive good approximation al-
gorithms for NP-hard optimization problems; in this context, the primal and dual
improvement steps attempt at homing in on a "good" approximate integral solu-
tion. Many known approximation algorithms can be interpreted as primal-dual.
Goemans and Williamson [8], motivated by an earlier result of Agrawal, Klein, and
Ravi [1], show that the primal-dual technique can be applied to a large class of
graph problems. They present a 2-approximation algorithm for (IP), provided f
ranges in {0,1}, by using an algorithm that successively improves primal and dual
solutions to the LP relaxation of ([P). Furthermore, for several NP-hard problems
the primal-dual algorithm in [8] is the only known method yielding polynomial-time
approximations with good performance guarantees. On the other hand, for opti-
mization problems in P, the primal-dual approach is simply an efficient method
for solving the corresponding linear programs. For this reason, the primal-dual ap
proach seems to hold even more promise in the context of approximation algorithms
than in the design of exact algorithms. In the next section we present elements of
the primal-dual approach to approximation algorithms. This will also help state
the high level idea behind our algorithm for approximating (IP).

In addition to the primal-dual approach, our algorithm uses the idea of satisfy-
ing f in "phases". This idea has been used previously in several graph algorithms,
including the 2-phase approximation algorithm of Frederickson and Ja'Ja' [4] and
an exact algorithm for the unweighted graph augmentation problem due to Naor,
Gusfield and Martel [13]. In the context of (IP), the use of phases was introduced
by Klein and Ravi [12] who gave the first 3-approximation algorithm for proper
functions with range {0,2}. Their approach, though, does not seem to extend to
the general case since their analysis relies heavily on properties of 2-edge-connected
graphs.

The only previous related approximation results that we are aware of are the
following. Both Dobson [3] (see also Rajagopalan and Vazirani [15] for a recent
variant with an improved performance guarantee) and Hall and Hochbamn [10] have
given approximation algorithms for polynomially-sized covering integer programs
similar to (IP). Dobson's algorithm does not seem to generalize to the exponentially
large integer programs like (IP). Hall and Hochbamn's algorithm can be applied
to (IP) with proper functions in polynomial time if there exists a polynomial-time
subroutine to find a violated constraint; we introduce such a subroutine in this work.
Given the subroutine, their algorithm becomes an m-approximation algorithm for
(IP). Other than this algorithm, the only approximation algorithms known were
for special cases of the generalized Steiner network problem. For the Steiner tree
problem (the case where r i 6 {0,1} for all i, and s (s) r i - = rain ri,r .) , the previously
best bound of 2 was first improved by Zelikovsky [17] and then refined to 16/9 by

438 DAVID P. WILLIAMSON, MICHEL X. GOEMANS, MILENA MIHAIL, VIJAY V. VAZIRANI

Berman and Ramaiyer [21. Goemans and Bertsimas [6] showed an approximation
algorithm for the generalized Steiner network problem where rij = min(ri, rj) and
multiple copies of edges are allowed. Agrawal, Klein, and Ravi [1] derived a 2-
approximation algorithm for the generalized Steiner tree problem (rij E {0,1}) and
used it to derive an approximation algorithm for the generalized Steiner network
problem in the case where multiple copies of edges are allowed. Goemans and
Williamson [8] generalized this result to apply to all proper functions with range
{0,1}. Saran, Vazirani and Young [16] applied the technique of Goemans and
Williamson to the 2-edge-connected problem, achieving the same guarantee as an
earlier algorithm of Frederickson and Ja'Ja' [4]. Klein and Ravi [121 generalized
the work of Goemans and Williamson to proper functions with range {0,2}. For
k-edge-connectivity problems, Khuller and Vishkin [11] have shown a very simple
2-approximation algorithm for the k-connected subgraph problem. However, their
algorithm does not seem to extend even to the case where ri 6 {0,k} and rij -
min(ri,rj). Notice that even for generalized Steiner network problems with r i j 6
{0,1,2} no polynomial-time approximation algorithm was known prior to our work.

The rest of the paper is structured as follows. In Sections 2 and 3, we
present the primal-dual method for approximation algorithms and give a detailed
presentation of our algorithm. We prove that the algorithm runs in polynomial
time in Section 4. Sections 5 and 6 give a proof of its performance guarantee. We
conclude with a few remarks in Section 7.

2. The Primal-Dual Method for Approximation Algorithms

A fundamental fact of linear programming duality is that a primal feasible
and a dual feasible solution are both optimal if and only if they satisfy all the
complementary slackness conditions. For problems in P, the primal-dual method
starts with arbitrary primal infeasible and dual feasible solutions and iteratively
improves the value of the dual solution and the feasibility of the primal solution.
Throughout the execution, the complementary slackness conditions are imposed
and guide the improvement steps. The algorithm stops as soon as the primal
solution is feasible. The two solutions evolve hand-in-hand; improvements to the
primal solution are based on the current dual solution, and vice versa.

When applied to approximation algorithms, the primal-dual method appears
to allow for a richer range of operating mechanisms. For concreteness, consider
the LP relaxation of (IP) stated in the introduction, under the assumpion that f
ranges in {0,1}, i.e., the original Goemans and Williamson setting [8]. This setting
is simpler than ours because in the LP relaxation the variables xe do not need to
be explicitly bounded above by 1. The LP relaxation (primal) and its dual are:

Min E cexe Max E f (S) y s
e6E S

~:~(s) s:~c~(s)

Xe>_O e6E Y s > O

e E E

~#s#v.

APPROXIMATION FOR STEINER NETWORK PROBLEMS 4:39

Notice tha t the dual LP is seeking an opt imal packing of cuts.
Since we wish to find an integral solution to the primal, obviously we should not

be t ry ing to satisfy all the complementary slackness conditions. These conditions
are of two types:

(a). Pr imal complementary slackness conditions: these correspond to the
primal variables:

: Xe > 0 ~ Z YS = Ce" Ve

S:e~5(S)

(b). Dual complementary slackness conditions: these correspond to the dual
variables:

vs:vs>0 xo--f(s).
ec~(S)

Pr imal-dual approximat ion algorithms generally operate by ensuring the first
set of conditions and relaxing the second set to

(bt). VS: VS > 0 :=> f (S) <_ Z Xe <_ oef(S),

for some constant c~. Thus the primal solution found is within a factor of c~ of the
opt imal primal LP solution, and therefore also within a factor of c~ of the opt imal
solution to (IP) .

The primal-dual a lgori thm of Goemans and Williamson is somewhat different.
Init ial ly it s tarts with the feasible dual solution y = 0, and its dual improvement
step only increases the y variables. Unlike other primal-dual algorthms it ensures
conditions (b I) only when averaged over the sets S whose dual variables VS are
being raised dur ing a given dual improvement step.

Input: An undirected graph G = (V, E), edge costs Ce _> 0, a proper function f, and k = max S f (S)
Output : A set of edges F~;=
1 FO ~-- 0
2 For p~-- 1 to k
3 Comment: Phase p.
4 gp(S)=min{f(S),p} for all SCV.
5 h(S) = 1 if gp(S)=p and thFp_l (S)I = p - 1; h(S) = 0 otherwise.
6 Eh~--E-Fp_ 1
7 Apply algorithm for uncrossable functions (Fig. 2) to G = (V, Eh) , edge costs Cc, and

function h, yielding F '
8 Fp~---Fp_IUF'
9 Output F k

Fig. 1. The approximation algorithm for (IP)

The situation with our algorithm is more involved. We do not know how to
perform the primal-dual improvement steps to approximately solve (IP) directly,
as the LP relaxation is more complicated because of inequalities ensuring that each
edge is selected at most once. Instead, we decompose the task into k phases, where
k = m a x S f (S) , as follows (see also Figure 1). In phase p, define the pth t runcat ion
of a proper function f to be the function g p (S) = m i n { f (S) , p } . Notice tha t gp is
also a proper function. We shall ensure tha t the union of edges chosen in the first

440 DAVID P. WILLIAMSON, MICHEL X. GOEMANS, MILENA MIHAIL, VIJAY V. VAZIRAN[

p phases, Fp, satisfies gp in the sense that for all S C V, [fiFp(S)[>_ gp(S), where
5A(S) is defined as 5 (S)nA.

In order to augment the edge set Fp-1 to a set Fp satisfying gp, we need to cover
all cuts 6(S) for which gp(S)--p and 16Fv_I(S)[= p - 1 with edges from E - F p - 1 .

For convenience, we define h : 2 V -* {0,1} to be the function that sets h(S) =]
iff 9p(S) = p and [SFp_I(S)I = p - 1 . This function has the following interesting
uncrossing property, which we will prove in Theorem 3.5 in the next section. If
h(A) = h(B) = 1 then either h(A - B) = h(B - A) = 1 or h(A n B) = h(A u B) = 1.
Any function with these properties and the property that h(V) = 0 will be called
an uncrossable function. Now, in the pth phase, the algorithm chooses edges from
E h : E - Fp_ 1 so as to satisfy h.

The minimum-cost way of augmenting Fp-1 to Fp can be formulated as an

integer program, (IPh). In the pth phase, our algorithm finds a "good" approximate
solution to (IPh) and a corresponding packing of cuts for the dual of the LP
relaxation:

Min cexo Max Zh(S)ys
e6Eh S

(zP, d ,.t. ~ xe>h(s) o # s # v ~.t. Z ys<_~,
eES(S) S:e66(S)

xe e {0,1} e E E h YS >- 0

e 6 E h

O#s#v.

An approximation algorithm for (IPh) for any uncrossable function h is de-
scribed in the following section. In much the same way as [8] it finds a set of
edges F I that satisfies h and a feasible dual solution y such that the primal com-
plementary slackness conditions will be enforced exactly, and the dual ones will be
relaxed, and enforced in an average sense (for a = 2). We will derive the following
key lemma.

Lemma 2.1. [Main Lemma] Let F' be the set of edges and y the dual feasible
solution constructed by the algorithm for (IPh). Then

eEF' SCV

<where s is the maximum number of disjoint sets S of V for which h(S) = 1.

The proof of the Iemma is more involved than the proof of the corresponding
lemma in [8]. We further show that the dual solution found can be transformed
into a feasible dual solution for the linear programming relaxation of (IP) of at
least the same value. Therefore, the edges picked in the pth phase F ' have weight
within 2 ~ h(S)vs < 2.Z~p, where Z i p is the cost of the optimal solution to (IP).

SCV
Summing over all phases, we obtain a solution to (IP) which is within 2k.Z~p.

A P P R O X I M A T I O N F O R S T E I N E R N E T W O R K P R O B L E M S 441

3. Approximation Algorithm for an Uncrossable Function

In this section, we describe an approximation algorithm for (IPh) for any un-
crossable function h. As stated in the previous section, the use of phases reduces
the problem of approximating (IP) to approximating (IPh) for a particular un-
crossable function h on the edge set E h = E - F p _ 1 in each phase p. We show that
these functions h are uncrossable at the end of the section.

Given an uncrossable function h and edge set Eh, the algorithm consists of two
stages. In the first stage, the algorithm starts with an empty forest F and iteratively
adds edges until the resulting forest F is feasible. In this context, feasibility means
that there are no "violated sets" with respect to h, where a violated set is a set S
with h(S)= 1 and 5F(S) =0. In the second stage the algorithm deletes redundant
edges.

A central fact that is used both by the algorithm and in its analysis is that the
minimal violated sets with respect to h are disjoint. By a "minimal" violated set,
we mean that none of its proper subsets are violated.

Theorem 3.1. Let h be an uncrossable function and let F be any subset of E h.
Then the minimal violated sets with respect to h are disjoint.

Proof. Suppose A ,B are minimal violated sets and A and B are not disjoint. Since
A,B are violated sets, h(A)= h (B) = 1. By definition of an uncrossable function,
we know tha t either h (A - B) = h (B - A) = 1 or h(AUB)= h(AC~B)= 1. Suppose that
the second case holds (the proof of the other case is similar). By submodulari ty of
15F(s)I, we have

15F(A)I + I F(B)I _> 15r(d n B)I + u B)I.

Our assumption that A and B are violated implies that thF(A)I =]hF(B)I = O.
Therefore,]hF(AMB)] =]hF(AUB)[= 0 and, hence, A A B and AI_JB are violated
sets. This contradicts the minimality of A and B, however, so that it must be the
case that A and B are disjoint. |

We are now ready to describe the algorithm for approximating (IPh) in more
detail (see also Figure 2). In the first stage, the algorithm begins with the primal
infeasible solution F = I~ and the dual feasible solution YS = 0 for all S. As long as
there exist violated sets with respect to h (that is, the primal solution is infeasible),
the algorithm iteratively performs a primal-dual improvement step. In such a step,
the algorithm first identifies all minimal violated sets for F. We will refer to these
sets as active. Let $ denote the collection of active sets in this iteration. The
algorithm then uniformly raises the variables YC corresponding to the active sets
C E $ until the dual constraint for some edge e E E h becomes tight, i.e.,

ce = ~ YS.
S:eE~(S)

Edge e is then added to F. If F becomes feasible for (IPh), the algorithm goes on
to the second stage, otherwise it iterates the primal-dual improvement step. At the
end of the first stage, the algorithm has both a primal and a dual feasible solution

442 DAVID P. WILLIAMSON, MICHEL X. GOEMANS, MILENA MIHAIL, VIJAY V. VAZIRANI

for (I P h) such tha t the primal complementary slackness conditions hold (that is,
Ce = ~ YS for all e E F) .

S:e~5(S)

The second stage of the algorithm, called reverse delete, deletes redundant
edges from F . As will prove crucial, we consider edges for deletion in the reverse
of the order in which they were added to F . W h e n edge e is considered, it is
removed from the current set F if F - e still satisfies h. At the end of the reverse
delete stage, the remaining set of edges, F z, is still primal feasible and the primal
complementa ry slackness conditions still hold. In addition, the dual complementary
slackness conditions will now hold in the average sense described in the previous
section. Proving this fact will result in the proof of the Main Lemma, as will be
shown in Section 5.

The a lgor i thm is formally described in Figure 2. As can be seen from the figure,
the dual variables y need not be explicitly maintained. Instead, we only need to
keep t rack of the variables d(v) , which can be shown to be equal to ~ YS at

S:vES
the beginning of each i teration of the first stage. The ability to implement this
a lgor i thm in polynomial t ime crucially depends on whether the active sets can be
found efficiently. In the next section, we show tha t it is possible to find these sets for
uncrossable functions tha t arise in our algori thm for (I P) . Other implementat ion
issues (such as finding the next edge to add to F) can be handled efficiently as in
Goemans and Will iamson [8].

Input : An undirected graph G = (V, Eh) , edge costs ce > O, and an uncrossable function h
Output : A set of edges F ~
1 F ~ O
2 Comment: Implicitly set YS +-- 0 for all S C V
3 i+-O
4 d(v) ~ 0 for all v 6 V
5 E~-- all active sets C (minimal sets not satisfying h(S)).
6 While I~l>0
7 i , - - - i+l
8 Comment: Begin iteration i,
9 For all v C C C g, increase d(v) uniformly by e until some edge e i =- (u, v) E E h and e i C 6(C)

for some CE~ satisfies d(u)+d(v)=cuv .
10 Comment: Implicitly set YC ~ YC + �9 for all C E }g.
11 F * - F U { e i }
12 Update ~'
13 Comment: End iteration i.
14 Comment: Reverse delete stage
15 F ~ *--F
16 For j+--i downto 1
17 If F t - {e j} satisfies h
18 F ' ~ - - F ' - { e j }
19 Output F ~

Fig. 2. The algorithm for uncrossable functions h.

I t remains to show tha t the function h as defined in the algori thm for (I P) is
in fact uncrossable. We do this in Theorem 3.5 below.

APPP~OXIMATION FOR STEINE~K NETWORK PF~OBLEMS 443

Observation 3.2. Let f be a proper function, and let A,B, C form a partit ion of V.
Then the maximum of f (A), f (B) , and f (C) is not uniquely attained.

Proof. Let C attain the maximum. The observation follows from the symmetry
property applied to V - C and the maximality property applied to A, B, and AUB =
v - c . |

Corollary 3.3. Let f be a proper function. For disjoint sets A and B, the maximum
of f (A) , f (B) , and S(AUB) is not uniquely attained.

Lemma 3.4. Let f be a proper function. Let A and t3 be sets of vertices such that
f(A)>_p and f(B)>_p. Then, either f (A-B)>_p and](B-A}>__p, or f (Ar~B)>p
and f (A U B) >_p.

Proof. Assume for example that f (A - B) < p. Then, by applying the corollary
above to A - B , ANB, and A, we see that f(ANB)>__p. Applying the corollary to
A - B , B , and A u B gives f (AUB)>p . The other cases can be treated similarly. |

Theorem 3.5. Let Fp-1 be a set of edges such that 15G_I(S)I >_gp-l(S) for a11 SO_
V. Let h(S) = 1 if gp(S) =p and 15G_1 (S)I = p - l , and let h(S) =0 otherwise. Then
h is an uncrossable function.

Proof. It is not hard to see that h (V)=0 , since gp(V)=0. Let A and B be sets of
vertices such that h(A) = h(B) = 1. Since gp is a proper function, Lemma 3.4 implies
tha t either gp(AuB)=gp(ANB)=p or g p (A - B) = g p (B - A) = p . Suppose that the
first case holds. Since Fp-1 satisfies gp-l, we must have that 15G_1 (AUB)I > p - 1
and 16Fp_~ (AClB)] _>p-1. But, by submodularity of lhG_I (S)[, we have

I~Fp_l (A)I q- l~Fp_l (B)] _> }6G_ ~ (A n B)I +]hG_, (A u B)I.

Hence, we must have I@,,_~(ANB)I = I@~_,(AuB)I = p - 1 . Thus h(AnB)=
h(A U B) = 1. The other case is identical. |

4. Finding Active Sets

In order to establish a polynomial running time for our approximation algo-
r i thm for (IY), we need to show that active sets can be identified and reverse
deletes can be performed in polynomial time. Notice that the latter task reduces
to the former: an edge e can be deleted if its removal does not create any violated
(and hence minimal violated) set. Below, we show that active sets can be found
using network flow theory for uncrossable functions that arise from the algorithm
of Figure 1.

The manner in which we decompose the problem into phases ensures that
minimal violated sets have special structural properties. Consider some phase p of
the algorithm, and let F denote the set of currently selected edges. Theorem 4.3
proves that for any active set S there is a choice of vertices u E S and v E S such
that the u-v max flow in the graph (V, FuFp_I) will help identify S; in particular,
S will be the minimal u-v mincut containing u. Once this is established, the

444 DAVID P. WILLIAMSON, MICHEL X. GOEMANS, MILENA MIHAIL, VIJAY V. VAZIRANI

implementat ion will follow from well-known max flow techniques. Theorem 4.3 is
based on Lemmas 4.1 and 4.2. In Lemma 4.1 we prove that there is a vertex uE S
such tha t the u-5' mincut (i.e., the mincut in the graph obtained by contracting
to a single vertex) is S itself and is unique. In Lemma 4.2 we prove that there is a
vertex v in S such that the S-v max flow has value p - 1.

Recall that S is violated in the current iteration of the algorithm if h(S) =
1 but 5 F (S) = 0. Given the definition of h, this is equivalent to f (S) >_ p and
15F,,_,uF(S)I =p-- 1.

Lemma 4.1. Let S be a minimal violated set with respect to the set of edges H =
Fp-1 U F and the proper function gp. Then there exists some u E S, f (u) kP, such
that there is no T C S, u E T , with [hH(T)I <_p- 1.

Proof. By contradiction. Suppose that for every ui E S with f(ui)~_ p there exists
a set Ti C S such tha t 15H(Ti)I _<p- 1. We claim that f (U T /) _<p- 1. If this claim
is true, then since f (S) _> p, it must be the case that f (S - UTi) = f (S) ~ p by
Corollary 3.3. But then by maximali ty there must exist some u E (S - UTi) with
f (u) >p, a contradiction.

Now to prove the claim. By submodularity, for any pair Ti and Tj in the
collection of sets {Ti}, we have]hH(Ti) [+]hH(Tj) [>__ [~H(Ti - Tj)] + [hH(T j -- Ti)l.
Since both I~H(ZiDI ___ p - 1 and I~H(Tj)I ___ P - 1 , it must be the case that either
[hH(T i - Tj)] _< p - 1 or]hH(Tj - Ti)] < p - 1. Without loss of generality, suppose
the former is true. Then replace Ti in the collection with T i - T j . Notice that
UTi remains the same. Continue this process until {T/'} is a collection of pairwise
disjoint sets with U T [= U T i . Since a set is always replaced by a smaller set, this
process terminates. Each T[has lhH(T/I)I _<p--1, and since S is a minimal violated
set, it must be the case that f (T f) _<p- 1. Hence by the maximMity property of a
proper f , f (UT~) < p - 1, which implies that f (UTi) <_p- 1. I

Lemma 4.2. Let S be a violated set with respect to the set of edges H = Fp_ I U F
and the proper function gp. Then there exists some u E S, f (u) >_p, such that there
is no T c S , u E T , with [hH(T)I_<p-2.

Proof. As above. In the proof above we used the minimality of S to assert that if
[hH(Tf)[_<p- l , then f (Tf) <_p-1. In this proof, when [hH(Tf) I < p - X , the fact that
H satisfies the requirement for each cut S with f (S) <_ p - 1 implies that f(T[) <
p - 1 . I

Theorem 4.3. Given any minimal violated set S with respect to H= Fp - 1 U F and
the proper function gp, there exists a pair u E S, v qf S such that the u-v max flow
has value p - 1 and S is the minimal u-v mincut containing u.

Proof. Let u be the vertex in S specified by Lemma 4.1. Let v be the vertex in
V - S specified by Lemma 4.2 (note that V - S is violated because f (V - S) = f (S) >
p). Therefore, there is no T C S such that u E T and 15H(T)[_ < p - 1 , and no T C
V - S such that v E T and 15H(T)I < p - 2 . Consider the maximum flow from u to
v. Because [hH(S)[= p - 1 , the flow can be no greater than p - 1 . Suppose that
the flow is L _ < p - 1 , and that C is the smallest cut containing u. By hypothesis, it
cannot be the case that C C S. If C M S r S, then because

L + (p - 1) = [5//(C)[+ [5/-/(S)1 >]hH(C M S)I + [hH(C U S)I ,

APPROXIMATION FOR STEINER NETWORK PROBLEMS 445

and because 15H(CnS)I >_p, it would follow that 15H(CUS) I < L. But CUS separates
u and v; this contradicts the fact that C is a minimum cut. So it must be the case
that SC_C. Since V - C C _ V - S and v E V - C , Lemma 4.2 implies that 15H(C)I:
p - 1. Since the max flow value is p - 1 and S _C C, S must be the minimal mincut
containing u. |

Thus we can identify an active set S with one max flow computation, given
a good choice of vertices u and v: namely, we compute the u-v max flow, and in
the resulting residual graph, select the set of vertices reachable from u. In order
to identify all active sets, we first compute the u-v max flow for each ordered pair
of vertices u, v, and retain all the minimal mincuts which are of value p - 1. We
extract from this family the minimal sets under inclusion. We are guaranteed by
Theorem 4.3 that the active sets will be among the remaining sets. We then call
an oracle for f to determine which of the sets S have value f (S) >_ p. These sets
will be all the active sets for this iteration of phase p.

The above computat ion is done at the start of each iteration in a phase. Since
a phase has at most n iterations, this requires O(n 3) maximum flow computat ions
per phase. At the end of a phase, reverse delete is performed on the selected
edges, which are at most n in number. For testing an edge, we remove it from
the graph, and check if there are any minimal violated sets. Therefore, the reverse
delete stage also takes O(n 3) maximum flow computations per phase. Hence the
running tinle of our algorithm is essentially the time taken to compute O(kn 3) max
flows, since these computations dominate the running time of all other operations.
Recently, Gabow, Goemans, and Williamson [5] have shown how to improve the
overall running t ime to O(k2n 3) time.

We have now completed the description of the algorithm and its implementa-
tion. The last two sections are devoted to the proof of the performance guarantee.

5. P roof of Lemma 2.1

In this section, we prove Lemma 2.1. Since the algorithm for (IPh) maintains
the primal complementary slackness conditions, we know that for any edge e E F,

YS-= ce. Thus the cost of the solution F / is
S:e~6(S)

eEF I eEF I S:eG6(S)

We can rewrite the double sum as ~ YS" I~F'(S)I �9 To prove the lemma, we will
ScV

show by induction on the while loop that

Scv ScV

Since YS > 0 only when h(S)= 1, the sum on the right-hand side is effectively ~ Y s .
s

Certainly the inequality holds before the first iteration of the loop, since initially

446 DAVID P. WILLIAMSON, MICHEL X. GOEMANS, MILENA MIHAIL, VI.IAY V. VAZIRANI

all YS = 0. Consider the set ~ of active sets at the beginning of some iteration of
the loop. The left-hand side of the inequality will increase by ~ e.15F, (C) I in this

CE$
iteration while the increase of the right-hand side will be (2 - ~)~. I~1.

The inductive proof will follow from a proof that at any iteration,

CE~

In other words, we show that the average degree of the active sets with respect to
F I is no more than 2 - 2" The proof can be viewed as a charging scheme in which we
show that there are many degree one active sets that compensate for high degree
active sets. For the remainder of this section, we will concentrate on the active sets
6' E ~ of some particular iteration of the algorithm, which we will call the current
iteration.

Define H --- U ~SF'(C); that is, all the edges in F I coming out of active

sets. Notice that all these edges must have been added during or after the current
iteration.

Lemma 5.1. For any edge e E H there exists a witness set Se C V such that
1. h(Se)=l,
2.
3. For all CE$ either CC_Se or C MS e= 0 .

Proof. Any edge e E H is also in F I, and thus during the reverse delete stage the
removal of e causes h to be violated for some S. In other words, there can exist no
other e I E F t that is also in ~(S). This set S will be the witness set Se for e, and
clearly satisfies (1) and (2). Now let Fb be all the edges added before the current
iteration. To show (3), notice that when considering edge e in the reverse delete
stage, no edge in F b had yet been removed. Hence Se is violated even if all the
edges of F b are included; that is, Se is violated in the current iteration. Thus (3)
follows by the minimality of the active sets C. I

Consider a collection of sets Se satisfying the conditions of the preceeding
lemma, taken over all the edges e in H. Call such a collection a witness family.
Any collection of sets is called laminar if for any pair of sets A,B in the collection
either AC_B, BC_A, or AnB=O.

Lemma 5.2. There exists a laminar witness family.

Proof. By the previous lemma, there exists a witness family. From this collection
of sets we can form a laminar collection of sets as follows. We maintain that all sets
S in the collection have h(S) -- 1. If the collection is not laminar, there exists a pair
of sets A,B such that A~=B, Bfs and A n B ~ . We say that A and B cross.
Because h(A)=h(B)= l, either h (A - B) = h (B - A)= I or h(AU B)=h(AMB)=1.
If the latter is true, we "uncross" A and B by replacing them in the collection with
AU B and A N B (the other case is analogous). This procedure terminates with a
laminar collection since whenever two sets are uncrossed, the total number of pairs
of sets tha t cross is reduced. To see this, note that if a set X in the collection

APPROXIMATION FOR STEINER NETWORK PROBLEMS 447

crosses both A and B, then replacing A and B with A - B and B - A , or A N B and
A UB cannot increase the total number of sets that X crosses. If X crosses only A
and is not contained in B, then it cannot cross B - A or A A B . If X crosses only A
and is contained in B, then it cannot cross A - B or AUB, and so again uncrossing
A and B cannot increase the total number of sets that X crosses. Thus uncrossing
A and B does not increase the total number of pairs of sets that cross, and in fact
decreases the total by at least one, since A no longer crosses/3.

We claim that the resulting laminar collection forms a witness fanfily. This
claim can be proven by induction on the uncrossing process. Obviously property (3)
continues to hold when any two sets are uncrossed. Suppose we have two witness
sets S1 and $2 corresponding to edges el and e2 such that $1 and $2 cross. Since
h is uncrossable, either h(S1 US2) = h(S1 AS2) = 1 or h(S1 - S2) = h(S2 - S1) = 1.
Without loss of generality, suppose h(S1 U S 2) = h (S i N $2)= 1. By submodularity,
2--16F, ($1)1 + [@, (S2)f > 16F, (Sj n S2)l +]@, (Sl U ~2)1. B e c a u s e h(S 1 U S2) = 1, it
is not the case ~}~at S1 uS2 = V. Tiros by tl~e feasibility of F ' , 15F,(S1 NS2)I _> I
and]6 F, (S1 US2)I _> 1. Hence it must be the case that if h(St U $2) = h(S1 MS2) = 1,
then tOF, (S1 N $2)t = 1~hF ' (S1 U $2)1 = 1. Therefore either S1 N $2 is a witness set for
e~ and S1 US2 is a witness set for e2, or vice versa. II

Let b ~ be a laminar witness fanfily. Augment the family with the vertex set
V. The family can be viewed as defining a tree P with a vertex v S for each S E b ~
and edge (vX,vT) if T is the smallest element o fb ~ properly containing S. To each
active set C E ~ we correspond the smallest set S E a r that contains it. We will call
a vertex v S active if S is associated with some active set C

Lemma 5.3. The tree P has no inactive leaf.

Proof. Only V and the minimal (under inclusion) witness sets can correspond
to leaves, Any minimal witness set is a violated set, and thus must contain an
active set which corresponds to it, Let S be any maximal witness set. Both S and
V - S are violated sets, and thus contain active sets C. Therefore, vv cannot be
simultaneously a leaf and inactive. |

Lemma 5.4. The degree of an active vertex in P is at least the sum of the [hF,(C)I
of the C E ~ to which it corresponds.

Proof. Note that the one-to-one mapping between the edges of H and the witness
sets implies a one-to-one mapping between the edges of H and the edges of P: each
witness set S defines a unique edge (vs, VT) of P, where T contains S. Consider any
edge e ~ dF, (C) for some C E if- Let (vs~ , vT) be the edge defined by the witness set
Se. Either vs~ or VT must be the active vertex corresponding to C, By summing
over all edges e E 5F' (C) for all active sets C corresponding to an active vertex of
P, we obtain the lemma. |

Let Pa denote the set of active vertices in P and let dv denote the degree of a
vertex v. Then, as is also shown in [8],

Z d v = Z d v - Z dv
vEP,,, vE P vEP--P,~

<_ 2(IP [- 1) - 2(IP [- [P~I)

= 2 I P ~ I - 2 .

448 DAVID P. WILLIAMSON, MICHEL X. GOEMANS, MILENA MIHAIL, VIJAY V. VAZIRANI

This inequality holds since P is a tree with IPI - 1 edges, and since each vertex in
P - P a has degree at least 2. The lemma above implies that ~ tbF:(C)I < ~ dr,

CE~ vEP,~
while clearly IPa[< t~1. Thus

leF,(C)l _< 21vl- 2

Since IV[<~, we have that ~ 15F,(C)] < (2 - ~)[~[, as desired.
CE$

6. Overall Performance Guarantee

Let A = {v E V: f({v}) >_ 1}. We are now ready to establish the performance
guarantee.

Theorem 6.1. I f the function f takes only I distinct values 0 = Po < Pl < P2 <.. . <
Pl, then the algorithm in Figure 1 produces a feasible set of edges F k such that

()'
where ~ is the harmonic function ~ (k) = 1 + 1 + 1 + . . . + 1 and where Zip and
Z*Lp are respectively the optimum values to (IP) and its LP relaxation.

In order to prove Theorem 6.1 from Lemma 2.1, we first show that the dual
solution y constructed in phase p by the algorithm can be mapped to a feasible
solution to the dual of the linear programming relaxation of (IP). This dual is:

Max S(s)ys- }2
S C V eEE

(D) subject to:

E YS <-ce+ze e E E ,
(1) s:~ee(s)

y s > O 0 7 ~ S c V ,
ze_>0 e E E .

Given the dual variables y constructed by the algorithm in phase p, define ze =
YS for all e E Fp_ 1, and Ze = 0 otherwise.

S:eE6(S)

Lemlna 6.2. The vector (p,z) is a feasible solution for (O) and ~ Y S = ~ g p (S) y s -
s S

2 Ze<-~ f (S)Ys - ~ Ze.
eEE S eEE

Proof. By the construction of y, for e E Eh = E - F p - 1 , we know that ~ YS <
S:eeb(S)

ce. Thus the constraints (1) hold for e ~ Fp-1. For e E Fp-1, the definition of ze
ensures that the constraint (1) holds. This proves that (y,z) is feasible.

APPROXIMATION FOR STEINER NETWORK PROBLEMS 449

By the construction of y, YS > 0 implies that]Si<p_1 (S)I =P--I" By the definition
of Z e

eE E eEFp-1 S:eCS(S)

s

- - - (p - 1) E y S.
S

Hence Egp(S)ys - E Ze = P E Y S - (P- 1) EYS = EYS, since YS > 0 only when
s eEE S S S

gp(S)=p. The final inequality of the lemma follows since f(S)>>_gp(S) for all S. |

We now provide a proof of Theorem 6.1.

Proof, Consider p such that Pi-1 < P <_ Pi. From Lemmas 2.1 and 6.2, we know
that in phase p

- = - p , y s - 1)y E Ce < 2 - 7 p i - (p - 1) \ S
e E F I S S

< 2 - f (S) Y S - E Ze
- P i - (p - 1) \ S eCE

< 2 - - p i _ (p _ l) LP,

where we have used that YS =0 if f(S)<Pi. Summing over all p, we obtain that

I 1 ,

E Ce< 2 - 2 E E p i _ (p _ l) ZLP
eEF~: i=1 p = p i - l + l

i=1

proving the desired result since Z~p <_ Zip. |

The same bound can be shown to hold even if each edge is allowed some
specified number of copies. To prove this, we merely add a distinct primal variable
for each copy of the edge.

Theorem 6.1 also applies to the augmentation version: Given an initial set of
edges F0, find a minimum-cost set of edges to add to F0 such that the resulting
graph satisfies the proper function f . The only change of the algorithm is in line
1 of Figure 1. The proof of the following theorem is identical to the proof of
Theorem 6.1 and is therefore omitted.

450 DAVID P. WILLIAMSON, MICHEL X. GOEMANS, MILENA MIHAIL, VIJAY V. VAZIRANI

Theorem 6.3. I f the initiM graph satisfies the proper function gp for some p > 0 and
the values greater or equal to p that f can take are p = Po < Pl <: P2 < . . . ~ ill, then
the algorithm in Figure 1 (with step 1 modified) produces a feasible set of edges Fk
such that

l

Ece<
eCFk i=1

where Z i p denotes the optimal value of the augmentation problem. I

Theorem 6.1 can be improved by a unit when Pl = 1 and l > 2, as shown in
the theorem below. The theorem shows, for example, that the algorithm is a 3-
approximation algorithm for the generalized Steiner network problem with rij E
{0,1,2}.

Theorem 6.4. I f the function f takes on values 0 = Po < Pl = 1 < P2 <. . . < Pl, l ~ 2,
then the algorithm in Figure 1 produces a feasible set of edges Fk such that

)
Proof. In the proof of Theorem 6.1, we have shown that the cost of the edges added
in phase p for Pi-1 <P<-Pi is at most

1

eCE /

where (y,z) denotes the dual solution constructed in that phase. By duality,
~ P i Y S - ~ Ze is at most the opt imum value Z[of the linear program:
S eEE

Min

subject to:

E CeXe

e c E

(LPi) E xe>_pi S : f (S) > p i
~ (s)

0 _ < x e < l eE E.

As in Theorem 6.1, we derive by summing over all phases that

l

eCFk i=1

(2) 2 - N

APPROXIMATION FOR STEINER NETWORK PROBLEMS 451

In the proof of Theorem 6.1, we used the fact that Z~p >_ Z* for all i. We claim
that the following inequality is also true:

�9 �9 1 Z , ZIP >-- Z1 }- -~ 2"

To see this, consider the optimal solution x* to (IP) and let H be the corresponding
set of edges. This optimal network consists of several maximal 2-connected blocks
interconnected by bridges. Let C denote the set of bridges of H. We decompose
x* into the sum of two vectors a and ~ where:

d e : { ~ i f e~C
0 otherwise

and

x e otherwise.

Clearly, x * = a+ /9 . We assert that , by definition of C, /3 is a feasible solution to
(LP1), and 2a is a feasible solution to (LP2). The first assertion is easy to see; we
defer the proof of the second for a moment. Given these assertions,

�9 1 Z ,

e6E e6E e6E
The result now follows easily from (2) and the above observations:

{ } e6FkE Ce--< (2-- ~2) Z{.j_EoT~(pi_Pi_l) Z ; i : 2

< 2 -] - ~ ~ 2 + 2 6 (p 2 - 1) - Z{+E,]f(pi-Pi_l) Z*
i=3

<_ 2-~i 1+ z(p2-1)- +~z(p{-p{_~) z;p
i=3

= 2 - -~1 ;{ (~ , i - p i - 1) - -~ Z i p .

To conclude we must show that 24 is a feasible solution for (LP2). Let S be
a set of vertices with f(S) > P2. If none of the edges in 5H(S) belongs to the set
C of bridges then 2 ~ cte = 16H(S)I >_ f(S)>_P2. Suppose, however, that 6H(S)

contains a bridge, say edge e. Let U be the connected component of H-e containing
the endpoint of e not in S. Since t6H(U)] = 1, we have f(U) < 1. We claim that
either f(SUU) > f(S) or f(SC]U) > f(S) (or both). Indeed, if f(SNU) < f(S)
then by Corollary 3.3 we derive that f(S-U)=f(S). Corollary a.a now applied to

452 DAVID P. WILLIAMSON, MICHEL X. GOEMANS, MILENA MIHAIL, VIJAY V. VAZIRANI

S - U and U implies that f (SU U)= f (S - U)= f(S) since f(U) < 1 < f(S), thus
proving the claim. Observe that both T = S N U and T = S U U satisfy ~H(T) C
~ H (S) - { e } . By repeating this process, we can thus find a set R such that f (R)>
f(S) and ~H(R) C_ ~H(S) - C. Therefore,

2 ~ c~e>2 ~ c~e=I~H(R)I>f(R)>f(S)>p2,

proving that 2a is a feasible solution to (LP2).

7. Concluding Remarks

The results above also imply a worst-case bound on the relative duality gap
of (IP) ; that is, Z~p and Z~p, the optimal solution to the linear programming
relaxation of (IP), are always within a factor of 2k (or less) of each other for
proper functions, and within a factor of 2 for uncrossable functions.

Recently, Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson [7]
devised a 2o~(k)-approximation for (IP) with any proper function. Their algorithm
also works in k phases, and calls our algorithm for uncrossable functions as a
subroutine. The algorithm tightens the bound on the relative duality gap to 2~(k) .
Observe that the bound of 2~(k) is never larger than the bounds given in Theorems
6.1 or 6.4.

Extending our algorithm to handle non-uncrossable functions remains a chal-
lenging open problem. The key feature of unerossable functions is that there exists
an optimal dual solution y which is laminar: that is, the sets S such that YS > 0
form a laminar family. This property characterizes uncrossable functions. Handling
all non-uncrossable functions is ruled out by the fact that there exist instances cor-
responding to non-uncrossable {0,1} functions whose relative duality gap is larger
than any constant.

A larger open issue is to explore further the power of the primal-dual approach
for obtaining approximation algorithms for other combinatorial optimization prob-
lems. This appears to be quite promising.

Acknowledgements

We wish to thank Naveen Garg and Neal Young for valuable discussions and
an anonymous referee for pointing out an error in an earlier proof of Theorem 6.4.
The first author would like to thank David Johnson and AT&T for allowing him
to spend the summer at Bell Labs.

APPROXIMATION FOR STEINER NETWORK PROBLEMS 453

References

[1] A. AGRAWAL, P. KLEIN, and R. RAVI: "When trees collide: An approximation
algorithm for the generalized Steiner problem in networks", Proc. 23rd ACM
Symp. on Theory of Computing, 134-144 (1991).

[2] P. BERMAN and V. RAMAIYER: "hnproved approximations for the Steiner tree prob-
lem", Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, 325-334 (1992).

[3] G. DOBSON: "Worst-case analysis of greedy heuristics for integer programming with
non-negative data", Math. of Oper. Res. 7, 515-531 (1982).

[4] G. N. FREDERICKSON and J. JA'JA': "Approximation algorithms for several graph
augmentation problems", SIAM J. Comput. 10, 270-283 (1981).

[5] H. N. GABOW, M. X. GOEMANS, and D. P. WILLIAMSON: "An Efficient Approxi-
mation algorithm for the survivable network design problem", Proc. Third Con-
ference on Integer Programming and Combinatorial Optimization, 57-74 (1993).

[6] M. X. GOEMANS and D. J. BERTSIMAS: "Survivable networks, linear programming
relaxations and the parsimonious property", Math. Programming, 60, 145-166
(1993).

[71 M. X. GOEMANS, A. V. GOLDBERG, S. PLOTKIN, D. B. SHMOYS, F,. TARDOS and
D. P. WILLIAMSON: "Improved approximation algorithms for network design
problems", Proc. 5th ACM-SIAM Symp. on Discrete Algorithms, 223-232
(1994).

[8] M. X. GOEMANS and D. P. WILLIAMSON: "A general approximation technique
for constrained forest problems", Proc. 3rd ACM-SIAM Syrup. on Discrete
Algorithms, 307-316 (1992). To appear in SIAM Y. on Comput.

[9] M. GROTSCHEL, C. L. MONMA and M. STOER: "Design of survivable networks", to
appear in the Handbook in Operations Research and Management Science, Eds:
Michael Ball, Thomas Magnanti, Clyde Monma, and George Nemhauser (1992).

[10] N. G. HALL and D. S. HOCHBAUM: "A fast approximation algorithm for the multi-
covering problem", Disc. Appl. Math. 15, 35-40 (1986).

[11] S. KHULLER and U. VISHKIN: "Biconnectivity approximations and graph carvings",
Technical Report UMIACS-TR-91-132, Univ. of Maryland (September 1991).
Also appears in Proc. 24th ACM Syrup. on Theory of Computing, 759-770
(1992).

[12] P. KLEIN and R. RAVI: "When cycles collapse: A general approximation technique
for constrained two-connectivity problems", Proc. Third Conference on Integer
Programming and Combinatorial Optimization, 39 55 (1993).

[13] D. NAOR, D. GUSFIELD, and C. MARTEL: ~'A fast algorithm for optimally increasing
the edge-connectivity", Proc. 31st Annual Syrup. on Foundations of Computer
Science, 698-707 (1990).

[14] C. H. PAPADIMITRIOU and K. STEIGLITZ: Combinatorial Optimization: Algorithms
and Complexity, Englewood Cliffs, N J: Prentice-Hall (1982).

[15] S. RA.IAGOPALAN and V. V. VAZIRANI: "Primal-dual RNC approximation algorithms
for (multi)-set (multi)-cover and covering integer programs", Proc. 3~th Annual
Symp. on Foundations of Computer Science, 322-331 (1993).

[16] H. SARAN, V. VAZIRANI, and N. YOUNG: "A primal-dual approach to approxima-
tion algorithms for network Steiner problems", Proc. of Indo-US workshop on
Cooperative Research in Computer Science, Bangalore, India, 166-168 (1992).

454 D. P. W I L L I A M S O N et. al: A P P R O X I M A T I O N F OR S T E I N E R N E T W O R K P R O B L E M S

[171

David P. Williamson

I B M T. J. Watson Research Center

Room 33-219
Route 134
Yorktown Heights, N Y 10598, USA

dpw�9 son. ibm. com

Milena Mihail

BeUcore
4.~5 South Street
Morristown, NJ 07960, USA

mihail �9 corn

A. Z, ZEL1KOVSKY: "An 11/6-approximation algorithm for the network Steiner prob-
lem", A lgorithmica, 9, 463-470 (1993).

Michel X. Goemans

Department of Mathematics
MIT, Room 2-382
Cambridge, MA 02139, USA
goemans~mat h. mit. edu

Vijay V. Vazirani

Computer Science and
Engineering Department

Indian Institute of Technology

New Delhi 110016, India
vazirani�9 iitd. ernet, in

Typeset by TYPOTEX Ltd, Budapest
PRINTED IN HUNGARY

Akad~miai Nyomda, Budapest

