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In Survivable Network problems (a.k.a. Survivable Network Design Problem – SNDP) we are

given a graph with costs/weights on edges and/or nodes and prescribed connectivity require-

ments/demands. Among the subgraphs of G that satisfy the requirements, we seek to find

one of minimum cost. Formally, the problem is defined as follows. Given a graph G = (V,E)

and Q ⊆ V , the Q-connectivity λQG(uv) of uv in G is the maximum number of edge-disjoint

uv-paths such that no two of them have a node in Q − {u, v} in common. The case S = ∅ is

just the edge-connectivity when the paths should be edge-disjoint, and the case S = V is just

the node-connectivity when the paths should be internally node-disjoint.

Survivable Network

Instance: A (possibly directed) graph G = (V,E) with edge/node-costs, a node subset

Q ⊆ V , and a nonnegative integer requirements {ruv : uv ∈ D} on a set D of demand pairs

on a set S ⊆ V of terminals.

Objective: Find a minimum cost subgraph G′ of G such that λQG′(uv) > ruv for all uv ∈ D.

Extensively studied particular choices of Q are edge-connectivity (Q = ∅), node-connectivity
(Q = V ), and element-connectivity (ruv = 0 whenever u ∈ Q or v ∈ Q).

Given an instance of Survivable Network let k = maxuv∈D ruv denote the maximum con-

nectivity requirement, and let k-Survivable Network be the restriction of Survivable Network to

instances with maxuv∈D ruv = k.

Survivable Network has received considerable attention in the past, c.f. surveys in [17, 28, 34].

The edge-connectivity version admits an elegant 2-approximation algorithm via the seminal

iterative rounding method by Jain [27] (see also [39] for an elegant and short proof). On the

other hand, the only known nontrivial ratio for the node-connectivity version is O(k3 log |D|)
[12] due to Chuzhoy and Khanna; the problem also admits a folklore ratio |D|.

The following classification of Survivable Network problems is widely used, c.f. [34]. We may

assume that the input graph G is complete (edges that do not appear in G can be added to G

and assigned infinite costs). Under this assumption, the edge costs are categorized as follows:

• {0, 1}-costs (known also as “augmentation problems”): here we are given an initial graph

G0 (formed by the edges of cost 0), and the goal is to find a min-size augmenting edge

set F of new edges (any edge is allowed and has cost 1) such that the graph G′ = G0+F

satisfies the requirements.

• {1,∞}-costs (known also as “min-size subgraph problems” or ”uniform costs”): given

a graph H (formed by the edges of cost 1 of G, while edges not in H have cost ∞) find

a min-size spanning subgraph G′ of H that satisfies the requirements.

• Metric Costs: here we assume that the edge costs satisfy the triangle inequality.

• General (non-negative) costs.
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For each type of costs, the following four types of requirements were studied extensively:

• Uniform requirements: ruv = k for every pair u, v ∈ V .

The corresponding edge-connectivity and node-connectivity versions are the k-Edge-

Connected Subgraph and the k-Connected Subgraph problems, respectively.

• Rooted (single source) requirements: there is s ∈ V such that ruv > 0 implies u = s;

this gives the Rooted Survivable Network problem.

• Subset uniform requirements: ruv = k for every pair u, v ∈ U ⊆ V .

The corresponding edge-connectivity and node-connectivity versions are the Subset k-

Edge-Connected Subgraph and the Subset k-Connected Subgraph problems.

• Arbitrary requirements.

Many fundamental problems are particular cases of Survivable Network. When there is only

one pair uv with ruv > 0 (namely, when |D| = 1) we get the (uncapacitated) Min-Cost k-Flow

problem, which is solvable in polynomial time (cf., [50]). The undirected 1-Connected Subgraph

is just the MST problem; however, the directed 1-Connected Subgraph is NP-hard. The 1-

Survivable Network problem (the case ruv ∈ {0, 1}) is the Steiner Forest problem which admits

ratio 2 for undirected graphs [1, 23] and ratio O(n2/3+ε) for directed graphs [2]. Rooted 1-

Survivable Network is the extensively studied Steiner Tree problem; c.f. [49, 3] for the undirected

case and [4] for the directed case; the undirected Steiner Tree problem can also be casted as

the undirected Subset 1-Connected Subgraph problem. Several other fundamental problems are

also particular cases of the Survivable Network problem.

For directed graphs, many Survivable Network problems with node-costs are equivalent to

those with edge-costs, but for undirected graphs the node-costs problems are usually harder

to approximate. For example, Steiner Tree with edge-costs admits a constant ratio, while the

version with node-costs is Set-Cover hard [31]. We will consider mainly Survivable Network

problems with edge-costs. For Survivable Network problems and some other Network Design

problems with node-costs see, for example, [31, 24, 42, 43, 47, 51, 5, 20].

In low connectivity Survivable Network problems, k = 1, 2, among them: Directed Steiner

Tree, Directed Steiner Forest, Tree Augmentation, Directed Rooted 2-Survivable Network, and

others. Examples of high connectivity Survivable Network problems are k-Connected Subgraph

and the general Survivable Network with edge/node costs. Table 1 summarizes the current

approximability status for high edge/node-connectivity Survivable Network problems. See also

surveys in [16, 28, 34]. We mention some additional results not appearing in the table.

Element connectivity: Element-Connectivity Survivable Network admits ratio 2 [15, 10]. For

{0, 1}-costs the problem is NP-hard even for r(u, v) ∈ {0, 2} [30]. For {0, 1}-costs the best

known ratio is 7/4 [40].

Rooted requirements: A graph G = (V,E) is k-edge-outconnected from s (k-outconnected from s)

if it contains k edge disjoint (k internally disjoint) sv-paths for every v ∈ V \ {s}. In the

corresponding k-Edge-Outconnected Subgraph and the k-Outconnected Subgraph problems, rsv =

k for every v ∈ V . For directed graphs, both problems can be solved in polynomial time, see [14]
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c,r Edge-Connectivity Node-Connectivity
Undirected Directed Undirected Directed

{0, 1},U in P [52] in P [16] min{2, 1 + k2

2opt} [18, 26] in P [18]

{0, 1},R in P [16] O(lnn) [35] O(min{ln2 k, lnn}) [44, 35] O(lnn) [35]
Ω(lnn) [16] Ω(lnn) [40] Ω(lnn) [16]

{0, 1},S in P [16] O(lnn) [35] |S|
|S|−k ·O(min{ln2 k, lnn}) [45] |S|

|S|−k ·O(lnn) [45]

Ω(lnn) [16] Ω(2ln
1−ε n) [38] Ω(2ln

1−ε n) [13]

{0, 1},G in P [16] O(lnn) [35] k ·O(min{ln2 k, lnn}) [44, 35] O(k lnn) [35]

Ω(lnn) [16] Ω(2ln
1−ε n) [41] Ω(2ln

1−ε n) [41]

{1,∞},U 1 + 2
k [22, 8] 1 + 1

k [37] 1− 1
k + n

opt [8] ([46]) 1− 1
k + 2n

opt [8] ([46])

{1,∞},R 2 [27] ([39]) |D| O(k ln k) [43] |D|
Ω(ln2−ε n) [25] Ω(ln2−ε n) [38] Ω(ln2−ε n) [25]

{1,∞},S 2 [27] |D| |S|
|S|−k ·O(k ln k) [45] |D|

Ω(2ln
1−ε n) [13] Ω(2ln

1−ε n) [32] Ω(2ln
1−ε n) [13]

{1,∞},G 2 [27] |D| O(k3 ln |S|) [12] |D|
Ω(2ln

1−ε n) [13] Ω(2ln
1−ε n) [32] Ω(2ln

1−ε n) [13]

MC,U 2 [29] 2 [29] 2 + (k − 1)/n [33] 2 + k/n [33]
MC,R 2 [27] |D| O(ln k) [11] |D|

Ω(ln2−ε n) [25] Ω(ln2−ε n) [25]
MC,S 2 [27] |D| 24 [11] |D|

Ω(2ln
1−ε n) [13] Ω(2ln

1−ε n) [13]
MC,G 2 [27] |D| O(ln k) [11] |D|

Ω(2ln
1−ε n) [13] Ω(2ln

1−ε n) [13]

GC,U 2 [29] 2 [29] O
(

ln n
n−k · ln k

)
[48] O

(
ln n

n−k · ln k
)

[48]

6 if n > k3 [9] ([21])
d(k + 1)/2e if k 6 8 [33] k + 1 if k 6 6 [33]

GC,R 2 [27] |D| O(k ln k) [43] |D|
Ω(max{k1/2, |D|1/4}) [36] Ω(max{k1/10, |D|1/4}) [36] Ω(max{k1/2, |D|1/4}) [36]

GC,S 2 [27] |D| |S|
|S|−k ·O(k ln k) [45] |D|

Ω(max{k1/2, |D|1/4}) [36] Ω(max{k1/10, |D|1/4}) [36] Ω(max{k1/2, |D|1/4}) [36]
GC,G 2 [27] |D| O(k3 ln |S|) [12] |D|

Ω(max{k1/2, |D|1/4}) [36] Ω(max{k1/6, |D|1/4}) [36] Ω(max{k1/2, |D|1/4}) [36]

Table 1. Known approximability status of Survivable Network problems. MC and GC
stand for metric and general costs, U, R, S, and G stand for uniform, rooted, subset
uniform, and general requirements, respectively. k = maxuv∈D ruv is the maximum
requirement and S is the set of terminals; |D| = |S|−1 in the case of rooted requirements

and |D| = Θ(|S|2) in the case of subset-uniform requirements. Ratio |D| is obtained by
computing a min-cost ruv-flow for every uv ∈ D. References in brackets either contain
a simplified proof, or a slight improvement of the main result needed to achieve the
approximation ratio or threshold stated.

and [19], respectively. This implies a 2-approximation algorithm for undirected graphs. This

fact is widely used for designing approximation algorithms for k-Edge-Connected Subgraph and

k-Connected Subgraph problems. For additional literature see [4, 14, 17, 19, 40, 6, 12, 43, 7].

Relation between directed and undirected Node-Connectivity Survivable Network problems: In

[38] it is shown that for k = n/2 + k′ the approximability of the undirected Node-Connectivity

Survivable Network variant is the same (up to factor of 2) as that of the directed one with

maximum requirement k′.
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