
Exercises for the Approximation Algorithms course given by Prof. Maurice Queyranne at 
the Facultad de Ingeniería, Universidad de la República, Montevideo (August 3−7, 2009) 
 
Do six (6) of the twelve exercises below, at your choice.   
You must work on these exercise on your own, without any external help.  
Please contact Maurice.Queyranne@sauder.ubc.ca if you have any questions. 
 
Please email your work, in pdf format, to this address by Monday September 14, 2009. 
 
1.  (Adapted from Exercise 3.2 in [V]1)  Consider a graph G = (V , E) with positive edge 

costs, and two disjoint subsets of V : S, the senders, and R, the receivers.  The 
problem is to find a minimum cost subgraph G’ = (V , E’) of G such that every 
receiver is connected by a path in G’ to at least one of the senders.  Distinguish two 
cases: (i) E∪D = V; and (ii) E∪D ≠ V.  Prove that case (i) is in P (i.e., solvable in 
polynomial time), and case (ii) is NP-hard.  Give a 2-approximation for case (ii).  
(Hint: Add a new vertex connected to every sender by a zero-cost edge. The new 
vertex and all receivers are the required vertices; all other vertices are Steiner 
vertices.  Find a minimum cost Steiner tree.)  

 
2. Consider a graph G = (V, E) with positive edge costs.  For every edge subset S ⊆ E let 

f(S) denote the maximum cardinality of a subset F ⊆ S such that the subgraph (V, F) 
does not contain a cycle.  Show that the set function f : 2E → ℜ is nondecreasing and  
submodular.  Characterize the possible values of the marginal costs fS (j) = f (S ∪{j}) 
– f(S).  Show that the Submodular Set Cover (SSC) problem associated this set 
function f reduces to a well-known combinatorial optimization problem.  (Hint: you 
may want to distinguish whether G is connected or not.)  Show that the first Greedy 
Algorithm for SSC studied in class reduces to a well-known combinatorial algorithm.  
What does the approximability theorem for the Greedy Algorithm imply for this well-
known combinatorial algorithm? 

 
3. (Adapted from Exercise 14.2 in [V])  Let C denote the collection of given subsets 

selected by the Randomized Rounding algorithm for Weighted Set Cover.  Find a 
constant β > 0 such that, with probability at least β, C covers at least half of the 
elements of the ground set and has cost at most 4⋅OPT.  

 
4.  (Adapted from Exercise 16.2 in [V])  Show that the following algorithm is a 2-

approximation for MAX-SAT  :  Let X be a random instantiation of the variables, as 
produced by the Large Clauses Randomized algorithm; let X’ be the inverse 
instantiation (where each X’i is True if and only if Xi is False); compute the total 
weight of all clauses satisfied by X, and then that of all clauses satisfied by X’; return 
the better of these two instantiations. 

 

                                                 
1 [V] refers to the textbook: Vijay V. Vazirani, Approximation Algorithms, Springer, 2001. (Corr. 2nd 
printing 2003: ISBN : 3-540-65367-8.) 



5. Let S be a set of vertices obtained after applying the Modified Local Search (MLS) 
algorithm, with parameter ε > 0, to a MAX-CUT instance.  How good is this solution 
relative to the optimum objective value (OPT) for this MAX-CUT instance?  How 
should one choose ε for MLS to be a (2+δ)-approximation for MAX-CUT, for a given 
δ > 0? 

 
6. Consider the Submodular Function Maximization (SFMAX) problem max{ f (S) : S ⊆ 

N } where N is a given finite set and f : 2E → ℜ a submodular set function.  We may 
assume, w.l.o.g.2, that f (∅) = 0 (but not that f is nonincreasing or nondecreasing, for 
the problem would then be trivial).  Show that this problem is NP-hard.  Let S be a 
local maximum for the neighborhood structure defined (as for MAX-CUT) by moving 
one element, from S to V \ S or in the reverse direction.  Prove: (i) if R ⊆ S  then  f (R) 
< f (S);  and (ii) if S ⊆ T  then  f (T) < f (S).  Let S’ ∈ argmax{ f (S), f (V \ S) } denote 
the better of S and its complement.  Show that S’ is a 3-approximate solution to 
SFMAX.  Show that it is 2-approximate if f also satisfies the following property:  f (T) 
= f (V \ T) for all T ⊆  N. 

 
7.  (Adapted from Exercise 26.12 in [V])  Consider the constrained MAX-CUT problem 

where certain given pairs of vertices should be separated by the cut, and other pairs 
must be on the same side of the cut.  Formally, two (possibly empty) subsets of pairs 
of vertices are given: each pair in P1 must be separated by the cut, and each pair in P2 
must be on a same side of the cut.  Assume that these constraints are consistent. We 
seek a cut with maximum weight subject to satisfying all these constraints.  Define an 
SDP relaxation for this problem and show that the Goemans & Williamson algorithm 
(separation by a random hyperplane) produces a cut satisfying the additional 
constraints and with expected cost E[W] > α⋅OPTSDP (where α ≈ 0.87856 is the same 
constant as in the unconstrained case, and OPTSDP is the optimum value of your SDP 
relaxation).  (Hint: any polynomial-sized SDP relaxation will suffice;  you are not 
being asked to find a smallest or most effective such SDP formulation.)  Explain how 
to use this result to define a de-randomized version of the Goemans-Williamson 
original (i.e., unconstrained) algorithm.  How many SDP problems need to be solved 
in this de-randomized algorithm? 

 
8.  (Adapted from Exercise 8.3 in [V])  Produce an FPTAS for the following SUBSET-

SUMS RATIO problem.3  Given n positive integers, 0 < a1 < … < an , find two disjoint 
nonempty subsets S, T ⊆ N = {1,…,n} such that ∑∑ ∈∈
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 is minimized.  (Hint: First produce a pseudo-polynomial algorithm for 

this problem. Then suitably round the data.) 
 

                                                 
2 without loss of generality 
3 C. Bazgan, M. Santha, and Z. Tuza. Efficient approximation algorithms for the subset-sum problem. In 
Proc. 25th International Colloquium on Automata, Languages, and Programming, volume 1443 of Lecture 
Notes in Computer Science, pages 387–396. Springer-Verlag, Berlin, 1998. 



9.  (Adapted from Exercise 5.1 in [V])  Show that if the edge lengths do not satisfy the 
triangle inequality, then the k-CENTER problem cannot be approximated within a 
factor α(n) for any function α(n), computable in polynomial time, of the number n of 
vertices of the k-CENTER instance. (Hint: combine the ideas of the inapproximability 
theorems for TSP and Metric k-CENTER.)  On the other hand, show that for any fixed 
k the k-CENTER problem is in P (i.e., can be solved to exact optimality in polynomial 
time). 

 
10. (Adapted from Exercise 29.1 in [V])  Prove that PCP(log n, 1) ⊆ NP.  (Hint:  Let 

language L ∈ PCP(log n, 1).  The NP Turing machine accepting L guesses the proof 
y, simulates the verifier V for L on all possible strings of O(log n) bits, and accepts if 
and only if the verifier accepts on all these strings.)  

 
11. (Adapted from Exercise 29.3 in [V])  Prove that if there exists a gap-introducing 

reduction from SAT to MAX-3SAT then NP ⊆ PCP(log n, 1).  A gap-introducing 
reduction from SAT to MAX-3SAT associates with every instance (logical expression) 
φ of  SAT an instance I of MAX-3SAT such that (i) if φ is satisfiable then OPT(I) < f (I) 
and (ii) φ is not satisfiable then OPT(I) > α(|I|)⋅f (I) > 0, where f  is a real-valued 
function of the instance and  α a real-valued function of the instance size satisfying 
f(I) > 0 and α(|I|) > 1 for all instances I of MAX-3SAT.  (Hint:  Reduce every SAT 
instance φ to a MAX-3SAT instance I.  Input to the verifier V an instantiation X  which 
is optimum for I.  The error probability is then at most 1 − εM for a certain positive 
constant εM . Repeat a polynomial number of times to reduce this error probability 
below 1/2.) 

 
12. Let  G = (V,E)  be a graph and  GC = (V, EC)  be its complement, where  EC = { {i,j} ⊆ 

V : {i,j}∉E} is the set of all edges of the complete graph over V which are not in E.  
Let α(G) denote the maximum cardinality of a stable set in G (i.e., of a subset of 
vertices no two of which are adjacent in G);  γ(G) the maximum cardinality of a 
vertex cover in G; and ω(G) the maximum cardinality of a clique in G (i.e., of a 
subset of vertices all of which are pairwise adjacent in G).  Prove two very simple 
equations relating the values of α(G) and γ(G) to ω(GC).  Assuming that P ≠ NP, 
what are the implications, if any, on the approximability of the STABLE SET problem 
(find a maximum cardinality of a stable set in a given graph G) and on the VERTEX 
COVER problem, of the fact that there cannot exist an n1− ε -approximation for the 
CLIQUE problem for any ε > 0?  Explain. 

 


