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Abstract The history of the Euclidean Steiner tree problem, which is the problem
of constructing a shortest possible network interconnecting a set of given points in
the Euclidean plane, goes back to Gergonne in the early 19th century. We present a
detailed account of the mathematical contributions of some of the earliest papers on
the Euclidean Steiner tree problem. Furthermore, we link these initial contributions
with results from the recent literature on the problem.

1 Introduction

The Euclidean Steiner tree problem asks for a shortest possible network intercon-
necting n points in the plane. This is a classic example of a problem that is easy to to
state and understand, but difficult to solve. Since the 1960s an increasingly sophisti-
cated mathematical theory of minimal networks has developed around this problem
building on a combination of techniques from combinatorics, geometry and analysis.
The interest in the Steiner tree problem stems not only from the challenge it repre-
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sents mathematically, but also from its range of potential applications in areas such
as communications, infrastructure networks and physical chip design.

The history of the Euclidean Steiner tree problem, however, is generally not well
understood – particularly the history from before 1941 when the problem was ex-
posed to a large audience through the book What is Mathematics? (Courant and Rob-
bins, 1941). This is, perhaps, not surprising given the highly non-linear way the study
of Steiner trees has developed since the early 1800s. The mathematical history of this
problem is full of twists and turns and dead-ends; on at least three occasions the
problem has been completely forgotten, and then ‘rediscovered’ many years later.
Furthermore, the modern attribution of the problem to Jakob Steiner (1796–1863) is
misleading, if not to say erroneous.

In a letter to Schumacher from 1836, Carl Friedrich Gauss (1777–1855) briefly
discussed the problem that is now called the Euclidean Steiner tree problem. For some
time this letter was believed to be the earliest source of the problem (Schreiber, 1986).
Today we know that the Euclidean Steiner tree problem was posed and analysed even
earlier, in 1811, by Joseph Diaz Gergonne (1771–1859); this fact is mentioned briefly
in a mathematics history book by Scriba and Schreiber (2010).

What is still missing in the literature is a detailed account of the mathematical
contributions of the early papers on the Euclidean Steiner tree problem and an ac-
count of the historical trajectory from these early papers to the modern literature in
the area. In this paper we give such an overview, including a study of the numerous
rediscoveries of the problem and the origins of the current misleading nomenclature.
Our paper includes a number of direct quotations and figures from the earliest liter-
ature in the area; all passages quoted in this paper have been translated in a manner
that attempts to be faithful to the meaning and intentions of the original text while
also being comprehensible to a modern reader.

The paper is organised as follows. In Section 2 we give some background on the
Euclidean Steiner tree problem (including a formal definition, and important theory
and algorithms), and in Section 3 we introduce the related Fermat-Torricelli problem
and its history. In Section 4, Gergonne’s contributions from 1811 are presented. In
Section 5, Gauss’ letter to Schumacher from 1836, and related German contributions
from the late 19th century, are discussed. In Section 6, we survey the first modern
treatment of the problem, from 1936, by Jarnı́k and Kössler, and in Section 7 we dis-
cuss the recent history of the problem – in particular the influential book by Courant
and Robbins (1941), and the seminal modern study of the problem by Gilbert and
Pollak (1968).

2 Background on the Euclidean Steiner Tree Problem

The Euclidean Steiner tree problem asks for a network of minimum total length in-
terconnecting a given finite set N of n points in the Euclidean plane. We present two
mathematical definitions; the first definition is often used in earlier papers, while the
latter is a more contemporary definition:
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Fig. 1 A minimum Steiner tree (left) and a solution to the Fermat-Torricelli problem (right) for a set of 4
points N = {a, b, c, d} on a unit square. The minimum Steiner tree has two Steiner points, s1 and s2, and
has length 1+

√
3 ≈ 2.732. The network resulting from the solution to the Fermat-Torricelli problem has

length 2
√

2 ≈ 2.828.

1. Find a system of line segments such that the union of the line segments forms a
connected set containing N , and such that the total Euclidean length of the line
segments is minimised.

2. Find a geometric network T = (V,E), i.e. a connected graph that is embedded
in the plane, such that N ⊆ V and S = V \N is a (possibly empty) set of points
known as Steiner points, and such that

∑
e∈E |e| is minimised (where |e| denotes

the Euclidean length of edge e ∈ E).

A solution to the Steiner tree problem can be assumed to be a tree T (otherwise it
would not minimise length), and it can be assumed that any Steiner points in T have
at least three incident edges. Such a tree is referred to as a minimum Steiner tree. The
given points N are often denoted terminals.

The (generalised and unweighted) Fermat-Torricelli problem also has a finite set
N of n points as input, but the problem is to compute a single point s, such that
the sum of Euclidean distances from s to each point in N is minimised. For n ≤ 3,
a solution to the Fermat-Torricelli problem also gives a solution to the Steiner tree
problem. However, for n ≥ 4, a solution to the Fermat-Torricelli problem does not
(generally) lead to a solution to the Steiner tree problem (Figure 1).

A minimum Steiner tree has a number of properties that we briefly summarise
here (see, e.g. Gilbert and Pollak (1968)):

Degree and angle properties A minimum Steiner tree with n = |N | terminals has
at most n− 2 Steiner points. Edges meeting at common vertices form angles that
are at least 120 degrees; this implies that Steiner points have exactly three incident
edges meeting at 120 degree angles (Figure 1, left).

Full components A minimum Steiner tree can be decomposed into components in
which every terminal is a leaf, known as full components, or full minimum Steiner
trees. This decomposition is unique for a given minimum Steiner tree, but is not
unique for a given terminal set.

Full topologies A description of the interconnection pattern of a tree is called the
topology of the tree. A full topology is the description of the tree topology for
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a full component, where terminals are leaves and Steiner points of degree 3 are
interior nodes. Full topologies can be described using a parenthesis structure. For
example, for the set of terminals N = {a, b, c, d}, the representation (ab)(cd)
means that terminals a and b are both connected to some Steiner point s1 and
similarly, that terminals c and d are both connected to some other Steiner point
s2; finally s1 and s2 are connected in the corresponding topology. Terminal pairs
ab and cd are called cherries in the topology (Figure 1, left).

The Euclidean Steiner tree problem is known to be NP-hard (Garey et al, 1977),
even when the terminals are restricted to lie on two parallel lines (Rubinstein et al,
1997). The Melzak construction (Melzak, 1961) forms the building block of the most
successful algorithm for the problem — the GeoSteiner algorithm (Warme (1998),
Warme et al (1999), Warme et al (2001) and Winter and Zachariasen (1997)). Using
the GeoSteiner algorithm, optimal solutions to the Euclidean Steiner tree problem for
thousands of terminals can be computed in reasonable time. Approximate solutions
can be computed efficiently in theory and practice; the so-called polynomial-time
approximation scheme of Arora (1998) provides solutions that are a factor of 1 + ϵ
away from optimum in polynomial-time for any fixed ϵ > 0.

3 The Fermat-Torricelli Problem [1638–1834]

The origins of the Euclidean Steiner problem can be traced back to the closely related
Fermat-Torricelli problem which can be thought of as the simplest non-trivial case
of the Steiner problem on n terminals for the case where n = 3. The history of
the Fermat-Torricelli problem has already been researched in great depth elsewhere,
so here we simply give a brief overview of the early historical development of this
problem, and refer the reader to the comprehensive historical study of Kupitz and
Martini (1997) for more details and further references.

Pierre de Fermat (1661-1665) described the problem in about 1643 in his work:
“Method for Determining Maxima and Minima and Tangents to Curved Lines” (de Fer-
mat, 1891, p.135). In the original latin, the statement of the problem reads: “datis
tribus punctis, quartum reperire, a quo si ducantur tres rectae ad data puncta, summa
trium harum rectarum sit minima quantitatis” or “given three given points, a fourth
is to be found, from which if three straight lines are drawn to the given points, the
sum of the three lengths is minimum”. The problem appears to have been inspired
by a question posed by René Descartes in 1638 (see Descartes (1896), p. 324), who
invited Fermat to investigate curves of the form:

4∑
i=1

∥pi − x∥ = c

for given points p1, . . . , p4 in the plane, and a constant c. These can be thought of
as level curves for the function measuring the sum of distances of a point x from the
given points pi.

Fermat’s problem for three points p1, p2, p3 can usefully be divided into two
cases: the first where every angle of the triangle △p1p2p3 is strictly less than 120◦;
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Fig. 2 Torricelli’s construction of the Torricelli point F for three points A, B and C, from (Torricelli,
1919). The construction shows that F is both the intersection of two circumcircles and the intersection of
the two line segments AE and CD.

the second where the △p1p2p3 contains an angle of 120◦ or greater. The earliest
known solution to Fermat’s problem (at least for the first case) was a geometric con-
struction due to the Italian physicist and mathematician Evangelista Torricelli (1608–
1647) (Torricelli, 1919), shown in Figure 2. The method is to construct equilateral
triangles on the sides of the triangle △p1p2p3 and outside this given triangle. Then
circumcircles are found for the three equilateral triangles and their intersection gives
the solution to the Fermat-Toricelli problem, which we will refer to as the Torricelli
point.

The construction by Torricelli in Figure 2 also shows that any pair of the lines
found by joining the furthest vertex of one of the equilateral triangles, in the con-
struction, to the given point opposite the equilateral triangle, intersect in the Torricelli
point. This alternative method of solving the the Fermat-Toricelli problem was redis-
covered more than a century later (in Simpson (1750)) by Thomas Simpson (1710–
1761), from whom we get the name “Simpson line” for each of these constructed line
segments. However, it was not until 1834, that Heinen (1834) proved that in the first
case of Fermat’s problem the three Simpson lines each have the same length as the
sum of the distances to the Torricelli point.

In his book “Exercitationes Geometricae Sex” (Cavalieri, 1647), Bonaventura
Cavalieri, an Italian mathematician and Jesuate (1598–1647), characterised the three
angles at the Torricelli point subtended by the sides of the given triangle △p1p2p3 as
all being equal to 120◦, and thus the isogonal point — a fact also known by Torricelli.
Cavalieri also explicitly solved the second case of Fermat’s problem, stating that in
this case the minimising point is simply the vertex of △p1p2p3 with an obtuse angle.

In France, by the early 1800s, knowledge of the Fermat-Torricelli problem seems
to have vanished, but was revived in 1810 when the problem and several generali-
sations were posed again by Joseph Gergonne. One of these generalisations was the
Euclidean Steiner tree problem. Gergonne’s contributions are the subject of the next
section.
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Fig. 3 Portrait of Joseph Diaz Gergonne (1771–1859), the originator of the Steiner tree problem.

4 The First Studies of the Steiner Tree Problem [1810–1819]

The earliest known statement and analysis of the Euclidean Steiner tree problem was
by the French mathematician and logician Joseph Diaz Gergonne (1771–1859) in
1811 (Figure 3). After a brief career in the French military, Gergonne had been ap-
pointed to the chair of transcendental mathematics at the École Centrale in Nı̂mes in
about 1795. He was particularly interested in geometry, but found it difficult to get
his mathematics papers published. Gergonne attributed this to the lack of any inde-
pendent specialist mathematics journals at the time. In 1810 Gergonne established
his own mathematics journal entitled the Annales de mathématiques pures et ap-
pliquées but more generally known as the Annales de Gergonne. The journal, which
was published monthly for 22 years, had a strong emphasis on projective, synthetic,
and algebraic geometry. Much of the content was by Gergonne himself, but many
other prominent mathematicians also published there, including Heinrich Christian
Schumacher, Jakob Steiner, Gabriel Lamé and Évariste Galois.

In the ‘Prospectus’ (preface) for the first issue of the journal, it was made clear
that the journal would have a particular emphasis on problem-solving. This editorial,
almost certainly by Gergonne, states: “Each issue of the Annals will offer one or more
theorems to prove, one or more problems to solve. The Editors, in the choice of these
theorems and problems, give preference to statements that can be identified by their
correspondents, and they will record proofs and solutions that are received in their
compilation”.
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Amongst the problems featured in the first volume of the Annales de Gergonne
was the Fermat-Torricelli problem, and several generalisations of the Fermat-Torricelli
problem, including a version of what is now known as the Steiner tree problem.

4.1 Problems from the Annales de Gergonne

We now examine the relevant problems posed in volume 1 of the Annales de Ger-
gonne. The statement of the first problem appears on page 196:

PROPOSED QUESTIONS.
Problems of Geometry
I.
An engineer wishes to establish a communication between three cities, not
located in a straight line, by means of a network composed of three branches,
leading at one end to the three cities, and meeting at the other end at a single
point between these three cities. The question is, how can one locate the point
of intersection of the three branches of the network, so that their total length
is as small as possible? (*)

This is the Fermat-Torricelli problem, discussed in Section 3, in an engineering guise.
Its publication predates electrical telegraphy which was not in use until the 1830s, so
the “communication” network may simply refer to roads, or possibly optical telegra-
phy, based on a semaphore system, which operated in France from 1792 through to
1846.

The footnote to the problem is as follows:

(*) One can generalise this problem by asking how to determine, on a plane,
a point whose sum of distances to a number of arbitrary points located in this
plane is minimal. One can even extend to points located in any manner in
space.

In other words, the footnote extends the Fermat-Torricelli problem to more than
three given points (but only one intersection point) and higher dimensions. As men-
tioned in the previous section, this was solved in a later number of the journal by
Tédenat (Tédenat, 1810).

The next related problem appears on page 232:

PROPOSED QUESTIONS.
Problem of Geometry
Two straight-line canals intersect at a determined angle, and a city is situated,
in a known manner, in one of the four regions formed by the intersection.

One wants to build two bridges over the canals, and build a commu-
nication network from these two bridges to the city for whose use they are
intended.

The problem is to determine the locations in which both bridges must be
built, and how one should position the branches of the network, so that the
total length thereof is as small as possible? (*)
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————–
(*) One can generalise this problem, assuming the two canals to be of any

form whatsoever.

This question asks for the minimum length network interconnecting a given point
and two given straight lines. Although not made explicit, there is an assumption that
the network can contain vertices other than those corresponding to the position of the
city and the two bridges; otherwise the problem would be equivalent to asking for
the distance of a point from a straight line. The solution to the problem later in the
volume includes a degree-three junction in the communication network, making it
clear that the use of extra vertices is allowed.

A final pair of related problems appear on page 292:

PROPOSED QUESTIONS
Problems of Geometry
I.
Two cities are located, in a known manner, on the same side of a straight-line
canal(*).

One wants to build a bridge over the canal and build a communication
network from that bridge to the two cities for whose use it is intended.

The question is to determine at what location one should build this bridge
and how one should position the branches of the network, so that the total
length thereof is as small as possible?

II.
A number of cities are located at known locations on a plane; the problem

is to link them together by a system of canals whose total length is as small
as possible (**)?
————–

(*)More generally, one can assume that the canal is curved.

(**) One should not confuse this question with the one on page 285.
Indeed, in the former problem the number of branches of the network must
equal the number of cities to which they lead on the one hand, and it is re-
quired, on the other hand, that these branches meet in the network at a single
point; here, on the contrary, this condition is not required, and one should not
enforce it if it does not result in a minimum.

Question I asks for the shortest network interconnecting two given points and a given
straight line; question II is the first known statement of the Steiner tree problem, ask-
ing for the shortest length network interconnecting a set of known points in the plane.
The footnote to the second question makes it clear that this is a different problem
from the Fermat-Torricelli problem for multiple points – the network is not restricted
to having only one extra vertex. The reference to page 285 is to a solution to the
general Fermat-Torricelli problem in the plane, given by M. Tédenat, Rector of the
Academy of Nı̂mes (Tédenat, 1810).
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4.2 Gergonne’s solution of the Steiner tree problem

On page 375 of volume 1 of the Annales de Gergonne is a ten page article titled
‘Résolues’ (Resolved) addressing all the problems listed in the previous subsection.

The article is subtitled:

PURELY GEOMETRIC SOLUTIONS to the problems of minimums proposed on
pages 196, 232 and 292 of this volume, and various other analogous problems;
By a SUBSCRIBER.

The “subscriber” is definitely Gergonne. This is confirmed by the NUMDAM current
director, Professor C. Gérini, a recognised expert on the Annales de Gergonne, who
states that: “All papers signed ‘Par un abonné’ [ie, ‘By a subscriber’] come from
Gergonne, as well as the notes signed ‘JDG’”.1 The figures for this article are signed
‘JDG’. Furthermore, in the digitised copy available online through the NUMDAM
program, the name “GERGONNE” has been handwritten (apparently by Gergonne
himself) next to “ABONNÉ” (subscriber). The identification of the “subscriber” as
Gergonne is further confirmed in Guggenbuhl (1959) and Stigler (1976).

The article addresses eleven problems connected with the Fermat-Torricelli prob-
lem. The first ten of these problems consider how to construct a minimum length net-
work interconnecting three given geometric objects, each of which is either a point, a
circle, or a straight line; the ten problems correspond to the ten possible combinations
of these objects.

The eleventh problem is the Steiner tree problem, and we present a translation
and discussion of Gergonne’s solution here.

PROBLEM XI. Connect any number of given points by a system of lines
whose total length is as small as possible.

The problem is stated here for the first time in abstract terms, rather than in terms of
cities and canals. Earlier in the article Gergonne notes that: “...all points, lines and
circles which will be discussed are always supposed to belong to the same plane”,
hence although planarity is not explicitly mentioned in the problem statement, it is
nevertheless understood.

The solution is divided into an “Analysis” section and a “Construction” section.
We will examine each in turn.

Analysis. I. One should not assume that each of the given points are reached
by several of the sought lines; indeed assume that A is one of these points
(Fig. 17) [Figure 4] and two of the candidate lines, MA and NA, finish at
that point - one could, in general (5), replace the system consisting of these
two lines by a system of three lines PA, PM, PN , with a total length less,
so that MA and NA does not fulfill the conditions of problem. In fact, it may
well happen, in particular cases that PA should be zero, but it is during the
construction of the problem that this circumstance should be indicated.

1 Quoted in an unpublished paper by P. J. H. Piñeyro: “Gergonne; the isoperimetric problem and the
Steiners symmetrization”, January 2012
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Fig. 4 Gergonne’s Figure 17.

Fig. 5 Gergonne’s Figures 18 to 20.

The analysis begins by observing that the minimum network is not necessarily a
subnetwork of the complete network on the given points. The reference ‘(5)’ refers
to a set of inequalities derived in the solution to Problem I, which is that of finding
the minimum length network interconnecting three points.

2. It may be noted, secondly, that if there are points of intersection of the lines
sought other than the given points (and there cannot fail to be such, according
to the above) the number of lines meeting there cannot be fewer than three.
For if, in fact, a point M (Fig. 18) [Figure 5, left] other than the given points,
was reached by only two of the lines sought, MN and MP , then instead of
linking points N and P by these two straight lines, one could link them by
the single and shorter line NP ; hence the lines MN and MP would not meet
the conditions of the problem.

Here Gergonne observes that any additional vertices in a minimum network can be
assumed to have degree at least three. The argument is correct apart from ignoring
the trivial case where N , M and P are collinear.

3. One must not assume either that those sought lines that meet in a com-
mon point other than one of the given points, meet there in a number more
than three; for, if one assumes just four of these lines MN , MP , MQ, MR
(Fig. 19) [Figure 5, middle] meet at the same point M , it would be possible
(5), at least in general, to replace the system of two of these lines, MQ and
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MR for example, by the three lines SM, SQ, SR, with smaller total length,
so that MQ and MR do not fulfill the conditions of the problem. In truth the
relative positions of points M , Q, R, may well, as previously, in special cases,
make SM zero, so that the point S coincides with the point M , but it is during
the construction of the problem that this circumstance should be indicated.

Gergonne argues that the degree of an extra vertex in a minimum network can never
be more than three. The argument, using proof by contradiction, is essentially correct,
but is incomplete. The idea is to replace a pair of edges meeting at the extra point M
by a shorter subnetwork including another extra vertex S (Figure 5, middle). The
problem, as acknowledged in the last sentence of the quoted passage, is that the edge
SM may be degenerate, resulting in no change in the original network. Because no
conditions are given as to when this degeneration occurs, there is no guarantee that it
will not apply for every pair of edges incident with M . The missing condition for a
suitable S to exist is that the pair of edges incident with M meet at an angle of less
than 120◦, which is clearly true for at least one pair of incident edges.

4. Finally, it is easy to see that the lines sought, meeting in threes at the one
point, must form around this point equal angles between them, each 4/3 of a
right angle; for if M (Fig. 20) [Figure 5, right] is the point of intersection of
the three lines MN , MP , MQ, and if the angles between these lines, around
this point, were not equal, then replacing the point M (5) by a point M ′ which
satisfies this requirement means one replaces the three lines MN , MP , MQ
by the three lines M ′N , M ′P , M ′Q, with a smaller total length, so that the
former do not fulfill the conditions of the problem.

This shows that A,B,C, D, . . . being the given points, the lines sought
for can only form a kind of tree of the same nature as those shown in Fig. 21,
22, 23, 24, 25 [Figure 6], so that the points M , N , P , Q, . . . where three lines
meet, are, in general, two less in number than the number of given points, and
that the angles enclosed by these lines at each point in turn are all equal to
each other and are 4/3 of a right angle. The only remaining question now is
to learn how to construct [a solution to] the problem.

The first paragraph correctly observes that in a minimum network the angles between
incident edges at any extra vertex are 120◦. The argument here refers again to the
proof of the Fermat-Torricelli problem on three points, which is Problem I in the
article.

In the second paragraph, and in Fig. 21–25, Gergonne shows the different pos-
sible ‘forms’ for full minimum Steiner trees with four, five or six terminals. Here
the term ‘forms’ approximately corresponds to ‘unlabeled topologies’ (or underlying
graph structure), though not exactly, since Fig. 23 and 24 both have the same unla-
beled topology; more precisely, we should think of the ‘forms’ as being ‘unlabeled
combinatorial embeddings’ (in modern nomenclature). The problem of determining
when a full topology does or does not exist is not addressed here; however, this is
consistent with his statement at the beginning of the article that: “My purpose here is
not to discuss the various circumstances which may affect the solution of problems
which I intend to teach how to construct, and even make them impossible; I always
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Fig. 6 Gergonne’s Figures 21 to 26.

assume in everything that follows, that the data is chosen so that these problems can
be solved, and can supply all the solutions that their nature includes”.

The article next addresses the problem of constructing full minimum Steiner trees.

Construction. One already knows the solution for two given points, because
then there is no line to construct other than that between the two points; one
also knows how to solve the same for three given points (5), so if one succeeds
in reducing its solution, in the case where the given points are n in number,
to the correct one if these points are only n − 1 in number, one knows how
to solve it in its generality; and this is what can be achieved very simply by
proceeding as follows:

Arbitrarily take (Fig. 26) [Figure 6, bottom-right] two points A, B, out
of the given n points, such that joining them by an infinite straight line leaves
the remaining n − 2 points on one side. The line AB can be thought of as a
chord (lying on the other side to the remaining given points) of an arc AMB,
inducing an angle of 120◦. Let D be the middle of the rest of the circumfer-
ence; this D is substituted for the two points A, B; we no longer have more
than n − 1 points. Once we have resolved the problem on these n − 1 points,
then the straight line KMD is sought for that ends at the point D; by con-
structing MA, MB, and substituting these two chords for the MD part of
KMD intercepted by the circle, the problem of finding the solution for the n
given points is solved. It may be noted, moreover, that the lines of the system
can only have three distinct directions; it follows that, three of them being
determined, all others are determined by constructing lines parallel to these
three.

Note that the construction here is an iterative construction, very much along the lines
of the construction given by Melzak (1961) almost exactly 150 years later. The re-
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Fig. 7 An example of a full minimum Steiner tree where neither of the two cherries lies on the boundary
of the convex hull. The minimality of this tree has been validated using GeoSteiner.

duction step is to replace a pair of terminals belonging to a cherry (that is, a branch
of the Steiner tree consisting of two terminals and a Steiner point adjacent to both) by
an equilateral point, though the correctness of such a replacement is not proved here.

The condition on A and B at the beginning of the second paragraph is equivalent
to saying that both points lie on an edge of the convex hull of the set of given points,
and that the equilateral point D lies on the opposite side of AB to the rest of the
convex hull. The implicit assumption (made slightly clearer by the Remark I, below)
appears to be that one can repeat the construction for all such pairs A, B at each stage
ensuring one will eventually generate a full minimum Steiner tree on the given points
(if it exists). Unfortunately, while this strategy seems reasonable for full trees on up to
six given points, it is not in general correct. There does not necessarily exist a cherry
both of whose terminals lie on the boundary of the convex hull of the terminals; this
is illustrated by Figure 7.

The error, however, can be easily remedied by attempting the reductive construc-
tion on every pair of available terminals A, B and for each pair trying both possibili-
ties for the equilateral point D. This is guaranteed to find the full minimum tree when
it exists, but at considerable expense to the computational efficiency of the procedure.

Gergonne concludes his study of this problem with two remarks.

Remark I. This construction allows for arbitrary choices of the points to be
used successively, such that, if more than three points are given, the problem
will have several solutions, and such that when these points are more than five
in number, it can be solved by essentially different systems of lines. These
systems are three in number for six given points (Fig. 23, 24, 25) and there
are four systems for seven points, eight points provide thirteen, and so on. As
for the number of solutions, it will be, in general, one for three points, two
for four, five for five, fourteen for six, forty-two for seven, one hundred and
thirty-two for eight, and so on.
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Here Gergonne makes it clear that there are many locally minimal solutions that need
to be constructed in order to be certain of finding the global minimum. Gergonne
distinguishes between the number of “systems” and the number of “solutions”. The
former is the number of unlabeled combinatorial embeddings (also known as pla-
nar embeddings), which are equivalence classes of embedded graphs that take into
account not only the graph topology, but also the cyclic order of edges around each
vertex in the embedding.2 The latter sequence is the number of non-self-intersecting
full labeled topologies assuming that all terminals are on their convex hull; this gives
the sequence of Catalan numbers, as was later shown by Cockayne (1967).

Remark II. If, for any number of given points A, B, C, D, . . . , one assumes
that the lines that solve the problem are segments, each three of them meeting
at nodes M , N , P , Q, . . . , and if, at points A, B, C, D, . . . , one applies
equal forces directed along any segment that ends at these points, it is clear
that these forces will form an equilibrium system.

In this remark, Gergonne gives a physical, mechanical interpretation of some of the
geometric properties of a minimum Steiner network. This was a theme that strongly
interested Gergonne, who elsewhere in his writing foresaw the future possibility of
quasi-mechanical methods being used to uncover new mathematical results (Dahan-
Dalmedico, 1986).

4.3 The solution of Gallicus

The next known mention of the Steiner tree problem was by Gallicus in 1819, in
The Mathematical Repository, a journal of mathematical problems and essays pub-
lished in England, edited by Thomas Leybourn of the Royal Military College (now
the Royal Military Academy, Sandhurst). In No. XV of that journal, Question 397 by
Gallicus reads as follows: “Having given the position of any number of towns what-
ever, in the same plane, to connect them by a system of canals, of which, the total
length shall be the least possible.” This requires only a brief mention as the solution
“by the proposer” given in No XVII (pages 134–136) is simply a slightly condensed
version of Gergonne’s analysis, including figures that are identical to Gergonne’s. In-
deed, the pseudonym ‘Gallicus’, from the Latin for ‘Gallic’, suggests that the writer
was French, or had a strong interest in French mathematics, and so would almost cer-
tainly have been familiar with the Annales de Gergonne. In a private communication,
Douglas Rogers has suggested that Gallicus may have been the Scottish mathemati-
cian William Wallace, who was a colleague of Leybourne’s at the the Royal Military
Academy. Wallace had a particular interest in geometry and actively followed French
mathematics, making him a likely candidate.

As far as we know, this was the final discussion of this problem in the mathemat-
ical literature until it came to the attention of Gauss in 1836.3

2 This appears to be the same sequence as the number of trivially fully gated graphs on n nodes (Col-
bourn and Huybrechts, 2008), however the equivalence between these two sequences is still to be estab-
lished.

3 It was thought by a number of sources, such as (Kupitz and Martini, 1997, page 101), that the Steiner
tree problem had been rediscovered and discussed by Lamé and Clapeyron in 1827 or 1829 in the pa-
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5 The Four Point Problem and Its Generalisations [1836–1890]

In this section we present the developments on the four point Steiner tree problem in
19th century Germany — beginning with Gauss’ now famous letter to Schumacher
from 1836, and concluding with two detailed treatments of the four point problem,
including generalisations to the n-point problem, by Karl Bopp and Eduard Hoffmann
from 1879 and 1890, respectively.

5.1 Gauss’ letter to Schumacher [1836]

The extensive epistolary correspondence between the great mathematician and scien-
tist, Carl Friedrich Gauss (1777–1855), and the Danish-German astronomer, Heinrich
Christian Schumacher (1780–1850), published in a series of volumes in the 1860s,
has been a valuable source for historians and mathematicians. Gauss’ connection to
the Steiner tree problem was discussed by Schreiber (1986), and the story has been
told in a number of other papers and books (Cheng et al (2004), Cieslik (2004a),
Cieslik (2004b), Du and Wu (2007), Gander et al (2008) and Scriba and Schreiber
(2010)).

In a letter from March 19, 1836, Schumacher presented an apparent paradox re-
lated to the Fermat-Torricelli problem on four points. Schumacher knew that the Fer-
mat point x for the vertices a, b, c and d of a convex quadrilateral appears at the
intersection of the diagonals of the quadrilateral. Now, if we move d toward c, then
in the limit x also converges to c. However, in the example provided by Schumacher,
the limit of x (which is c) is not the Fermat point for the three points a, b and c.
In his answer from March 21, 1836, Gauss explains the apparent paradox — essen-
tially that the solution to the four point Fermat-Torricelli problem does not result in
a minimum-length interconnection of the four points, as is the case for the solution
to the Fermat-Torricelli problem for three points. Then Gauss makes the following
interesting remark:

If in a quadrilateral one asks for, in contrast to the question above, the shortest
connection system in the plane, then several individual cases have to be dis-
tinguished, and you obtain quite an interesting mathematical problem, which
is not foreign to me; as a matter of fact, I have on occasion considered the
railroad connection between Harburg, Bremen, Hannover and Braunschweig,
and I myself have thought that this problem would be an excellent prize prob-
lem for our students. The following drawings [Figure 8] illustrate the different
cases sufficiently; where in the third drawing the connection must go directly
from c to d (which actually is the case in the above example). But time is
pressing, hence no more of this today.

per Lamé and Clapeyron (1829). It is clear, however, from the 1989 paper of Franksen and Grattan-Guiness
(1989), which includes a complete translation of (Lamé and Clapeyron, 1829), that although Lamé and
Clapeyron studied a number of generalisations of the Fermat-Toricelli problem, they did not work on any
problem that was equivalent to the Steiner tree problem.
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Fig. 8 Drawings in Gauss’ letter to Schumacher from March 21, 1836. (Note that some of the reproduc-
tions of these drawings are inaccurate, see e.g. Gander et al (2008).)

One may speculate as to why Gauss chose to illustrate the problem using a rail-
road connection example. In March 1836 only one railroad link existed in Germany
(between Nürnberg and Fürth in Bavaria — opened in December 1835). In fact, the
first railroad link to Gauss’ home town Göttingen appeared almost 20 years later in
1854, and the opening of the link turned out to be Gauss’ last public appearance
(he died in February 1855). One explanation for Gauss’ familiarity could be that his
son, Joseph Gauss (1806–1873), had become involved in railroad construction in the
1830s as part of his service as military officer. In 1836, Joseph went to the United
States to study the construction of railroads, and he later became director of the rail-
way system in Hanover.

It is unlikely that Gauss was familiar with the first volumes of Annales de Ger-
gonne, but Schumacher should already have been familiar with the Steiner tree prob-
lem as he had a paper published (Schumacher, 1810) in the same volume of the An-
nales de Gergonne where Gergonne’s statement of the problem and solution appear.
Neither Gauss nor Schumacher returned to the (general) Steiner tree problem in their
correspondence.

5.2 Karl Bopp’s contributions on the four point problem and its generalisation
[1879]

In 1879, Karl Bopp (1856–1905) published a dissertation entitled “On the shortest
connection system for four points” at the Georg-Augustus-Universität Göttingen (Bopp,
1879). Karl Bopp was born in Frankfurt am Main in Germany, and after finishing his
dr. phil. studies in Göttingen in 1879, he returned to Frankfurt am Main, where he
became teacher at the local Goethegymnasium (high school). He appears to have
worked at the high school until his death in 1905; we only know of one other publi-
cation from his hand — on the calculation of logarithms from 1897. 4

Bopp’s dissertation from 1879 was directly motivated by the question that Gauss
addressed in his letter to Schumacher. After quoting Gauss’ question, Bopp states:

The treatment of the proposed problem “What is the shortest connection sys-
tem for four given points?” is the focus of the following study.

4 Personal record on Karl Bopp obtained from Research Library for the History of Education at the
German Institut for International Educational Research (http://bbf.dipf.de).
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In the first part of the dissertation, Bopp systematically enumerates the possible
“complete connection systems” (or full topolgies) for four given points a, b, c and d.
This is done by considering the “curves” (or paths) between pairs of the given points.
Bopp concludes that there exist three different full topologies for four points, each
having two “help points” (or Steiner points) x1 and x2, that may overlap with the
given points or with each other. Hence he arrives at the following reformulation of
the problem:

When asked for the shortest connection system — excluding superfluous parts
of course — the question becomes: What is the shortest complete connection
system? or: firstly, under what conditions is
ax1 + x1d + x1x2 + x2b + x2c a minimum,
secondly, ax1 + x1c + x1x2 + x2b + x2d
thirdly, ax1 + x1b + x1x2 + x2c + x2d
a minimum, and finally, which of these three relative minima is the smallest
and therefore the absolute minimum?

Bopp distinguishes between two cases of the problem: One where the four points
a, b, c and d form the vertices of a convex quadrilateral, and one where they do not.
Bopp considers the former, the convex quadrilateral case first; his contributions for
this case are also the most interesting ones. The latter case involves detailed (careful)
case analysis, but Bopp’s analysis does not contain results of significant interest. In
the following, we present Bopp’s result for the convex quadrilateral case.

Assuming that the points appear in order a, b, c and d on the convex quadrilateral,
Bopp argues carefully that the full topology (ac)(bd) — where each pair a, c and
b, d share a Steiner point as neighbour — need not be considered, since a relatively
minimal tree for this topology will always be dominated by a relatively minimal tree
having one of the two other full topologies. This leaves two full topologies instead of
three - namely (ab)(cd) and (bc)(da).

Construction of a full Steiner tree for four points

Given a full topology, Bopp then addresses the problem of constructing a relatively
minimal tree for the case where both Steiner points x1 and x2 exist — in modern
terms, he considers the construction a full Steiner tree for each topology. He shows
that if x1 and x2 can be located in the plane such that each of their three incident edges
make angle 120◦ with each other, then the resulting tree is relatively minimal. The
proof is mostly geometric and is an elegant application of Viviani’s theorem (Viviani,
1659) which states that the sum of distances from a point inside an equilateral triangle
to each of the three sides of the triangle is a constant. (Interestingly, Bopp incorrectly
attributes this theorem to Jakob Steiner!)

Bopp then shows that a full Steiner tree for topology (ab)(cd) can be constructed
via a construction (Figure 9) similar to the approach developed by Gergonne (1810).
Equilateral triangles are raised on edges ab and cd (and outside the convex hull), and
a line is drawn between the third corners f and g of the two triangles. Steiner point
x1 (respectively x2) is located at the intersection of the Simpson line fg with the
circle through a, b and f (respectively c, d and g). Bopp proves that the length of the
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Fig. 9 Bopp’s Figure 18.

Simpson line is identical to the length of resulting tree; he even shows that alternative
constructions exist, e.g., by constructing an equilateral triangle on the edge ag and
connecting the third corner k of this triangle to b (Figure 9).

The existence of a full Steiner tree for a given set of four points is discussed next.
First Bopp notes that a necessary condition for the existence is that the four given
points form a convex quadrilateral (a fact that was proved again almost a century later
by Pollak (1978)). After a lengthy and careful analysis, Bopp arrives at the following
conclusion:

The necessary and sufficient conditions for the existence of a pair of points x1

and x2, such that the edges ax1, bx1 and x1x2, and the edges x1x2, cx2 and
dx2 make angles 2π/3 at x1 and x2 is, firstly, that the inequalities on page
20 are fulfilled — or equivalently that the line that connects the third corners
of the outside equilateral triangles with sides ab and cd intersects ab and cd
themselves, and not their extensions — and secondly, that the opposite angles
made at ab respectively cd with the diagonals is not greater than 2π/3.

Essentially, the first condition ensures that neither Steiner point coincides with a ter-
minal, while the second condition prevents the two Steiner points from coinciding
with each other. These necessary and sufficient conditions were rediscovered by Du
et al (1987a) in 1987.

Identification of the best topology based on the relative position of the four points

Bopp’s final major contribution on the four point problem is to give a simple condition
for identifying the full topology that results in the shortest relatively minimal tree.
Bopp proves the following theorem:
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The following curious theorem holds: If abcd is a convex quadrilateral whose
diagonals ac and bd meet at angles ∠azb and ∠azd, and we raise firstly at ab
and cd, and secondly at bc and ad equilateral triangles outside abcd, then we
have if

∠dab < π, ∠bac < π, ∠bdc < π

that the distance between the third corners of the two former equilateral tri-
angles is smaller than, equal to or greater than the distance between the third
corners of the two latter equilateral triangles if and only if [respectively]

∠azb < ∠dza, ∠azb = ∠dza, ∠azb > ∠dza

or equivalently [respectively]

∠azb < π/2, ∠azb = π/2, ∠azb > π/2.

In short, we can use the meeting angle of the diagonals of the quadrilateral to decide
which of the full Steiner trees is the shortest. The theorem does not guarantee the
existence of the two full Steiner trees, but it gives the correct result when both trees
exist — which has to be tested separately using, for example, the previous theorem.
A similar result was proved by Pollak (1978); see also Du et al (1987a).

Generalisation to the n point problem

In an appendix of the dissertation, Bopp considers the n point Steiner tree problem. In
a simple and elegant way he proves that the number of complete connection systems
(or full topologies) for n points is an = 1 · 3 · 5 . . . (2n − 7) · (2n − 5). His main
observation is the following:

If we consider the connection system for the first n − 1 points, that is, if we
remove the part of the connection system that connects the nth point to the
rest of the connection system, then, on the one hand, a complete connection
system for n−1 points remains, and, on the other hand, a complete connection
system for n points can be constructed by connecting the last point to some
point on any line segment in the connection system for the first n − 1 points.

Bopp shows by induction that the number of edges in a complete connection sys-
tem for n points is sn = 2n − 3; then using the fact that the number of complete
connection systems for n points is an = an−1sn−1, the final result follows.

A finite-time algorithm is then sketched for the n point problem:

For each of these an complete connection systems (for which many only have
a minima under degeneracies), a relative minima must be determined, and
from this finite set of relative minima the shortest must be picked out. De-
termining and constructing the relative minima can be achieved without the
slightest difficulty; the construction can be carried out with a ruler and a fixed
angle of π/3.
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Fig. 10 Bopp’s Figure 38.

Bopp presents a detailed example of constructing a full Steiner tree for five points
(Figure 10). Although the main idea is correct, Bopp does not really address the side
problem — namely, that equilateral triangles can be constructed on both sides of the
defining base. Also, the treatment of degeneracies (construction of non-full Steiner
trees) is incomplete. Bopp appears to be aware of this issue, and notes that the number
of different cases is so large “that a general investigation is hardly conceivable”.

As a final remark in his dissertation, Bopp presents some observations concerning
the 3-dimensional Euclidean Steiner tree problem. He argues that edges also meet at
angles that are at least 120◦, and that a Steiner point and its three neighbours must
reside in the same plane in 3-space. This appears to be the first discussion of the
3-dimensional Euclidean Steiner tree problem in the mathematical literature.

5.3 Eduard Hoffmann’s contributions on the four point problem and its
generalisation [1890]

In 1890, Eduard Hoffmann (1858–1923) wrote a paper with the title “On the shortest
connection system for four points in the plane” (Hoffmann, 1890). The paper was
included in the program for the yearly celebration at the gymnasium (high school) in
Wetzlar, Germany. Eduard Julius Hoffmann was born in Homburg (near Saarbrücken),
and finished his dr. phil. studies in Marburg (near Frankfurt am Main) in 1884 with a
dissertation on conic sections. He became a high-school teacher, first in Wiesbaden,
and later at Oberrealschule Hanau (near Frankfurt am Main). It is unclear why he was
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invited to publish his Wetzlar-paper, and we know of no other publications from his
hand. 5

As in the case of Karl Bopp, Hoffmann was also directly motivated by the ques-
tion that Gauss addressed in his letter to Schumacher. Hoffmann also quotes Gauss’
question, and notes that he became aware of Bopp’s dissertation during the com-
pletion of his own paper. The selection of results and the methods employed do in-
deed indicate that Hoffmann wrote most of his paper without prior knowledge of
Bopp’s dissertation. Hoffmann’s paper has neither the rigour nor the structural clarity
of Bopp’s dissertation.

Like Bopp, Hoffmann devotes most of the paper to the case where the four points
a, b, c and d form a convex quadrilateral. In contrast to Bopp, he uses differential
calculus to show that edges at Steiner points (assuming that they exist) meet at 120-
degree angles. He then proves that if a full Steiner tree with two Steiner points exists,
then this tree will be shorter than any solution having one or zero Steiner points.
Hoffmann gives a detailed account on how to construct such a full Steiner tree using
a construction similar to that developed by Gergonne (1810), and he also shows that
the length of the Simpson line is identical to the length of the constructed tree. Finally,
he gives necessary and sufficient conditions for the existence of a full Steiner tree.

Hoffmann presents a number of simple conditions on how to identify the full
topology that results in the shortest relatively minimal tree. In addition to the con-
dition discovered by Bopp, Hoffmann gives the following nice (but not very useful)
condition which was rediscovered by Ollerenshaw (1978).

From this it follows that among the two [relative] shortest connection systems,
the one with minimum length is the one for which the connection between the
two additional points [Steiner points] has maximum length.

Hoffmann concludes his paper with a discussion on the n point problem. He gives
some informal arguments to show that a shortest connection system is a tree with at
most n− 2 Steiner points, and argues using differential calculus that edges at Steiner
points have the same angle properties as in the four-point case. Then he presents
constructions (similar to those of Gergonne and Bopp) for two six-point problems:
the first having a “chain-like” topology with two cherries, and the second having a
“wide” topology with three cherries. Even though he provides no detailed analysis,
Hoffmann is aware that the number of possible full topologies increases rapidly as
the number of points increases. Interestingly, an underlying assumption – which was
shared, at least to some extent, by both Gergonne and Bopp — appears to be that full
Steiner trees can only exist for point sets that form vertices of their own convex hull;
a counter-example to this assumption is given in Figure 7.

6 A Modern Treatment of the Steiner Tree Problem – Jarnı́k and Kössler [1934]

After Hoffmann’s paper, interest in the Steiner Tree problem seems to have vanished
until the paper of Vojtěch Jarnı́k and Miloš Kössler (Jarnı́k and Kössler, 1934). These

5 Personal record on Eduard Hoffmann obtained from Research Library for the History of Education at
the German Institut for International Educational Research (http://bbf.dipf.de).
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Czech mathematicians produced an impressive and modern treatment of the problem,
not only in the plane, but also for general higher dimensional Euclidean spaces. Their
motivations for studying the problem, however, are far from obvious, and they were
clearly unaware of any previous work in this area. Unfortunately, their paper was ig-
nored by the mathematical community for more than 50 years despite Jarnı́k’s strong
mathematical reputation, probably because it was written in Czech and was outside
Jarnı́k’s usual mathematical topics of number theory and analysis (see Korte and Ne-
setril (2001) for more background on this paper). The first significant citation was
by Du et al (1987b);6 here the authors completed Jarnı́k and Kössler’s study of min-
imum Steiner trees for the vertices of a regular polygon. In the final section of their
paper, Jarnı́k and Kössler constructed minimum Steiner trees for the n-vertex regular
polygons where n = 2, 3, 4 and 5, and showed that a minimum Steiner tree for n = 6
or n ≥ 13 coincides with a minimum spanning tree on the same set of vertices (ie,
contains no Steiner points). Du et al. (Du et al, 1987b) completed the remaining cases
(n = 7, 8, 9, 10, 11, 12), showing that again in these cases the minimum Steiner trees
and minimum spanning trees coincide.

In 2001, Korte and Nesetril (2001) produced a translation into English and de-
tailed discussion of the whole of Jarnı́k and Kössler’s paper, other than this final sec-
tion. Because of this, we only give a brief overview of their results here. One of the
most notable features of their paper is the rigour and precision underlying their treat-
ment. Their formulation of the problem is as follows: “given n points C1, C2, . . . , Cn,
find a connected set consisting of finitely many [line] segments, which contains the
points C1, C2, . . . , Cn, so that ‘the total length’ of this set is the least possible”. The
setting in which the authors study this problem is general k-dimensional Euclidean
space, and the main focus of the first half of the paper is the existence of such min-
imum length sets. The proof of this result is an elegant argument using elementary
techniques – much of the modern machinery of graph theory and convex functions
was not well developed at this time.7 The approach makes full use of the higher
dimensional setting; in fact the proof for the planar case relies on embedding the
problem into 3-dimensional space and showing that the minimum solution there is
also a minimum solution in two dimensions.

As a consequence of this existence proof, Jarnı́k and Kössler derive some of the
fundamental structural properties of minimum Steiner trees. Most importantly, they
show that the angle at any vertex is at least 2π/3 and that: “Every branching point [ie,
Steiner point] of G has degree 3. The three sides of the graph incident to a branching
point lie in a 2-dimensional plane and any two have angle 2π/3.” This latter result
generalises the similar result of Bopp for 3-dimensional space. The authors use these
fundamental properties in the final section of the paper to begin a study of the solution
of the Steiner problem for small numbers of terminals. After showing that the prob-
lem on three points has a unique solution, they make the following statement: “For
n > 3 the situation is too complicated; we restrict ourselves therefore to a discus-
sion of the case where the basic points [ie, terminals] form the vertices of a regular

6 There were at least four earlier papers citing (Jarnı́k and Kössler, 1934), mostly in the Czech mathe-
matical literature, however none of these papers deal directly with the Euclidean Steiner Tree problem.

7 In particular, Denes König’s seminal textbook on graph theory, “Theorie der Endlichen und Un-
endlichen Graphen” was not published until 1936, two years after this paper.
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n-gon.” There follows a detailed treatment of minimum Steiner trees for n-vertex
regular polygons, as discussed earlier.

Gustave Choquet’s Road Network problem

It appears that the only other contribution to the Steiner problem in the twentieth cen-
tury, before Courant and Robbins’ book (Courant and Robbins, 1941), was a brief
paper by the French mathematician Gustave Choquet (Choquet, 1938) published in
1938 (when he was about 23 years old).8 The paper includes no proofs, and is es-
sentially an extended abstract. Here Choquet discusses the problem of minimising
the total length of a road network designed to interconnect a given set of n cities.
Throughout most of the paper he assumes that there are no junctions between roads,
except at the cities, in order to allow high volumes of traffic to travel unimpeded (this
is the minimum spanning tree problem). However, in the final section, Choquet re-
laxes this condition (meaning that the network is now a minimum Steiner tree) and
discusses some of the consequences, most of which are very similar to those derived
by Jarnı́k and Kössler. In particular, he notes that two roads meet at an angle of at
least 120◦, junctions not at cities have degree 3. and there are at most n − 2 such
“bifurcation points”. He also observes, like Jarnı́k and Kössler, that if the problem
is generalised to higher dimensional Euclidean spaces then Steiner points still have
degree 3 and the three incident edges are co-planar.

Choquet’s most interesting and original contribution is a suggestion that the length
of a minimum Steiner tree can be used as a metric for measuring any closed point set,
where the length of such a set is defined as: “the upper bound of the absolute length
of the [minimum length] networks joining any finite number of points of the set.”9

This unusual way of thinking of Steiner trees reflects Choquet’s interest in measure
theory, for which he would later become renowned.

7 Recent Results and the Development of Current Terminology [1941–1968]

The work that has had the most important influence on the modern literature on the
Steiner tree problem, which has developed steadily since the 1960’s, is the 1941 book
by Richard Courant and Herbert Robbins What is Mathematics? (Courant and Rob-
bins, 1941). In this section we discuss the treatment of the Steiner tree problem in this
book, and then briefly trace the subsequent Steiner literature through to the seminal
paper of Gilbert and Pollak (1968).

8 In a private communication, when asked why he worked on the minimum spanning tree and Steiner
tree problems, Choquet simply replied that when he was young he worked on all kinds of different prob-
lems (and that he had nothing more to contribute on these two problems).

9 This, in fact, corrects a mistake made by Menger (1931), who attempted to establish the same result
using minimum spanning trees. It is unknown whether Choquet was aware of Menger’s work.
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7.1 Courant and Robbins and the street network problem [1941]

What is Mathematics?: An Elementary Approach to Ideas and Methods by Courant
and Robbins was a successful and highly influential account of a range of mathemat-
ical areas from topics in analysis and number theory to geometry and topology. A
mark of its success is the fact that it is still available today, having been republished
in a new edition in 1996. This is not a book written specifically for the professional
mathematician, rather it is an expository, informal survey of mathematics, designed
to be accessible to students and the interested layperson with a “certain degree of
intellectual maturity”.

The authors’ discussion of the Steiner problem appears in Chapter VII: “Maxima
and Minima”. Section 5 of that chapter is titled “Steiner’s Problem”, and begins with
an account of the three point Fermat-Torricelli problem. The problem is described
in terms of minimising the total length of a system of roads connecting three vil-
lages. The origins of the problem are ascribed to Jakob Steiner in the early nineteenth
century, although his contributions to the Fermat-Torricelli problem were marginal.
Kupitz and Martini (1997) argue convincingly that Courant and Robbins had read
about the Fermat-Torricelli problem in a short paper of Jakob Steiner’s appearing in
pages 729-731 of (Steiner, 1882). This is, in fact, a posthumous publication of one of
Steiner’s private manuscripts written by Steiner for himself only, and not surprisingly
it contains no references and some errors. Courant and Robbins’ familiarity with this
paper is confirmed by the fact that they repeat one of these errors on page 358, a mis-
take also noted by Krarup and Vajda (1997). The authors appear to be unaware of the
role of Fermat, Toricelli and other early geometers in the development of solutions to
the problem.

In the final subsection of Section 5, the authors briefly discuss “Steiner’s prob-
lem” (ie, the the Fermat-Torricelli problem) on more than three points, which they
state “does not lead to interesting results”.10 Instead they suggest that a more in-
teresting generalisation is that of the ‘street network problem’ which they define as
follows: “Given n points A1, . . . , An, [. . .] find a connected system of straight line
segments of shortest total length such that any two of the given points can be joined
by a polygon consisting of segments of the system.” The use of the word ‘polygon’
is somewhat unusual here, but appears to mean a path composed of straight line seg-
ments. Note that there is no suggestion by the authors that Jakob Steiner ever con-
sidered this generalisation, but ironically it is this street network problem to which
Steiner’s name has become attached.

In the last page of the section the authors briefly mention (without proof or ex-
planation) some of the basic properties of these minimum networks, including that
there are at most n − 2 ‘multiple intersections’ (ie, Steiner points) at each of which
three segments meet at angles of 120◦. They also demonstrate that solutions to the
problem are not necessarily unique, giving the networks for the vertices of a square
as an example. The Steiner problem is also mentioned twice later in the book. The
first of these is in Section 9 of Chapter VII, where it is shown that some Steiner trees

10 Kupitz and Martini (1997) argue that this dismissal of the generalised Fermat-Torricelli problem is
based on a misreading of Steiner’s paper in pages 729-731 of Steiner (1882).
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can be thought of as limiting cases of an isoperimetric problem. The other mention
is in Section 11 of the same chapter, where it is shown that locally minimal solutions
to the Steiner problem can be found using soapfilms, via a mechanism consisting of
two parallel glass sheets joined together by perpendicular bars (representing the ter-
minals). The use of soapfilms to study minimal surfaces was a particular interest of
Richard Courant’s (see, for example, Courant (1940)), and may have helped spark his
interest in the Steiner problem.

7.2 The development of the Steiner tree problem through to the 1960s

We conclude by briefly outlining the development of the theory and terminology for
the Steiner tree problem in the literature since Courant and Robbins’ book, through
to the publication in January 1968 of the seminal paper by Gilbert and Pollak (1968).

The first paper on Steiner trees to be published after Courant and Robbins’ book
was by William Miehle (Miehle, 1958), some 17 years later. Miehle proposes a me-
chanical method for solving the Steiner problem using strings which can be tightened
and moveable pegs (for the Steiner points). He also sets up a numeric-analytic model
based on this mechanical system, and compares the merits of the mechanical system,
the mathematical model and Courant’s soapfilm method, mentioned above. Miehle
gives no particular name to the minimisation problem or the minimum networks, but,
taking his lead from Courant and Robbins, he credits the early work on the 3 point
problem to Jakob Steiner.

The following year Beardwood, Halton and Hammersley (Beardwoord et al, 1959)
published their well-known paper showing that the length of the shortest closed path
through n points in a bounded plane region of area v is ‘almost always’ asymptoti-
cally proportional to

√
nv as n → ∞. The authors show that this asymptotic bound

also applies to the Steiner tree problem as the number of terminals in a bounded re-
gion increases. They call the Steiner tree problem “Steiner’s street network problem”,
again referencing Courant and Robbins; this seems to be the first time Steiner’s name
is formally used as part of the name of the general network problem. In 1961 there
appeared a short followup paper by Hammersley (1961) in which the problem was
again called “Steiner’s street network problem”, however the title of that paper is sim-
ply “On Steiner’s Network Problem”. After this paper the word “street” never again
appears in the name of this problem.

In the same year Zdzislaw Melzak published a paper titled “On the Problem of
Steiner” (Melzak, 1961). The paper outlines a finite algorithm for generating a min-
imum Steiner tree for any given set of points. The idea underlying the algorithm is
similar to the method devised by Gergonne, but shows a better appreciation of the
“side problem” (as discussed in the second-last paragraph of Section 5.2). Melzak
consistently uses the terminology “Steiner problem” throughout the paper, but refers
to the minimum trees as “S-trees” and Steiner points as “S-points”. Melzak’s ex-
posure to this problem appears to have come from his links to the Bell Telephone
Laboratories; he acknowledges in the paper the encouragement of Robert C. Prim (of
Bell Laboratories), and he apparently also knew Edgar N. Gilbert.11 Six years later,

11 This is according to one of Melzak’s students, Raymond Booth, in a private communication.



26 Marcus Brazil et al.

Melzak’s student Cockayne wrote a paper (Cockayne, 1967) improving Melzak’s al-
gorithm and discussing the Steiner problem in other metrics. Cockayne’s paper uses
the same terminology as Melzak’s.

A little earlier than this, in 1966, Maurice Hanan published his highly influential
paper on the Steiner problem in the rectilinear metric (Hanan, 1966). This paper un-
covers most of the basic properties of minimum Steiner trees in the rectilinear metric,
and correctly predicts the importance of this theory to the emerging area of “printed
circuit technology” (ie, physical design of microchips). Hanan cites Melzak, and like
him uses the phrase “Steiner problem” throughout the paper.

Another significant and widely cited Steiner paper, that appeared a year later, was
that by Cavalli-Sforza and Edwards (1967), giving an application of the Steiner tree
problem to phylogenetic analysis (ie, the construction of evolutionary trees). This
paper not only uses the phrase “Steiner problem” but is also the first to refer to the
resulting minimal trees as “Steiner Trees”. Another important paper in the same year
was the study by Edgar Gilbert (of Bell Laboratories) of weighted Steiner trees, with
applications to communications networks (Gilbert, 1967).

Soon afterwards Edgar Gilbert and Henry Pollak published their comprehensive
examination of the properties of minimum Steiner trees, entitled “Steiner Minimal
Trees” (Gilbert and Pollak, 1968). This paper was remarkable for setting up, with
great clarity, almost all of the geometric framework that was to play a key role in the
following decades in gaining a detailed understanding of the properties of minimum
Steiner trees. This framework led the way to the construction of fast algorithms for
solving the Steiner problem, most notably the GeoSteiner algorithm (Warme et al,
2001). The paper also sets in place most of the modern terminology for this prob-
lem, including “Steiner minimal trees”, “Steiner minimal tree problem” and “Steiner
points”. The authors were aware, however, that Steiner’s contribution was only to
the three point problem, and that that problem itself was originally proposed by Fer-
mat, but they presumably felt that Steiner’s name was too closely associated with the
problem in the recent literature to suggest any other alternatives. Their paper helped
kindle a fascination with this problem in the mathematical community that has lasted
to the present day.

8 Conclusion

One of the intriguing questions to emerge from the history of the Steiner problem
is why the literature on this problem was so discontinuous in nature until the 1960s.
There is no easy answer to this question, but it is worthy of some speculation. It may
simply be that the popularising of the problem in What is Mathematics? eventually
led to a sufficient critical mass of researchers actively working on the problem to keep
it continuously alive, but this explanation is unsatisfactory, given that there were no
published papers on the Steiner tree problem in the 16 years following the book’s
publication. Part of the answer appears to be that the period from the 1960s onwards
provided, for the first time, a proper context for the Steiner Problem. The properties
of minimum Steiner trees, rather than simply being geometric curiosities, could now
be viewed as providing the ingredients for relatively efficient algorithms for gener-
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ating such trees; this tied in with the formalization of the concept of an algorithm
in Computer Science in the 1950s and 1960s, and the ability to effectively imple-
ment algorithms as computer technology advanced. (Prior to this the large number of
topologies made the problem computationally intractable for more than four or five
terminals). The Steiner tree problem could also be seen as belonging, to some extent,
to the burgeoning field of Operations Research, being closely related to the area of
Facility Location.

Real world applications appear to have also had a role in maintaining an active
interest in this problem in the research community since the 1960s. Although some
of the early statements of the problem in the 1800s were couched in terms of ap-
plications such as the design of canals or railway tracks, there is no evidence that
the problem was ever studied as anything other than a problem in pure geometry.
In the late 1950s, however, a genuine application emerged for the Euclidean Steiner
tree problem. As Henry Pollak relates in Pollak (1978), the Bell Telephone Company
faced the issue that its tariff for private line service was written in terms of the length
of the minimum network connecting the customers’ stations (that is, the customer
would not be charged for redundancy or inefficient interconnections in the network).
In theory, a customer could insist that the Bell Service add a new terminal at a loca-
tion that would reduce the cost of the minimum network (even if it was of no direct
use to the customer), or at least that the customer be charged as though such a ter-
minal existed. Hence there was a real motivation for understanding how to compute
the minimum network cost where such extra terminals (Steiner points) were allowed,
which engaged the attention of a number of researchers working for or associated
with Bell Laboratories.

In the 1960s there was also an emerging appreciation of the potential applications
of the rectilinear version of the Steiner tree problem in the efficient physical design
of microchips, following the paper of Hanan (1966); today, this is still an important
application of the Steiner tree problem. By the end of the 1960s, the Steiner tree
problem had established itself as a rewarding field of study, both from a pure and
applied point of view. From that time onwards there has been a continual interest in
a range of different forms of the Steiner tree problem in the mathematical, computer
science and engineering literature.
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(1934); Jakob Krarup (University of Copenhagen) for help with providing some original sources; Donald
Knuth for helpful comments and suggestions on an earlier draft of this paper; and Konrad Swanepoel for
alerting us to the existence of the paper of Menger (1931).

References

Arora S (1998) Polynomial time approximation schemes for Euclidean traveling
salesman and other geometric problems. J ACM 45(5):753–782



28 Marcus Brazil et al.

Beardwoord J, Halton JH, Hammersley JM (1959) The shortest path through many
points. Proc Cambridge Philos Soc 55:299–327
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Hoffmann E (1890) Über das kürzeste Verbindungssystem zwischen vier Punkten der

Ebene. In: Program des Königlichen Gymnasiums zu Wetzlar für das Schuljahr von
Ostern 1889 bis Ostern 1890, Schnitzler

Jarnı́k V, Kössler M (1934) O minimálnı́ch grafeth obeahujı́cı́ch n daných bodú. Cas
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