CONSIDERACIONES GENERALES Y CONFIGURACIONES DE REACTORES ANAEROBIOS

Instituto de Ingeniería Química Facultad de Ingeniería

CONSIDERACIONES GENERALES PARA EL DISEÑO DE REACTORES

- REACCIÓN: compleja red de reacciones bioquímicas; estequiometría compleja
- · TERMODINÁMIC A: determina las posibilidades de reacción.
- SISTEMA POLIFÁSICO: los sustratos pueden ser particulados o disueltos; los microorganismos están en fase sólida; hay productos gaseosos
- FLUIDODINÁMICA: se necesita mezcla para poner en contacto los sustratos con los microorganismos; los modelos de flujo pueden tender a la mezcla completa pero también hay esquemas basados en el flujo en pistón.
- NATURALEZA CATALÍTICA DE LOS M.O.: las reacciones se dan catalizadas por enzimas que pueden ser extra o intracelulares.
- TRANSFERENCIA DE MASA: debido a la naturaleza catalítica y polifásica del proceso

•1

LAS REACCIONES ANAEROBIAS

- El proceso total implica una compleja red de reacciones en serie-paralelo:

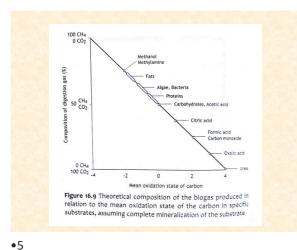
 RESIDUOS PARTICULADOS COMPLE
 - SERIE: $A \rightarrow B \rightarrow C$
 - PARALELO: A
- Como los sustratos pueden ser muy variados, la estequiometría (relación molar entre reactivos y productos) también. A priori desconocida salvo cuando se trabaja con sustancias simples.
- La distribución de producto puede estar afectada por múltiples factores:
 - Condiciones de reacción (pH, T, ORP), presencia de inhibidores
 - Régimen hidráulico (pistón puede dar distinta distribución de productos que mezcla completa)
 - Limitaciones de transferencia de masa

ESTEQUIOMETRÍA

· Ecuación planteada por Bushwell:

•2

$$C_{n}H_{a}O_{b}N_{c} + \left[n - \frac{a}{4} - \frac{b}{2} + \frac{3c}{4}\right]H_{2}O \rightarrow \left[\frac{n}{2} + \frac{a}{8} - \frac{b}{4} - \frac{3c}{8}\right]CH_{4} + \left[\frac{n}{2} - \frac{a}{8} + \frac{b}{4} + \frac{3c}{8}\right]CO_{2} + cNH_{3}$$


•Por ejemplo para lodo primario

$$(C_{10}H_{19}O_3N) + 4.5H_2O \rightarrow 6.25CH_4 + 3.75CO_2 + NH_3$$

•Por ejemplo para lodo secundario

$$C_5H_7O_2N + 2H_2O \rightarrow 2.5CH_4 + 2.5CO_2 + NH_3$$

•3

TERMODINÁMICA

- · Aunque las reacciones son exotérmicas en su mayoría, gran parte del contenido energético de los reactantes permanece en los productos, especialmente gaseosos
 - La energía para el crecimiento es poca (necesidad de retener biomasa)
 - Dado el moderado desprendimiento de calor puede ser necesario calefaccionar ligeramente para mantener la temperatura
- · Algunas reacciones (especialmente la acetogénesis hidrogenotrófica) solo son termodinámicamente posibles si las concentraciones de los productos (hidrógeno) son muy bajas (esto conduce a la formación de agregados)
- Las condiciones fisicoquímicas (pH, P, T) afectan:
 - Los equilibrios de disociación (AGV)
 - La solubilidad de los productos gaseosos (especialmente CO₂, afectando la capacidad buffer)

Ligeramente exotérmico:

 Ejemplo: CH₃CO₂H → CH₄ + CO₂ $\Delta H^0 = -8.57 \text{ kcal/mol} = -0.143 \text{ kcal/gAc}$

Sup. se consumen 4gAc/L, se desprenderían 0.57 kcal/L o sea se el líquido se podría incrementar, como valor tope, hasta poco más de 0.5°C en condiciones estándar (sin considerar que no toda la energía se usa en forma térmica).

•7 •8

Comportamiento simbiótico y transferencia interespecies:

 En ocasiones la reacción no es termodinámicamente favorable, p.ej. consumo de propionato:

 $CH_3CH_2CO_2H + 2H_2O \rightarrow CH_3CO_2H + 3H_2 + CO_2$ $\Delta G^0 = + 71.67 \text{ kJ}$

Debe acoplarse con consumo de hidrógeno:

 $3H_2 + 3/4 CO_2 \rightarrow 3/4CH_4 + 3/2H_2O$ $\Delta G^0 = -98.06 \text{ kJ}$

Y con consumo de acetato

 $CH_3CO_2H \to CH_4 + CO_2$ $\Delta G^0 = -35.83 \text{ kJ}$

En resumen

 $CH_{3}CH_{2}CO_{2}H \ + \ 1/2 \ H_{2}O \ \rightarrow \ 7/4CH_{4} \ + \ 5/4CO_{2} \qquad \Delta G^{0} \ = \ - \ 62.22 \ kJ$

Termodinámicamente favorable

2 Ethanol
2 Acctate
2 Acctate
2 Acctate
2 Acctate
2 Acctate
2 Acctate
3 Strain S

Strain Molt

S

•9

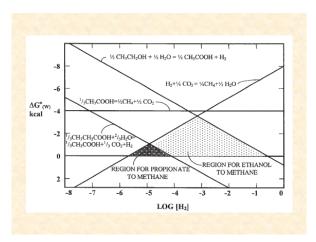
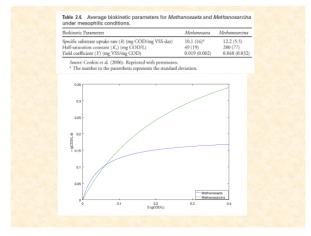
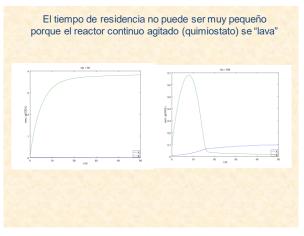


FIG. 3.7. Relationship between pH, bicarbonate, and carbon dioxide at 35°C and 1 atm pressure.

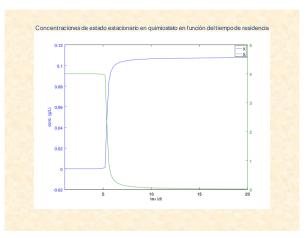
Source: Sawyer et al. (2003). Reprinted with permission.

•11 •12


CINÉTICA


- · Cinética global
 - Los tiempos de reacción son muy largos, medidos en horas, a veces días. (en consecuencia, los sistemas feedback de control no resultan muy eficientes ya que los tiempos de respuesta son muy largos)
 - Los pasos controlantes pueden ser los primeros (hidrólisis de los sustratos complejos) o los últimos (metanogénesis).
 Esto afecta el tipo de reactor y en particular el sistema de mezcla.

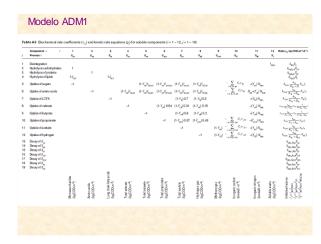
CINÉTICA


- Las reacciones se acercan a una cinética de primer orden respecto al sustrato en la mayoría de las circunstancias operativas (baja concentración de sustrato), aunque pueden tender a orden cero, con lo cual el régimen de flujo solo afecta liceramente.
- Las constantes cinéticas (constantes de crecimiento) son bajas respecto a otros procesos biológicos y muy bajas respecto a procesos químicos (necesidad de retener biomasa)
- Pueden ocurrir problemas de estabilidad debido a las diferentes velocidades de los distintos pasos.
- Las constantes de afinidad (K_s de Monod) son muy bajas especialmente para las consumidoras de hidrógeno; esto permite operar los sistemas con concentraciones de sustrato bajas a velocidades razonables.
- · Algunos pasos pueden retardarse o pararse debido a
 - Condiciones ambientales (pH, T)
 - Inhibidores, altas concentraciones salinas
 - Productos intermedios (AGV, NH₄+, H₂S)

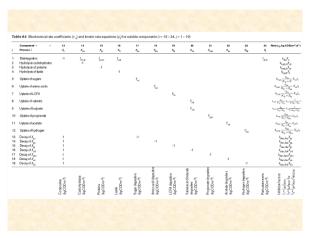
•13

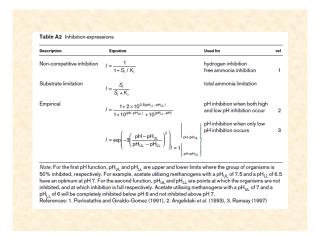
•15

• Para un sistema de mezcla completa los modelos se pueden escribir de la forma


$$\frac{d\xi}{dt} = -Q\xi + K \times r(\xi) + F_{in}$$

donde ξ es el vector de variables de estado, Q el caudal volumétrico, K una matriz de coeficientes, $r(\xi)$ el vector de velocidades de reacción y F_{in} la entrada al sistema.

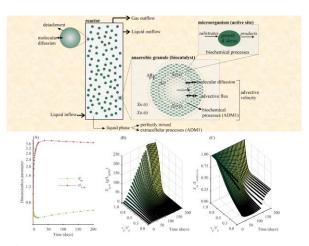

•17

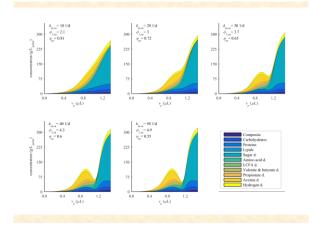

• Normalmente se representa una matriz de la siguiente forma:

Componente → i	1	2	3		 Velocidad r(j)
j ↓ Proceso	Si	Ss			
proceso 1	coeficientes				r(1)
proceso 2					
	1000			1000	
	DQO	unidades			

•19 •20

NATURALEZA CATALÍTICA


- Proceso autocatalítico, uno de los productos (microorganismo) es quien cataliza activamente la reacción heterogénea.
- Las actividades son distintas en los distintos pasos; la actividad global suele estar entre 0.5 y 2 kgDQO/kgSSV.d
- La formación de los "biocatalizadores" depende de
 - Las características del soporte, si este existe
 - Los procedimientos de arranque que pueden conducir a la formación de gránulos o no
- El "biocatalizador" puede ser desactivado en forma reversible o irreversible (tóxicos, condiciones ambientales)


TRANSFERENCIA DE MASA

(referido al agregado de microorganismos)

- · Resistencia externa
 - Difusión de reactantes (grado de homogeneización; gases)
 - En la interfase sólido/líquido (influido por velocidad ascencional de líquido)
 - Difusión de productos gaseosos (agitación, homogeneización, compactación del lecho)
- Resistencia interna (distribución de microorganismos, porosidad, tortuosidad, tamaño)

•23

RÉGIMEN HIDRÁULICO

- Distribución de productos
 Cuando se trata de sistemas en serie
 A S el flujo en mezcla completa produce menor concentración de los productos intermedios.
- · Conversión final
 - A pesar de que el flujo pistón permite mayor conversión cuando la cinética tiende a orden cero cada vez es más indiferente.
- Desarrollo de grupos tróficos
 Fa general para mantener una población
 - En general para mantener una población equilibrada conviene un sistema homogéneo.
 - No obstante cierta estratificación puede favorecer el desarrollo de gránulos especializados

HOMOGENEIZACIÓN

- · Evitar volúmenes muertos
- · Distribución de la alimentación
- Eventual agitación (p.ej. si hidrólisis es limitante)
- Reciclo (para lechos fijos y lechos fluidizados es el mecanismo más adecuado para lograr homogeneización). Contribuye a reducir gradientes de concentración y capacidad buffer. Importante para lograr velocidad ascencional en el arranque de UASB

•27 •28

CARACTERÍSTICAS GEOMÉTRICAS

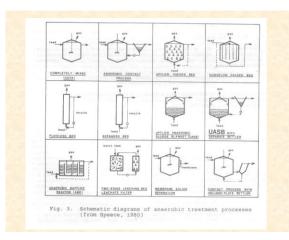
- Altura/Diámetro según el tipo de reactor (pequeño en Contacto, intermedio en UASB, grande en filtros y muy grande en lecho fluidizado)
- Debe tener en cuenta velocidades ascensionales adecuadas y posibilitar el desprendimiento del gas

OTROS ASPECTOS

- Los primeros intentos para el tratamiento anaerobio de líquidos derivaron del concepto de digestores de lodos, del tipo de reactor continuo agitado. ⇒ grandes volúmenes
- Reactores de alta tasa: desacoplan el tiempo de residencia del líquido (TRH) del del sólido (TRC)

 permiten aplicar grandes tasas volumétricas.

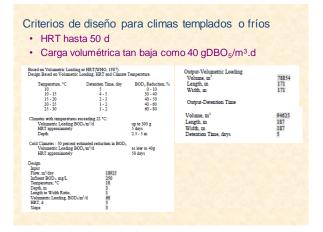
•29 •30


OTROS ASPECTOS

- Permanencia de la biomasa dentro del reactor, sea por sedimentación, adhesión a sólidos o recirculación
- Mejora del contacto entre biomasa y líquido residual, minimizando problemas de transferencia de masa
- Aumento de la actividad de la biomasa, debido a la adaptación y crecimiento.

Principales tipos de sistemas anaerobios

- Lagunas
- Contacto
- · Reactor con chicanas
- UASB
- Film fijo / Filtro anaerobio
- · Lecho fluidizado
- Híbridos
- · EGSB/IC
- AnMBR


•31

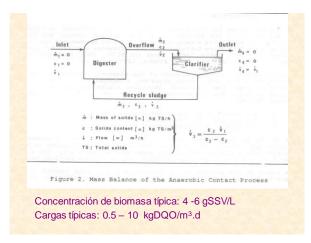
LAGUNAS

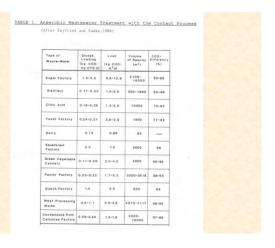
- · Sistemas extensivos
- 2.5 a 5 m de profundidad
- TRH: de 10 a 90 d
- Carga: 0.5 a 2 kgDQO/m³.d (0.3 a 4.5 kgDQO/m².d)
- Eficiencia de remoción: 30 a 80%
- · Remoción de lodo: cada 2 a 5 años
- Actualmente tendencia a cubrirlas para captar biogás

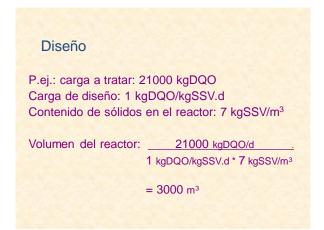
•33

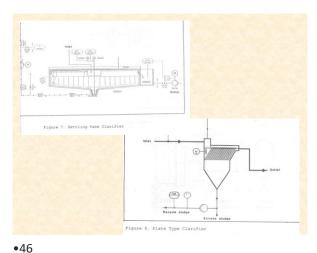


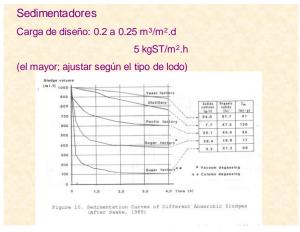
•35

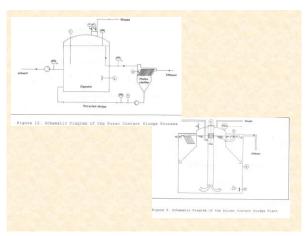



REACTOR DE CONTACTO • Está basado en la separación de las unidades de proceso: reactor metanogénico y clarificador de lodos, al estilo de los sistemas de lodos activados. Debe incluirse un desgasificador intermedio.

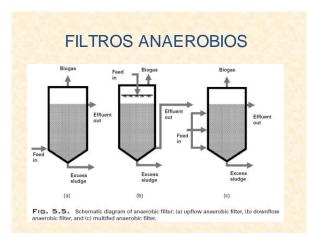


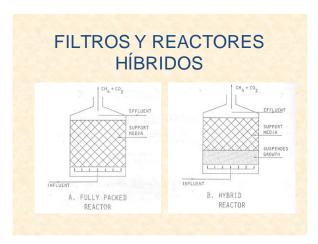




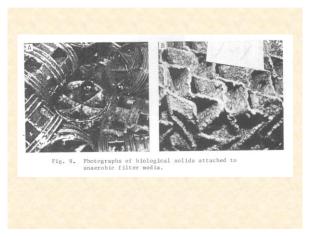


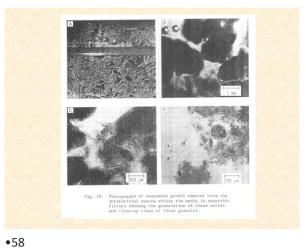
•43

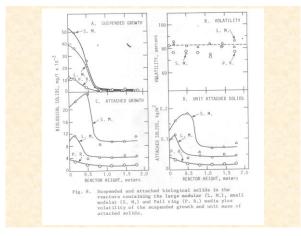


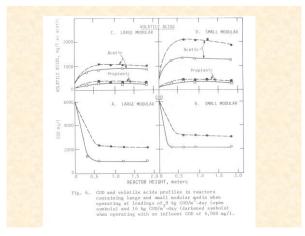


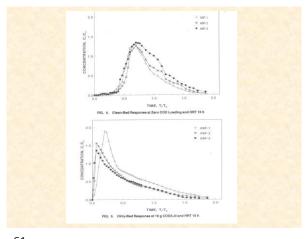
•51 •52

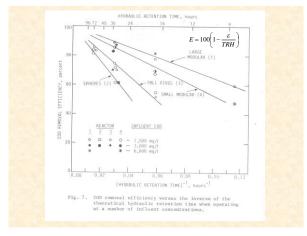


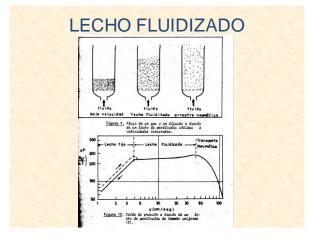

Factores físicos


- · Cilíndricos o de base rectangular
- · Diámetro o ancho: 6 a 26m
- Alto: 3 a 13m
- Volúmenes: 100 a 10000 m³
- Medio relleno: total o solo parte superior; piedras, plástico (flujo cruzado a 60º), anillos Pall
- Área específica: alrededor de 100 m²/m³
- El medio relleno actúa como separador sólido-gas, ayuda a uniformizar el flujo, mejora el contacto entre las fases y permite acumular grandes cantidades de biomasa.




•55 •56





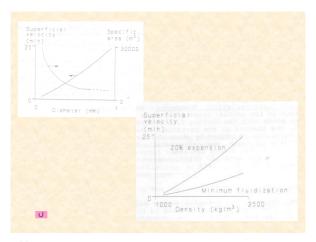
Factores de performance

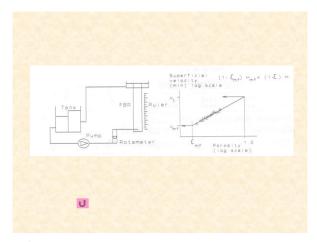
- El más importante el TRH (duplicando el TRH la remoción de DQO cambia entre un 12 y un 17%)
- La concentración de entrada no ejerce tanta influencia (duplicando la concentración cambia la eficiencia entre -5 y +6%)
- La superficie específica no ejerce mayor influencia (son tan importantes la geometría, las pendientes; reflejo de la importancia de la biomasa suspendida)
- Carga de diseño: típicamente hasta 12 kg/m³d (con concentraciones de hasta 12 gDQO/L), con TRH a partir de 12 h

•61

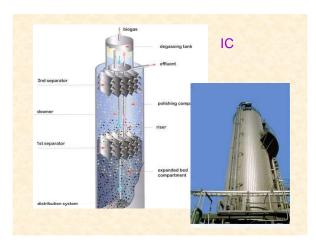
•63

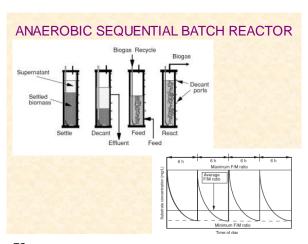
•65 •66

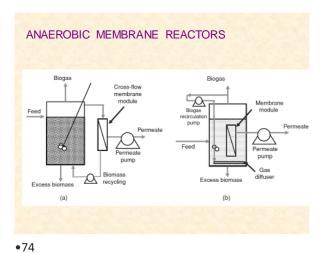

Ventajas


- Alta concentración de biomasa que se retiene en el reactor
- · Mucha superficie para adherir el biofilm
- Dilución del influente con el efluente debido al reciclo, que además provee alcalinidad y reduce concentración de tóxicos
- Disminuye resistencia a transferencia de masa externa
- No hay obstrucciones ni canalizaciones
- · Mejor control del espesor del biofilm

Estrategia de diseño


- Selección del material soporte: material, tamaño, forma, densidad, dureza, área superficial, rugosidad, inercia química, adsorción
- Selección de la expansión del lecho y la velocidad ascencional
- · Tamaño (alto, diámetro)
- Evaluación de los efectos del crecimiento del biofilm y del desprendimiento
- Impacto de la producción y salida de gas (turbulencia, burbujas)


•67 •68



	Typidmintwide	Salv	Configuration	Characterio	Type of	bacte union	rpending andree	tehen?	(flue)	Belowmi	
	Chees whey	1	Estated	Milyon disc 62 pm	Oce+in Disk-	SH	80) = 1,04 d 90 = -60 h Papid M.100 = -6,6 +0 pil 000 = -750 Mg 100 m M DesputO = 200 T Eas = 1001,044	(20) = (86 ± 13) 18(5 ± 21) 1 ± 254 15 ± (2) ± 600 (2) ± (2) ± 600 ph = 63	(000808) (000808)	(m)	
	Street total	1	Torred	Hallow Bert 187 meninan	arm+u	*	BIT of A BLK common description (SCorp). Tempolitic (SCorp). (Re-SC-AC) (Re-SC-AC)	THE-MICH 200 BC R-100 CM 200 C	Cartelphor manufacture	Del.	
	thread supredic	*	Intested	CARROL NAME OF 25 tills WANTS	SMSK+M	15	600 = 1650* li M.Di= 100-120* pi. Temp= 20 + 2 °C Tem= 60-2001001	120-158-500 Sqt-N-13-11 PG -P-3-43 Su-1, LE	00-10-000 15-9-00 15-300 80-3-1 (00) placks.73	Jani	
5 L. L.	Servery nucleases 1 region (mat	å	feemd	Ception release Service SLIGHT	ans-w	49	Miles Ung CORpored Miles to 10 gol. Miles to 20 to 10 for	COO ₂ = 21 Parts darrick(in all. lo	COS=980 (988) 705=8 (1888)	Det	DESALINATION
	Bigl-constitute for Contractor	*	lowered	Tig sheet fill 30-TH EN MMCD	Dis-m	400	991 - 993 181 - 59 C 90 - 10 + 62 008 - 61 (4000 W/W MLD - 6-9 gL (400 + 6) - 63 T	120 - 3 - D 10 - 30 - 13 Cherry 127 and - 5000 1000 at - 5 - 0	(HL)-9425)	led	0
ELSEVIER	Street by greatures mercennice	*	Salesystem	Sales Sales	(000) 10		Throughthr sage	DDw1813 New 279 The GReen and	(10a m (15-50))	pur-	
	State requirement product ager	*	Colemnspel	Flacture PVIII Interitual 140 KBs MMCO	(A/A - W	10	600 widel 601 w 200 d Mc 60 with 2 kill gill 028 - 22 + 62 kg 225 m M Temp-10 + 1 T Mar - 22 + 63 Mars	(III),et II	(100 ₄ m - (101-400)	14.	
A review (future per	Kull engesatur contes que	1	Sprengel	Fig. close. PVID manufacture 140 70b WMCO	(869+9	34	MIN - 130 c SET - 230 d MIN - 130 c M pt. 100 - 112 july fig 100 c M july fig 100 c M july fig	IIII,=18	CCSA, (59- 60E)	per les	ouling and
Hongjun Lin,	This whomens	A	Sidenesgali	Flanter PUSF combuse 101.45	(MG) W		May 17 July Mill M.S. = 17 July pl. 128 + 14 + 14 by 120 m/sl. Very 128 + 1.5	200-130-130	(100*-300 (800)	100	
	Nonhestá necesár	å	Subscriped	MWO have the part method herode (4) pri	con-ia	ai	Re = 12 + 63 (364) NO = 372 h NO = 175 d ALS > 38 pt. (32 = 145 lg (33 pt.) T Resp = (3) T Resp = (3) T	(330 + 30) ph - 72	C00-40 (980)	IM.	
	Trests surroune	ж	Submarquel	Holes for Myses: Inne Ferniss 6-M pm	(STR + 18	126	HIT - NO PRO- NO. 1.1. Temporals To than 1 St. MATTER damn 12 pt.	550+19-100	(100 m - (100) Cales to (160) Turnsky - 8 1973	jacj	
	* I - Libertony bench * Pritt' - polyvisolido * Cliff o completely of * confinem solve sel	e harri	Street His - po	Anchers free.	-	Noder, and	MR - princip assemble to	affect readon.			