Indian J. pure appl. Math., 22(11): 905-911, November 1991

NEW PROOFS OF KONIG-EGERVARY THEOREM
AND MAXIMAL FLOW - MINIMAL CUT CAPACITY
THEOREM USING O.R. TECHNIQUES

A. Cuanora Basu, P. V. RaMAKRISHNAN

Department of Mathematics, Madurai Kamraj Univerisity, Madurai 625021

AND

C. R. Sesuan
Department of Mathematics, American College, Madurai

(Received T August 1990, after revision 11 February 1991, accepted 8 July 1991)

The Konig-Egervary theorem on binary matrices and the maximal flow-minimal cut
capacity theorem on network flows were proved using graph theoretic and combinatoric
techniques. In this paper we give new proofs of these two theorems using unimodularity
of some coefficient matrices and the fundamental theorem of duality in linear
programring.

1. InTrODUCTION

The Konig-Egervary theorem on binary matrices was proved by Konig' (see
Harary?). Another famous result known as the maximal flow-minimal cut capacity
theorem on networks was proved by Ford and Fulkerson®*. It has been proved that
these theorems are equivalent to Menger’s theorem on graphs°, Dilworth’s theorem
on finite lattices”® and Hall’s marriage theorem’. The equivalance of these five
theorems are proved using graph theoretic and combinatoric techniques. These
theorems (except Hall’s marriage theorem) equates the maximum value of one set
of real numbers with the minimum value of another set of real numbers.

The fundamental theorem of duality in linear programming®® states that the
maximum value of a linear programming problem is equal to the minimum value
of the dual problem. We prove in sections 3 and 4 the Konig-Egervary theorem and
the maximal flow-minimal cut capacity theorem using the fundamental theorem of
duality in linear programming. In section 2 we give the preliminary ideas necessary
for the proof of these theorems. For ready reference we give below the statements
of all the five theorems.

Hall’s Marriage Theorem

A necessary and sufficient condition for a solution of the marriage problem is
that every set of k boys collectively know atleast k girls (1 < k < m where m is the
total number of boys).

Konig-Egervary Theorem

In a binary matrix, the maximum number of independent zeros is equal to the
minimum number of lines containing all the zeros.
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Maximal Flow-Minimal Cut Capacity Theorem

In any network the maximal value of any flow is equal to the minimal capacity
of any cut.

Menger’s Theorem

The maximum number of edge-disjoint chains connecting two distinct vertices
v and w of a connected graph G is equal to the minimum number of edges in a vw-
disconnecting set.

Dilworth’s Theorem

In any finite lattice, the maximum number of incomparable elements is equal
to the minimum number of chains which include all the elements.

2. PRreELIMINARIES

Definition 2.1 — A matrix A over real numbers is said to be unimodular if every
subsquare matrix of A has determinant equal to 0, 1 or -1.

Definition 2.2 — If the primal linear programming problem (LPP) is given by

Maximise cT X
Subject to AX = b
X = 0. ...(1)

Where 4 is an m X n matrix, ¢, X and b are column vectors of order n, n and m
and ¢’ denotes the transpose of ¢; then the dual LPP is given by

Minimise bTY
Subject to AT Y = ¢
Y=0 ...(2)

where Y is a column vector of order m.

Lemma 2.1 — For the LPP (1), if 4 is a unimodular matrix and b is integral
then some optimal solution is integral.

Proor : Let E be the coefficient matrix of the LPP obtained after converting
all inequalities of the given LPP into equations using slack variables. Then E= (A4, D)
where D is a matrix in which every column is a unit vector. It can be easily verified
that if 4 is unimodular, then E is also unimodular.
Now consider the LPP
Maximise cT'x
Subjectto E X = b

X = 0.
An optimal basic feasible solution is given by Xz = B! b where B is a
basis matrix. Since B is a nonsingular square submatrix of E, |B] = 1 or -1.

B! = (Adj B)/|B)|. Since E is unimodular, Adj B is an integral matrix and consists
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of elements 0, 1 or -1. Since b is integral, B! b is also integral.

Note : The fundamental theorem of duality in linear programming states that
the maximum value of the LPP (1) is equal to the minimum value of the dual LPP (2).

Definition 2.3 — A matrix 4 in which every entry is 0 or 1 is called a binary
matrix.

Definition 2.4 — A set of zeros in a binary matrix is said to be independent if
no two of these zeros lie in the same row or column.

Definition 2.5 — A network N is a digraph (V, E) with vertex set V and arc
set E such that with each arc (i, j) is associated a non-negative real number C;;. Cj;
is called the capacity of the arc (i, j).

Definition 2.6 — Given a network N, a flow in N from a vertex s (called source)
to a vertex ¢ (called sink) is a vector X' = (x;) where x;; is the flow in arc (7, j) satis-
fying the conditions; (1) x; = 0 for all (¢, j), (i) x; = ¢; for all (4, j); and (iii) the
total flow into any vertex (other than the specified vertices s and ¢) is equal to the
total flow out of this vertex. ’

It is easy to see that the net flow out of the source s is equal to the net flow
into the sink 7 and this value is called the value of the flow from source s to sink
t. Those flows whose value is as large as possible are called maxiiaal flows.

Definition 2.7 — A cut in a network N is a partition (S, §) of the vertex set
Vsuchthat SU S =V, SN S =¢,s€8S,1€8S.

Definition 2.8 — The capacity of a cut (S, S) denoted by C(S, §) isT {C,;/i € S,
Jj €S}

Those cuts whose capacity is as small as possible are called minimal cuts.

3. Proor orF KoniG-Ecervary THEOREM

Theorem 3.1 — In a binary matrix, the maximum number of independent zeros
is equal to the minimum number of lines (a line is a row or column) containing all
the zeros.

Proor : Let M = (m;) be an m x n binary matrix. Let § = { (i, j)/m; = 0].
We shall assume without loss of generality that S is nonempty and | S| = r. We shall
convert the problem of finding the maximum number of independent zeros in M in-
to a mathematical programming problem (P) as follows.

For every (i, j) in S let
x; = 1 if the zero in cell (i, j) is chosen.
= 0 if the zero in cell (i, j) is not chosen.

Then the problem (P) is

Maximize L {x;/(i, j) € S} ...(3)
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Subject to L x; < 1 for all { ...(4)
J
L x; =< 1forallj -..(5)
x; = 0or 1 forall (i j)€S. ...(6)

The conditions (4) and (5) imply that atmost one zero can be chosen from each row
and column if the zeros are to be independent.

Consider the inequalities
x; = 0 forall (4, j) € S. ..(7)

Let A be the coefficient matrix of the corresponding LPP (P') given by (3), (4),
(5) and (7). By Lemma 3.1, A is unimodular. Hence by Lemma 2.1 there exists an
optimal solution X of the LPP (P!) which is integral. Obviously in the optimal solu-
tion X, every x; = 0 or 1. Hence optimal value of the LPP (P) is equal to the op-
timal value of the problem (P), which is equal to the maximum number of indepen-
dent zeros in M.

Now we shall convert the problem of finding the minimum number of lines con-
taining all the'zeros in M into a mathematical programming problem (Q) as follows :
Let p; = 1 if ith row is chosen
= (0 if ith row is not chosen
g; = 1if jth column is chosen
= 0 if jth column is not chosen.
The problem (Q) is

Minimise £ p; + L g;. . ...(8)
i J
Subject to p; + g; = 1 for all (i, j) € S ...(9)
p;i = 0or 1 foralli
‘ } ...(10)
g, = Oor 1 forallj
Consider p; = 0 for all i
}. ..(11)
q; = 0 for all j

Let B be the coefficient matrix of the corresponding LPP (Q!) given by (8), (9)
and (11). B has r rows and m + n columns. It is easy to verify that matrix B is the
transpose of matrix 4. Since A is unimodular (Lemma 3.1), B is also unimodular.
Therefore by Lemma 2.1, some optimal solution of the LPP (Q') is integral. It is
easy to see that in this optimal solution all p; and g; are equal to 0 or 1. Hence the
optimal value of the problem (Q") is equal to the optimal value of the problem (Q),
which is equal to the minimum number of lines containing all zeros in the matrix M.

It is easy to see that the LPP (Q') is the dual of the LPP (P'). By fundamental
theorem of Duality in linear programming (P') and (Q') have the same optimal
value. Hence the maximum number of independent zeros in M is equal to the minimum
number of lines containing all the zeros in M. Hence the theorem.
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Lemma 3.1 — The coefficient matrix X of the LPP (P}) given by (3), (4), (5)
and (7) is unimodular.

Proor : A has m + n rows and r columns. Each column of A has exactly two

‘1’, one in the first m rows and the other ‘1’ in the last n rows and all other elements

of A being ‘O’. Let D be a square submatrix of order k. We apply induction on k.

If Kk = 1, |D| = 0 or 1 since each element of 4 is 0 or 1. Assume that all square

submatrices of order k - 1 have determinant equal to 0, 1 or -1.

(a) If D has atleast one column containing only zeros, then |D| = 0.

(b) If D has atleast one column containing exactly a single ‘1’ then |D} = + |E]
where E is the square submatrix of D got by deleting the corresponding column
and the row containing the single ‘1’. By induction assumption, |E} = 0, I,
or -1 and hence |D| = 0, 1 or -1.

(c) If neither (a) nor (b) holds, then every column of D has exactly two ‘1’. In this
case the sum of the rows of D from the first m rows of A is equal to the sum
of the rows of D from the last n rows of A and hence the rows of D are linearly
dependent and |D| = 0. Hence A is unimodular.

4. Proor or MaximaL Frow-MinimaL Cur Capacity THEOREM

Theorem 4.1 — In any network the value of any maximal flow is equal to the
capacity of any minimal cut.

Proor : Let N be any network with vertex set V and arc set E. Let V| = nand
|E| = m. We shall convert the problem of finding the maximal flow into an LPP
(R) as follows.

Let C;j be the capacity of arc (i, j). We want to find the maximal flow that
can be sent from a specified vertex s (source) to a specified vertex ¢ (sink). Let v be
the value of any flow and x;; be the flow that is sent along arc (i, j). Let the vertices
be labelled using integers 1 to n such that source s corresponds to the vertex 1 and
sink ¢ corresponds to the vertex n. Then the LPP(R) corresponding to the maximum
flow problem is,

Maximise v ...(12)
Subject to ) X - T Xei~v=0ifi =1 ...(13)
(i, j) e E (k, i) e E
z X - z X + v=0ifi=n ...(14)
(, ) eE (k, Y e E
z X,’j - r Xki = 0ifi = 2,3,...," -1 .‘.(15)
(i, ) e E (k, i) e E
x; < Cjforall (i j) € E ...(16)

x; = 0 for all (i, j) € E
v (. J) } . ..(17)

v=0

(13) imply that the net flow out of vertex 1 is equal to the value of the flow v,
(14) imply that the net flow into vertex n is equal to v and (15) imply that total flow
into any intermediate vertex is equal to the total flow out of this vertex.
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Consider the inequalities

z X,’j -~ ) Xpi -V = 0ifi =1 ---(18)
(L jyek (k, i) € E

by Xy - > Xe; +v=0ifi=n ...(19)
(L)) eE (k, i) € E

T x;- I xu=O0ifi=23,..,n-1 ...(20)
(i, /) € E (k, i) € E

and the LPP (R') given by (12), (18), (19), (20),(16) and (17). In any feasible solution
of (R, the inequalities; (18), (19) and (20) hold as equalities; otherwise by adding
LHS and RHS we get 0 < 0, a contradiction. Therefore problems R and R! are
equal are equivalent.

Now we shall convert the problem of finding the minimal cut capacity into a
mathematical programming problem (T) as follows:
Corresponding to a cut (S, S) of the network N, let
uy = 0if vertex i € S
1 if vertex i € §
1ifieS jeS
0 otherwise.

I

yij

Then the mathematical programming problem (T) is

Minimise L e, yy/, j) € E) ...(2hH

Subject to ui~u;+y; 20, j) e E ...(22)
-uy +u, =1 ...(23)
u, =0orlvi } ey
yi=0o0rlvij

Consider the inequalities

upz 0vi } ..(25)
yiz0Vij

It is clear that in any optimal solution of (T), (u;, u;) = (0, 0) or (1, 0) or (1,1)
will imply y; = 0 and (u;, u;) = (0, 1) will imply y; = 1 and hence (21) gives the
capacity of the cut (S, §).

Now consider the corresponding LPP (T) given by (21), (22), (23) and (25).
The coefficient matrix B of (7') has m + ! rows and m + n columns and B is the
transpose of the coefficient matrix 4 of LPP (R'). It is easy to see that LPP (T!)
is the dual of LPP (R'), B is unimodular and that there exists an optimal integral
solution of (T!) in which each «; and each yij is equal to 0 or 1. Hence the optimal
values of (T) and (T!) are equal.

By fundamental theorem of duality is linear programming, optimal values of
LPP (R') and LPP (T') are equal. Optimal value of (R!) is the maximal flow in the
network and optimal value of the problem (T') is the minimal cut capacity of the
network. Hence the theorem.
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The relation between duality theory in Linear programming and Maximal
flow — Minimal cut capacity theorem of networks has been discussed by Ford and
Fulkerson*®!®. But in this paper we follow a different approach by using duality
theory and unimodularity property to prove maximal flow-minimal cut capacity
theorem. In fact this proof is much simplet than that given in Ford and Fulkerson '°.

5. ConcLusioN

In this paper we have proved the Konig — Egervary theorem on binary matrices
and the maximal flow—minimal cut capacity theorem on a network using
unimodularity property of some coefficient matrices and the fundamental theorem
of duality in linear programming. There are many theorems in mathematics where
the maximum value of one set of real numbers is equated with the minimum value
of another related set of real numbers. One can explore the possibilities of proving
such theorems using the duality theorem in linear programming and other O.R.
techniques.
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