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" PREFACE

The final test of a theory is its capacity to solve the problems which
originated it:

This book is concerned with the theory and solution of linear inequality
systems. On the surface, this field should be just as interesting to mathe-
maticians as its special case, linear equation systems. Curiously enough,
until 1947 linear inequality theory generated only a handful of isolated
papers, while linear equations and the related subjects of linear algebra and
approximation theory had developed a vast literature. Perhaps this dis-
proportionate interest in linear equation theory was motivated more than
mathematicians care to admit by its use as an important tool in theories
concerned with the understanding of the physical universe.

Since 1947, however, there have appeared thousands of papers concerned
with problems of deciding between alternative courses of action. There can
be little doubt that it was the concurrent advances in electronic computers
which have made it attractive to use mathematical models in decision-
making. Therefore it is not surprising that this field has become, like physics
before it, an important source for mathematical problems.

When a decision problem requires the minimization of a linear form
subject to linear inequality constraints, it is called a linear program. By
natural extension, its study provides further insight into the problem of
minimizing a convex function whose variables must satisfy a system of
convex inequality constraints. It may be used to study topological and
combinatorial problems which may be couched in the form of a system of
linear inequalities in discrete-valued variables. It provides a framework for
extending many problems of mathematical statistics. This, in brief, is the
mathematical scope of the book.

To provide motivation, the first three chapters have been devoted to
concepts, origins, and formulation of linear programs. To provide insight
into application in a ‘“real” environment, two chapters on application
conclude the book.

The viewpoint of this work is constructive. It reflects the beginning of
a theory sufficiently powerful to cope with some of the challenging decision
problems upon which it was founded.

Many individuals have contributed, each in an important way, to the
preparation of this volume. John D. Williams of The RAND Corporation,
in his former capacity as head of the Mathematics Department and in his
present position as member of the Research Council, has been a constant
source of encouragement. At his suggestion, the writing of this book was
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PREFACE

initiated as an answer to the many requests that flowed into RAND for
information on lincar programming.

Much of the theorctical foundation of the field of lincar programming
has been developed by Professor A. W. Tucker and his associates at
Princeton University. Professor Tucker, who took a personal interest in the
book, was instrumental in having the manuscript critically reviewed by a
committee consisting of leading contributors to the field. Dr. Alan Hoffman
of IBM Research reviewed Chapter 10, which deals with a perturbation
method to avoid degenerate solutions; here the reader will find Hoffman’s
famous example that demonstrates the possibility of circling in the simplex
algorithm. Professor W. Baumol of the Princeton Economics Department
was asked to read Chapter 12 on prices, since he has written many papers
and books using linear programming as a tool for the solution of economic
problems. Professor Harold Kuhn of the Prineceton Mathematics and
Economics Departments reviewed Chapters 14, 15, and 16, which deal
with the transportation problem. Throughout the book there are frequent
references to Professor Kuhn’s fundamental contributions to the field.
Dr. Ralph Gomory of IBM Research attended to Chapter 26, in which his
recent, exciting theory of integer programming is presented. The final
member of the review committee was Dr. Michel Balinski, a member
of the staff of Mathematica. Dr. Balinski has a fine grasp of the entire field
and worked closely with Professor Tucker on a careful, general review of
the volume. .

The present content of Chapters 14-21 on transportation and network
theory reflects the suggestions of Dr. D. R. Fulkerson of RAND, who kindly
reviewed each of the drafts. This particular area has been undergoing rapid
development, witlr Fulkerson a ranking contributor to its elegant theory.
I am also pleased to acknowledge indebtedness to Julien Borden, graduate
student in mathematics, for his aid in rewriting these chapters.

Individuals who combine a high theoretical ability with a desire to
exploit the capabilities of electronic computers contribute in a basic way
to the development of the programming field. Such a person is Dr. Philip
Wolfe of RAND, who has made fundamental contributions to quadratic,

nonlinear, and generalized programming. I am indebted to him for his.

many constructive suggestions and for his undertaking to rewrite the very
important Chapter 3 on formulation, which serves as the key motivation
chapter.

Dr. Tibor Fabian, an economist by training, formerly Chief of the
Lybrand, Ross Brothers, and Montgomery operations-research team,
asgisted in the development of the first two chapters on concepts and origins.
Professor Paul Randolph of Purdue University played an important role
in the development of the earlier drafts of Chapter 5 on the simplex method
and of the material on vectors and matrices. At the suggestion of Professor
R. Dorfman of Harvard University, Clopper Almon, graduate student
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in economics at Harvard, undertook to read Chapter 12 on prices and
Chapter 23 on the decomposition principle; he kindly contributed § 23-3
and part of § 12-1 illustrating the application of pricing concepts in planning.
Similarly William Blattner of U.S. Steel, as part of his graduate studies at the
University of California, Berkeley, contributed § 12-4 on sensitivity analysis.

I am grateful to my colleagues at RAND, Dr. Melvin Dresher and Dr.
Lloyd Shapley, both experts on game theory, for their suggestions regarding
Chapter 13; Dr. Albert Madansky for his many contributions to Chapter 25;
and Frank H. Trinkl for his assistance in the organization of Chapter 12.

Marvin Shapiro, formerly of RAND's Computer Sciences Department, and
my students, particularly R. Van Slyke, J. Clark, and H. Einstein, carefully
read the manuscript and furnished detailed constructive comments. I am
grateful to Miss Leola Cutler of RAND for her critical reading of Chapter 18
on bounded variables. The numerical calculations in Chapter 28 were made
on RAND's electronic computer, the “Johnniac,” by means of a linear
programming code developed by W. Orchard-Hays and Miss Cutler.

The administration of the final preparation of the book was done by my
very capable assistant, Mrs. Margaret Ryan, who formulated the layout,
pre-edited, developed references, and prepared the index. Because of the
technical character of the material and the size of the volume, these tasks
involved great responsibility. Without her help, the book in its present form
would not have been realized.

I am most grateful to Miss Ruth Burns, Chief Secretary of the RAND
Mathematics Department, and to her able staff for their full support during
the preparation of the manuscript, and to Mrs. Elaine Barth and Mrs. Ella
Nachtigal for their work on earlier drafts. It is with great pleasure that I
express my gratitude to my secretary, Mrs. Marjorie Romine Marckx, who
did much of the final typing and with patience endured my numerous
changes in the text.

The editing of the galley and the final page proof was under the juris-
diction of Miss Dorothy Stewart, her assistants at RAND, and my graduate
students at the Operations Research Center, University of California,
Berkeley: Richard Van Slyke, Donald Steinberg, Earl Bell, Roger Wets,
and Mostafa El-Agizy, with Richard Cottle in charge. The detailed index was
prepared by Bernard Sussman with the aid of Mrs. Barbara Wade, secretary
of the O.R. Center. This team of people uncovered many technical flaws
and have contributed in a positive manner to the final polish of the book.

Dr. T. E. Harris, Head, Dr. E. 8. Quade, Deputy Head, and Professor
K. F. Beckenbach, Editor, of the RAND Mathematics Department kindly
provided me with full administrative and editorial support. Likewise,
Brownlee W. Haydon, Assistant to the President for Communications at
RAND, and John C. Hogan, in charge of RAND publication contracts, gave
their full cooperation.

Finally, I am especially grateful to my wife, Anne S. Dantzig, for patience
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beyond the call of duty. She not only cheerfully suffered my continuous
involvement, but even participated actively in various phases of the writing.
Many of the better passages of the book reflect her acute rhetorical sense.

GeorceE B. Dantz1
The RAN D Corporation
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CHAPTER 1

THE LINEAR PROGRAMMING CONCEPT

1-1. INTRODUCTION

In the summer of 1949 at the University of Chicago, a conference was
held under the spomsorship of the Cowles Commission for Research in
Economiecs; mathematicians, economists, and statisticians from academic
institutions and various government agencies presented research using the
linear programming tool. The problems considered ranged from planning
crop rotation to planning large-scale military actions, from the routing of
ships between harbors to the assessment of the flow of commodities between
industries of the economy. What was most surprising was that the research
reported had taken place during the preceding two years. See Bibliography,
[Koopmans, 1951-1].

During and immediately after World War II, work on these and similar
problems had proceeded independently until, in 1947, linear programming
unified the seemingly diverse subjects by providing a mathematical frame-
work and a computational method, the simplex algorithm, for formulating
such problems explicitly and determining their solutions efficiently. This
development - coincided with the building of electronic digital computers,
which guickly became necessary tools in the application of linear program-
ming to areas where hand computation would not have been feasible.

Qur immediate purpose is to define mathematical programming in
general and linear programming in particular, citing a few typical problems
and the characteristics that make them susceptible to solution through the
use of linear programming models. Later in the chapter we shall discuss
the relation of linear programming to mathematical programming and the
relation of mathematical programming to the age of automation that we
are approaching.

1-2. THE PROGRAMMING PROBLEM

Industrial production, the flow of resources in the economy, the exertion
of military effort in a war theater—all are complexes of numerous interrelated
activities. Differences may exist in the goals to be achieved, the particular
processes involved, and the magnitude of effort. Nevertheless, it is possible
to abstract the underlying essential similarities in the management of these
seemingly disparate systems. To do this entails a look at the structure and

(1]



THE LINEAR PROGRAMMING CONCEPT

state of the system, and at the objective to be fulfilled, in order to construct
a statement of the actions to be performed, their timing, and their quantity
(called a “program’ or “‘schedule’), which will permit the system to move Jfrom
a given status toward the defined objective.

If the system exhibits a structure which can be represented by a mathe-
matical equivalent, called a mathematical model, and if the objective can
also be so quantified, then some computational method may be evolved for
choosing the best schedule of actions among alternatives. Such use of
mathematical models is termed mathematical programming. The observation
that a number of military, economic, and industrial problems can be
expressed (or reasonably approximated) by mathematical systems of linear
inequalities and equations! has helped give rise to the development of linear
programming.

The following three examples are typical programming problems which
can be formulated linearly; they are analogous to the ones which originated
rescarch in this arca [Wood and Dantzig, 1949-1; Dantazig, 1949-1]. It is
well to have them in mind before we discuss the general characteristics of
linear programming problems.

The objective of the system in each of the three examples to be con-
sidered happens to be the minimization of total costs measured in monetary
units. In other applications, however, it could be to minimize direct labor
costs or to maximize the number of assembled parts or to maximize the
number of trained students with a specified percentage distribution of
skills, etec.

1. A cannery example. Suppose that the three canneries of a distributor
" are located in Portland (Maine), Seattle, and San Diego. The canneries can
fill 250, 500, and 750 cases of tins per day, respectively. The distributor
operates five warehouses around the country, in New York, Chicago, Kansas
City, Dallas, and San Francisco. Each of the warehouses can sell 300, cases
per day. The distributor wishes to determine the number of cases to be
shipped from the three canneries to the five warehouses so that each ware-
house should obtain as many cases as it can sell daily at the minimum total
transportation cost.

The problem is characterized by the fifteen possible activities of shipping
cases from each of the canneries to each of the warehouses (Fig. 1-2.I).
There are fifteen unknown activity levels (to be determined) which are the
amounts to be shipped along the fifteen routes. This shipping schedule is
generally referred to as the program. There are a number of constraints
that a shipping schedule must satisfy to be feasible: namely, the schedule
must show that each warehouse will receive the required number of cases

1 The reader should especially note we have used the word inequalities. Systems of
linear inequalities are quite general; linear inequality relationssuchasz > 0,z + ¥y <7
can be used to express a variety of common rostrictions, such as quantities purchased, z,
must not be negative or the total amount of purchases, z + y, must not exceed 7, etc.

(2]
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THE LINEAR PROGRAMMING CONCEPT

and that no cannery will ship more cases than it can produce daily. (Note
there is one constraint for each warehouse and one for each cannery.)
Several feasible shipping schedules may cxist which would satisfy these
constraints, but some will involve larger shipping costs than others. The
problem then is to determine an optimal shipping schedule—one that has
least costs. T'ransportation problems such as this are formulated in mathe-
matical terms in § 3-3 and their solution properties are studied in Chapters 14
to 20.

2. The housewife’s problem. A family of five lives on the modest salary
of the head of the household. A constant problem is to determine the weekly
- menu after due consideration of the needs and tastes of the family and the
prices of foods. The husband must have 3,000 calories per day, the wife is
on a 1,500-calorie reducing diet, and the children require 3,000, 2,700, and
2,500 calories per day, respectively. According to the prescription of the
family doctor, these calories must be obtained for each member by eating
not more than a certain amount of fats and carbohydrates and not less
than a certain amount of proteins. The diet, in fact, places emphasis on
proteins. In addition, each member of the household must satisty his or
her daily vitamin needs. The problem is to assemble menus, one for each
week, that will minimize costs according to Thursday food prices.

This is a typical linear programming problem: the possible activities
are the purchasing of foods of different types; the program is the amounts
of different foods to be purchased; the constraints on the problem are the
calorie and vitamin requirements of the household, and the upper or lower
limits set by the physician on the amounts of carbohydrates, proteins, and
fats to be consumed by each person. The number of food combinations which
satisfy these constraints is very large. However, some of these feasible
programs have higher costs than others. The problem is to find a combination
that minimizes the total expense? [Stigler, 1945-1]. Blending problems such
as this are formulated in § 3-4. '

3. On-the-job training. A manufacturing plant is contracting to make
some commodity. Its present work force is considerably smaller than the
one needed to produce the commodity within a specified schedule of different
amounts to be delivered each week for several weeks hence. Additional
workers must, therefore, be hired, trained, and put to work. The present
force can either work and produce at some rate of output, or it can train
some fixed number of new workers, or it can do both at the same time
according to some fixed rate of exchange between output and the number
of new workers trained. Even were the crew to spend one entire week
training new workers, it would be unable to train the required number.

2 Chapter 27 contains a detailed discussion of a typical nutrition problem. The
reader may wonder why this problem is not really five separate problems, one for each
member of the family; however, certain foods (such as eggs, milk, meat) can be sub-
divided into parts of varying fat content and given to different members.

[4]



L2, THE PROGREAMMING PROBLEM

The next week, the old crew and the newly trained workers may either work
or train new workers, or may both work and train, and so on. The commodity
is semi-perishable so that amounts produced before they are needed will
have to be stored at a specified cost. The problem is to determine the hiring,
production, and storage program that will minimize total costs.

This, too, is a linear programming problem, although with the special
property, not shared with the previous two examples, of scheduling activities
through time. The activities in this problem are the assignment of old workers
to either of two jobs, production or training, and the hiring of new workers
each week. The quantities of these activities are restricted by the number
of workers available at the beginning of each week and by the instructor-
student ratio. The cumulative output produced by all workers through the
number of weeks in the contractual period has to equal or exceed the
required output. A possible production-training program is shown in Fig.
1-2-11. The problem can now be stated more precisely : determine the proper
balance between hiring and training of workers, between teaching and
production, and between over- and under-production in order to minimize
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Figure 1.2.11.  The Problem: Determine a least-cost hiring, production
and storage program to meet required deliveries.
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THE LINEAR PROGRAMMING CONCEPT

total costs. The mathematical formulation of this problem will be found in
§ 3-7.

1-3. LINEAR PROGRAMMING DEFINED

We shall use the term model building to express the process of putting
together of symbols representing objects according to certain rules, to form
a structure, the model, which corresponds to a system under study in the
real world. The symbols may be small-scale replicas of bricks and girders
or they may be, as in our application, algebraic symbols.

Linear programming has a certain philosophy or approach to building
a model that has application to a broad class of decision problems encoun-
tered in government, industry, economics, and engineering. It probably
possesses the simplest mathematical structure which can be used to solve
the practical scheduling problems associated with these areas. Because it is
a method for studying the behavior of systems, it exemplifies the distinguish-
ing feature of management science, or operations research, to wit: “‘Opera-
tions are considered as an entity. The subject matter studied is not the
equipment used, nor the morale of the participants, nor the physical
properties of the output, it is the combination of these in total as an economic
process” [Herrmann and Magee, 1953-1].

Linear programming?® is concerned with describing the interrelations of
the components of a system. As we shall see, the first step consists in
regarding a system under design as composed of a number of elementary
functions that are called “‘activities.”* As a consequence, T. C. Koopmans
[1951-1] introduced the term activity analysis to describe this approach.
The different activities in which a system can engage constitute its tech-
nology. These are the representative building blocks of different types that
might be recombined in varying amounts to rear a structure that is self-
supporting, satisfies certain restrictions, and attains as well as possible a
stated objective. Representing this structure in mathematical terms (as we
shall see in Chapter 3) often results in a system of linear inequalities and
equations; when ‘this is so, it is called a linear programming model. Like
architects, people who use linear programming models manipulate ‘“on
paper” the symbolic representations of the building blocks (activities) until
a satisfactory design is obtained. The theory of lincar programming is
concerned with scientific procedures for arriving at the best design, given
the technology, the required specifications, and the stated objective.

To be a linear programming model, the system must satisfy certain assumptions

3 The term “linear programming’ was suggested to the author by T. C. Koopmans
in 1951 as an alternative to the earlier form, “programming in a linear structure”
[Dantzig, 1948-1].

4 The term “activity” in this connection is military in origin. It has been adopted
in preference to the term ‘‘process,” used by von Neumann in “A Model of General
Economic Equilibrium,” which is more restricted in connotation [von Neumann,
1937-11.

(6]




1-4. CLASSIFICATION OF PROGRAMMING PROBLEMS

of proportionality, nonnegativity, and additivity. How this comes about will
be the subject of Chapter 3, where we shall also formulate linear pro-
gramming models for examples like those already discussed. It is important
to realize in trying to construct models of real-life situations, that life
seldom, if ever, presents a clearly defined linear programming problem, and
that simplification and neglect of certain characteristics of reality are as
necessary in the application of linear programming as they are in the use
of any scientific tool in problem solving.

The rule is to neglect the negligible. In the cannery example, for instance,
the number of cases shipped and the number received may well differ
because of accidental shipping losses. This difference is not known in advance
and may be unimportant. In the optimum diet example the true nutritional
value of each type of food differs from unit to unit, from season to season,
from one scurce of food to another. Likewise, production rates and teaching
quality will vary from onc worker to another and from one hour to another.
In some applications it may be necessary to give considerable thought to
the differences between reality and its representation as a mathematical
model to be snre that the differences are reasonably small and to assure
ourselves that the computational results will be operationally useful.

What constitutes the proper simplification, however, is subject to
individual judgment and experience. People often disagree on the adequacy
of a certain model to describe the situation.

1-4. CLASSIFICATION OF PROGRAMMING PROBLEMS

The programming problems treated in this book, except those of Chapter
25, belong to the deterministic class, by which it is meant that if certain
actions are taken it can be predicted with certainty what will be (a) the
requirements to carry out the actions and (b) the outcome of any actions.
Few, if any, activities of the real world have this property. Perhaps the
activity of burning two parts of hydrogen to one part oxygen to produce
water might be cited as a deterministic example. In practice, however,
because of contamination, leaks in containers, etc., this assumed relation
is an ideal. For many purposes, however, an ideal formula can be used because
the deviations from it are so slight that only small adjustments will be
necessary from time to time.

A deterministic situation may be created by fiat. For example, the
amounts of gas and oil required to carry out certain transportation activities
by trucks can never be known with certainty. However, if stocks well
above known expected values are used in the plan, it can be assumed that
the transportation can be accomplished and any surplus stocks remaining
put to good use later. Usually the working time it takes to accomplish a
task is a fraction of the time assumed in the plan. For example, consider the
fabrication of a part for an airplane: the elapsed time from when it is first
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cut out of sheet metal until it is ready to be assembled on the airplane may
be three months or more; on the other hand, only a few hours may be spent
shaping, drilling holes, and mounting. The remainder of the time is accounted
for in storage bins whose principal function appears to be that of piling up
work orders so that they can be redistributed in such a way that workers
can be more effectively employed.

Programs involving uncertainty form the other major class which we
will call probabilistic. Uncertainty can arise in many ways. The outcome of
a given action may depend on some chance event such as the weather,
traffic delays, government policy, employment levels, or the rise and fall
of customer demand. Sometimes the distribution of the chance events is
known, sometimes it is unknown or partially known. In some cases
_ uncertainty arises because of the actions of competitors or enemies.

In Fig. 1-4-1 the two main classes of programming problems are deter-
ministic and probabilistic. The former is shown subdivided into two main

CLASSIFICATION OF PROGRAMMING PROBLEMS

Discrete or Continuous
Multistage or Non-Multistage
(Dynamic or Non-Dynamic)

|

Deterministic Probabilistic
Linear Nonlinear No Opponents Against Opponents
General  Special Convex Non- Known Unknown Two- Multi-
Struc- Struc- Convex Proba- Proba- Person Person
tures tures bility bility Games  Games
Distribu- Distribu-
tion tion

SPECIAL CASES OF THE ABOVE

Linear Dynamic Decreasing Increasing Inventory Sequential Zero-sum Coalition
inequality systems, payoff, returng control,  docisions games theory
theory Leontief Chemical to scale, Markov
models, equilib- Many chains
Networks rium, local
Convex maxima
programs
Figure 1-4-1.

mathematical classes that are often studied, linear and nonlinear models;
the latter is shown subdivided into two main application classes, those
involving an indifferent (or unpredictable) nature, and those against an
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unfriendly opponent. These are further subdivided and well-known special
cases are shown directly below each class.

In this book we will pay particular attention to both general and special
linear programming structures, to nonlinear convex programming problems
that can be reduced to linear programming problems, and to certain
probabilistic problems that can also be reduced to linear programming
problems, such as two person-zero sum games, and scheduling problems
involving uncertain demand. .

One important way to classify programming problems is into multistage
and non-multistage groups. Multistage models include dynamic models in
which the schedule over time is a dominant feature, as in example (3).
Examples (1) and (2) are non-multistage problems as are steady-state
economic models (whose production rates remain constant over time).

A second important way to classify models is into those in which some
of the inputs, outputs, assignments, or production levels to be determined
must occur in discrete amounts such as 0, 1, 2, . . . (with no intermediate
amounts possible), and into those in which these quantities can take on any
values over continuous ranges. Many combinatorial problems belong to the
discrete class, such as problems concerning the assignment of a number of
men to an equal number of jobs or the order in which a salesman should
visit a number of cities. Strictly speaking, the discrete problems belong to
the class of nonlinear programming problems (see Chapter 26).

Dynamic Programming.

Many multistage problems, particularly dynamic problems, exhibit a
structure that permits a solution by application of an inductive principle.
At the beginning of each stage, as in a treasure hunt, directions are given
where to proceed next; and the total payoff of future actions, if one continues
to follow directions, is indicated. It is assumed (and this is the fundamental
assumption on structure) that the optimal direction and payoff depend only
on one’s status at the beginning of a stage, and not on any previous action.
At the end of the last stage it is usually easy to give the value for all possible
final states. This permits one to construct, without too much effort, the
direction for maximum payoff from each of the possible states at the end of
the next to the last stage; and from that, to construct the directions for
maximum payoff for all possible states at the end of the second fo last stage,
and so forth inductively backwards in time until the beginning of the first
stage where initial status is assumed known. To proceed backward in this
manner it is necessary to know, for every combination of states at the
beginning and end of a stage, the gain or loss within a stage. Whether or not
the method can be used depends on whether the analysis of the possible
combinations is tractable. The inductive principle is as old as the Greeks,
but in connection with its early application to decision problems the
names of A. Wald [1950-1], P. Massé [1946-1], K. Arrow, T. Harris, and
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J. Marschak [1951-1], A. Dvoretsky, J. Kiefer, and J. Wolfowitz [1952-1]
are worthy of mention. Richard Bellman in 1952, however, was the first to
see the importance of the inductive principle which he calls the principle of
optimality to programming applications and has been active in developing
its potentialities [Bellman, 1954-1 and 1957-1; Bellman, Glicksberg, and
Gross, 1958-1]. The general area of research using this principle is called
“Dynamic Programming” because most of its applications happen to be
multistage in character.

1-5. MATHEMATICAL PROGRAMMING AND AUTOMATION

The period following World War II has been marked by an accelerated
trend toward automation, an advanced form of mechanization. Mechani-
zation’s effect is to relieve man of the need to use his human energy for power;
automation’s effect is to relieve him of certain of his mental tasks and the
related necessary physical tasks. Many believe that electronic computers,
which are themselves examples of automation, will play an important role
in the mechanization of control processes of the routine type.

It is believed by some that “higher level decisions will be made by man
primarily because he, through the exercise of his mind, possesses the only
means of integrating and interrelating data for which rational formulations
are not yet possible or are too expensive” [Boelter, 1955-1]. However, the
author believes that even in the realm of higher order controls, particularly
the mental tasks which involve choice of selection among alternative courses
of action, mechanization is in progress. This applies to mental tasks, known
as programming (or scheduling), and their physical realization, known as
production control.

These two postwar developments, automation and programming, are
often associated because of their use of electronic computers. How closely
are they related?

To answer the question, let us inspect some developments in an industry
which was one of the first to automatize production and to introduce the
programming of the production process. Production in a modern petroleum
refinery is a complex of interrelated activities. The number of possible
combinations of feed stocks, operating sequences, operating conditions,
blending methods, and the choice of final products, is large; as a consequence,
mathematical programming methods are used to great advantage in evalu-
ating the economy of an operational scheme. Once the proper production
schedule is determined, it is only necessary to set dials and push buttons
in the control rooms for the refinery to be able to deliver the products in
the preassigned amounts.

This example shows that the two processes, decxsxon-ma.kmg and pro-
duction control, could each become completely automated and yet could
be linked by human operators who transmit the instructions from one
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system, the decision-making system, to the other, the production system.
It should be emphasized, then, that although programming constitutes a
higher order control, it is not equivalent to the feedback device which holds
the temperature in a boiler constant. It is rather a method for deciding what
that temperature should be and for how long, in order that the objective
of the production may be attained.

While the mechanization of the higher order decision-making process
does not always require the mechanization of the physical links by which
the decisions are implemented, it is conceivable that in certain applications
it may become economical to combine the two automated processes into
one. Such ‘“‘super-automated’ processes are necessary in fast-flying rockets
which require tight control and the use of flexible programming techniques.
Some industries, such as the aircraft industry, are turning to multipurpose
machines which can produce a variety of items depending on the settings of
controls. These, in turn, can be changed by an automatic, higher-order
control. Ultimately in such systems, machine failures, item rejects, and new
orders may make it necessary to reprogram work loads rapidly. Here again,
tight methods of production control may have to be linked mechanically to
flexible automatic programming techniques.
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CHAPTER 2

ORIGINS AND INFLUENCES

In the ten years since its conception in 1947 in connection with planning
activities of the military, linear programming has come into wide use in
industry. In academic circles, mathematicians and economists have written
books on the subject. The purpose of this chapter is to give a brief account
of its origins and of the influences which brought about this rapid develop-
ment. Table 2-1-1 summarizes these, as well as the later growth of linear
programming. Arrows indicate the direct influence of one happening on
another. Interestingly enough, in spite of its wide applicability to everyday
problems, linear programming was unknown before 1947. Fourier may have
been aware of its potential in 1823. In the U.S.S.R. in 1939, Kantorovich
made proposals that were neglected during the two decades that witnessed
the discovery of linear programming and its firm establishment elsewhere.

2-1. WORLD WAR II INFLUENCES
The Nature of Staff Planning.

A nation’s military establishment, in wartime or in peace, is a complex
of economic and military activities requiring almost unbelievably careful
coordination in the implementation of plans produced in its many depart-
ments. If one such plan calls for equipment to be designed and produced,
then the rate of ordering equipment has to be coordinated with the capa-
bilities of the economy to relinquish men, material, and productive capacity
from the civilian to the military sector. These development and support
activities should dovetail into the military program itself. To give some idea
of the interdependence of various major activities there are hundreds of
subtypes within each of its major activities for the case of personnel, and
thousands of subtypes for the case of supply. Was it always so complicated ?
The following statement of M. K. Wood and M. A. Geisler [1951-1, p.
189] is pertinent:

“It was once possible for a Supreme Commander to plan operations
persdnally. As the planning problem expanded in space, time, and general
complexity, however, the inherent limitations in the capacity of any one
man were encountered. Military historics are filled with instances of com-
manders who failed because they bogged down in details, not because they
could not eventually have mastered the details, but because they could not
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WORLD WAR IF INFLUENCES

master all the relevant details in the time available for decision. Gradually,
as planning problems became more complex, the Supreme Commander
came to be surrounded with a General Staff of specialists, which supplemented
the Chief in making decisions. The existence of a General Staff permitted
the subdivision of the planning process and the assignment of experts to
handle each part. The function of the Chief then became one of selecting
objectives, coordinating, planning, and resolving conflicts between staff

sections.”
TABLE 2-1.1
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" ORIGINS AND INFLUENCES

Large wars have been waged throughout the history of civilization, but
the General Staff of the Supreme Commander of military forces emerged
only around the middle of the last century (Prussia, 1860) as a consequence
of the increased complexity of warfare. The subdivision of the planning of
military activities among the staff agencies dates back only to the stalemate
and attrition phase of World War I (1917).

World War II Developments.

World War IT witnessed the development of staff planning on a gigantic
scale in all parts of the U.S. military establishment and in such civilian
counterparts as the War Production Board. During this period the U.S.
Air Corps grew to a principal arm of the military. Unfettered by tradition,
it evolved a number of aids to planning! that ultimately led to the
consideration of a scientific programming technique in the postwar period.

During the war, the planning process itself became so intricate, lengthy,
and multipurposed that a snapshot of the Air Staff at any onc time showed
it to be working on many diffcrent programs—some in carly phases of
development and based on latest ground rules and status reports, others in
later phases but based on earlier ground rules and facts. To cut the time of
the planning process, a patchwork of several of these programs was often
thrown together based on necessarily inconsistent facts and rules. To co-
ordinate this work better, the Air Staff, around 1943, created the program
monitoring function under. Professor E. P. Learned of Harvard. The entire
program was started off with a war plan in which were contained the wartime
objectives. From this plan, by successive stages, the wartime program
“specifying unit deployment to combat theaters, training requirements of
flying personnel and technical personnel, supply and maintenance, etc.,
was computed. To obtain consistent programming the ordering of the steps
in the schedule was so arranged that the flow of information from echelon
to echelon was only in one direction, and the timing of information avail-
ability was such that the portion of the program prepared at each step did
not depend on any following step. Even with the most careful scheduling,
it took about seven months to complete the process.

Post-World War II Developments.

After the war the U.S. Air Force consolidated the statistical control,
program monitoring, and budgeting functions under the staff of the Air
Force Comptroller, General E. W. Rawlings, now President of General
Mills Corporation. It became clear to members of this organization that
efficiently coordinating the energies of whole nations in the event of a total

1 The most important of these was the development under C. B. Thornton of the
Statistical Control System that provided a continuous flow of detailed information on
the status of many parts of the Air Force, including personnel, supply, operations,
and basic data upon which to basc attirition rates, sortie rates, crew rotation rates,
maintenance needs, supply rates, ete.
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war would require scientific programming techniques. Undoubtedly this
need had occurred many times in the past, but this time there were two
concurrent developments that had a profound influence: (a) the development
of large scale electronic computers, and (b) the development of the inter-
industry model. The latter is a method of describing the inter-industry
relations of an economy and was originated by Wassily Leontief [1951-1].
This is described in the next section.

Intensive work began in June 1947, in a group that later (October 1948)
was given the official title of Project SCOOP (Scientific Computation of
Optimum Programs). Principals in this group were Marshall Wood and the
author, and soon thereafter John Norton and Murray Geisler.

The potential attraction of the inter-industry model will become apparent
in the next section. Its simple structure, particularly its use of linear pro-
duction functions in the description of industry-wide aggregates of economic
activities, had a considerable impact on the thinking of the Air Force
research team. Its nondynamic character, however, and the simplifying
assumption that each industry had a unique technology which produced
only onc product, restricted the model’s usefulness. Another limitation of
the model was that it was not possible to have alternative feasible programs.
It was therefore necessary to generalize the inter-industry approach. The
result was the development of the linear programming model by July 1947.

The simplex computational method for choosing the optimal feasible
program was developed by the end of the summer of 1947 (see Chapter 5).
Interest in linear programming began to spread quite rapidly. During this
period the Air Force sponsored work at the U.S. Bureau of Standards on
electronic computers and on mathematical techniques for solving such
models. John Curtiss and Albert Cahn of the Bureau played an active role
in generating interest in the work among economists and mathematicians.

Contact with Tjalling Koopmans of the Cowles Commission, then at
the University of Chicago, now at Yale, and Robert Dorfman, then of the
Air Force, now at Harvard, and the interest of such economists as Paul
Samuelson of the Massachusetts Institute of Technology, initiated an era
of intense re-examination of classical economic theory using results and ideas
of linear programming.

Contact with John von Neumann at the Institute for Advanced Study
gave fundamental insight into the mathematical theory and sparked the
interest of A. W. Tucker of Princeton University and a group of his students,
who attacked problems in linear inequality theory and game theory. Since
that time his group has been a focal point of work in these related fields.

It was the size of the Air Force programming problem which made the
SCOOP personnel recognize, at an early date, that even the best of future
computing facilities would not be powerful enough to solve a general detailed
Air Force linear programming model. Accordingly, Project SCOOP modified
its approach and in the spring of 1948 proposed that there be developed
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special linear programming models called triangular models whose structure
and computational solution would parallel the stepwise staff procedure
which we described earlier [Wood and Geisler, 1951-1, p. 189).

Since 1948 the Air Staff has been making more and more active use of
mechanically computed programs. The triangular models are in constant
use for the computation of detailed programs, while the general linear
programming models have been applied in certain areas, such as (a) contract
bidding, (b) balanced aircraft, crew training, and wing deployment schedules,
(c) scheduling of maintenance overhaul cycles, (d) personnel assignment,
and (e) airlift routing problems [U.S. Air Force, 1954-1; Jacobs, 1955-1;
Natrella, 1955-1].

2-2. ECONOMIC MODELS AND LINEAR PROGRAMMING

The Influence of Theoretical Models.

The current introduction of linear programming in economics appears to
be an anachronism ; it would seem logical that it should have begun around
1758 when economists first began to describe economic systems in mathe-
matical terms. Indeed, a crude example of a linear programming model
can be found in the Tableau économigue of Quesnay, who attempted to
interrelate the roles of the landlord, the peasant, and the artisan [Monroe,
1924-1]. Also, we find that L. Walras proposed in 1874 a sophisticated
mathematical model which had as part of its structure fixed technological
coefficients. Oddly enough, however, until the 1930’s there was little in the
way of exploitation of the linear-type model.

For the most part, mathematical economists were occupied with the
analysis of theoretical problems associated with the possibility of economic
equilibria and its allocative efficiency under competitive or monopolistic
conditions. For such studies they found the use of classical convex functions
with continuous derivatives more convenient for the demonstration of
stability conditions than functions based on linear inequalities. Of particular
note, along these lines, is the effort during the 1930’s of a group of Austrian
and German economists who worked on generalizations of the linear tech-
nology of Walras. This work raised some questions that may have stimulated
the mathematician von Neumann (1932), in his paper “A Model of General
Economic Equilibrium” [von Neumann, 1937-1], to formulate a dynamic
linear programming model in which he introduced alternative methods of
producing given commodities singly or jointly. Von Neumann assumed
(a) a constant rate of expansion of the economy, and (b) a completely self-
supporting economy. While the model did not contain any explicit objective,
von Neumann showed that market forces would maximize the expansion
rate, and proved that at the maximum it was equal to the interest rate on
capital invested in production.
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As fur an influence is concerned, von Neumann's paper, like many other
theoretical papers, proved only an interesting mathematical theorem. It is
likely that mathematical cconomists were more interested in getting similar
results for a more general model beeause “To many economists the term
linearity is associated with narrowness, restrictiveness, and inflexibility of
hypotheses™ | Koopmans, 1951-1, p. 6]. In other words, this effort belonged
like many others to the qualitative world of the economics of that time, a
world in which the purpose of the mathematical model was to describe in
8 gqualitative rather than a gquantitative way the assumed interrelations
within a system; the manipulation of equations was a convenient way to
make valid logical deductions from the assumptions.

The Influence of Empirical Models.

The inspiration of the general linear programming model was completely
independent of these developments and had a different purpose. It arose
out of the empirical programming needs of the Air Force and the possibility
of generalizing the simple practical structure of the Leontief Model to this
end. From a purely formal standpoint the Leontief Model can be considered
as a simplification of the Walrasian Model. It is here that the formalism
ends.

“One hundred and fifty years ago, when Quesnay first published his
famous schema, his contemporaries and disciples acclaimed it as the greatest
discovery since Newton’s laws. The idea of general interdependence among
the various parts of the economic system has become by now the very
foundation of economic analysis. Yet, when it comes to the practical appli-
cation of this theoretical tool, modern economists must rely exactly as
Quesnay did upon fictitious numerical examples” [Leontief, 1951-1, p. 9].

Leontief’s great contribution, in the opinion of the author, was his
construction of a guantitative model of the American economy, for the
purpose of tracing the impact of government policy and consumer trends
upon a large number of industries which were imbedded in a highly complex
series of interlocking relationships. To appreciate the difference between a
purely formal model and an empirical model, it is well to remember that
the acquisition of data for a real model requires an organization working
many months, sometimes years. After the model has been put together,
another obstacle looms—the solution of a very large system of simultaneous
linear equations. In the period 1936-1940, there were no electronic com-
puters; the best that one could hope for in general would be to solve twenty
equations in twenty unknowns. Finally, there was the difficulty of
“marketing’’ the results of such studies. Hence, from the onset, the under-
taking initiated by Leontief represented a triple gamble.

To appreciate further the significance of this shift from the theoretical
to the empirical model it should be remembered that since the 1930’s much
more information has become available on income, quantities of production,
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investment, savings, and consumer patterns. Moreover, since 1900, sampling
techniques developed by statisticians have come more and more into use
as a means of evaluating the interrelationships between observations.
Regression analysis began to be used to measure economic phenomena. By
1940 the work of such statisticians as Karl Pearson, R. A. Fisher, and the
modern school initiated by J. Neyman had become a science for testing
hypotheses and evaluating the parameters in the statistical population.

As a result of the great depression and the advent of the “New Deal”
there was a serious attempt on the part of the government to determine,
and then support, certain activities which it was hoped would speed recovery.
This brought about more intensive collections of statistics on costs of living,
wages, national resources, productivity, etc. There was a need to organize
and interpret this data by using it to construct a mathematical model to
describe the economy in quantitative terms.

From 1936 on, the scope, accuracy, and area of application of Leontief-
type models were greatly extended by the Bureau of Labor Statistics (under
the direction of Duane Evans, Jerome Cornfield, Marvin Hoffenberg, and
others) [Cornfield, Evans, and Hoffenberg, 1947-1]. It was this work that
stimulated efforts toward seeking a mathematical generalization suitable
for dynamic Air Force applications. Thus the early Air Force interest was
in the mathematical structure; it was not until several years later that the
military supported work on Leontief inter-industry models to help evaluate
the interaction of their programs with the civilian economy.

A few words about the Leontief model itself are in order. The focal
point of input-output analysis is an array of coefficients variously called
the “input-output”’ matrix or “tableau économique.” A column of this
matrix represents the input requirements of various commodities for the
production of one dollar’s worth of a particular commodity. There is exactly
one column for each commodity produced in the economy. Thus the produc-
tion of a commodity corresponds to the concept of an activity in a linear
programming model. If the input factors appearing in a row of the matrix
are multiplied by the corresponding buying industry’s total output, the
totals represent the distribution of the dollar value of purchases among the
selling industries. Thus, the model makes it possible not only to determine
each industry’s rate of output to meet specified direct demand by civilians
and the military, but also to trace the indirect effect on each industry of
- government expenditures in, say, military programs.

Postwar Developments.

In 1947, T. C. Koopmans took the lead in bringing. to the attention of
economists the potentialities of the linear programming models. His rapid
development of the economic theory of such models was due to. the insight
he gained during the war with a special class of linear programming models
called transportation models. He organized the historic Cowles Commission
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conference on “linear progrumming,” referred to in Chapter 1. At the
conference were such well-known economists as K. Arrow, R. Dorfman,
N. Georgescu-Roegen, L. Hurwicz, A. Lerner, J. Marschak, O. Morgenstern,
S. Reiter, P. Samuelson, and H. Simon; such mathematicians as G. W.
Brown, M. M. Flood, D. Gale, H. W. Kuhn, C. B. Tompkins, A. W. Tucker,
and the author, as well as government statisticians, including W. D. Evans,
M. A. Geisler, M. Hoffenberg, and M. K. Wood. The papers presented there
were later collected into the book Activity Analysis of Production and
Allocation [Koopmans, 1951-1]. The book reflects the interest awakened
among these groups in two short years. The following is an interesting
quotation from its introduction, in which Koopmans encourages theoretical
economists to set aside some of their traditional beliefs:

“The adjective in ‘linear model’ relates only to (a) assumption of pro-
portionality of inputs and outputs in each elementary productive activity,
and (b) the assumption that the result of simultaneously carrying out two
or more activities is the sum of the results of the separate activities. In
terms more familiar to the economist, these assumptions imply constant
returns to scale in all parts of the technology. They do not imply linearity
of the production function. . . . Curvilinear production functions . . . can
be obtained from the models here studied by admitting an infinite set of
elementary activities. . . . '

“Neither should the assumption of constant returns to scale . . . be
regarded as essential to the method of approach it illustrates, although new
mathematical problems would have to be faced in the attempt to go beyond
this assumption. More essential to the present approach is the introduction
of . . . the elementary activity, the conceptual atom of technology into the
basic postulates of the analysis. The problem of efficient production then
becomes one of finding the proper rules for combining these building blocks.
The term ‘activity analysis’ . . . is designed to express this approach”
[Koopmans, 1951-1, p. 6].

Koopmans was the first to point out that many theorems of welfare
economics, the study of the rules for efficient allocation of resources in the
economy, could be restated under the assumption of a linear technology for
the “firm.” The decisions to be made by his “helmsman” on resource
allocation did not conflict with earlier results of traditional economic theory;
indeed, they were more general in that the decisions covered joint products
and by-products of the firm [Koopmans, 1951-2].

At about the same time, a few other economists had become interested
in activity analysis and linear programming. Dorfman (1951) expressed in
linear programming terms the economic theory of the firm under competitive
and monopolistic conditions, and compared the realm of applicability of this
theory with the traditional marginal analysis [Dorfman, 1951-1]. Samuelson
(1955) wrote on ‘“Market Mechanisms and Maximization” and stated his
Substitution Theorem for a Generalized Leontief Model [Samuelson, 1955-1;
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Koopmans, 1951-1]. Various classical economic problems, such as inter-
national trade between two countries and the Giffen paradox, could be
reformulated as linear programming problems [Beckmann, 1955-1; Dorfman,
Samuelson, and Solow, 1958-1; Koopmans, 1951-1].

The number of practical economic applications is continually growing.
Linear programming is being used by economists to study in detail the
economics of specific industries, such as metalworking [Markowitz, 1954-1],
petroleum refining,? iron and steel [Fabian, 1958-1], and to yield long-range
plans for electricity generation in an entire economy [Massé and Gibrat,
1957-1]. Some of these applications will be presented as examples and
exercises in later chapters.

For a fuller appreciation of the economic implications, the reader is
referred to Linear Programming and Economic Amalysis by Dorfman,
Samuelson, and Solow [1958-11, and Economic Theory and Operations Analysis
by W. J. Baumol [1961-1].

2-3. MATHEMATICAL ORIGINS AND DEVELOPMENTS

History Prior to 1947.

The linear programming model, when translated into purely mathe-
matical terms, as will be done in the next chapter, requires a method for
finding a solution to a system of simultaneous linear equations and linear
inequalities which minimizes a linear form. This central mathematical prob-

lem of linear programming was not known to be an important one with many -

practical applications until the advent of linear programming in 1947. It is
this which in part accounts for the lack of active interest among mathemati-
cians in finding efficient solution techniques before that date.

We are all familiar with methods for solving linear equation systems
which start with our first course in algebra [Gauss, 1826-1; Jordan,
1904-1]. The literature of mathematics contains thousands of papers con-
cerned with techniques for solving linear equation systems, with the theory
of matrix algebra (an allied topic), with linear approximation methods, etc.
On the other hand, the study of linear inequality systems excited virtually
no interest until the advent of game theory in 1944 and linear programming
in 1947. For example T. Motzkin, in his doctoral thesis on lincar inequalitics
in 1936, was able to cite after diligent search only some thirty references
for the period 1900-1936, and about forty-two in all [Motzkin, 1936-1]. In
the 1930’s, four papers dealt with the building of a comprehensive theory of
linear inequalities and with an appraisal of earlier works. These were by
R. W. Stokes [1931-1], Dines-McCoy [1933-1], H. Weyl [1935-1], and T.
Motzkin [1936-1]. As evidence that mathematicians were unaware of the

2 [Charnes, Cooper, and Mellon, 1952-1; Symonds, 1955-1; Manne, 1956-1; Garvin,
Crandall, John, and Spellman, 1957-1.}
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importance of the problem of seeking a solution to an inequality system
that also minimized a linear form, we may note that none of these papers
made any mention of such a problem, although there had been earlier
instances in the literature.

The famous mathematician, Fourier, while not going into the subject
deeply, appears to have been the first to study linear inequalities systemati-
cally and to point out their importance to mechanics and probability theory
[Fourier, 1826-1]. He was interested in finding the least mazimum deviation
fit to a system of linear equations, which he reduced to the problem of
finding the lowest point of a polyhedral set. He suggested a solution by a
vertex-to-vertex descent to a minimum, which is the principle behind the
simplex method used today. This is probably the earliest known instance of
a linear programming problem. Later another famous mathematician, de la
Vallée Poussin [1911-1], considered the same problem and proposed a
similar solution.

A good part of the early mathematical literature is concerned with
finding conditions under which a general homogeneous linear inequality
system can be solved. All the results obtained express, in one form or
another, a relationship between the original (or primal) system and another
system (called the dual) which uses the columns of the original matrix of -
coefficients to form new linear equations or inequalities according to certain
rules. Typical is the derived theorem of P. Gordan [1873-1] showing that a
homogeneous system of equations in nonnegative variables possesses a
solution with at least one variable positive if the dual possesses no solution
with strict inequalities. Stiemke [1915-1] added a theorem on the existence
of a solution with all variables positive. These results are expressed in a
sharper form in Motzkin’s Transposition Theorem [1936-1] and theorems
on Dual Systems by Tucker [1956-1]. Specifically designed for algebraic
proof of the Minimax Theorem are the results of Ville [1938-1] and of von
Neumann and Morgenstern [1944-1]. Essentially, these theorems state that
either the original (primal) system possesses a nontrivial solution or the
dual system possesses a strict inequality solution. Because of this “‘either-or,”
von Neumann and Morgenstern called their result the Theorem of the
Alternative for Matrices (see § 6-4).

The following is a well-known theorem for equations: If every solution
to a linear equation system also satisfies a given linear equation, the equation
can be formed as a linear combination of the equations of the system. A
surprising and important theorem for inequalities due to J. Farkas [1902-1]
is as follows: If every solution to a linear homogeneous inequality system
also satisfies a given linear inequality (where all inequalities are > 0), the
inequality can be formed as a nonnegative linear combination of the
inequalities of the system.

Analogous to those for equation systems, other theorems are concerned
with building up a general solution of an inequality system by forming a
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The Work of Kantorovich.

The Russian mathematician L. V. Kantorovich has for a number of
years been interested in the applieation of mathemutics Lo progrumming
problems. He published an extensive monograph in 1939 entitled  Mathe-
matical Methods in the Organization and Planning of Production [ 1939-1].

In his introduction Kantorovich states, “There are two ways of increasing
efficiency of the work of a shop, an enterprise, or a whole branch of industry.
One way is by various improvements in technology, that is, new attachments
for individual machines, changes in technological processes, and the discovery
of new, better kinds of raw materials. The other way, thus far much less
used, is by improvement in the organization of planning and production.
Here are included such questions as the distribution of work among indi-
vidual machines of the enterprise, or among mechanisms, orders among
enterprises, the correct distribution of different kinds of raw materials,
fuels, and other factors” [Kantorovich, 1939-1].

Kantorovich should be credited with being the first to recognize that
certain important broad classes of production problems had well-defined
mathematical structures which, he believed, were amenable to practical
numerical evaluation and could be numerically solved.

In the first part of his work Kantorovich is concerned with what we now
call the weighted two-index distribution problems. These were generalized
first to include a single linear side condition, then a class of problems with
processes having several simultaneous outputs (mathematically the latter
is equivalent to a general linear program). He outlined a solution approach
based on having on hand an initial feasible solution to the dual. (For the
particular problems studied, the latter did not present any difficulty.)
Although the dual variables were not called “prices,” the general idea is
that the assigned values of these “resolving multipliers” for resources in
short supply can be increased to a point where it pays to shift to resources
that are in surplus. Kantorovich showed on simple examples how to make the
shifts to surplus resources. Tn general, however, how o shift turns out to he
a linear program in itself for which no computational method was given.
The report contains an outstanding collection of potential applications.

His 1942 paper “‘On the Translocation of Masses” [Kantorovich, 1942-1]
is the forerunner of his joint paper with M. K. Gavurin on “The Application
of Mathematical Methods to Problems of Freight Flow Analysis™ [Kantoro-
vich and Gavurin, 1949-1]. Here can be found a very complete theory of the
transshipment problem, the relations between the primal and_the dual
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(price) system, the use of the linear graph of the network, and the important
extension to capacitated networks. Moreover, it is clear that the authors
had developed considerable facility with the adjustment of freight flow
patterns from nonoptimal to optimal patterns for claborate systems of the
kind commonly encountered in practice. However, again, an incomplete
computational algorithm was given. It is commendable that the paper is
written in a nontechnical manner, so as to encourage those responsible for
routing freight to use the proposed procedures.

In 1959, twenty years after the publication of his first work, Kantorovich
published a second entitled Economic Computation of the Optimal Utilization
of Resources, a book primarily intended for economists [1959-1].

If Kantorovich’s earlier efforts had been appreciated at the time they
were first presented, it is possible that linear programming would be more
advanced today. However, his early work in this field remained unknown
both in the Soviet Union and elsewhere for nearly two decades while linear
programming became a highly developed art. According to The New York
Times, “The scholar, Professor L. V. Kantorovich, said in a debate that,
Soviet economists had been inspired by a fear of mathematics that left the
Soviet Union far behind the United States in applications of mathematics to
economic problems. It could have been a decade ahead” [New York Times,
1959-1].

Direct Influences.

With the exception of the game-theoretic results due to von Neumann
and to Ville, all the work just cited seems not to have had any influence
on the immediate postwar developments in linear programming. Let us now
turn to those that are known to have had a direct influence.

In 1936, J. Neyman and E. S. Pearson clarified the basic concepts for
validating statistical tests and estimating underlying parameters of a
distribution from given observations [Neyman and Pearson, 1936-1]. They
used what is now the well-known Neyman-Pearson Lemma for constructing
the best test of a simple hypothesis having a single alternative. For a more
general class of hypotheses they showed that if a test existed satisfying a
generalized form of their lemma, it would be optimal. In 1939 (and as part
of his doctoral thesis, 1946), the author first showed that under very general
conditions such a test always exists. This work was later published jointly
with A. Wald, who independently reached the same result around 1950
[Dantzig and Wald, 1951-1]. This effort constitutes not only an early proof
of one form of the important duality theorem of linear programming, but
one given for an infinite (denumerable) number of variables or (through the
use of integrals) a nondenumerable number of variables. These are referred
to by Duffin as infinite programs [Duffin, 1956-1]. It is interesting to note
that the conditions of the general Neyman-Pearson Lemma are in fact the
conditions that a solution to a bounded variable linear programming problem
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be optimal. The author’s research on this problem formed a background for
his later rescarch on linear programming.

Credit for laying the mathematical foundations of this field goes to
John von Neumann more than to any other man (see Kuhn and Tucker,
1958-1). During his lifetime, he was generally regarded as the world’s
foremost mathematician. He played a leading role in many fields; atomic
energy and electronic computer development are two where he had great
influence. In 1944 John von Neumann and Oskar Morgenstern published
their monumental work on the theory of games, a branch of mathematics
that aims to analyze problems of conflict by use of models termed “games”
[von Neumann and Morgenstern, 1944-1]. A theory of games was first
broached in 1921 by Emile Borel and was first established in 1928 by von
Neumann with his famous Minimax Theorem [Ville, 1938-1; Borel, 1953-1].
The significance of this effort for us is that game theory, like linecar pro-
gramming, has its mathematical foundation in linear inequality theory
[Kuhn and Tucker, 1958-1].

Postwar Developments (1947-1956).

During the summer of 1947, Leonid Hurwicz, well-known econometrician
associated with the Cowles Commission, worked with the author on tech-
niques for solving linear programming problems. This effort and some
suggestions of T. C. Koopmans resulted in the “Simplex Method.” The
obvious idea of moving along edges from one vertex of a convex polyhedron
to the next (which underlies the simplex method) was rejected earlier on
intuitive grounds as inefficient. In a different geometry it seemed efficient
and so, fortunately, it was tested and accepted.

Von Neumann, at the first meeting with the author in October 1947, was
able immediately to translate basic theorems in game theory into their
equivalent statements for systems of linear inequalities [Goldman and Tucker,
1956-1]. He introduced and stressed the fundamental importance of duality?
and conjectured the equivalence of games and linear programming problems
[Dantzig, 1951-1; Gale, Kuhn, and Tucker, 1951-1]. Later he made several
proposals for the numerical solution of linear programming and game
problems [von Neumann, 1948-1, 1954-1].

A. W. Tucker’s interest in game theory and linear programming began
in 1948. Since that time Tucker and his former students (notably David
Gale and Harold W. Kuhn) have been active in developing and systematizing
the underlying mathematical theory of linear inequalities. Their main
efforts, like those of a group at The RAND Corporation (notably N. C.
Dalkey, M. Dresher, O. Helmer, J. C. C. McKinsey, L. S. Shapley, and

3 D. Ray Fulkerson, in a conversation with S. Karlin, accidentally credited the
simplex method to von Neumann when he meant to credit duality to him. This error
subsequently appeared in the work of Karlin {1959-1] and then was repeated by Charnes
and Cooper {1961-1].
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J. D. Williams), have been in the related field of game theory [von Neumann,
1948.-1].

The National Bureau of Standards played an important role in the
development of linear programming theory. Not only did it arrange through
John H. Curtiss and Albert Cahn the important initial contacts between
workers in this field, but it provided for the testing of a number of com-
putational proposals in their laboratories. In the fall of 1947, Laderman of
the Mathematical Tables Project in New York computed the optimal
solution of Stigler’s diet problem [Stigler, 1945-1] in a test of the newly
proposed simplex method. At the Institute of Numerical Analysis, Professor
Theodore Motzkin, whose work on the theory of linear inequalities has been
mentioned eurlier, proposed several computational schemes for solving
linear programming problems such as the ‘“Relaxation Method” [Motzkin and
Schoenberg, 1954-1] and the “Double Description Method” [Motzkin, Raiffa,
Thompson, and Thrall, 1953-1]. Charles B. Tompkins proposed his projection
method [Tompkins, 1955-1]. Alex Orden of the Air Force worked actively
with the National Bureau of Standards (N.B.S.) group who prepared codes
on the SEAC (National Bureau of Standards Eastern Automatic Coraputer)
for the general simplex method and for the transportation problem. Alan
J. Hoffman, with a group at the N.B.S., was instrumental in having experi-
ments run on a number of alternative computational methods [Hoffman,
Mannos, Sokolowsky, and Wiegmann, 1953-1]. He was also the first to
establish that “‘cycling” can occur in the simplex algorithm without special
provisions for avoiding degeneracy [Hoffman, 1953-1].

In June 1951 the First Symposium in Linear Programming was held
in Washington under the joint auspices of the Air Force and the N.B.S.
By this time, interest in lincar programming was widespread in government
and academic circles. A. Charnes and W. W. Cooper had just begun their
pioneering work on industrial applications. Aside from this work, which
will be discussed in the next section, they published numerous contributions
to the theory of linear programming. Their lectures were published in An
Introduction to Linear Programming [Charnes, Cooper, and Henderson,
1953-11. A two-volume treatise of the work of Charnes and Cooper was
published in 1961.

Computational Developments (1947-1956).

New computational techniques and variations of older techniques are
continuously being developed in the United States and abroad. Aside from
those mentioned above, there were early proposals by G. W. Brown and
T. C. Koopmans {Brown and Koopmans, 1951-1] and a method for solving
games by G. W. Brown [Brown, 1951-1]. More recently the well-known
econometrician Ragnar Frisch at the University of Oslo has done extensive
research work on his ‘“Multiplex Method” [Frisch, 1957-1]. Investigations
in Great Britain have been spearheaded by S. Vajda [1958-1]. There are a
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number of important variants of the simplex method proposed by C. Lemke
[1954-1], W. Orchard-Hays [1954-1], E. M. L. Beale [1954-1], and others (see
Chapter 11).

Electronic Computer Codes (1947-1956).

The special simplex method developed for the transportation problem
[Dantzig, 1951-2] was first coded for the SEAC in 1950 and the general
simplex method in 1951 under the general direction of A. Orden of the Air
Force and A. J. Hoffman of the Bureau of Standards. In 1952, W. Orchard-
Hays of The RAND Corporation worked out a simplex code for the IBM-
C.P.C., and for the IBM 701 and 704 in 1954 and 1956, respectively. The
latter code was remarkably flexible and solved problems of two hundred
equations and a thousand or more variables in five hours or so with great
accuracy [Orchard-Hays, 1955-1].

Special routines for solving the Air Force triangular model were first
developed in 1949. In the spring of 1949, M. Montalbano of the N.B.S. built
a preliminary computation system around an IBM 602-A; later a more
elaborate system was built for the IBM 604. In early 1950, with C. Diehm,
he prepared a simplex code for SEAC which was demonstrated at the dedi-
cation of the computer. These computational programs were recoded by the
Air Force when they obtained a UNIVAC in 1952.

The use of electronic computers by business and industry has been

- growing by leaps and bounds. Many of the digital computers which are
commercially available have had codes of the simplex technique. In addition,
there has been some interest in building analogue computers for the sole
purpose of solving linear programming problems [Ablow and Brigham,
1955-1; Pyne, 1956-1]. It is possible that such computers may provide an
efficient tool for the evaluation of parametric changes in a system represented
by a linear programming model and may be useful when quick solutions of
linear programming problems are continuously needed, as for example in
production scheduling. These computers have worked well on small problems
(for example twenty variables and ten equations). Because of distortion of
electric signals, it does not seem practical to design analogue computers
which can handle the large general linear programming problems. However
it does appear very worthwhile to try to develop applications of such com-
puters to solving large-scale systems which possess special structures.

Extensions of Linear Programming.

If we distinguish, as indeed we must, between those types of generali-
zations in mathematics that have led to existence proofs and those that have
led to constructive solutions of practical problems, then the period following
the first decade marks the beginning of several important constructive
generalizations of linear programming concepts to allied fields. These are:
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(1) Network Theory. A remarkable property of a special class of linear
programs, the transportation or the equivalent network flow problem, is
that their extreme point solutions are integer valued when their constant
terms are integers [(G. Birkhoff, 1946-1; Dantzig, 1951-2]. This has been a
key fact in an elegant theory linking certain combinatorial problems of
topology with the continuous processes of network theory. The field has
many contributors. Of special mention is the work of Kuhn [1955-1] using
an approach of Egerviry on the problem of finding a permutation of ones
in a matrix composed of zeros and ones and the related work of Ford and
Fulkerson [1954-1] for network flows. For further references, see Chapters
19 and 20, [Hoffman, 1960-1; Berge, 1958-1; Ford and Fulkerson, 1960-1].

(2) Convex Programming. A natural extension of linear programming
occurs when the linear part of the inequality constraints and the objective
are replaced by convex functions. Early work centered about a quadratic
objective [Dorfman, 1951-1; Barankin and Dorfman, 1958-1; Markowitz,
1956-1] and culminated in an elegant procedure developed independently
by Beale [1959-1], Houthakker [1959-1], and Wolfe [1959-1] who showed
how & minor variant of the simplex procedure could be used to solve such
problems. Also studied early was the case where the convex objective could
be separated into a nonnegative sum of terms, each convex in a single
variable [Dantzig, 1956-2; Charnes and Lemke, 1954-1]. The general case
has been studied in fundamental papers by Kuhn and Tucker [1950-2], and
Arrow, Hurwicz, and Uzawa [1958-1]. See Chapter 24 for further references.
In this book we shall attack this problem by using the decomposition
principle of linear programs (Chapters 22, 23, 24). Many promising alternative
approaches can be found in the literature [Rosen, 1960-1].

(3) Integer Programming. Important classes of nonlinear, nonconvex,

" discrete, combinatorial problems can be shown to be formally reducible to

a linear programming type of problem, some or all of whose variables must
be integer valued. By the introduction of the concept of cutting planes,
linear programming methods were used to construct an optimal tour for a
salesman visiting Washington, D.C., and forty-eight state capitals of the
United States [Dantzig, Fulkerson, and Johnson, 1954-1]. The theory was
incomplete. The foundations for a rigorous theory were first developed by
Gomory [1958-1]. See Chapter 26.

(4) Programming wunder Uncertainty. It has been pointed out by
Madansky [1960-1] that the area of programming under uncertainty cannot
be usefully stated as a single problem. One important class considered in
this book is a multistage class where the technological matrix of input-output
coefficients is assumed known, the values of the constant terms are un-
certain, but the joint probability distribution of their possible values is
assumed to be known. Some tools for attacking this class of problems will
be found in Chapters 25 and 28. A promising approach based on the decom-
position principle has been discussed by Dantzig and Madansky [1960-1].
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2-4. INDUSTRIAL APPLICATIONS OF LINEAR
PROGRAMMING

The history of the first years of linear programming would be incomplete
without a brief survey of its use in business and industry. These applications
began in 1951 but have had such a remarkable growth in the years 1955-1960
that this use is now more important than its military predecessor.

Linear programming has been serving industrial users in several ways.
First, it has provided a novel view of operations; second, it induced research
in the' mathematical analysis of the structure of industrial systems; and third,
it has become an important tool for business and industrial management
for improving the efficiency of their operations. Thus the application of linear
programming to a business or industrial problem has required the mathe-
matical formulation of the problem and an explicit statement of the desired
objectives. In many instances such rigorous thinking about business problems
has clarified aspects of management decision-making which previously had
remained hidden in a haze of verbal arguments. As a partial consequence
some industrial irms have started educational programs for their managerial
personnel in which the importance of the definition of objectives and
constraints on business policies is being emphasized. Moreover, scheduling
industrial production traditionally has been, as in the military, based on
intuition and experience, a few rules, and the use of visual aids. Linear
programming has induced extensive research in developing quantitative
models of industrial systems for the purpose of scheduling production. Of
course many complicated systems have not as yet been quantified, but
sketches of conceptual models have stimulated widespread interest. An
example of this is in the scheduling of job-shop production, where M. E.
Salveson [1953-1] initiated research work with a linear programming-type
tentative model. Research on job-shop scheduling is now being performed
by several academic and industrial research groups [Jackson, 1957-1].
Savings by business and industry through the use of linear programming
for planning and scheduling operations are occasionally reported [Dantzig,
1957-1].

The first and most fruitful industrial applications of linear programming
have been to the scheduling of petroleum refineries. As noted earlier, Charnes,
Cooper, and Mellon started their pioneering work in this field in 1951
[Charnes, Cooper, and Mellon, 1952-1]. Two books have been written on the
subject, one by Gifford Symonds [Symonds, 1955-1] and another by Alan
Manne [Manne, 1956-1]. So intense has been the development that a survey
by Garvin, Crandall, John, and Spellman [1957-1] showed that there are
applications by the oil industry in exploration and production and distribu-
tion as well as in refining. The routing of tanker ships by linear programming
methods may soon be added to this list.

The food processing industry is perhaps the second most active user of
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linear programming. In 1953 a major producer first used it to determine
shipping of catchup from six plants to seventy warehouses [Henderson and
Schlaifer, 1954-1] and a milk producer has considered applying it to a
similar problem, except that in this case the number of warehouses is several
hundred. A major meat packer determines by means of linear programming
the most economical mixture of animal feeds [Fisher and Schruben, 1953-1].

In the iron and steel industry, linear programming has been used for
the evaluation of various iron ores and of the pelletization of low-grade
ores [Fabian, 1954-1]. Additions to coke ovens and shop loading of rolling
mills have provided additional applications [Fabian, 1955-11; a linear
programming model of an integrated steel mill is being developed [Fabian,
1958-1]. It is reported that the British steel industry has used linear pro-
gramming to decide what products their rolling mills should make in order
to maximize profit.

Metalworking industries use linear programming for shop loading
(Morin, 1955-1] and for determining the choice between producing and
buying a part [Lewis, 1955-1; Maynard, 1955-1]. Paper mills use it to
decrease the amount of trim losses [Eisemann, 1957-1; Land and Doig,
1957-1; Paull and Walter, 1955-1; Doig and Belz, 1956-1].

The optimal routing of messages in a communication network [Kalaba
and Juncosa, 1956-1], contract award problems [Goldstein, 1952-1; Gainen,
1955-1], and the routing of aircraft and ships [Dantzig and Fulkerson,
1954-1; Ferguson and Dantzig, 1954-1, 1956-1] are problems that have
been considered for application of linear programming methods by the
military and are under consideration by industry. In France the best
program of investment in electric power has been investigated by linear
programming methods [Massé and Gibrat, 1957-1).

Since 1957 the number of applications has grown so rapidly that it is
not possible to give an adequate treatment here.
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CHAPTER 3

FORMULATING A LINEAR
PROGRAMMING MODEL

3-1. BASIC CONCEPTS

Suppose that the system under study (which may be one actually in
existence, or one which we wish to design) is a complex of machines, people,
facilities, and supplies. It has certain over-all reasons for its existence. For
the military it may be to provide a striking force, or for industry it may
be to produce certain types of products.

The linear programming approach is to consider a system as decompos-
able into a number of elementary functions, the activities. An activity is
thought of as a kind of “black box’’? into which flow tangible inputs, such
as men, material, and equipment, and out of which may flow the products
of manufacture, or the trained crews of the military. What happens to the
inputs inside the “box’ is the concern of the engineer or of the educator;
to the programmer, only the rates of flow into and out of the activity are
of interest. The various kinds of flow are called ifems.

The quantity of each activity is called the activity level. To change the
activity level it is necessary to change the flows into and out of the activity.

Assumption 1: Proportionality.

In the linear programming model the quantities of flow of various items
into and out of the activity are always proportional to the activity level.
If we wish to double the activity level, we simply double all the corresponding
flows for the unit activity level. For instance, in § 1-2, Example 3, if we wish
to double the number of workers trained in a period, we would have to
double the number of instructors for that period and the number of workers

-hired. This characteristic of -the linear programming model is known as the
proportionality assumption.

Assumption 2: Nonnegativity.

While any positive multiple of an activity is possible, negative quantities
of activities are not possible. For example, in § 1-2, Example 1, a negative
number of cases cannot be shipped. Another example occurs in a well-known
classic: the Mad Hatter, you may recall, in Alice’s Adventures in Wonderland,

1 This chapter, written by Philip Wolfe, is based on earlier drafts by the author.
* Black box: Any system whose detailed internal nature one willfully ignores.
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was urging Alice to have some more tea, and Alice was objecting that she
couldn’t see how she could take more when she hadn’t had any. “You
mean, you don’t see how you can take less tea,” said the Hatter, “it is very
easy to take more than nothing.” Lewis Carroll’s point was probably lost
on his pre-linear-programming audience, for why should one emphasize the
obvious fact that the activity of “‘taking tea” cannot be done in negative
quantity ? Perhaps it was Carroll’s way of saying that mathematicians had
been so busy for centuries extending the number system from integers, to
fractions, to negative, to imaginary numbers, that they had given little
thought on how to keep the variables of their problems in their original
nonnegative range. This characteristic of the variables of the linear pro-
gramming model is known as the nonnegativity assumption.

Assumption 3: Additivity.

The next step in building a model is to speeify that the system of netivities
be complete in the sense that a complete accounting by activity can be
made of each item. To be precise, for each item it is required that the total
amount specified by the system as a whole equals the sum of the amounts
flowing into the various activities minus the sum of the amounts flowing
out. Thus, each item, in our abstract system, is characterized by a material
balance equation, the various terms of which represent the flows into or out
of the various activities. In the cannery example, the number of cases sent
into & warehouse must be completely accounted for by the amounts flowing
out of the shipping activities from various canneries including possible
storage or disposal of any excess. This characteristic of the linear program-
ming model is known as the additivity assumption.

Assumption 4: Linear Objective Function.

One of the items in our system is regarded as “precious” in the sense
that the total quantity of it produced by the system measures the payoff.
The precious item could be skilled labor, completed assemblies, an input
resource that is in scarce supply like a limited monetary budget. The contri-
bution of each activity to the total payoff is the amount of the precious
item that flows into or out of each activity. Thus, if the objective is to
maximize profits, activities that require money contribute negatively and
those that produce money contribute positively to total profits. The house-
wife’s expenditures for each type of food, in § 1-2, Example 2, is a negative
contribution to total ‘‘profits’’ of the household; there are no activities in
this example that contribute positively. This characteristic of the linear
programming model is known as the linear objective assumption.

The Standard Linear Programming Problem.

The determination of values for the levels of activities, which are positive
or zero, such that flows of each item (for these activity levels) satisfy the
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material balance equations and such that the value of the payoff is a
maximum is called the standard linear programming problem. The repre-
sentation of a real system, as in any one of the three examples of § 1-2, as
a mathematical system which exhibits the above characteristics, is called a
linear programming model. The problem of programming the activities of
the real system is thus transformed into the problem of finding the solution
of the linear programming model.

3-2. BUILDING THE MODEL

Because model-building is an essential aspect of ' programming, the
separate steps to be taken in building a linear programming model will now
be systematized. We then show how the completed model defines the linear
programming problem. The simplex method as a means for solving the
general problem of linear programming will be dealt with in Chapter 5, but
for the present we shall apply a less general method, the graphic, to two
typical examples.

The mathematical model of a system is the collection of mathematical
relationships which characterize the feasible programs of the system. By
feasible programs is meant those programs which can be carried out under
the system’s limitations. Building a mathematical model often provides so
much insight into a system and the organization of knowledge about a
system that it is considered by many to be more impottant than the task
of mathematical programming which it precedes. The model is often difficult
to construct because of the richness, variety, and ambiguity of the real
world. Nevertheless, it is possible to state certain principles which distinguish
the separate steps in the model-building process.

' The outline for this procedure presented below is based on the basic
assumptions underlying the linear programming model of (a) proportion-

ality, (b) nonnegativity, (c) additivity, and (d) a linear objective function.

. Tt is recommended that the reader review these concepts and identify these
characteristics of the model in what follows.

Step 1: Define the Activity Set. Decompose the entire system under
study into all of its elementary functions, the activittes, and choose a unit
for each activity in terms of which its quantity, or level, can be measured.

Step 2: Define the Item Set. Determine the classes of objects, the items,
which are consumed or produced by the activities, and choose a unit for
measuring each item. Select one item such that the net quantity of it
produced by the system as a whole measures the “cost” (or such that its
negative measures the “‘profit”’) of the entire system.?

3 In the examples which follow, the ‘“‘costs” happen to be money; however, in
economic examples, they could be measured in terms of labor or any scarce resource,
input which is to be conserved or any item whose total output from the system is to be
maximized.
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Step 3: Determine the Input-Output Coefficients. Determine the quantity
of each item consumed or produced by the operation of each activity at its
unit level. These numbers, the input-output coefficients, are the factors of
proportionality between activity levels and item flows.

Step 4: Determine the Exogenous Flows. Determine the net inputs or
outputs of the items between the system, taken as a whole, and the outside.

Step §: Determine the Material Balance Equations. Assign unknown
nonnegative activity levels z,, z,, . . ., to all the activities; then, for each
item, write the material balance equation which asserts that the algebraic
sum of the flows of that item into each activity (given as the product of the
activity level by the appropriate input-output coefficient) is equal to the
exogenous flow of the item.

The result of the model-building is thus the collection of mathematical
relationships characterizing all the feasible programs of the system. This
collection is the linear programming model.

Once the model has been built, the linear programming problem can be
posed in mathematical terms and its solution can be interpreted as a program
for the system—a statement of the time and quantity of actions to be
performed by the system so that it may move from its given status toward
the defined objective. ‘

The Linear Programming Problem.

Determine levels for all the activities of the system which (a) are non-
negative, (b) satisfy the material balance equations, and (¢) minimize the
total cost.

Devising techniques for solving the linear programming problem con-
stitutes the central mathematical problem of linear programming, to which
many of the succeeding chapters are devoted.

In our use of the steps for model-building in the examples below, one
feature should be noted: namely, we will not always complete the model
in one sequence of steps. It frequently happens that certain activities,
commonly those related to the disposal of unused resources or the over-
fulfillment of requirements, are overlooked until the formulation of the
material balance equations forces their inclusion. Thus a return from Step 5
to Step 1 will sometimes be necessary before the model is complete.

3-3. A TRANSPORTATION PROBLEM

In the cannery example of § 1-2 we required that the shipping schedule
for cases minimize the total shipping cost from canneries to warehouses.
To simplify that problem we shall suppose that there are two canneries,
Cannery I and Cannery II, and three warehouses, labelled A, B, and C.
The availability of cases at the canneries and the demands at the warehouses
are as follows:
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Cases Demanded
300 at Warehouse A
300 at Warehouse B
300 at Warehouse C

Cases Available
350 at Cannery 1
650 at Cannery II

1000 = Total available o
900 = Total required

The excess production (100 cases) is to be stored without shipment. The
shipping cost per case from either cannery to each warehouse is given in
the Shipping Cost Schedule (1). The problem is to determine the number
of cases each cannery should ship to each warehouse in order to minimize
the total transportation cost.

(1) Shipping Cost Schedule (dollars per case)
Warehouses
New Kansas
Canneries York Chicago City
(A) (B) ©
Seattle (I) 2.5 1.7 1.8
San Diego (1I) 2.5 1.8 1.4

To formulate the model which describes the interrelations between the
availabilities of cases at the canneries and demands at the warehouses, we
shall begin by analyzing one of the elementary functions, namely the
activity of shipping from a cannery to a warehouse. The activity of shipping
a case from I to A (i.c., from Secattle to New York) is diagrammed in (2).
It requires as input two items: one case in Seattle and $2.5 expense. It
produces as output one item: one case in New York. The basic assumption
is that x cases to be shipped from I to A will require as inputs at I, 1 -z
cases, and 2.5z dollars in expenditures; it will produce as output 1 - z cases
at A.

How this activity is performed, or what is done to a case between its
origin and its destination, is not part of the programming problem. In this
sense, then, the activity becomes a “black box” into which go certain items
and out of which come other items; in this case, the output is a similar
item, but at a different location.

2) Black Box Diagram of a Transportation Activity

N

AR

Activity: ﬁ

from 1 to 4

$2.5 shipping
cost
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The chnnery exnnplde containm s aaeh nhipping nctivatien, whieh vepre
pent the six possible ways ol shipping cases Irom two canneries to threo
warehouses. It is also possible to store production at the canneries, which
leads to another kind of possible clementary function, the storage activity.
A storage activity inputs an item and a cost (measured in dollars in this
example, sce § 3-2, footnote 3) at some time ¢ and outputs the item at some
later time ¢ - 1.

3) Black Box Diagram of a Typical Storage Activity

Y /7777, /7

Ll unit at time ¢ l——: Activity: /] -
'Storing | unii; "U'“' ot
4 from time ¢t + 1
Ue: A

Storage cost l-—» rtime £ to £ +1
L LLL LLLL

The similarity of the activities depicted in (2) and (3) occurs because
the shipping activity is a transfer in space, while a storage activity is a
transfer in time. Because in our particular problem we will not be considering
the outputs at later times nor assigning any costs to storage, the two storage
activities take on the simplified form (4).

4)

[ 1 cose ar = //////////////7
~ activity:
/Storing ! cose /

at 1

//////////////// /

[ ' case arm }—-— 7 L,

ACTIVITY:
Storing | cose

oy,

Step 1: Let us now take the first step in formulating the model. We
begin by listing in (5) the set of eight possible transportation and storage
activities. For convenience the activities are assigned the reference numbers
on the left; thus activity “4” is the activity of “Shipping from II to A.”
¥or the units to measure the quantity of either the shipping or storage
activities, it is natural to choose one case; however, one could choose an
entirely different kind of unit for each activity. For example, the unit of
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the first activity could be tens of cases shipped and the second could be
measured in dollars of transportation charges, ete.

(5) Activity List

1. Shipping from 1 to A
2 ’ , ItoB
3 ” , ItoC
4. ’ , HtoA
5. " , IItoB
6 ” ,» IltoC
7. Storing Excess at 1

8 o at II

Step 2: Except for costs it might be felt that only one other kind
of item is available, namely a case. However, economists point out that similar
items at different locations® or different times® are essentially different
items. For our present purposes we are ignoring the time dimension and
. concentrating only on the different locations. Accordingly there will be a
list of six items reflecting the two cannery locations, the three warehouse
locations, and the cost item (money). The items shown in (6) are assigned
the reference numbers on the left; thus item 4 is “Cases at B.” The case
will be used as the unit of measurement for each item 1-5, and the dollar
will be used to measure costs, item 6.

(6) Ttem List
1. Casesatl
2 R i |
3. o A
4. . s B
5 s s C
6. Costs ($)

Step 3: In recording the input-output coefficients of flow for the model,
this convention on the algebraic sign of the coefficient will be used: an input
will be designated by a positive coefficient, and an output by a negative
coefficient. Symbolically:

(7 d — Activity —_——
. L

We shall not, however, record the values of the coefficients in this form,
but construct a coefficient table for them (see Table 3-3-I). There is one

¢ A bird in the hand is worth two in the bush.
8 A stitch in time saves nine.
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WAL B

Cogrrmermne Tamne Transrowrarion Mook,

~_Activities|| 1 : 3 n 5 6 7 8
N Store Store

Hems ™S [T »A 1ol 1|1 A TE B IL-Cf at 1 at 11
o~

e

b N .

1. Casesat L || +1  +1  +1 +1

2, Cases at IL +1 +1  +1 +1

3. Cases at A || —1 -1

4. Cases at B —1 -1

. Cases at C —1 -1

(5]

8. Costs (8) +25 4+1.7 4+18| +2.5 +18 +1.4

vertical column in this table for each activity, and one horizontal row for
each item; at the intersection of each row and each column, we place the
signed input-output coefficient for the flow of that item required by one
unit of the activity.

Thus one unit of activity 4, shipping one case from II to A, has as inputs
one case at II (coefficient 41 in row 2, column 4) and $2.5 (coefficient
+2.5 in row 6, column 4); it has as output one case at A (coefficient —1 in
row 3, column 4). This table is quickly checked by inspecting each row to
see whether or not there has been a complete accounting of each item;
thus in row 1, item 1 (cases at I) occurs only as an input, and that to
activities 1, 2, 3, and 7; and in row 3, item 3 (cases at A) occurs only as
output, of activitics 1 and 4.

Step 4: Exogenous (outside) flows available to the system and required
from the system as a whole are shown in (8) in “black box”’ form. The inputs

(8)
77777777]
tExogenous
“Yrrrr7774
y THE
SYSTEM 4
650 coses ot II 1 as a 1
WHOLE
y/ [ 300 coses o1 4
—=-] 300 coses at &
j—m=| 300 cases ot C
| Z doilors I'—’ ///
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arc the availabilities to the system at I and 11 and the outputs are the
required flows from the system. Note that the dollar input has not yet been
determined. It is to be as small as possible. Until it is determined, it will be
denoted by “z.”

It will be useful to write these exogenous flows in a column, ordered by
item, similar to the column for each activity in Table 3-3-1. This is done
in (9), where the same convention for the algebraic sign of exogenous flows
must be used as for the flows into each activity within the system, because
the algebraic sum of flow by activity will be equated to the exogenous
flows. Therefore, exogenous inputs will be positive and exogenous outputs
negative. Hence:

9 - Item Exogenous Flows

; gx: :t %I ggg} available inputs into the system

3. Cagesat A | —300

4. Cases at B —300} required outputs from the system

5. Cases at C —300

6. Costs (8) z } minimum input into the system

Step 5: With each activity 1, 2, . . ., 8 we associate an unknown

quantity to be determined which represents the level of the activity. Custom-
arily we denote the level of activity 1 by z;, of activity 2 by x,, . . ., of

activity 8 by z,.
Using the coefficient table generated in Step 3, it is now an easy matter
to write the material balance equations for the system, item by item.
"For item 1 (cases at I), the activities involved in its flow are 1, 2, 3,
and 7 (shipping, storage at I). Because the input-output coefficients relating
to item 1 are all 41, the net flow of item 1 is just
-z, + 12+ 1 23412,

This flow must equal the exogenous flow of item 1 to the system, which is
350, yielding the first material balance equation,

z, + 23 + x5 + x, = 350

In precisely the same way, the material balance equation for item 2 (cases
at II) is
Z, + x5 + 25 + 24 = 650

The equation has a different form for item 3 (cases at A). Here activities
1 and 4, which ship to A, have coefficients —1, and no other activities
involve item 3. The net flow is

-1z, —1-2
and because the exogenous flow is the output —300, the equation is

-z, —z, = —300
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The remaining equations, corresponding to items 4 and 5, give a similar
accounting of cases at B and C respectively:

—z, — x5 = —300

—z, — xg = —300
These equations are summarized in Table 3-3-1I, Equations (11).

Finally, the flow of item 6 in the system is evidently given by
2.5z, + 1.7z, + 1.8z, + 2.5z, + 1.8z5 + 1.4z,

We place this in a material balance equation by setting it equal to an

unspecified dollar input z. Recall that we do not yet know what numerical
value z should have:

2.5z, + 1.7z, + 1.8x3 + 2.5z, + 1.8z5 + 1.4x¢ = 2

Step 5 is now complete.

The Equation Form.

The set of material balance equations generated here, together with the
conditions that all the activity levels 2, . . ., 3 be nonnegative, constitutes
the linear programming model for this transportation problem. These are
summarized in (10) and (11) in what is referred to as the Equation Form
of the model.

The Tableau.

The linear programming tableau affords both a compact form for writing
the data of the linear programming model and a procedure for generating
the material balance equations from these data without going through the
detailed reasoning we have in Step 5.

The tableau for this problem is given in Table 3-3-II.

TABLE 3-3-II
LiNEaR PROGRAMMING MODEL OF THE TRANSPORTATION PROBLEM
Tableau Form
Activities || I-A I~B I—C|II-+A II-B II-C | Store Store
at I at II || Exog-
Levels enous
Ttems Ty T2 T3 Ty s Ty %7 Zg Flows
1. Cases at I 1 1 1 1 350
2. Cases at II 1 1 1 1 650
3. Casesat A |l —1 -1 —300
4. Cases at B -1 -1 —300
5. Cases at C -1 -1 —-300
8. Costs ($) 2.5 1.7 1.8 2.5 1.8 1.4 z (Min)
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Equation Form
(10) Nonnega-
tivity 2,20, 2,20, 2,20, 2,>0, 2,20, z,=0, 2,0, 2>0
z, +x, +T +z;
) r, -+ + x4
(11) Material —x, —z,
Balances —z, —xg
—Ty —z4
2.5, 4 1.7z, + 1.8z, + 2.5x, + 1.8 + 1.4,

350

650
—300
—300
—300
z (Min)

+
=

L T O

It consists of these parts:

(a) A list of the activities of the system and their unknown levels.
(b) A list of the items of the system.
The input-output coefficients of the system, arranged in columns
by activity and in rows by item, as in the “Coefficient Table” of
Table 3-3-1 and later in the “Tableau Form” of Table 3-3-II.
(¢) The exogenous flows to the system, in a column, as in 9).

The relationship in Table 3-3-II between the Equation Form of the
model and the Tableau Form should be carefully noted. The tableau can
be obtained from the equations by detaching the coefficients of the activity
levels z,, . . ., z, that is, by suppressing the variables of the equations.
When the model is presented in tableau form, the nonnegativity conditions
(10) in Table 3-3-II will be understood to hold; on the other hand, the
equations (11) can be immediately reconstructed from the tableau by
forming, in each item-row, the products of the input-output coefficients
with the appropriate unknown activity levels, summing across, and setting
this expression for the net flow equal to the exogenous flow of the item.

The Linear Programming Problem.

Finally, we can state the mathematical problem for our particular
example. Determine levels for the activities z;, ,, . . ., 3 Which (a) are
nonnegative (relations (10), Table 3-3-II), (b) satisfy the material balance
equations (11), and (¢) minimize z.

3-4. EXAMPLES OF BLENDING

A type of linear programming problem frequently encountered is one
involving blending. Typically, different commodities are to be purchased,
each having known characteristics and costs. The problem is to give a recipe
showing how much of each commodity should be purchased and blended
with the rest so that the characteristics of the mixture lie within specified
bounds and the total purchase cost is minimized.

In the example we take up here, the characteristics of the blend are
precisely specified. As will be seen later, only minor changes in the model
are required in the event the blend specifications must lie between certain
lower or upper bounds.
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Blending Problem 1.

A manufacturer wishes to produce an alloy which is 30 per cent lead,
30 per cent zine, and 40 per cent tin. Suppose there are, on the market,
alloys A, B, C, . . . with compositions and prices as given in (1). Per pound
of blend produced, how much of each type of alloy should be purchased in
order to minimize costs?

48] Data for Blending Problem I
Alloy A B ¢ D E F @G H 1 gﬁﬁf
%Lead | 10 10 40 60 30 30 30 50 20 30
%Zinc | 10 30 50 30 30 40 20 40 30 30
9% Tin 80 60 10 10 40 30 50 10 50 40
Costs/lh $4.1 4.3 5.8 6.0 7.6 7.5 7.3 6.9 7.3 Min

Obviously the manufacturer can purchase alloy E alone, but it costs
$7.60 per pound. If he buys } pound each of alloys A, B, C, and D, he gets
one pound of a 30-30-40 mixture at a cost of $5.05; } pound of A, } pound
of B, and 4 pound of H again give one pound of mixture with correct pro-
portions, but costs $5.55. After a few trials of this sort, the manufacturer
may well seck a more general approach to his problem.

In formulating the linear programming model for this example, we must
first note that the blending problem has not been posed as completely as,
say, the transportation problem of the preceding section. The guantities of
lead, zinc, and tin in the final blend have not been specified, only their
proportions have been given, and it is required to minimize the cost per
pound of the output. Because we need specific data for the exogenous flows,
we shall require that a definite amount of blended metal be produced. It is
clear that a recipe giving the most economical purchasing program for one
pound of blended metal output can be immediately converted into a recipe
giving the most economical purchasing program for n pounds of output by
multiplying the levels of all the activities involved by n; and thus we will
restrict the quantity of activities to those combinations whick produce one
pound of blended metal. This restriction is expressed later, implicitly in the
statement of exogenous flows (6), and again explicitly in the material
balance equations (8).

This stipulation has the further happy result that the percentage require-
ments of the original statement of the problem now become concrete: the
mixture must contain 0.3 pounds of lead, 0.3 pounds of zine, and 0.4 pounds
of tin. (Often a beginner attempts to formulate the problem without
restricting the total amount produced, in which case the material balance
equations become difficult to interpret, being expressed in terms of per-
centages instead of amounts.)
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Step 1: Identifying activities. The only activities we need to consider
are those of purchasing each of the nine alloys, because we assume all the
metal purchased will be blended. The unit level for each activity will be the
purchase of one pound of the alloy.

(2) Activity List
1. Purchasing alloy A; activity level z;
2 " ., B ” yy Ty
3 » s C ” » T3
4 ” w D » S A
5 ” » B » » Ty
6 » » F . »  Xg
7 » w G » -
8 » s H ” N
9 ” w I ” »w Ty

Step 2: Identifying items. The items considered in the system can now
be listed:

(3) Ttem List
1. Metal (total) measured in pounds
2. Lead " vy as
3. Zinc ' v e
4. Tin ’ R
5. Cost . ,, dollars

Step 3: Input-output coefficients. We shall adopt the first of the three
points of view discussed in the footnote® in what follows. A typical activity
—say activity 1, purchasing alloy A—has the appearance

(4)

v I 1b metal
e e e

Purchasing
$4.1 b 0.iib lead
o ————— -
of 0.11b zine
Alloy A —————

994 /A 0.8 b tin

using the data of (1). Each of the nine activities has likewise one input
and four outputs. Each activity has, of course, one pound of metal as one

& There are three points of view that one can take in formulating this model: (1) the
viewpoint of the alloy purchaser is that he receives dollars and outputs contributions to
pounds of finished blend and to the lead, tin, zinc characteristics; (2) the viewpoint
of the blender is that he inputs contributions to lead, tin, zinc characteristics and
outputs dollars and pounds of finished blend; (3) the viewpoint of the receiver of the
finished blend is that he receives finished metal and contributions to lead, tin, zine
characteristics and outputs money.
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output; the remaining entries in Table 3-4-1, of input-output coefficients
are extracted directly from the data in (1).

TABLE 3-4.T
CoEerFFICIENT TaBLE: BLENDING PrOBLEM I

Activities | ) 2 3 4 5 6 7 8 9
Ttems A B c D E F G H I
1. Metal -1 -1 -1 -1 -1 -1 -1 -1 =
2. Lead -01 —-01 —04 —06 —03 —03 ~03 —05 —0.2
3. Zine -01 —-03 —05 —03 —03 —04 —02 -04 —03
4. Tin —08 —06 —01 —01 —04 —03 —05 —01 —05
5.Costs($) | 41 43 58 60 76 175 73 69 7.3

Step 4: Exogenous flows. These are shown in “black box” form in (5),

and as a list in (6):

(5) Exogenous Flows—Blending Problem I
V/////// 1 16 metol
z dollars SYS""‘/ 03 tb lead
::MZ 0.31b zinc
I oare ris
(6) Ttem Exogenous Flows
1. Metal —1.0
2. Lead —0.3
3. Zinc —0.3
4. Tin —0.4
5. Costs (§) z (Min)

Step 5: Material balance equations. As noted in § 3-3, the Equation
Form for the model can be assembled directly from the results of Steps 3
and 4. Combining the coefficient table (Table 3-4-I) and the exogenous
flow list (6), we arrive at the Tableau Form of our model shown in Table
3-4-11. . B

Linear Programming Problem for Blending Model I. Determine levels
for the activities z,, z,, . . ., zy which (a) are nonnegative (relations (7),
Table 3-4-II), (b) satisfy the material balance equations (8), and (e)
minimize z.
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FORMULATING A LINEAR PROGR;IM;WING MODEL

LINEAR PROGRAMMING MODEL OF BLENDING ProBLEM 1

TABLIE 3-4-11

Tableau Form

|
Activities || A B C D E F G H I :
Exo
Buy, at level enoj‘
Ttems , z, z4 z, Zg T z, Ty Zy Flow: '
1. Metal (total) | -1 -1 -1 —1 -1 -1 -1 -1 -1 -1l m
2. Lead ‘N1 =1 -4 -6 -3 —38 —3 — 3 — .2 -
3. Zinc -1 -3 =25 -3 —3 —4 —2 -4 -3 -
4. Tin -8 ~6 —1 -1 —4 —3 —3 —.1 —.3 — 4|
5. Costs ($) 4.1 4.3 5.8 6.0 7.6 7.5 7.3 6.9 7.3|[= (Minl
Equation Form
(7) Non-
nega't‘iv“’y zl 2 09 Zy _>— O: T3 Z 0! Ty Z Ov xs .>_ 01 Ty 2 07 :t., _>_ 0! Ly 2 O: Zgy .>_ 0
—Zy —z, —Zy —Z, —2Zg —Zq -, —Zy —zy = =1
(8) Material —lz, —.lz, —.4z; —.6z, —.3z, —.3% -3z, —.5zy, —22,=— .3
Balances —lz, —.3z, —.Sz; —.3r, —.3z; —.4z, -2z, —dzy, —3x,=— .
— .8z, —.bz, —.lzr, —.lz, —.4z; —.3z, —.bz, —.dry —.5x=— .
4.1z, +4.3z, +5.8z; +6.0z, +7.6x5 +7.5%4 + 7.3z, +6.82y +7.3z, = 2 (M

Blending Problem II.

The particular linear programming problem considered above is a little
too large for us to solve conveniently until the techniques of Chapter 5
have been developed. (It is given as the Illustrative Example 2 of that
chapter.) Its solution is found to be z, =0, 2, = 2, 2, = %, and all the
remaining activities at zero level. The minimum cost for one pound of metal

- is $4.98. As an alternative we shall consider an easier and different problem.

To simplify the blending problem so that it can be solved here graphically,
let us try to find the cheapest blend of alloys that will have .4 lb. of tin
per pound of metal (the remaining .6 Ib. of metal may have lead and zine
in any ratio). This is, of course, not the problem we formulated earlier, but
it will not be necessary to go through the whole model-building process
again in order to formulate it. ALl we have done is to drop here the require-
ments laid down in (6) for items 2 (lead) and 3 (zinc); the other requirements,
the activities and the input-output coefficients, need not be changed in
building this simpler model. Thus, we can obtain the equation form of the
simplified model by merely deleting the second and third equations of (8),
which relate to lead and zine. We are left with the first, fourth, and fifth
equations of (8).

The discussion will be made still easier if we change the signs of all the
terms in the “Metal” and “Tin” equations.

Linear Programming Problem for Blending Model 11. Determine levels
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3-4. EXAMPLES OF BLENDING

for the activities x,, z,, . . ., z which (a) are nonnegative, (b) satisfy the
equations

(9) z, + z, + T, + z, + z; + zs + z; + Ty + Ty =1
(10)y  .8x, 4+ 6ry + .lry o Ll - ey | 3Bx, | By - Ll F 5y 4

(11) 4.1x, + 4.3x, + 5.8x; + 6.0x, + 7.6x; -+ 7.52, + 7.32, + 6.924 -+ 7.32, = 2

and (¢) minimize z.

Graphical Representation. The data of the blending problem have now
been reduced sufficiently to permit their graphical representation in Fig.
3-4.I. For each of the nine activities we take its two coefficients from
equations (10) and (11), and represent the activity by a point having these
two numbers as coordinates. Thus the point A, representing alloy A, has
coordinates (.8, 4.1), which are the amount of tin and the cost per pound
of alloy A; similarly, the point B has coordinates (.6, 4.3), the amount of
tin and cost per pound of alloy B; etc. Let (u, v) be the coordinates of a gen-
eral point. ‘

The fact which makes this graphical representation valuable is that not
only can the input-output coefficients of any.activity be represented by a
point, but the net exogenous flow to the system as a whole can be represented

also as a point for any program involving nonnegative levels z,, . . ., z,,
which sum to unity. Consider, for example, the program =z, = r, = {,
23 =z, = . . . =0, which consists of using one-half pound each of alloys

A and B. It yields .8(}) + .6(}) = 0.7 pound of tin and costs 4.1(}) + 4.3(3)
= 4.2, and can thus be represented in Fig. 3-4-I by the point p,, half-way
between A and B. Another program, z, = }, #, = 7, = }, using one-half
pound of A and one-quarter each of B and I, has coordinates .8(3) + .6(}) +
.5(}) = 0.675 for tin and 4.1(}) + 4.3(}) + 7.3(}) = 4.95 for cost, and can
be represented by p,.

In each case, the coordinates of the point representing the mixture are a
weighted average of the corresponding coordinates of the points representing
the pure alloys; thus, we say that the point p, is the weighted average of
the points A and B with weights } and }, respectively, and that p, is the
weighted average of the points A, B, and I with weights 4, , and }, respec-
tively. (In physics, p, is said to be the center of gravity of the system consisting
of a weight of } unit at A and } unit at B; likewise, p, is the center of gravity
of the system consisting of weights §, 1, and } at A, B, and I, respectively.)

It should now be clear that all the nonnegative programs satisfying just
relation (9) are represented by the shaded region of Fig. 3-4-I, the collection
of all possible weighted averages of the nine points A, . . ., I. The feasible
programs, however, are those which yield exactly 0.4 pound of tin; they
are represented by the points of the shaded region which lie on the vertical
line having abscissa 0.4. The point E is such a program, as well as the point
R = (0.4, 5.55), which is the weighted average of A, B, and H with weights
+, 1, and i, respectively. Evidently neither of these points represents the
least-z solution of the problem; the point which does, is the lowest point on
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the vertical line which is in the shaded region. Thus, the linear programming
problem can be interpreted graphically as one of assigning nennegative
weights to the vertices of the figure in such a way that the weighted average
of the vertices lies on the vertical line whose abscissa is 0.4 and has as

T |
Requiremant line —wm={
v:=0.4 |
ar [
&
] -"-\\gl R*% is the lgwest point
71 ) ">y 7 on the requirement line

\_lying in the shaded region.

e

b

2

® N

593 ~+ o N

© bt T N

< | ~a . N

3 | O N
e /% | 8 % ~0,

- i R* is the highest point
S | S on the requirement line
3 lying on o line L beiow

the shaded region.
1 -
| Duality theorem:
2 | Min #=Max S=RF*
To obtoin A% weight |
8 by 1:0.6 and C |
1. by x4 :0.4 or poss |
tine L through 8,C. :
| .
o i L ! | | ! ! }
o] Q.1 o2 03 0.4 0.5 0.6 0.7 0.8 0.9
Tin/pound of alloy, ¢ (Ib)
Coordinates: 4:(0.8, 4.1) 6:(0.5, 7.3)
g:(0.6, 4.3) H.{0.1, 6.9)
c:(0.1, 5.8) 1:{0.5, 7.3)
0:(0.1, 6.0)
£:(0.4, 7.8) R=(0.4, 5.5)
F:(0.3, 7.5) R*:(0.4, 4.9)

Figure 3-4-I. Duality theorem illustrated on blending model IL.

small an ordinate z as possible. From the graph we can see that the desired
weighted average, R*, lies on the line BC; i.e., it is the average obtained
by giving certain weights, 2, and z;, to B and C, and weights of zero to all
the others. To determine z, and z,, set all z; = 0 except z, and 7, in (9) and
(10), i.e., consider mixtures consisting only of B and C; then we must have

Zp+ 23 =1
6z, 4+ Jzg = 4
(48]
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which yields
x, = .6, x5 = .4
and
Min z = 4.3z, + 5.82; = 4.9

We conclude that it is best to blend in the proportions of .6 pound of alloy
B to .4 pound of alloy C to produce the cheapest alloy containing 40 per
cent tin. The blend will cost $4.9 per pound.

Algebraic Check—the Dual Linear Program. We can check algebraically
whether our choice of B, C in Fig. 3-4-I is correct by first determining the
line joining B to C and then testing to see if each of the points of the shaded
region has an ordinate value v greater than that of the point on the line
with the same abscissa u. If the latter is true we say the shaded region lies
“above” the extended line joining B to C.

Now the equation of a general line in the (u, v) plane is

v=m + U

where 7, is the intercept and m, the slope. In order that the shaded region
lie above this line, each of the points A, B, C, . . ., G, I (which generated
the shaded region) must lie on or above the line. Substituting the u = .8
coordinate of A into the equation, the value v = m; + my(.8) must be less
than or equal to the v coordinate of A. Thus our test for A is 7y + my(.8) < 4.1
and for the entire set A, B, C, . . . we must have

(12) m + my(.8) < 4.1
m + my(.6) << 4.3
m + m( 1)< 5.8
am + (1) < 6.0
m + m(4) L 7.6
m + m(3) <L 7.5
m + m{5) <L 7.3
my + (1) < 6.9
m + my(5) < 7.3

Let S = (4, #) be the intersection of the vertical line w = 4 with
v = m, + mu; then the line we are looking for (and which we hope will be
the one joining B to C) is the one below the shaded region whose v = %
coordinate of S is maximum, i.e.,

(13) m, + my(4) = 7 (Max)

The problem of finding ,, 7, and Max & satisfying (12) and (13) is known
as the dual of our original (primal) problem (9), (10), and (11). The fact
that Max & = Minz for these two problems is a particular case of the
Duality Theorem for Linear Programs (see Chapter 6).
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If we conjecture that some pair like B, C (obtained by visual inspection
of the graph or otherwise) is an optimal choice, it is an easy matter to verify
this choice by checking whether (i) the intersection S lies between the selected
two points and (ii) all points A, B, C, . . . lie on or above the extended line
joining the selected two points. To check the first, we solve

(14) T+ 23=1

By + dx; = 4
obtaining x, = .6, z; = .4 which are positive, so that S lies between B and C.
_ Thus these values with remaining z; = 0 satisfy the primal system (9), (10},

and (11). To check the second we determine the equation of the line by
stating the conditions that the line pass through B and C,

(15) 7y + 7y(.6) = 4.3
: m, + my(.1) = 5.8

This yields 7, = 6.1, m, = —3, which satisfy the dual system (12).

3-5. A PRODUCT MIX PROBLEM

A furniture company manufactures four models of desks. Each desk is
first constructed in the carpentry shop and is next sent to the finishing
shop, where it is varnished, waxed, and polished. The number of man hours
of labor required in each shop is as follows:

Desk1 Desk2 Desk3 Desk4

1) Carpentry Shop 4 9 7 10
Finishing Shop 1 1 3 40

Because of limitations in capacity of the plant, no more than 6,000 man
hours can be expected in the carpentry shop and 4,000 in the finishing
shop in the next six months.

The profit (revenue minus labor costs) from the sale of each item is as
follows:

Desk 1 2 3 4
2 :

Profit | $12 §20 $18 §$40

Assuming that raw materials and supplies are available in adequate supply
and all desks produced can be sold, the desk company wants to determine
the optimal product mix, i.e., the quantities to make of each type product
which will maximize profit.
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Ntep 1 Achieities. The four manalncturing notivilbion are

1. Manufneturiog denlc 1 (mennured in doskos produced)
>
i3] *y ‘- ( ” R4 " » )

’ ” 3 ( 131 2 " " )

9 131 4 ( el 2 7 ”” )

Ll

Step 2: Items.

1. Capacity in Carpentry Shop {(measured in man hours)
2. Capacity in Finishing Shop (measured in man hours)
3. Costs (measured in dollars)

Step 3: Coefficients. Manufacturing activity 1, for example, can be
diagrammed as follows: '

(3
4 hours of carpenter capacity 7 /////////////
Monufoc’ure/
1 hour of finishing copacity of | desk
of type 1

LLLLILI LY $i2

The table of input-output coefficients constructed from (1) and (2) is shown
in Table 3-5-1.

TABLE 3.5-1
CorrricteNT TaBLE: Propuct Mix PROBLEM

Activitics Manufacturing Desks
Items (1) 2) 3 4)
1. Carpentry capacity (hours) 4 9 7 10
2. Finighing capacity (hours) 1 1 3 40
3. Cost ($) —12 —20 —18 —40

Step 4: Exogenous flows. Since capacities, in carpentry and finishing,
are inputs to each of these activities, they must be inputs to the system as
a whole. At this point, however, we must face the fact that a feasible
program need not use up all of this capacity. The total inputs must not be -
more than 6,000 carpentry hours and 4,000 finishing hours, but they can
be less, and so cannot be specified precisely in material balance equations.

Step 5: Material balances. If we went ahead with the formulation
anyway, using these figures for the exogenous flows, then in order to retain
reality in the mathematical formulation, we should have to write material
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balance inequalities instead of equations, expressing, for example, the
carpentry capacity limitation as

4z, + 9z, + Tz, + 10z, < 6000

instead of as an equation, which is not according to our rules.

We see that the model cannot be completed with the lists of activities
and items given above, and we have here the case mentioned in the first
section in which a second pass at the initial building of the model is
necessary.

In this instance all we need to do is add activities to the model which
will account for the carpentry and finishing capacity not used by the
remainder of the program. If we specify ‘“not using capacity” as an activity,
we have the two additional activities to add to those listed in Step 1:

5. Not using Carpentry Shop capacity (measured in man hours)
6. Not using Finishing Shop capacity (measured in man hours)

Activity 5 can be abstracted as

(4) [77777777777777.
Not using | umit
of carpentry-shop
copacity
(0L 00 80000001

| hour of corpenter caopacity

The full tableau of inputs and outputs of the activities and the exogenous
availabilities to the system as a whole is shown in Table 3-5-1L.

TABLE 3-5-I1
LiNEAR ProGRAMMING PrOBLEM FOR A ProDUCT Mix MoDEL
Not Using
Activities Meanufacturing Desks Capacity || Exogenous
Carp. Fin. Flows
Input (+)
Itoms (1 (2 8 @ | 5) (6) ||Output (~)
zy Z, Z3 Zs s T
1. Carpentry capacity (hours) 4 9 7 10 1 6000
2. Finishing capacity (hours) 1 1 3 40 1 4000
3. Costs ($) -12 —-20 -18 —40 z (Min)

Thus the programming problem is to determine numbers

(8)

[52]
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3.8 A PrRODUCT MIX IPROBLEM

and minimum 2z satisfying

(6) 4z, + 9z, + Txz; + 10z, + x4 = 6000,
z;+ x5+ 3z 40z, + zg = 4000,
—12z, — 20z, — 18z; — 40z, =z

Note that the same values of the z's which minimize the cost function will
also maximize its negative, namely the profit function p given by

+12z, + 20z, + 18z, + 40z, = p

Thus, a profit maximization problem can be stated as an equivalent to a
cost minimization problem.

Graphical Solution. To apply the method of solution of the last section
to the product mix model, it is necessary to change the definitions of items
and activity levels so that the activity levels sum to unity. This is simply
done by introducing as an item, total capacity, which is the sum of the
carpentry capacity and the finishing capacity, and changing units for
measuring activity levels so that 1 new unit of each activity requires the
full 6000 + 4000 = 10,000 hours of total capacity. To change units note
that one unit of the first activity in Table 3-5-II requires 5 hours of total
capacity; thus, 2,000 units of the first activity would require 10,000 hours
of capacity and is equivalent to one new unit of the first activity. In general,
if y, is the number of new units of the first activity, then 2000y, = =,.
The relationships between the old and new activity levels after such a
change in units for each activity is

2000y, = z,, 1000y, =z,, 1000y, = z;,

200y, = z,, 10,000y, = z;, 10,000y, = =¢.
It is also convenient to change the units for measuring capacity and costs.
Let 10,000 hours = 1 new capacity unit; $10,000 = 1 new cost unit. Then
it is easy to see (and this is left as an exercise) that the Product Mix Model
Table 3-5-IT will become Table 3-5.III after the changes in the units for

TABLE 3-5-I1T
A Propucr Mix MopEL (after change in units)

. Not Using
~ Activities Manufacturing Desks Capacity
h (1 = 10,000 hours) Carp. Fin. || Exogenous
- Flows
n (@ (3 @y B ()
Iterns Y1 Y2 Y5 Y| Ys  Ys
0. Total capacity 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(1 = 10,000 hours)
1. Carpentry capacity .8 9 q 2 1.0 .6
2. Finishing capacity 2 1 3 .8 1.0 4
3. Costs (1 = $10,000) —-24 —-20 —18 — .8 2’ (Min)
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aed by ien and e pive o above the soplacing of =y 10 000 Can the
cost. countion, wid the adding ol the two cquitlons to lorm o total capacily
equation.

We are now ready to find the graphical solution. Because the unknowns
y; > 0 sum to unity, we shall interpret this as assigning nonnegative weights
to points Ay Ay oo Agin Fige 36 10 Axcin the blending problem of the

[
o
(3]

J
o
T

1
3]
T

Cost per unit of octivity,

1
N
[)

T

|

I

|

|

: Availabie finishing shop copacity
2.5 L 1 ] /— 1 1 1 { ]

] 0.2 0.4 0.6 0.8 1.0
Reguired finishing shop copacity per unit of activity, /
Coordinates: A,: (0.2, -2.4), A,: (0.1, -2.0), 45: (0.3,-1.8),

A,: (0.8, -0.8), 4g: (0, O}, 4g: (1.0, O}

Figure 3-5-1. Graphical solution of the product mix problem.

preceding section, we shall ignore one of the material balance equations,
namely that for item 1, carpentry capacity; however, here we will find
that ignoring it does not affect the minimal solution because the equation
is redundant.

In Fig. 3-5-1 cach point A; corresponds to a column, or activity, of
Table 3-5-II1; its coordinates are the coefficients for the finishing capacity
and cost of the activity. Thus the coordinates of A, are (.2, —2.4); of A,
are (.1, —2.0), . . .; of A, are (0, 0); and of A4 are (1.0, 0).

We seek an assignment of nonnegative weights y; for each of the six
points which sum to unity, so that their weighted average has coordinates
(4, 2’) and 2’ is minimal. This, clearly, is the point R* found by assigning
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roro waights Lo all points, excopt. A nd Ay, and approprintoly woighting
the lutter so that the center of gravity of A, and A, has abscissa 0.4. To
determine y; and y,, set all y; = 0 except ¥, and y, in Table 3-5-1I1, yielding
2y + By = 4
nw i 1

—24y, — By, =72

whence
Y1 =2/3,y,=1/3,2" = —5.6/3

Thus the optimal solution is to manufacture z, = $(2000) desks of Type 1,
x, = $(200) desks of Type 4, which will use the full capacity of the plant
and will cost z = $10,000 (—5.6/3), or yield $18,666.66 profit.

The carpentry capacity is completely accounted for by this solution,
despite the fact that its material balance equation was omitted in the above
calculation. As noted earlier, this is because adding the total capacity equation
to the system enables us to drop either of the remaining equations and still
have a model which accounts for all the capacities; the carpentry capacity
equation becomes redundant, and can be dropped.

3-6. A SIMPLE WAREHOUSE PROBLEM

Consider the problem of stocking a warehouse with a commodity for
sale at a later date. The warehouse can stock only 100 units of the com-
modity. The storage costs are $1.00 per quarter for each unit. In each
quarter the purchase price equals the selling price. This price varies from
quarter to quarter according to (1):

1) Quarter (£) | Price per unit (dollars)
1 10
2 12
3 8
4 9

This implies that a profit can be realized by buying when the price is low
and sclling when the price is high. The problem is to determine the optisal
selling, storing, and buying program for a one-year period by quarters,
assuming that the warehouse has an initial stock of 50 units.

In each period (quarter), ¢, we distinguish four types of activities:

Quantity
1. Selling stock Ty
2. Storing stock Zyy
3. Buying stock Ty
" 4. Not using capacity (slack) Ty
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and three types of items:

1. Stock
2. Storage Capacity
3. Costs

These activities have the input-output characteristics sketched in (2).

With four time periods each item and activity is repeated four times,
which leads to Table 3-6-I, the tableau for the warehouse problem. The
problem here is to find the values of z,; > 0 which satisfy the equations
implied by the tableau and which minimize the total cost.

2)
Selling
Stock on hand revenues
e 1-unit ————
at time ¢
stock
1 unit of stock on hand
at time ¢
Storing
1 unit of capacity during 1 unit of stock on hand
> 1-unit >
12 quarter at time ¢ + 1
stock
Storage costs/unit
Buying
Costsfunit Stock on hand
R 1-unit —_—————
at time ¢
stock
Not using
Capacity during I-unit
8 quarter capacity
(slack)
[56]
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TABLE 3-6-1
A SimpLe WAREHOUSE MODEL

Ist Quarter 2nd Qudrter 3rd Quarter 4th Quarter

ctivities @ £ @ A o ) @ 2¢ || Exog-

$ 5 2 2|13 8 5 3|3 8 2 /3 8 % 2l

s & A @m|H ® K B |B W A @Bm|w @w A = | Fows

Items Tyy Tz Ty Ty | T Tae Tz Fa | T Tiz Tu T | Ta Fa Za Fa

t = 0 Stock 1 1 -1 50
Capac. 1 1 100
¢t = 1 Stock -1 1 1 -1 0
Capac. 1 1 100
t = 2 Stock -1 1 1 -1 .0
Capac. 1 1 100
¢ = 3 Stock -1 1 1 -1 0
Capac. 1 1 100

Costs || —10 1 10 —12 1 12 -8 1 8 -9 1 9 z (Min)

3-7. ON-THE-JOB TRAINING

The purpose of this example is to illustrate the ability of the linear
programming model to cover the many and varied conditions that are so
characteristic of practical applications.

The problem. A manufacturing plant has a contract to produce 1200
units of some commedity, C, with the required delivery schedule r; as in (1).

(1) End of week 1 2 . 3 4 5

No. of units | 7, = 100 | r, = 200 | r, = 300 | r, = 400 | r; = 200

What hiring, firing, producing, and storing schedule should the manufacturer
adopt to minimize the costs of his contract under the following conditions?

(a) Each unit of production not delivered on schedule involves a penalty
of p = $30 per week until delivery is effected.

(b) Any production ahead of schedule requires storage at s = §10/unit/
week.

(¢) All required deliveries must be met by the end of the fifth week.

(d) Initially there are g = 20 workers and A = 10 units of C on hand.

(e) Each worker used in production during a week can turn out k = 8
units of C.

(f) Each worker used for training recruits during a week can train
{ — 1 = 5 new workers (i.e., produce { trained workers including himself).

(g) Wages of a worker are m = $100/week when used in production or
when idle.

(h) Wages of a worker plus { — 1 recruits used in training for one week
are n = $600.

(i) The cost to fire one worker is f = $100.

We shall choose for our unit of time a period of one week. At the begin-
ning of each week we shall assign the necessary number of workers and units
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of C to carry out an activity that takes place during the week. Accordingly,
at each of the six times ¢ = 0, 1, 2, . . ., 5, material balance equations for
two items will be set up:
Symbol for item
Workers W,
Commodity C,

In addition to these equations there will be a cost equation for the cost item.
In each of five weekly periods six activities will be set up as in (2).

(2) Symbol for Activity
1. Training T,
2. Producing P,
3. Idling I,
4. YFiring F,
5. Storing S,
6. Penalizing (for Deficit) D,

The input-output characteristics of each of the activities, except perhaps
the penalizing activity, are straightforward. Each failure to deliver a unit
makes it necessary to decrease by one unit the present demand for the
commodity and to increase the demand one unit in the next time period
at a cost of p dollars. Another rationalization of this activity is to imagine
that the deficit is temporarily satisfied by renting on the open market one
unit of the commodity which must be returned the following week at a
cost of p dollars.

(3)
Training Production 1dling
Te P 1
1-#, LW,y W 1 Wepy  1-W VW
kC
sn sm i+ sm
Firing Storing Penalizing

£ ) 0,
t-w, 1-Cy 1:Copt 1 Cpat [
$r $s B 7

These activities are shown in conventional tableau form in Table 3-7-1.
In the fifth week the penalizing activity is omitted because condition (c)
states that all deliveries must be met by the end of the fifth week. In the
sixth week a firing activity Fg has been introduced to get rid of all workers
and to terminate the program. (Why is this necessary ?)
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FORMULATING A LINEAR PROGRAMMING MODEL

3-8. THE CENTRAL MATHEMATICAL PROBLEM

In the preceding sections, linear programming models were constructed
for several examples. In each of these the problem was to find the solution
of a system of linear equations or inequalities which minimized or maximized
a linear form. This optimizing of a linear form, subject to linear restraints,
is called the central mathematical problem of linear programming.

Whenever the restraints were stated as inequalities in the examples, it
was possible to change each inequality to an equation by the addition of a
slack variable. Furthermore, a problem in which a linear function was to be
maximized could be converted to a problem of minimizing the negative of
this form.

Thus, it is possible to formulate all linear programming problems in the

same general manner; namely, to find the solution of a system of linear

‘equations in nonnegative variables which minimizes a linear form. Since
this algebraic statement of the problem arises naturally in many applica-
tions, it is called the “‘standard form” of the linear programming problem.
In this section the formulation of the standard form of the central mathe-
matical problem of linear programming will be reviewed and formalized.

If the subscript j = 1, 2, . . ., N denotes the jth type of activity and
x; its quantity (or activity level), then usually z; > 0. If, for example, z;
represents the quantity of a stockpile allocated for the jtb use, it does not,
as a rule, make sense to allocate a negative quantity. In certain cases,
however, one may wish to interpret a negative quantity as meaning taking
stock from the jtb use. Here some care must be exercised; for example,
there may be costs, such as transportation charges, which are positive
regardless of the direction of flow of the stock. One must also be careful not
to overdraw the stock of the using activity. For these reasons it is better
in formulating models to distinguish two activities, each with a nonnegative
range, for their respective z;, rather than to try incorporating them into a
single range.

The interdependencies between various activities arise because all
practical programming problems are circumscribed by commodity limitations
of one kind or another. The limited commodity may be raw materials,
manpower, facilities, or funds; these are referred to by the general term
item. In chemical equilibrium problems, where molecules of different types
play the roles of activities, the different kinds of atoms in the mixture are
the items. The various items are denoted by a subseript ¢ (+ = 1,2,. . ., M).

In linear programming work, the quantity of an item required by an
activity is-assumed to be proportional to the quantity of activity level; if
the item is not required, but produced, it is again assumed to be proportional
to the quantity (or level) of the activity. The coefficient of proportionality
is denoted by a,;. The sign of a,; depends on whether the item is required
or produced by the activity. As we have already seen in § 3-3-(7), the sign
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3-8. THE CENTRAL MATHEMATICAL PROBLEM

convention used will be (] ) if required and () i produced. Fially, b,
denotes the quantity of the i'h item made available to the program from
outside (or exogenous) sources, if it is positive; it denotes the quantily to
be produced by the program, if it is negative. The interdependencies between
the z, are expressed as a set of M linear equations such that the it equation
gives a complete account of the ith item. In general, this set of M linear
equations is represented by

(1) an®, + 0%, + ... Fanry =0b
Gn®y + Qga%y + . . .+ GynEIn = by

Gy, + Aye®s + - - - + GynZN = by
where

(2) z; >0 i=(1,2,...,N)

We shall use capital M and N whenever we wish to refer to the standard
form and use m and n for a general m X n system of linear equations. Any
set of values z; satisfying (1) and (2) is called a feasible solution because the
corresponding schedule is possible or feasible.

The objective of a program, in practice, is often the most difficult part
to express in mathematical terms. There are many historical reasons for this
which go beyond the scope of this text. In many problems, however, the
objective is simply one of carrying out the requirements (expressed by
those b; which are negative) in such a manner that total cosis are minimum.
Costs may be measured in dollars, in the number of people involved, or in
a quantity of a scarce commodity used. In linear programming the total
costs, denoted by z, are assumed to be a linear function of the activity levels:

(3) Gy + CoZy + . . . b CIy =2

Derinirion: The linear form z is called the objective function (or form).
For purposes of solution we shall, as a rule, rewrite (3) as just another
equation (4), where z is a variable whose value is to be minimized

4) (—2)+ ey +cozs+ .. . Feyzy=0

In some problems the linear objective form is to be mazimized rather
than minimized. For example, the problem may be to produce the maximum
dollar value of products under a fixed budget, fixed machine capacity, and
fixed labor supply. Suppose the linear form expressing total profits to be
maximized is

Py + poZe + . . .+ PN
This is obviously mathematically equivalent to minimizing
D% — Pp¥p — . . - —PNIN = %+ Oy + . . .+ ONEN =2

where ¢, = —p,, ¢, = —p,, . . ., ¢y = —Dn-
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Thas, thoe standarcd oo of the lawsar programnving prroblom s talion an
the determtination of a solution of a system of linear cquations in non-
nogative varinbles which minimizes n linear form.

The Dual Linear Program. Associsted with a lincar program (called
the primal) is another called the dual. The objective of the primal is to
minimize, while that of the dual is to maximize. We have already seen in
§ 3-4 how the dual problem arises quite naturally as an algebraic check of
a conjectured optimal solution to the primal problem. 1t will be noted that
the array of cocfficicnts and constants of the dual arc obtained by trans.
posing those of the primal. The variables 7; of the dual correspond to the
equation i of the primal and are, however, unrestricted in sign. The variables
x; of the primal, restricted in sign to greater than or equal to zero, correspond
to an inequality relation of “less than or equal” relations in the dual. For
the general primal problem in standard form, the dual is to find values
Ty, Tay - - - Ty and Max v satisfying

aym Fagm + ...+ Gy <G
yomy F ooy . . o QuppTTy K Co
alN'ﬂ'l + azN’ﬂz + - + aMN‘TTM< CN

bl'rrx -+ b2‘”2 + . .+ bM”M v (MB:X)

In Chapter 4, a method is given for transforming the dual into a standard
linear program. When a feasible solution to the primal is optimal the method
for checking optimality gives rise automatically to an optimal solution for
the dual problem. Since the dual of the dual problem is the primal problem,
it is a matter of convenience whether one selects to solve the primal problem
or the dual.

3-9. PROBLEMS
General.

1. (a) What is meant by the objective function; the central problem of

linear programming; a feasible solution ?

(b) In many applications the variables and the equations each have a

typical interpretation. What is it ? Where do the inequality relations
come in; the objective function?

(¢) Assuming that firing is the opposite of hiring, give reasons why 1t is
better to treat these as two nonnegative activities rather than as a
single activity with positive and negative activity levels.

2. If an activity such as steel production needs capital such as bricks and
cement to build blast furnaces, what would the negative of these activities
imply if they were used as admissible activities?

3. If the difference between production and requirements is interpreted as
surplus or deficit (depending on sign), illustrate how surplus can be
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3-9. PROBLEMS

interpreted as a storage activity and deficit as a purchasing activity in
which all coefficients of the associated variables can be quite different.

Transportation Problem. (Refer to § 3-3. See § 3-4 for duality explanation.)

4. Two warehouses have canned tomatoes on hand and three stores require

more in stock.

Ware- Cases Cases
house on Hand Store Required
I 100 A 75
1I 200 B 125
C 100

The cost (in cents) of shipping between warehouses and stores per case
is given in the following table:

| A B C
I ‘ 10 14 30
Il 20 17

(a) Set up the model describing the shipping of tomatoes from ware-
houses to stores, where the objective is to minimize the total shipping
cost.

(b) Reformulate this problem assuming the cases required at B are only
60, and introducing a disposal activity at the warehouses at a loss
of 5 cents per case disposed.

(c) Show that the optimal solution to problem (a) is the same if the
cost per case from Warehouse I is increased by 3 cents; by 10 cents.

(d} Reformulate problem (a) assuming the cases available at Warehouse
1 are 90. Introduce a purchase activity from outside sources at a cost
of 20 cents per case over the costs at Warehouses I and II.

(e} How would you formulate a model to include both the possibility of
outside purchases at the destinations and disposal at the warehouses?

(f) State the dual of problems (b) and (d). How is the dual for (c) related
to that for (a)?

. Generalize problem 4 (a) for m warehouses and n destinations. Assume

that the availability at the i source is @; and requirement at thée jth
destination is b;. For part (a) assume Y a; = D7 b;. Make the necessary
modifications for parts (b), (c), and (d). The cost of transportation from
source 4 to destination j is ¢,;. Show in (a) there is one redundant equation.
How does the deletion of one redundant equation affect the dual?

Blending Problem. (Refer to § 3-4.)

6. A housewife asks a butcher to grind up several cuts of beef to form a

blend of equal parts of proteins and fats. The butcher, being conscientious,
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wishes to do this at the least cost per pound of meat purchased exclusive
of water content.
Porter- Rib
Chuek Flank house Roast Round Rump Sirloin

% Protein 19 20 16 17 19 16 17
9% Fat 16 18 25 23 11 28 20
Cost/lb 69 98 1.39 1.29 1.19 1.50 1.65

(a) What amounts of each type of meat should he use and how much
should he charge?
(b) Usually he has extra fat available free per pound. How does this
alter the solution?
(¢) Solve the problem graphically.
(d) Find the dual.
7. (Thrall.)
(

a) Suppose steaks contain per unit 1 unit of carbohydrates, 3 units of
vitamins, 3 units of proteins and cost 50 units of cash. Suppose
potatoes per unit contain 3, 4, 1, and cost 25 units of these items
respectively. Letting x, be the quantity of steaks and z, the quantity
of potatoes, express the mathematical relations that must be satisfied
to meet the minimum requirements of 8 units of carbohydrates, 19
units of vitamins, and 7 units of protein. If x; and z, are to be
chosen so that the cost of diet is a minimum, what is the objective
function ?

(b) Reduce the inequality system of (a) to an equality system in non-
negative variables.

8. (a) Formulate the housewife problem of § 1-2.

(b) Is there any difference between the activity of inserting food ¢ into
the father's diet and the activity of inserting the same food into the
children’s diet?

(¢) Could the housewife conceivably end up with the task of cooking
five different dinners on the same day, one for each member of the
family ? '

Product Mix Problem. (Refer to § 3-5.)
9. Solve the duals of the three primal problems within the product mix
problem. How are the duals interrelated ?
10. (a) Suppose contracts with various retailers have already been signed
for the following quantities of desks:

Desk 1 2 3 4

Number sold 60 30 10 50

How does this affect the model ?
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3-9. PROBLEMS

(h) How dom one interprot an optimnd nolation if o fraetional number
ol desks is obtained ¢ One possible interpretation is that these are
rates for a six-month period. Suppose the fractional solution is
rounded to the nearest integer, find out how much change is required
in the productivity coefficients or in the shop capacities for the
adjusted solution to be optimal. Are the coefficients and constant
terms really known accurately in any real situation ?

A subeontractor has made arrangements to supply a company with

150 assemblies in January and 225 in February. Using an eight-hour

shift the subcontractor can produce only 160 assemblies each month.

By working the regular shift for two hours overtime, an additional 30

assemblies can be made, each with an overtime penalty of $20. Assem-

blies can be stored at a cost of $3 per month. Set up a model for finding
the production program which minimizes costs.

A mass production house builder plans to build homes on 100 lots in a

new subdivision. He has decided on 5 basic styles of homes: Ranch,

Split-level, Colonial, Cape Cod, and Modern. To build the homes, the

builder has two major contractors: masons for foundation work, and

carpenters for the rest of the construction. The number of days required
for the work is as follows:

Ranch  Split-level Colonial Cape Cod Modern

Foundation 1 2 2 1 1
Framework 4 7 6 5 3
Profit 2,000 3,000 2,500 1,700 2,000

The builder borrowed money at a very low interest rate for three years. Be-

cause it normally takes two months to scll a house, the builder wanted all

homes to be completed in 34 months, or approximately 610 working days.

(a) How many of each style home should be built to maximize profit ?

(b) If the builder wanted to build at least 10 of each style, what should
be his building program to insure maximum profit ?

(c) Solve by the method used for the product mix problem, § 3-5.

A machine problem of Kantorovich [1939-1].

Formulate, but do not solve. An assembled item econsists of two
metal parts. The milling work can be done on different machines,
milling machines, turret lathes, or on automatic turret lathes. The
basic data are available in the table at the top of p. 66. From this:

(a) Divide the work time of each machine to obtain the maximum
number of completed items per hour.

(b) Prove that an optimal solution has the property that there will be
no slack time on any of the machines; that equal numbers of each
part will be made.

(c) State the dual of the primal problem.
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Productivity of the Machines for Two Parts

Maximum Output*

Number of| PET Machine per Hour

Machines

Type of Machine
First Second
Part Part

Milling machines 3 10 20
Turret lathes 3 20 30
Automatic turret lathes 1 30 80

* If devoted exclusively to making one of the parts.

(a) Generalize problem 13 to » machines, m parts, where the objective
is to produce the largest number of completed assemblies.

(b) Show, in general, if each machine is capable of making each part,
and there is no value to the excess capacity of the machines or
unmatched parts, any optimal solution will have only matched parts
and will use all the machine capacity. What can happen if some
machines are incapable of producing certain parts?

(¢) State the dual of the primal problem.

Suppose there are two types of assemblies instead of one and a “value”

can be attached to each. Maximize the weighted output.

Extend the formulation of problems 14 and 15 to cover the following:

(a) Suppose there is a limit on electricity used which depends on the
task-machine combination.

(b) Suppose it is possible, by the it mode of production, to produce
¢ix.; units of the kt2 part on the {tb machine.

(¢) Suppose it is possible to put values on surplus parts; on unused
machine capacity. .

Three parts can each be produced on two machines. Assume that there

is no set-up time and that this is a continuous type production, that is,

a part is first inserted in Machine 1 and then is immediately put in

Machine 2 with practically no time elapsing between operations. The

unit time per part in each machine and profit on each finished part is

given by: '

Part
Machine
A B C
1 .02 .03 05
2 .05 .02 .04

Profit .05 04 .03

(a) Formulate a model for the optimal product mix. Express this in
terms of a linear inequality model, given that there are available
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only 40 hours on each machine. Transform the system into an
equality system. .

(b) Generalize to n different kinds of parts and m machines.

(c) State the dual of problems (a) and (b).

Simple Warehouse Problem. (Refer to § 3-6.)

18.

{(a) Reformulate the simple warehouse problem, § 3-6, if it is desired to
have the quantities of selling, storing, and buying to be the same
for the corresponding quarter each year. Formulate the yearly least-
cost model assuming that the initial stock level is the same as the
stock held in storage at the end of the year.

(b) Discuss the special properties of the coefficient matrix in a dynamic
problem of this type.

On-the-Job Training Problem. (Refer to § 3-7.)

19.

20.

21.

22.

Reformulate the on-the-job training problem, § 3-7, assuming the cost
of increasing the level of production above last week’s level is §¢ = 4
per unit of increase. There is no cost to decrease. All production is
stored at a cost of §s = 1 per unit per week until the Jast week. If the
initial production level is P, =5 and the final required inventory
position is g5 = 200 workers, what is an optimal production program ?
A farmer may sell part of his crop and plant the remainder where his
yield will be 1 bushels per bushel planted. He expects to get p; dollars
profit per bushel for the crop he has planted, p, and p, dollars per bushel
for the two following crops. His first crop will be 4 bushels.

Problem: Set up the basic equations and the linear form which
represents his total profits for the three periods. Show that it always
pays to sell the third crop. Show that it pays to plant his entire first
and second crop if A%p; > p,, 1py > p,. Show that it pays to sell the
entire first crop if p; — p, > 0, p, — p; > 0. When does it pay to
sell the entire second crop?

(Kemeny) The Chicken and Egg Problem.

Formulate: Suppose it takes a hen two weeks to lay 12 eggs for
sale or to hatch 4. What-is the best laying and hatching program if at
the end of the fourth period all hens and chicks accumulated during the
period are sold at 60 cents apiece and eggs at 10 cents apiece. Assume
(a) An initial inventory of 100 hens and 100 eggs,

(b) 100 hens and zero eggs,

(c) 100 hens and zero eggs and also a final inventory of 100 hens and
zZero eggs.

(Orchard-Hays.) A factory buys item A and produces item B. Each B

requires one A and the factory has a production capacity of 3,000 B’s

per quarter year. However, A’s are available in different amounts and

B’s are required in different amounts each quarter. Furthermore,
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storing B’s is expensive and the carryover of this item from one quarter
to the next is to be minimized. At the beginning of the year, 3,000 A
items are on hand and at least this many must be left over at the end
of the year. The availability of A items and the requirement of B items
by quarters is as follows:

18t quarter: 5,000 A’s available, 1,000 B’s required

oma 3,000 ’» 4,000 »
3ra 1,000 » 3,000 »
40 2,000 ” 1,500 ”

There is storage room available for 10,000 A’s or 2,000 B’s or any
combination in this ratio. Assume that, for each quarter ¢, the equation

s, Ag + 5B, + S, = 10,000 @=1,234)

is sufficient to express the storage constraint (this ignores bottlenecks
during a quarter). The variables are defined below.

Set up a linear programming model to minimize the carryover of
item B cach quarter subject to the stated restraints. For each quarter,
use the following 7 variables:

M,: amount of B items manufactured in quarter g.

p,: amount of A items purchased in quarter g for use in quarter ¢
(or later).

: amount of A items unused at end of quarter g.

: amount of B items on hand (over requirements) at end of
quarter gq.

C,: excess production capacity during quarter g.

8,: excess storage capacity during quarter g.

U,: excess availability of A items during quarter g.

This gives 28 variables; one special one, for the end-of-year requirement
on A’s, is
v: excess inventory of A at end of year.

These 29 variables will have coefficients in 21 restraint equations as
follows:

a,: Balance equation in A items for quarter g.

b,: Balance equation in B items produced in quarter g.

¢,: Production capacity restraint equation for quarter g.

p,: Restraint equation for availability of A items in quarter g.

s, Balance equation for storage capacity in quarter g (see above).

v: Requirement equation for carryover of A items at end of year.

Find any feasible solution. Is your solution optimal? If the availability
of A items is changed to 3,000 per quarter, what happens? Can you see
how other changes in availability and requirement constants would
make the problem harder? Impossible ? Redundant? Inconsistent ?
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CHAPTER 4 -

LINEAR EQUATION. AND INEQUALITY
SYSTEMS

4-1. SYSTEMS OF EQUATIONS WITH THE
SAME SOLUTION SET

Consistent Equations and Linear Combinations.

Because methods used for solving the linear programming problem
depend on familiar methods for solving a system of linear equations, it is
well at this point to review some elementary concepts. To facilitate the
discussion, we consider the following example of two equations in three
variables:

) Ty — Ty + 2= 2 (E;)

2 2y — 2y =17 (E,)

The ordered set of values z;, = 3, x, = 2, z; = 1 is said to be a solution
of E, because substitution of these values for z,, z,, z; in the first equation
produces the identity, 2 = 2. The solution (3, 2, 1) is said to satisfy equation
E,.

In general, suppose we have a system of m equations in n variables,

A%, + ATy + .. A, = b
@) Ay @y + Qooy + . . . + GguZ, = by
By @y + Aoy + - o Qo = by,

(This is an arbitrary m X % system of linear equations. We shall use capital
M, N when we wish to designate the system of linear equations in the
standard linear program arrived at in § 3-8-(1).) A solution of the itk equation
is an ordered set of numbers (z;, z;, . . ., z,) such that

’ 4 . ’
ATy + ATy + . .+ @z, =b;

An ordered set of numbers is said to be a solution of a system of equations
provided it is a solution of each equation of the system. For example,
because substituting (3, 2, 1) for the variables in equation E, yields 7 = 7,
an identity, we have (3, 2, 1) as a solution of both E, and E, and therefore
of the system. ;

We usually speak of “a’ solution rather than “‘the” solution to avoid
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quoentionn of uniguencnn L cortainly evident Lhat o nyntem ol cquntionn
need not possess o unigue solation nor, ideed, any solution at wll. Bosides
(3, 2, 1) for example, the system above is satisfied by any set of numbers of
the form (3, z; + 1, z;) where z; may be chosen arbitrarily. A system which
has solutions, unique or not, is called consistent or solvable. Otherwise, we
refer to it as inconsistent or unsolvable.

The aggregate of solutions of a system is called its solution set. If the
system is inconsistent its solution set is said to be empty.

Given a system such as (1) it is easy to construct new equations from it
that have the property that every solution of (1) is also a solution of the
new equation. In (3) the new equation is shown below the line; it is formed
by multiplying the first equation by 2 and the second by —3, shown on
the left, and summing.

3) 2: Z, — Zy + Tyg=2
-3 2, + @y — Xy =17

—4z, —bz, +523 = —17

Tt will be noted that the solution, (3, 2, 1), of the system (1) is also a solution
of the new equation.

A scheme for generating new equations, whose solution set includes all
the solutions of a general linear system (2), is shown in (4). For each equation
i an arbitrary number, k,, is chosen,! shown on the left; the new equation
below the line is formed by multiplying the ith equation by k; and summing:

ki oapm 4 apt .. ot Gt =0
kot ap® + Gp%y + . . .+ Gp¥n = by
@
Em: Gui®y + GmaZy + -+« + Qun®n = by

(5) dyzy + dpzg+ ...+ dz,=4d
The coefficients of the sum are easily read off; they are

dy = kyay + ksayy + - o -+ K@
dy =k, + kolge + . . .+ ko
(B) e
dy = ka1, + Koo + -+ -+ Enlmn
d =kb, +kby + ...+ knbn

An equation such as (5) formed in this manner is called a linear combination
of the original equations. The numbers k; are called multipliers or weights

of the linear combination.

1 The constants k; may be zero.
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Writing (4) and (5) in detached coefficient form (7) and (8) we see that the
operation of forming a linear combination of the equations corresponds to
forming a linear combination of the rows of (7). By this we mean that we
can form each element of row (8) by summing the products of k; by the
corresponding element in row ¢ of (7).

Multiplier
(7) QG Gy . . .0y, b ky
Gn O -G by k,
Am1  Cmy * Qmn bm km

8) (d dy ...dy d ]

ExERcCISE: Suppose a linear combination of the columns of (7) equals
some other column. Show that this is true if the row in (8) is adjoined to
those of (7).

Whenever a set of numbers (z,, z,, . . ., %,) constitutes a solution of
(4), equation (5) becomes, upon substitution, a weighted sum of identities
and hence an identity itself. Therefore, every solution of a linear system is
also a solution of any linear combination of the equations of the system. Such
an equation may therefore be inserted into a system of equations without
affecting the solution set.

Derrvrrions: If in a system of equations, an equation is a linear
combination of the others, it is said to be dependent upon them; the depend-
ent equation is called redundant. A vacuous equation, i.e., an equation of the
form

Oz, + 0z, + ...+ 02, =0

is also called redundant when it occurs in a single equation system. A
system containing no redundancy is called independent.

A linear system is clearly unsolvable or inconsistent if it is possible to
exhibit & linear combination of the equations of the system of the form

9) 0z, + 0z, + ...+ 0z, =d with d % 0;
for any solution of the system would have to satisfy (9), but this is impossible

no matter what values are assigned to the variables. We shall refer to (9) as an
inconsistent equation. (See exercise below.) For example, the system

1! 2,4+ z,4+ z3=5
~1: Z+ z+ =4

0z; + Oz, + Oxy =1

is unsolvable because the first equation states that a sum of three numbers
is 5, while the second states that this same sum is 4. However, if we had
proceeded to apply multipliers ¥, = 1, k, = —1, by way of eliminating,
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say, z,, we would arrive automatically at the contradiction displayed below
the equations. In general, the process of elimination applied to an incon-
sistent system will lead in due course to an inconsistent equation, as we shall
show in the next section.

Exercise: Show that the only single-equation inconsistent linear
system is of form (9).

ExerciseE: Show that if a system contains a vacuous equation, it is
dependent.

How Systems Are Solved.

The usual “elimination” procedure for finding a solution of a system of
equations is to augment the system by generating new equations by taking
linear combinations in such a way that certain coefficients are zero. (This may
be followed by the deletion of certain redundant equations.)

For example in (10) below, the equation E, is multiplied by &k, = —2
and E, by k, = 1 so that upon summing the coefficient of z, vanishes.
This yields equation E,. These operations may be written symbolically,
E; = (—2)E,; + (1)E,. Similarly we can form equation E,; by multiplying
E, by } and we can form E; by adding E; to E,. The augmented system
{E,, E,, . . ., E;} has the same solution set as the original system (1) because
all equations such as E, and E, can be re-expressed as direct linear combina-

. tions of E, and E,.

%, — Tyt Tyg=2 (E,)
22+ xp— x3=1T1 (E,)
(10) 3z, — 3z, =3 (By = —2E, + E,)
Z,— zz=1 (E, = }E,)
z, =3 (E; = E, + E))

It is interesting to note that the subsystem {E,, E} can be used to
easily detect whether any equation is linearly dependent on it. Note that
z, appears in E, with a unit coefficient and zero coefficient in E; and the
opposite is true for z,. This makes it easy to eliminate z, and z, from any
other equation. For example, it is clear that if E, is to be a linear combina-
tion of E, and E, the multiplier of E; must be 1 and of E, must be —1. It
is easily verified that E, = E; — E,, E, = 2E; + E,, E, = 3E,. Thus all
solutions of {E,, E} are also solutions of {E,, E,}, and as noted earlier, all
solutions of {E,, E,} are solutions of {E,, Es}; therefore the solutions of the
twwo subsystems are the same.

A second advantage of {E,, E} is that it is easy to state the set of all
possible solutions. Indeed, choose any arbitrary value for z, = 23 and
evaluate z, and z, in terms of z;. In this case, (¥, = 3, x, =1+ 2d,
z, = 1) describes the set of all solutions. For example, z; = 0 yields the
particular solution (z, = 3, 2, = 1, 23 = 0).
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In general, the method of solving a system (we shall deseribe this in

detail in §4 2) i one of nugmentation by linear combinnlionn antbil in the

colarged system therse v o subaystem whose solubion set i cany to describe
and snch that ench equation of the full system s linearly dependent upon it
oxcept possibly for the constant term. ‘Phe subsystem acrived at bolongs to

a class called canonical.

DErFINITION: A canonical system with an ordered subset of variables,
called basic, is a system such that for cach 7, the ith basic variable has a
unit coeflicient in the ¢'» equation and has zero cocflicients elsewhere.

For example, {E,, E,} in (10) is canonical with z, associated with E,
and z, with E,. System (11) below is canonical because for each 1, z; has a
unit coefficient in the ¢t equation and zero elsewhere.

Z CF GnFea G =0
Z2 + Gy prZrg + - - -+ ana =0,
(11) ’ ’
A 51‘
ExErcise: Show how by arbitrarily choosing values for z,.,, . . ., z,

the class of all solutions can be generated. How can (11) be used to check
easily whether or not another equation is dependent upon it ?

Deletion of an equation that is a linear combination of the others is
another operation that does not affect the solution set. If after an augmen-
tation, one of the original equations in the system is found to be a linear
combination of the others, it may be deleted. In effect the new equation
becomes a “‘substitute” for one of the original equations. Where electronic
computers are used, their limited capacity to store information makes this
ability to throw away equations particularly important.

DerFiniTiON:2  Two systems are called equivalent if one system may be
derived from the other by inserting or by deleting a redundant equation or
if one system may be derived from the other through a chain of systems
each linked to its predecessor by such an insertion or deletion.

TeEOREM 1: Eguivalent systems have the same solution set.

Elementary Operations.

There are two simple but important types of linear combinations which
may be used to obtain equivalent systems.

1. Replacing any equation, E,, by the equation [kE,] with & % 0.
2. Replacing any equation, E,, by the equation [E, + kE,] where
E, is any other equation of the system.

To prove an elementary operation of the first type results in an equivalent

% This definition of equivalence is due to A. W. Tucker (verbal communication).

(73]



LINEAR EQUATION AND INEQUALITY SYSTEMS

system, insert kk, as a new equation after E,, then delete E,. Note that E,
is a redundant equation for it can be formed from kE, by 1/kKkE,] if k # 0.
Similarly, for the second type, insert E, 4 kE; after E, and then delete E,.
Note that E, is a redundant equation, for it is given by [E, + kE,] — kE,.

One way to transform our example (1) into the equivalent system (10)
by a sequence of elementary operations is given below:

Elementary Operation

T, — Ty + 23 =2 (E,)
22 + 2y — =1 (Eg)
' Replace E, by E; = E, + E,

T — Tyt 23 =2 (Ey)
3z, =9 (E;)

Replace E, by E; = E, — iE,
—z+z=—1 (E)
3z, =9 (E3)
Replace E; by E] = —E;
Ty — Ty =1 (ED
3z, =9 (E;)

In general, corresponding to each elementary operation there is an
inverse operation which is also elementary and of the same type. For
example, starting with the last pair of equations, we can obtain the next to
last pair by replacing E] by E; = —Ey; then we can obtain the second pair
from it in turn by replacing E,; by E; = E, + }E, and then the first pair
by replacing E;, by E, = E, — E,.

TueOREM 2: Corresponding to a sequence of elementary operations is an
inverse sequence of elementary operations by which a given system can be
obtained from the derived system.

We can also see that if a system can be derived from a given system by
a sequence of elementary operations it implies that it is possible to obtain
each row of the derived system in detached coefficient form directly by a
linear combination of the rows of the given system. Conversely, by Theorem
2, each row of the given system is some linear combination of the rows of
the derived system.

THEOREM 3: The rows of two equivalent systems in detached coefficient
form can be obtained one from the other by linear combinations.

THEOREM 4: If the 2 equation of a given system is replaced by a linear
combination with multipliers k, where k, # 0, an equivalent system is obtained.

ExErcisg: Prove Theorems 2, 3, 4.

The most important property of systems derived by elementary opera-
tions is, by Theorem 1, that they have the same solution set.

An interesting question now arises. Are all linear equation systems with
the same solution set obtainable by a sequence of inserting and deleting of
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redundant equations? We shall show (and this is the substance of §4-2,
Theorem 1 and § 8-1, Theorem 4) that if two systems have the same solution
set and are solvable, then they are equivalent. On the other hand, if the
systems are not solvable, this is not necessarily the case. Indeed, consider
the two systems

L

Oxr;l}

{0z =1} and {1::::]

both have empty, hence identical, solution sets. It is obvious that if these
two systems were equivalent some multiple (linear combination) of the
equation Ox =1 of the first system would yield the equation lz = 1 of
the second. This is clearly impossible.

4-2. CANONICAL SYSTEMS

Solving Square Systems.

The systems of linear equations dealt with in high school algebra courses
commonly have exactly as many equations as variables; in the general
system (2) of the preceding section this would be the case when m = n.
Such a system of equations is called a square system.

Assuming a square system of m equations in m unknowns possesses a
unique solution, the usual process of solving such a system consists in
eliminating one unknown, setting aside one equation, and working with a
reduced system having one less equation and one less unknown. The process
is repeated a total of m — 1 times, resulting in a single equation with one
variable. Its value is then substituted in the preceding equation to determine
the value of another variable. This process, called “back solution,” is
repeated until all the variables are evaluated [Gauss, 1826-1]. Our immediate
purpose is to review this procedure in detail to show that it is in fact nothing
more than a sequence of elementary operations that replaces the original
system by an equivalent system in simple diagonal form (1). Here the
solution set is evident.

(1) z, =b,
' b

Ty R ==

Ty = by
Consider a system of 3 equations in 3 unknowns:
(2) ay%) + 9%, + 1573 = by
A%y + GgeTy + QT3 = by
An®; + ATy + g3 = by
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If a,; # 0, then the first equation can be used to eliminate z, from the
second equation by the elementary operation E; = E, — (an/a1)E;, and
to eliminate z, from the third equation by the elementary operation on the
resulting system E; = E; — (a3/a;,)E,. Thus we obtain an equivalent
system

@) Ay + Gya%y + ay%3 = b, (ay 7 0)
Bge¥y + @y%s = by
g% + Gty = by
The top equation is normally set aside and the process repeated with the
reduced system. If aj, O then the second equation can be used to

eliminate x, from the third equation, resulting in the equivalent triangular
system:

(4) : a3 + G19%; + 01573 = by (@y #0, a5 #0)

’ 14 !’
Qg% + Qg = by
" v

az®s = by

If ag # 0, the back solution begins by solving for z; in the last equation.
Then one substitutes z; into the second equation to evaluate z,. Finally,
both values are substituted into the first equation. These two substitutions
amount to exactly the same thing as using the third equation to eliminate
xz, from the second and first equations by the successive elementary opera-
tions E] = E; — (a,/az)E; and E{ = E, — (a;3/ag)E;, resulting in
(5) @y Ty - Ty = b (g # 0,y 70, agy #0)
+ g%, = by
+ agz; = b5
Substituting the value of z, obtained from the second equation into the
first to evaluate z, has the same effect as the elementary operation
E] = E, — (ay,/a,,)E; and yields
(6) @y, =b] (@, # 0,08, #0,ay #0)
g2 =b,
3%y = b
Finally, division by the diagonal cocfficients, which is a sequence of three
successive elementary operations, yields a diagonal system of the form (1).
If the system possesses a unigue solution it will always be possible to
carry out this process, but not always in the order indicated. Thus, if
a,, = 0, for example, one may pass to any other term whose coefficient is
non-zero, say a,z,, called the pivot, for the elimination of z,.

In this case the #th equation may be used to eliminate z, from the other
equations by a sequence of elementary operations, replacing the it® equation
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by the sum of the ith equation, and the #th equation multiplied by —a, fa,,.
If this process is repeated on each reduced system obtained by setting aside
the equation used for the elimination, this will result finally in a system
corresponding to (1) and (4) which can be put into diagonal and triangular
forms by suitable rearrangement of the order of the equations.

In general a square system will be said to be triangular if upon suitable
rearrangement of its rows and its variables, all coefficients below the diagonal
are zero and all coefficients on the diagonal are non-zero; if, in addition,
only the diagonal coefficients are non-zero, it is called diagonal.

As an example of reduction to triangular and diagonal forms, consider
the 3 x 3 system

Lot 2+ 24+ 23=1
IIy: 2z, — zp+23=3
I, =z, + 2z, -z, =4

It can be reduced to triangular form as follows:

Operation
Lite 4+ 24+ z3=1 I, =1,
II;: — 2z, =2 I,=II, —1I
I, . 2y — 22, =3 III, =111, — I,
Operation

Ly z+zy+a,= 1 IL=1
1L,: z, I, = —3I1,;
II1,: zy = —2  III, = —4(III, + 3II,)

f
l
—t

This last system, (I,, II,, III,), is triangular and can readily be reduced to
the diagonal form, - :

Operation
Ii: | = 44 I, =1, - II, — III,
II,: x, = —1 I, =11,
I11L,: z, = -2 III = III,

in which the solution is explicit.

A Pivotal Reduction of a General System.

Instead of a square system suppose, more generally, we have a system
of m equations in n variables, with m < n,

(77]



LINEAR EQUATION AND INEQUALITY SYSTEMS

(7 A%y + %y + . . Gy = by
A%y + QpaXy + .o . . AT = by

Qo Ty _l" L '+‘ e A}" ATy = bm

We are interested in ways of replacing this system, if possible, by an
equivalent canonical system (see §4-1 for definition). In this form the
solution set is evident and it is easy to detect whether or not any other
system is equivalent to it.

(8) Canonical system with basic variables z,, Z5, . . ., ZTp
Ty + G merBmet - -+ E® oo T Qe = b,
Ta + ApmyrBmer » - - F G+ o o o F Gan®n =0y
T + GmomsrBmss o -+ G5 o o o+ GnZn = b
Basic Variables| Non-basic (or Independent) Variables | Constants

The diagonal system (1) for square systems is clearly a special case of the
canonical system (8) with m = n. The standard procedure for reducing (if
possible) a general system (7) to equivalent canonical form will now be

discussed.
The principles are best illustrated with an example and then generalized.

Consider the 2 X 4 system,
+ %t 23+ 2,=5
2, — 2z, — Xy + 2y =2
Choose as “pivot element” any term with non-zero coefficient such as the

boldfaced term in the first equation, and eliminate the corresponding
variable, z,, from the other equations by means of elementary operations.

Zy+ 23+ Z4=205
+% 4254 37, =12

Next choose as pivot any term in the remaining equations such as the bold-
faced term in the second equation above. Eliminate the corresponding
variable, in this case x;, from all the other equations. (Because z, happens
to have a zero coefficient in the first equation, no further eliminations are
in fact required.) Hence, rearranging the equations gives the system

- + 2y 4 3z, =12
Tyt 2+ 2, =95
From this canonical system with basic variables z;, z, it is evident, by

setting z, = 2, = 0, that one solution is z; = 12, z, = 5, 73 = z, = 0.
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Pivoting.

DEFINITION: A pivot operation consists of m elementary operations which
replace a system by an equivalent system in which a specified variable has a
cocfficient of unity in one equation and zero clsewhere. The detailed steps are
as follows:

(a) Select a term a,z, in system (7) such that a,, % 0, called the pivot
term.

(b) Replace the 7th equation by the rtt equation multiplied by ( l/a,,).

(¢c) Foreach:=1,2,.. . m except ¢ = 7, replace the i'2 equation by
the sum of the itk equation and the replaced 7t equation multiplied
by ('—ais)'

In general the reduction to some canonical form can be accomplished
by a sequence of pivot operations. For the first pivot term select any term
a,%, such that a,, # 0. After the first pivoting, the second pivot term is
selected using a non-zero term from any equation except r, say equation r’.
After pivoting, the third pivot term is selected in the resulting m-equation
system from any equation except r and ', say equation #”. In general, repeat
the pivoting operation, always choosing the pivot term from equations that
do not correspond to equations previously selected. Continue in this manner,
terminating either when m pivots have been used or when, after selecting r
variables, it is not possible to find a non-zero term in any equation except
those corresponding to previously selected pivot terms.

For example, if the successive pivoting was done on variables z,, z,,
- - - %, in the corresponding equations i =1, 2, . . ., r, then the original

‘system (7) would be reduced to an equivalent system of form (9), which

we will refer to as the reduced system with pivotal variables z,, z,, . . ., z,.
We shall also refer to a system as reduced relative to r pivotal variables if,

by changing the order of the variables and equations, it can be put into
form (9).

9 Reduced system with pivotal variables Tyy Tay o+ o 2y
z + G1ria®ray + Gy ppaBera + o o o+ G, = by
Z, + GersaBras + Gapsabris + - - - 4 Gany = by
Zr + GrperZrar + Grpasps T« o o+ Gy®p = b,
O 2y + v, + 0z, = b,
og;'_“+ .............................. +0xn_bm

Since (9) was obtained from (7) by a sequence of pivoting operations
each of which consists of m elementary operations, it follows that the
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reduced system is (a) formed from linear combinations of the original system,
and (b) equivalent to the original system.

The original system (7) is solvable if and only if its reduced system (9)
is solvable, and (9) is solvable if and only if

(10) by =Vbppz=...=b,=0

If (10) holds, the solution set is immediately evident because any values
of the (independent) variables z,,,, . . ., Z, determine corresponding values
for the (dependent) variables z,, . . ., z,. On the other hand if b,.; # 0 for

some i, the solution set is empty because the (r + i)'t equation is incon-
sistent for it states that 0 = b,,,. In this case the original system (7) and
the reduced system (9) are both inconsistent (unsolvable).

Canonical System.

If the original system is consistent, the system formed by dropping the
vacuous equations from the reduced system is called its canonical equivalent
with the pivotal variables as basic.

(11) Canonical system with basic variables z;, Zy, . « - %

Bt + Gpsr®ra + Gy ria¥raa T - o ¢ + Gyp%p = b,
E2 + By pi1Trgy + GareaPraz + o o o T Gaa®a = 0,

Z, + Grppi®ran Gpirsa®rae + - - - + GpaZy = b,

Dependent (basic) . Con-
Variables Independent Variables stants

Uniqueness of a Canonical Equivalent.

The fundamental property of a canonical system resulting from the
reduction process is that for any other system with the same solution set
a reduction can be effected using the same pivotal variables and the resulting
canonical system will be identical if the equations are reordered so that
their correspondence with the basic variables is the same in both systems.

TaEOREM 1: There is at most one equivalent canonical system with a
fized set of basic variables. ‘

ProoF: Let there be two equivalent canonical systems relative to
Z, Ty . . . Ty Substituting Z,, =2 =...= % =0 into the first
system, we get z, = b, z, =15, ... z, = b, Because of equivalence,
substitution into the second system should yield the same values; this will
only be true if their respective constant terms are the same. Similarly,
substituting the values for independent variables of Zp,; = Zrp=- - -
= x, = 0, except z, = 1, will show (after equating constant terms) that their
corresponding coefficients of z, are the same foranys =r+1L,7r+2,. . .7
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The above theorem can also be established by applying

LemMMa 1: Any equation can either be generated by a unigque linear
combination of the egquations of a canonical system (the weights being the
coefficients of the basic variables in the equation) or mo linear combination
exisis.

ExErcisE: Apply the lemma to test whether a system is equivalent to
a canonical system.

Basic Solutions.

The special solution obtained by setting the independent variables equal
to zero and solving for the dependent variables is called a basic solution.
Thus if (8) is the canonical system of (7) with basic variables z,, z,, . . ., ZTp,
the corresponding basic solution is

(12) &y =0, 2y=0y . . X =bp; Ty =Tz =+ . . =2 =0

Degenerate Solutions.

A basic solution is degenerate if the values of one or more of the depend-
ent (basic) variables are zero. In particular, the basic solution (12) is
degenerate if b; = 0 for at least one 1.

Basis.

In accordance with the special usage in linear programming, the term
basis refers to the ordered set of columns of the original independent system
(in detached coefficient form) corresponding to the ordered set of basic
variables of a canonical equivalent. The columns of the basis will be called
bastc columns (or basic activities).

In the example following (8) the basis associated with the canonical

10
-2 1y

The reader is referred to §8-1, “Pivot Theory,” which extends the
results of this section. A proof is given there that solvable systems with
identical solution sets are equivalent.

system with basic variables z,, z, is

4-3. LINEAR INEQUALITIES

In the remaining sections of this chapter we shall turn our attention to
linear inequality systems which also play an important role in the solution
of linear programs.

Just as in the special case of solving linear equations, it is possible that
there exist no solutions to a system of linear inequalities, or there may
exist many. To see this geometrically, let us take the linear programming
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is often alternatively stated as that of mintmizing a linear form subject to a
syastem of linear inequalities.

Reduction of Linear Inequality Systems to Standard Form.

By a linear inequality is meant a relation of the form

1) 0%, + Gy + - . -+ GZ, < b
rather than a strict linear inequality
2) %y + Ay + . . -t AT, < b

It should be noted that if a system includes strict inequalities, it is not
always possible to find values for the variables which satisfy the inequalities
and at the same time minimize a linear form. For example, there is no
value of z, > 1 which minimizes the form z = z,.

Any problem involving a system of linear inequalities can be trans-
formed into another system in standard form, i.e., into a system of equations
in nonnegative variables by one of several devices. Steps (A) and (B) below
constitute one method ; Steps (A) and (B’) below constitute a second method.
In Chapter 6 the dual is developed for a system of linear inequalities; it
will be noted that the dual system is in standard form. This constitutes a
third way. The first method and perhaps the easiest is:

Step (4). Change any linear inequality restraint, such as (1), to an
equation by adding a slack variable z,,, > 0, thus

(3) 0,2, + s+ . o Cay + Tpyy = b

Step (B). Noting that any number can be written as the difference of
two positive numbers, replace any variable x; not restricted in sign by the
difference of two nonnegative variables

4) z; = z; — (x; = 0,27 >0)

Exercise: (Tucker) Prove in place of (4) that each z; unrestricted in
sign can be replaced by x; — z, where z; >0 and where z, >0 is the
same for all such j. .

Step (B’). As an alternative to Step (B), let z; be any variable not
restricted in sign that appears in the ktt equation with a non-zero coefficient.
Solve the equation for z; and substitute its value in the remaining equations
if any and in the objective form z. Setting the equation aside, the remaining
modified equations (if any) constitute a reduced system of constraints.
The procedure is repeated with the new linear programming problem until
either: (i) a reduced system of constraints is obtained in which all remaining
variables are nonnegative, or (ii) no equations remain in the reduced system.

Once a solution to the reduced problem is obtained, a solution to the
original problem is obtained by successive substitutions, in reverse order,
in the eliminated equations.
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To justify the procedure, note first that the minimum for the reduced
system is less than or equal to that of the full system, because it involves
only part of the conditions of the problem. On the other hand, the solution
obtained for the full system (by the reverse substitution) has the same
value for z and is, therefore, minimum.

Examrrr 1: Transform the system into standard form.

5) z + z,=>6
z + 2z, =2
Step (4). Introduce slack variable z,.
(6) T+ T —2=6 (23 =0)
zy 4+ 22, =z
Step (B). Substitute z, = z; — 2}, #, = 2, — 2}, obtaining
W) (@ —2}) + (23 —2f) —23 =6 (5,=20,2]>0,2;>0)

(o — ) + 2my —af) =z

Step (B'). Solve the equation z, + z, — 23 = 6 for z;, which is un-
restricted in sign, obtaining

(8) T, =6 — 2, 4+ x4 (x3 = 0)
and substitute in the objective form z to get
© Tyt 2+ 6=2 (23 = 0)

We now solve for z,, but no equations remain for substitution; this is case
(ii). A general solution to the original system (5) can be obtained by choosing
any value for z; > 0, any value for z, and substituting these values in (9) and
then in (8) to determine z, and z,. Notice that no finite lower bound for z
exists since z may be chosen arbitrarily.

ExamprE 2: Transform the system

(10) -, — T, < —6
-z, 4+ 2, >5

2, + 2%, =z
into standard form.

Step (A). Introduce slack variables z, and =z,

(11) —%, — Z,+ x4 = —6 (23 = 0,2, =>0)
- + X, —x,=5
z; + 22z, =z

Step (B). Substitute z; — x’l', z, — x, for z,, z, where 2; >0, 27 > 0; or
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Step (B'). Solve the first equation for z, and substitute in the second
equation and the z-form. Next, solve the modified second equation for z,
and substitute in the modified z-form. This eliminates the constraint equa-
tions and we are left with a reduced system consisting of only one constraint
in nonnegative variables xz;, z,:

(12) z = (23 + 323 + 7,)/2 (3, x, = 0)
and the eliminated equations

(13) 2, =6 —x3, + 3
2y = (11 4 23 + 2,)/2

A general solution to the original system of constraints is obtained by
selecting any z, > 0, z, > 0, and determining z, and z, from (13). If the
objective is to minimize z, then, from (12), the optimum solution is found
by setting z; = 0, z, = 0, obtaining z = %%, 7, = 3}, 2, = }.

In general, suppose we have = inequalities in k<{n variables

(w,, %g, . . ., u;) which are unrestricted in sign, and a form z in these
variables to be minimized:
¢j1u1+a52u2+. . .-{—ot,-kuk—aonO (j=1,2,. . .,'n)
A i 217 T U, ol O =z

where a;; and y, are constants. If we set

Ty = oty b Ry b . .ty — e (3=1,2,.. ., %)
then clearly
z; >0 (3=12,...,n)

If we assume that it is possible to solve at least one set of k of the equations
for wu,, ug, . . ., U in terms of the z;, then the substitution of these values
of u; in the remaining equations and the z-form yields n — k equations and
a z-form in nonnegative variables. Thus under this assumption, n inequalities
in k<< n variables is equivalent to m = n — k equations in n nonnegative
variables.

Reduction of an Equation System to an Inequality System.

Conversely, any problem involving equations can be replaced by an
equivalent system involving only linear inequality restraints. One way is to
replace each equation

(14) ATy + ATy + . .+ @ %, =b

by the two inequalities,

(15) A%y + ATy + . . .+ BT, = b
%, + apZy + . .+ AT, << b

[88]




4.6. PROBLEMS

Another way is to change each equation into an inequality (=) and to
change the sum of the equations into the opposite inequality. Thus, we may

replace the equation system § 4-1-(2) by

an®y + %y + .. BT 2 by
By ®y + Agoy + . . . + GopZy = by

Apy®y + Ang®p + « « o+ G = by
Cea)z + . - o+ Cmz, < 2b;

(16)

4-6. PROBLEMS

Systems of Equations with the Same Solution Set. (Refer to § 4-1.)

1. Review. What are the elementary operations? Why do they lead to an
equivalent system of equations?

2. In a transportation problem without slack variables, show that .the
system of equations in § 3-3 is redundant. Interpret this as a redundancy
relation among items. Show any equation is redundant. Is redundancy
possible with slack variables? Write out the equations in Tableau Form
for both cases.

3. Reduce v
v, + 225 + 23 =4
2+ 2t ay3=3
to
22y + =, =1
2y — gy = —2

by elementary operations. What solution is evident from the reduced
system ¢ Check this solution by substituting in the original system.

4. Prove that it is not possible to transform systems § 4-1-(1) by elementary
operations to equivalent form {E,, E;} of §4-1-(10) without using at
least one elementary operation of the first type.

Canonical Systems. (Refer to § 4-2.)

5. Prove that (except possibly for sign) the product of the pivots equals
the determinant of the basis where the basis is the square matrix of
coefficients of the basic set of variables.

6. Review. What is the canonical form? Can every system of equations be
reduced to canonical form ?

7. Review. What constitutes a basic set of variables? What is the basic
solution associated with the basic set? What is a degenerate basic
solution ?
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8. What are the independent or non-basic variables?

9. Need a basic solution be feasible, i.e., are the values of variables associated
with a basic solution necessarily nonnegative ¢

10. What elementary operations can be used to transform

2r, |- xy b oy — 6 r, o= 2
Ly, b &y 4wy =4 into &y =
22, + 3z, + 23 =8 2, + 3z, + 23 =6

Can you find a solution to this system? Now reduce this system to
canonical form.
11. Put the following system in canonical form with z; and z, as basic
variables.
xz, — 2%y + x4 =1
4+ 23 +z,=4
12. Reduce the system
51, — 4z, + 13z, — 22, + x;, = 20
2y — Zy+ BTy — X+ 2,=28
to canonical form using variables z, and z, as basic variables.

13. Reduce the system below to canonical form with respect to variables
x, and z, if possible and find the associated basic solution.

2%, + 3z, + 425 + Sxy = —1
22, — 32y — Ty — T, = —T
14. Consider the system
3z, + 22, + llz; + 52y — 3z, =5
2+ x4+ 43+ 32,4+ T5=2

(a) Reduce this system to canonical form using , and z, as basic
variables. What solution is suggested by this canonical form when
variables z;, ,, z; are all zero?

(b) Reduce the original system to canonical form with z; and z; as basic
variables. What solution is suggested by this canonical form?

(¢) Now, using the results of (a), find the canonical form of (b) without
referring to the original system of equations.

15. Consider the system

2z, + 3xy — 225 — Ty =1
T+ Tyt X3+ 3, =6
Ty — Tyt X+ Br,=4
(a) Reduce this to a canonical system with z;, z,, and z; as basic

variables. What solution is suggested by this canonical form ? Check
by substitution into the original system.
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16.

17.

18.

19.

4.6, PROBLEMS

(b) From the canonical form of (a) find another canonical form with
%y, %y, and z, as basic variables. What is the solution when z; = 0?
(c) From the canonical form of (b) find the canonical form with z;, z,,
and z, as basic variables. What is the solution when x, = 0?
(d) From the canonical form of (c) find the canonical form with z,, z,,
and z, as basic variables. What is the solution when z; = 0?
In the system below the variables y,, y,, ¥, are expressed in terms of
%), Xy, T3. Re-express the values of z;, z,, 2, in terms of y,, ¥, y; and show
that the resulting system is equivalent to the original system. Show
that the original system is essentially in canonical form with respect to
Y1, Ys» Ys While the resulting system is in canonical form with respect
to x;, x,, %5.
2z, + By + 4y =y,
Ty = Tyt =Y,
4z, + 32, + 225 =y

The system expressing y,, ¥, ¥, in terms of z,, z,, 2, is called the inverse
system. Why is the inverse unique? Show, in general, that if there are

m equations that express y;, y,, . . ., ¥y, in terms of z,, 2,, . . ., Zp, the
inverse system expressing z,, ,, . . ., Z,, in terms of ¥, Y2, - - - Ym
exists if z;, ,, . . ., z,, is & hasic set of variables.

Review. Why are two equivalent canonical systems with respect to the
same basic variables identical ?

Why is it not possible to have two or more different basic solutions
relative to a given set of basic variables?

Linear Inequalities. (Refer to §4-3.)

20.

21.

22.

Reduce each of the inequality systems (a), (b), and (c) to an eéquivalent
system .of equations with nonnegative variables by two different
methods.

(@) 2, + 22, >3 ) 2, +z,=>2 (c)a:1+x222<'
z, — 2z, > —4 X — Ty, 4 T, 4
2+ T, << 6 z + 2,7 R T . -
Show that systems (b) and (c) correspond to cases (i) and (ii) of the
alternate (B’). Show how to construct the class of all solutions for (c).
Transform the system of equations in nonnegative variables into a
system of inequalities:
2z1+3xg+4x3=5 (xlzo,xzzo,xszo)
4oy — Tz, + 32, =4
Show that no lower bound for z exists
(a) for the system z; > 0, —z, = z;
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24.

26.

. Reduce the system

LA S J I SN TS R B A IR FIVAN OO BRSO /Y N R I BN M RRPI BTRN A T
(h) for the system
x1~x2::l (15120,552;:0)
—Z, — Ty =2
{¢) Show that a Jower bound for z exists for the system 2, > 0, 2, 2,

but while there are feasible solutions, there exists no optimal feasible
solution.

. Suppose (a;;, b;, ¢;) denote the coefficients and constants before reduction

to canonical form with respect to =, z,, . . ., Z,, and (d;, B, ¢;) denote
the cocfficients and constants after reduction. In the dual of the original
system,

@y << €5 G=12...mn)

m
%
m
z b, = v (Max)
1

introduce slack variables y; > 0 and eliminate the unrestricted variables
; by using pivots in the first m of the n equations. Show that the result
is the standard linear program in n nonnegative variables and n» —m

equations, and results in

m

(zdiiyi—*-yi:ii (j=m+1,...,n)

1

m m

z by:i=v— Z bie;
1 1

Use the “center of gravity method” of Chapter 3 to find z; > 0 and
Min z satisfying

z = la, + 22, + 3x3 + 4z

4= z + z,+ x3+v z,
-2 = lz; — 2z, + 3z, — 4z,

z, 4 T+ =25 (£, >0, 2 > 0)
T, — Xyt ;=T
z + 22, + 42y =2
to an equivalent inequality system.
Solve graphically the system in nonnegative variables:
n+ <1
4z, + 8z, < 32
T+ z,<4
2, — 2, > 2
What inequalities are implied by others ?
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Fourier-Motzkin Elimination Method. (Refer to § 4-4.)
27. Using the Fourier-Motzkin Elimination Method, find values of z;, z,,
and z satisfying Problem 29, Case (¢), and yielding Min z == z,.
28. Use the Elimination Method to solve for nonnegative z; and Min z
satisfying the system
z +za =1
Tyt 2,2
7 —z,<1
 —z,=—1
— Xy =2
Graph and show the convex set of feasible solutions. Modify the z form
in four different ways, so that the solution is not unique.

Linear Programs in Inequality Form. (Refer to § 4-5.)

29. Discuss, by graphing, whether there exists zero, cne, or many solutions
- to a system of inequalities in the following cases:

Case (a) Case (b) Case (¢) Case (d)
=0 2, =0 %, 20 >0
z, =0 z, >0 z, >0 2, =0

z +x, =2 z 4+ z=>2 z + 2y =>2 2+ =2
z, + 22, < 6 z + 22, < 6 zy + 22, <6

—y 42, >0 -z, + 4z, >0 —2+ 42, >0

' -+ 2 =2 —x+ =2

-2, + T, >3
REFERENCES
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CHAPTER 5

THE SIMPLEX METHOD

Qutline: The standard form for the central problem of linear program-
ming, as developed in § 3-8-(1), consists in finding values for a set of nonnega-
tive variables that satisfies a system of linear equations and minimizes a
linear form z.

We distinguish between the simplex method which starts with a linear
program in standard form and the simplex algorithm which starts with a
canonical form, consists of a sequence of pivot operations, and forms the
main subroutine of the simplex method.

The first step of the simplex method is the introduction into the standard
form of certain artificial variables. The resulting auxiliary problem is in
canonical form. At this point the simplex algorithm is employed. It consists
of a sequence of pivot operations referred to as Phase I that produces a
succession of different canonical forms. The objective is to find a feasible
solution if one exists. If the final canonical form yields such a solution,
the simplex algorithm is again applied in a second succession of pivot
operations referred to as Phase II. The objective is to find an optimal
feasible solution if one exists.

In §5-1 that follows the simplex algorithm will be deseribed; its use,

as part of the simplex method, will be developed in § 5-2.

5-1. SIMPLEX ALGORITHM
The simplex algorithm is always initiated with a program whose equations
are in canonical form; for example, let us suppose we have canonical system
(1), (2) with basic variables z;, Z,, . - ., Z,, (—2).! The relation of this
m-equation n-variable canonical system to the M-equation, N-variable
system of the standard form will become clear in § 5-2.

Problem: TFind values of z, >0, 2, >0, ... 2, =0 and Min z
satisfying
1) =, +dl,m+1xm+1+"'+dlixi+"'+dlnxn=51
Ly +d2,m+1xm+1+"'+dzixi+"'+d2nxn=62 '

Zp + GmsrZmar + - - -+ Gy o o+ CnTn = by l
(2) (—2) 4+ CppFmaa+ - -+ Gxit ...+ GFn=—%

1 That is to say —z is treated as a basic variable. In the literature the reader may
find this variable labeled z, and equation (2) arranged ahead of those of (1). l
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where d,;, &, b, and Z, are constants. In this canonical form the basic
solution is

B) z=z;2,=b;52,=0by .. T =bp; Tmp1 =ZTmya=- - - =2, =0

Since it is assumed that this basic solution is also Sfeasible, the values of the
z; in (3) are nonnegative, so that

4) b,>0,5,>0,...5,>0

DerFmnrrion: If (4) holds, we say that the linear program is presented
in feasible canonical form.

Test for Optimality.

We have seen that the canonical form can provide an immediate evalu-
ation of the associated basic solution. It may also be used to determine
whether the basic solution (if feasible) is minimal, through an examina-
tion of the coefficients of the “modified” objective equation (2).

DerFinrrion: The coefficients, &, in the cost or objective form of the
canonical system (2), are called relative cost factors—*‘relative” because their
values will depend on the choice of the basic set of variables.

TEEOREM 1: A basic feasible solution is a minimal feasible solution with
total cost Z, if all relative cost factors are nonnegative:

5>0 G=12...n)

Proor: Referring to the canonical form, it is obvious that if the
coefficients of the modified cost form are all positive or zero, the smallest
value of the sum X¢&z; is zero for any choice of nonnegative z;. Thus, the’
smallest value of z — Z, is zero and Min z > Z,. In the particular case of the
basic feasible solution, we have z = Z,; hence Min z = %, and the solution
is optimal. It is also clear that '

THEOREM 2: Given @ minimal basic feasible solution with relative cost
factors &; > 0, then any other feasible solution (not necessarily basic) with the
property that z; = 0 for all &; > 0 s also a minimal solution; moreover, a
solution with the property that z; > 0 and &; > 0 for some j cannot be & minimal
solution.

ComOoLLARY: A basic feasible solution is the unique minimal feasible
solution if &; > 0 for all non-basic variables.

Improving a Non-optimal Basic Feasible Solution: An Example.
To illustrate, consider the problem of minimizing z where
5) bz, — 42, + 1323 — 22, + z;, =20 (@; =0)
T — %o+ bxg— x+ 2, =8
x4 6z, — Ty + z,+ 65 =2

Let us assume we know that z,, z;, and (—z) can be used as basic variables
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and that the basic solution will be feasible. Accordingly, wo can reduce

system (5) to equivalent canonical form relative to xg, zy, (—2):
5 Tt

(6) -1, + 3z, — 3+ =5
x, — iz, + 2x5 — iz, =3
8z, — 24z, + 5z, —z = —28

except that we have not bothered to rearrange the order of the variables
and equations. The meaning of the boldfaced term will be discussed later.
The basie feasible solution to (6) is immediately,

(7) xl=3,x5=5,x2=x3=x4=0,z=28

Note that an arbitrary pair of variables will not necessarily yield a basic
solution to (5) which is feasible. For example, had the variables z, and x,
been chosen as basic variables, the basic solution would have been

o= —12,z,= —20, 25, =2, =2,=0,2= —132

which is not feasible since z, and z, are negative.

For the numerical example (4), one relative cost factor of its canonical
form, (6), is negative, namely —24, the coefficient of z;. The optimality
test of Theorem 1 thus fails. If z, is increased to any positive value (the
other non-basic variables remaining zero), it is evident that the value of z
would be reduced because the corresponding value of z is given by

(8) z = 28 — 24z,

It seems reasonable, therefore, to try to make z; as large as possible, since
the larger the value of z,, the smaller will be the value of z. Now the value
of x, cannot be increased indefinitely while the other non-basic variables
remain zero, because the corresponding values of the basic variables
satisfying (6) are

9) ‘ 25 =5 — 3,
2, =3 — 223

and we see that if 2, increases beyond #, then x, becomes negative, and that
if z, increases beyond §, z; also becomes negative. Obviously, the largest
permissible value of z; is the smaller of these, namely z, = #, which yields
upon substitution in (8) and (9) a new feasible solution with lower cost:

(10) =3z, =% 2 =2, =u,=0,2= —8

This solution reduces z from 28 to —8; our immediate objective is to
discover whether or not it is a minimal solution. This time a short cut is
possible. A new canonical form with new basic variables, z; and x;, can be
obtained directly from the old canonical form with x, and z; basic. Choose
as pivot term that z, term which limited the maximum amount that the
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basic variables, z, and z;, could be adjusted without becoming negative,
namely the boldfaced term, 2z, Eliminating with respect to z,, the new
canonical form relative to x5, x5 and (— z) becomes

(11) —3z, + 3%, — §2, + % =3}
1z — §oy + 23 — 47, =}
122, — =z, + 2z, —2z=8

This gives the basic feasible solution, (10). Although the value of z has
been reduced, the coefficient &, = —1 indicates that the solution still is not
minimal and that a better solution can be obtained by increasing the value
of z,, keeping the other non-basic variables, z, = z, = 0, and solving for
new values for z, z,, and z in terms of z,:

(12) x5 =1 — §2,
Zy =3+ Bz,
2= —8 —x,

Note that the second equation places no bound on the increase of z,, but
that the first equation restricts z, to a maximum of (1/2) = (7/8) which
reduces z; to zero. Therefore, the pivot term, Zx, in the first equation of
(11), is used for the next elimination. The new set of basic variables is z,
and z,. Reducing system (11) to canonical form relative to z,, z,, (— 2) gives

(13) —Hz + 2 — $,t+ 32, =4
—¥z + a3 — fo+ 92 =3
i G M fy—2=%

and the basic feasible solution

(14:) B=4n=1Fn =2 =2,=02z=—%

Since all relative cost factors for the non-basic variables are positive, this
solution is the unique minimal solution by the corollary of Theorem 2.
This optimal solution was found from our initial basic solution (7) in two
iterations.

Improving a Non-optimal Basic Feasible Solution in General.

As we have seen in the numerical example, the canonical form provides
an immediate criterion for testing the optimality of a basic feasible solution.
Furthermore, if the criterion is not satisfied, another solution is generated
which reduces the value of the cost or objective function (except for certain
degenerate cases). '

Let us now formalize this procedure of improving a non-optimal basic
feasible solution. If at least one relative cost factor, &;, in the canonical
form (2) is negative, it is possible, assuming non-degeneracy (all b; > 0), to
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construct a new basic feasible solution with a total cost lower than z == 2.

The lower cost solution can be obtained by increasing the value of one of

the non-basic variables, z,, and adjusting the values of the basic variables
accordingly, where z, is any variable whose relative cost factor &, is negative.
In particular, the index s can be chosen such that

(15) & =Ming <0

This is the rule for choice of s followed in practical computational work
because it is convenient and because it has been found that it usually leads
to fewer iterations of the algorithm than just choosing for s any j such that
&< 0.

Using the canonical form (1) and (2), we construct a solution in which
z, takes on some positive value, the values of all other non-basic variables
are still zero, and the values of the basic variables, including z, are adjusted
to take care of the increase in z,:

(16) z, = b, —azx,
2y = by — o,

..............

(17)  z=iy +éa (& < 0)

Since &, has been chosen negative, it is clear that the value of z, should be
made as large as possible in order to make the value of z as small as possible.
The only thing that prevents our setting z, infinitely.large is the possibility
that the value of one of the basic variables in (16) will become negative.
However, if all d;, << 0, then x, can be made arbitrarily large, establishing:

THEOREM 3: If in the canonical system, for some s, all coefficients @;, are
nonpositive and &, 1s negative, then a class of feasible solutions can be constructed
where the set of z values has no lower bound.

On the other hand, if at least one d, is positive, it will not be possible
to increase the value of z, indefinitely, because, whenever x, > b;/d;,, the
value of z; must be negative. If 4, is positive for more than one value of s,
then the smallest of such ratios, whose row subscript will be denoted by r,
will determine the largest value of z, possible under the nonnegativity
assumption. The greatest value for z, permissible under the assumption
will be
(18) 2* = L = Min — >0 (G, > 0)
where it should be particularly noted that only those ¢ and r are considered
for which @;, > 0, d,, > 0. The choice of r in case of a tie is arbitrary unless
among those tied, 5; = 0; in the latter (degenerate) case r may be chosen
at random (with equal probability) from among them. For example, if
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4, > 0 and @y, > 0 but b, = §, = 0, then one may flip a coin to decide
whether r = 1 or r = 2.2

The basic solution is degenerate if the values of one or more of the basic
variables are zero (see § 4-2). In this case it is clear by (16) that, if for some
d; > 0, it happens that the corresponding value §; of the basic variable is
zero, then no increase in 2, is possible that will maintain nonnegative values
of the basic variables and therefore z will not decrease. However, if the basic
solution is nondegenerate we have:

THEOREM 4: If in the canonical system for some s the relative cost factor
¢, 18 megative and at least one other coefficient Gy is positive, then from a non-
degenerate basic feasible solution a new basic feasible solution can be constructed
with lower total cost z.

Specifically, we shall show that the replacing of z, by z, in the set of
basic variables z,, z,, . . ., ,,, results in a new set that is basic, and a
corresponding basic solution that is feasible. We shall show feasibility first.
Substituting the value of z* > 0 determined by (18) into (18) and (17)
gives a feasible solution,

(19) z, =05, —dx*>0 (t=1,2,...m;izr
Z, = z¥ where z* = b /@, >0
z; =0 =rrm4+1,...,n;j#8s)

with total cost

(20) z =%y + Ex* < 3, (¢, < 0)

This feasible solution is different from the previous one since 5, = 0 by
agsumption; z¥ > 0 and z < %,.

It remains to be shown that the new feasible solution is basic. It is clear,
from the definition in (18) of the index r, that

(21) ‘ 2, =05 —dax*=0

We are trying to show that z, and ,, ,, . . ., ,, (excluding z,) constitute
a new basic set of variables. To see this, we simply observe that since
@, > 0, we may use the rtb equation of (1) and d,, as pivot element to
eliminate the variable, z,, from the other equations and the minimizing
form. Only this one elimination is needed to reduce the system to canonical
form relative to the new set of variables. This fact constitutes the key to the
computational efficiency of the simplex method. The new basic solution is
unique by § 4-2, Theorem 1; hence its values are given by (19).

* The choice of r in case of a tie has been the subject of much investigation because
of the theoretical possibility that a poor choice could lead to a repetition of the same
basic solution after a number of iterations. For practical work an arbitrary choice may
be used--W. Orchard-Hays [1956-1] who has experimented with various procedures,
reports fewer iterations often result in practical problems using ¢ = r with maximum
denominator d,, among those tied. (See § 6-1 and Chapter 10.)
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Iterative Procedure.

The new basic feasible solution can be tested again for optimality by
& = Min ¢; > 0. If it is not optimal, then one may choose by criterion
(15) a new variable, z,, to increase and proceed to construct either: (a) a
class of solutions in which there is no lower bound for z (if all a;, << 0), or
(b) a new basic feasible solution in which the cost 2 is lower than the previous
one (provided the values of the basic variables for the latter are strictly
positive; otherwise the new value of z may be equal to the previous value).

The simplex algorithm consists of repeating this cycle again and again,
terminating only when there has been constructed either

(a) a class of feasible solutions for which z — —co or

{b) an optimal basic feasible solution (all §; > 0).

THEOREM 5: Assuming nondegeneracy at each iteration, the simplex
algorithm will terminate in a finite number of iterations.

ProoF: There is only a finite number of ways to choose a set of m
basic variables out of n variables. If the algorithm were to continue indefi-
nitely, it could only do so by repeating the same basic set of variables—
hence, the same canonical system and the same value of z. (See Uniqueness
Theorem, §4-2, Theorem 1.) This repetition cannot occur since the value
of z decreases with each iteration.

When degenerate solutions occur, we can no longer argue that the
procedure will necessarily terminate in a finite number of iterations, because
under degeneracy it is possible for 5, = 0 in (19), in which case the value
of z decreases a zero amount in (20) and it is conceivable that the same basic
set of variables may recur. If one were to continue, with the same selection
of s and r for each iteration as before, the same basic set would recur after, say,
k iterations, and again after 2k iterations, etc., indefinitely. There is therefore
the possibility of cireling (cycling)? in the simplex algorithm. In fact, examples
have been constructed to show that this can happen; see Chapter 10.

We have shown the convergence of the simplex method to an optimal
solution in a finite number of iterations only for the case of nondegenerate
basic solutions. In § 6-1 we will justify the random choice rule, and in Chapter
10 we will show a simple way to change (perturb) the constant terms slightly,
so as to assure nondegeneracy. We will prove that the procedure given
there is valid even under degeneracy.

5-2. THE TWO PHASES OF THE SIMPLEX METHOD
The Problem.

The standard form, developed in Chapter 3, for the central mathematical
problem of linear programming consists of finding values for z;, z,, . . ., zy
satisfying the simultaneous system of equations,

3 In the literature the term ‘‘cycling” is used [Hoffman, 1951-1; Beale, 1952-1].
To avoid possible confusion with the term “cycle,” which we use synonymously with
‘“iteration,’” we have adopted ‘‘circling.”
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@) an% + &% +. . L+ aEy =b
A%y b Byey + . . .+ @ty = b,
A%y + Gpe®s + . . .+ BTy = Oy
and minimizing the objective form
2) Gy Gy + . . FoyEy =2
where the z; are restricted to be nonnegative:
(3) ;>0 =12 ...,N)

The simplex method is in general use for solving this problem. The
method employs the simplex algorithm presented in §5-1 in two phases
which will be described in this section. .

Many problems encountered in practice often have a starting feasible
canonical form readily at hand. For example, one can immediately construct
a great variety of starting basic feasible solutions for the important class
called “transportation” problems; see Chapter 14. Economic models often
contain storage and slack activities, permitting an obvious starting solution
in which nothing but these activities takes place. Such a solution may be a
long way from the optimum solution, but at least it is an easy start. Usually
little or no effort is required in these cases to reduce the problem to canonical
form. When this is the case, the Phase I procedure referred to above will
not be necessary. :

Other problems encountered in practice do not provide an obvious
starting feasible canonical form. This is true when the model does not have
slack variables for some equations, or when the slack variables have negative
coefficients. Nothing may be known (mathematically speaking) about the
problem. It may have

(a) Redundancies: This could occur, for example, if an equation
balancing money flow had been obtained from the equations balancing
material lows by multiplying price by quantity and summing. The classic
transportation problem provides a second example (see § 3-3; see also the
blending problem, § 3-4, for a third case).

(b) Inconsistencies: This could be caused by outright clerical errors,
the use of inconsistent data, or by the specification of requirements which
cannot be filled from the available resources. For example, one may pose a
problem in which resources are known to be in short supply, and the main
question is whether or not a feasible solution exists.

1t is clear that a general mathematical technique must be developed to solve
linear programming problems free of any prior knowledge or assumptions
about the systems being solved. In fact, if there are inconsistencies or redun-
dancies, these are important facts to be uncovered.

The Phase I procedure uses the simplex algorithm itself to provide a
starting feasible canonical form (if it exists) for Phase II. It has several
important features.
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THE SIMPLEX METHOD

(a) No assumptions are made regarding the original system; it may be
redundant, inconsistent, or not solvable in nonnegative numbers.
(b) No eliminations are required to obtain an initial solution in canonical

form for Phase 1.
(¢) The end product of Phase I is a basic feasible: solution (if it exists)

in canonical form ready to initiate Phase II.

Outline of the Procedure.
A. Arrange the original system of equations so that all constant terms
b, are positive or zero by changing, where necessary, the signs on both sides

of any of the equations.
B. Augment the system to include a basic set of artificial or error

variables Ty, =0, T2 =0, - o Tnam 2 0, so that it becomes
4)
Gp% + Gy + .. GNEN T TN =b,
A%y + Gosts + . - .+ GanTx 4+ Tngs =b, (b; >0)
ay®y + Ayp®p 1+ - - -+ GMNTN + Ty = bum
€T+ CoXpt ...+ CxZy +(—2) =0
and
(5) ;>0 (j=1,2...,NN+L ... N+M)

C. (Phase I): Use the simplex algorithm (with no sign restriction on
z) to find a solution to (4) and (5) which minimizes the sum of the artificial
variables, denoted by w:
(6) Ty, Tngz - - - F T =W
Equation (6) is called the infeasibility form. The initial feasible canonical
system for Phase I is obtained by selecting as basic variables Zy.1, Zn42: - -
Zaanp (—2), (—w) and eliminating these variables (except w) from the w
form by subtracting the sum of the first M equations of (4) from (6), yielding

7

Admissible Variables Artificial Variables
Q1% + B2 %y + - - o+ Gn Ty + T4 =b
A Ty + Qe @y + -+ - + Gan Tx +Txie =b,
A1 %y + AyaTy + . - o + AyxTx + Txam =
6Ty + Cpy + - . .+ CxTy —=z =
dyzy, + dyy + . . .+ dyTy —w = —W,

where b; > 0 and
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(8) d,=—(a1,+a2,+...+aw) (j=1,2,...,N)
—we=—(by +b +...+ by

Writing (7) in detached coefficient form constitutes the initial tableaw for
Phase I (see Table 5-2-I).

D. If Min w > 0, then no feasible solution exists and the procedure is
terminated. On the other hand, if Minw = 0, initiate Phase II of the
simplex algorithm by (i) dropping from further consideration all non-basic
variables x; whose corresponding coefficients d, are positive (not zero) in the
final modified w-equation; (ii) replacing the linear form w (as modified by
various eliminations) by the linear form z, after first eliminating from the
z-form all basic variables. (In practical computational work the elimination
of the basic variables from the z-form is usually done on each iteration of
Phase I; see Tables 5-2.1, 5-2-II, and 5-2-III. If this is the case, then the
modified z-form may be used immediately to initiate Phase II.)

E. (Phase IT): Apply the simplex algorithm to the adjusted feasible
canonical form at end of Phase I to obtain a solution which minimizes the
value of z or a class of solutions such that z — — co.

The above procedure for Phase I deserves some discussion. It is clear
that if there exists a feasible solution to the original system (1) then this
same solution also satisfies (4) and (5) with the artificial variables set equal
to zero; thus, w = 0 in this case. From (6), the smallest possible value for
w is zero since w is the sum of nonnegative variables. Hence, if feasible
solutions exist, the minimum value of w will be w = 0; conversely, if a
solution is obtained for (4) and (5) with w = 0, it is clear that all ), ; = 0
and the values of z; for j < N constitute a feasible solution to (1). It also
follows that if Min w > 0, then no feasible solutions to (1) exist.

Whenever the original system contains redundancies and often. when
degenerate solutions occur, artificial variables will remain as part of the basic
set of variables in Phase II. Thus, it is necessary that their values in Phase IT
never exceed zero. This is accomplished in D above where all non-basic
variables are dropped whose relative cost factors for w are positive. To see
this we note that the w form at the end of Phase I satisfies

9) dzy + dozy + . - .+ dy o @yen = w — By

where d; > 0 and %, = 0, if feasible solutions exist. For feasibility, » must
be zero, which means that every z; corresponding to d; > 0 must be zero;
hence, all such z; may be set equal to zero and dropped from further con-
sideration in Phase II. If we drop them, our attention is confined only to
variables whose corresponding d; = 0. By (9) solutions involving only these
variables now have w = 0, and consequently are feasible for the original
problem. Thus,

TarorEM 6: If artificial variables form part of the basic sets of variables
in the various cycles of Phase I, their values will never exceed zero.

As one alternative to dropping variables z; corresponding to d; > 0 at
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THE SIMPLEX METHOD

the end of Phase I, we can also maintain the basic artificial variables at
zero values during Phase II by first eliminating (if possible) all artificial
variables still in the basic set. This is done by choosing a pivot in a row r
corresponding to such an artificial variable and in any columns s such that
d,, % 0. If all coefficients in such a row forj = 1, . . ., N are zero, the row
is deleted because the corresponding equation in the original system is
redundant (see § 8-1).

As a second alternative, keep the w-equation during Phase II, and treat
the (—w) variable as just another variable which is restricted to nonnegative
values. The system is then augmented by introducing the z-equation after
eliminating the basic variables from it. Since w >0 is always true, the
added condition (—w) > 0 implies w = 0 during Phase IIL.

The computational procedures of Phase I with artificial variables and
the transition to Phase II are summarized in the flow diagram, Fig. 5-2-I.

s } { )
_ CHOOSE r by

b, /2,s=Min(b,/0,5)
START with' where g,,,d,5 >0
standard form (random choice for ties)

: 1!

Mgke constants - .
nonnegative REPLACE rth basic
variable by x¢

vor's and— 2z, —w

] by PIVOTING on No
Add artificial term g,5 Xg
var's xyy . l_lre<oll? Yes
Add infeasibility ;5507
form:w = XN 4/ ~ o
& < No
1 < 7,
Ng &
Max nonical ‘it <
oot CHOOSE s by 2| cHOOSE s by
relative to - e aa - - L -
ds =Min J; Cs =Minc/,
artiticial s Mm% s /s

TEST Min w by:

START
PHASE | START
PHA.SE Jid Yes
N
(15w >0i)——°- DROP all x;
such that d;> 0.
Yes DROP w~-row
STOP ¢ STOP 2: basic STOP 3: class of
no feasible fegsible feasible sotutions
solution solution minimal can be constructed
with no lower

Figure.5-2-.1. Flow diagram of the simplex method.

Is dg 20?7

TEST Min Z by:
Is Cs 207
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8-2. THE TWO PHASES OF THE SIMPLEX METHOD

Detailed Iterative Procedure.

The tableau of the simplex method is given at various stages in Tables
5-2-1, II, and III. At the beginning of some cycle & all entries in a tableau
associated with a cycle aro known (see Tablo 5-2-II). Below each column
corresponding to a basic variable, which includes (—z) and (—w), a ®
symbol or 0 symbol is placed. Since the system is in canonical form (except
that the original order of the variables has been preserved) all entries in the
columns marked @ or o will be zero except one whose value is unity. If unity
appears in the ith row (except the last two), we will refer to the basic variable
as the 4t basic variable and give it the symbol, z; . For example, if unity occurs
in the first, second, and third rows for basic variables x3, %5, and z,, respec-
tively, then z;, = %3, ;, = %5, and z; = z, are the symbols entered in the
left-hand margin of the tableau their’ respective values in the corresponding
basic solution are b,, . . ., by, which are shown in the last column, as are
the values of the basic va.ria.bles (—2) and (—w), which are the last two
entries denoted by the symbols —z, and —&,. The column of a variable
entering the basic set on the next iteration is indicated by a *; it replaces the
basic variable indicated by a o.

The following rules apply to all cycles but differ slightly depending on
whether the computations are in Phase I or Phase II.

Step I:
(i) If all entries d; > 0 (in Phase I) or &; > 0 (in Phase II), then for
(a) Phase I with 16, > 0: terminate—no feasible solution exists.
(b) Phase I with, @, = 0: initiate Phase II by

(1) dropping all variables z; with d, > 0,4
(2) dropping the w row of tableau, and
(3) restarting cycle (Step I) using Phase II rules.

(c) Phase II: terminate—an optlmal solution is z; =, z; =0,
2—20(37.‘.‘7"1,_]_2 M)'

(ii) If some entry d; < 0 (Phase I) or &; < 0 (Phage II), choose z, as the
variable to enter the basic set in the next cycle in place of the rth
basic variable (r to be determined in Step II), such that

PhaseI: d,=Mind, <0

Phase II: ¢, = Ming <0
¢ As an alternative, this step may be omitted and Step IT-(ii) modified dunng Phase IT
as follows: If corresponding to an artificial basic variable zy,, there is an &,, = 0 for

# < N, then drop the first such ¢ = r after pivoting on d,,; if none, perform Step II.(ii)
as given.
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THE SIMPLEX METHOD

TABLE 5-2-1
TABLEAU OF THE SIMPLEX METHOD

Initial Tableau, Cycle 0

- . . . bjectiv
Basic Admissible Variables Artificial Variables 38";?:1;1‘62 Con-
Variables stants
Ty e Ty .. Ty Tysr Twsz o - - TNaM -2z —w
Tyt Gyg o « « Qyg o « « Oy 1 b,
Tyez gy« « + Ggg - « = Goy 1 b,
TN+M Gy1 + Qyy+ - - OMN 1 by
—z ¢ . Cy ox 1 0
—w Dl D e — Sy 1 —Xb,
Basic
Variables® * e © o o [
« (these columns may be omitted)? —
TABLE 5-2-1I
Tableau Start of Some Cycle k
iy ‘?u ‘fu Gix 1 51
Zy, Gn Gy Gox 1 5
Z‘,' drl ;fsz 1 drN Er
Tix Gy 1 Gu dyy by
—z & G, éx 1 —%
—w d, d, dy 1 — Dy
Basic
Variables ®%x O o © (drop) e ©

1 The @ or O indicatos a column corresponding to a basic variable. All values in these
indicates the position of most

columns are zero except one whose value is unity. The %
negative d; < 0, Phase I (or é; < 0, Phase 11); i.e., the column of the variable entering the
basic set on the next iteration by replacing the one indicated by O.

t T4 is customary to omit the —z and —w columns because these remain the same
through all tableaux and to omit the artificial variable columns because these, once
dropped from the basic set, can be dropped from further consideration. Contrariwise,
in the simplex method using multipliers (Chapter 9) the only entries recorded are those
corresponding to the artificial variable columns.

3 The bold-faced entry indicates position of pivot term for elimination for the next
cycle; see Table 5-2-1II.
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5-2. THE TWO PHASES OF THE SIMPLEX METHOD

TABLE 5-2-1I
Tableau Beginning of Next Cycle, k& -} 1

(i)

(i)

Admissible Artificial Objective
Basic Variables Variables Variables| Constants
Variables
R A Ty DsreByau] —F —W
5 ‘?u — &8y Gy —duay 1 by ~ &by
Ty, Gy — Gy, Gax — Ga,8.y 1 by — 3,
%, ak 1 a% by
Zo, G —ayel 1 dyy —dyal by — daesb?
—z & — cah 8y — éajy 1 —Z, — &b}
—w |id, —da}; dx — dayy 1| =@ —db7
Basic '
Varia.bles] [ ] @® (drop)
where (arx = a.'ﬂ/&n)’ .« o ey (a:n’ = 5m/5n) (b: == 51/611)
 Step II:

If all entries @,, << O terminaie;5 the class of solutions

z, > 0 arbitrary

z; =b; —dyz, (z;, basic variables)

z; =0 (z; non-basic variables; j # )
satisfies the original system and has the property
) 2 = %y + Cx, — — 00 a8 T, —> 0
If some d;, > 0, choose the 72 basic variable to drop in the next
cycle, where

Br/ a,, = Min 6(/ s

and ¢ and r are restricted to those i such that d; > 0. In case of

ties® choose 7 at random (with equal probability) from those ¢ which
are tied.

Step III:

To

obtain entries in the tableau for the next cycle from the current
cycle, multiply each entry in the selected row r by the reciprocal of
the pivot term d,, and record the products in row r of the next cycle;
see the starred entries in row », Table 5-2-II1. Enter the rtd basic

& In Phase I, this case cannot occur, for it would imply that w has no finite lower

bound.

¢ See discussion on degeneracy, Chapter 10; see also § 6-1.
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variable as z, in place of z; of the current cycle. To obtain the row i,
column j entry of the next cycle, subtract from the corresponding
entry of the current cycle the product of the entry in row i, column s
of the current cycle and the entry in row r, column j of the next cycle.

Hlustrative Example 1.

We shall now carry out the steps of the simplex method on our simple
numerical example.

52, — 4z, + 132; — 22, + x5 = 20
T, — Ty+ 5z — 2+ ;=38
Zy + 6zy — T+ T+ Bxg=2
Since the constant terms are nonnegative, we initiate Phase I of the simplex
method with the augmented system

Admissible Variables Arifional
5z, — 4w, + 13z — 2z, + x5 + x4 = 20
Ty — Ty 4+ Bxy — T+ Ty + z; =8
2 + 6z, — Txy + x, + 574 —z =0
Ty + 25 —w =20

This is reduced to canonical form by subtracting the sum of the first two
equations from the last. This then becomes the starting tableau for initiating
Phase 1. In order to show the relation between the ordinary elimination of
a system of equations and the simplex algorithm, the computations are
carried out in parallel in equation form in (10) and in tableau or detached
coefficient form in Table 5-2-IV.

The steps for the minimization of w in Phase I are similar to those for -

minimizing z. The reader is referred to § 5-1, (4) through (14), for a detailed
explanation for this example. On the first cycle the value of w is reduced
from 28 to %, on the second cycle to zero, and a basic feasible solution
xy = 2, z, = }, 2 = —8 is obtained for the original unaugmented system.
Variables 2, and z, have positive relative cost factors for w and hence must
be dropped for Phase II. On the third cycle the value of z dropped from

2y = —8 (cycle 2) to z, = —&2 which is minimum. The optimal solution is
x, = %, z, = 3%, all other z; = 0, z = —42.
(10) Simplex Method: Egquation Form
Cycle 0 (Phase I)
5z, — 4z, + 13x; — 22, + x5+ % = 20
Ty — Tog+ Bxz— 24+ %5 + z, = 8
Z, + 6z, — T3+ x4 + 5z -z = 0
—6x, + 52, — 18x; + 3z, — 27, —w = —28
* o) ® o o
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TABLE 5-2-IV
SiMPLEX METHOD: TABLEAU ForM

Cycle 0 (Phase I)

- . Artificial
Basic Admissible Variables Variables c s
Variables °
2y ;3 Zy x, 5 T, @, -z -w
z, 5 —4 13 —2 +1 1 20
Z, 1 -1 +5 -1 +1 1 8
—z 1 6 -7 1 5 1 0
—w —6 45 ~18 43 -2 1 —-28
* o ® o o
Cycle 1 (Phase I)
%3 5 - 1 —% & it
Z; -1 45 —75 733- -1 1 %
-z ® B - #H & 1 T
—w | +8 & +A - M 1 —#
® * drop O e o
Cycle 2 (Phase I-II)
Zy i -3 1 -4 + -3 £
s —& z o ] 1 —3 g 5
-z 12 -1 2 4 -9 1 8
—w 1 1 1 0
* [ ] O drop drop @ o
Cycle 3 (Phase II-Optimal)
T3 -4 1 -3 3y -4 +3 5
T -5 1 -$ ¥ -3 3 #
-z 3 A A s
® ® drop drop @
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(11) Cycle 1 (Phase I)
o, 4 . , - . ) zo
T I ¥ B R N s T T 14 l
7 3. . , 4
=18 1 ey g+ a0 |2 '
8 0 22 — 1490
{8z, + B, — %, + 1375 + 5% -z = 3 l
2 4
%le - 1‘73!'-'”2 + '1%1:4 - '1“8"x§ + }%xs — W= —713
® * (drop) o e @
(12) Cycle 2 (Phase I-1I) l
to, — §oy + 2y — 2, + xg — 2, =}
2 - &
-3k, + 2%, — 3z, + 75 — {75 + A2, =3 '
122, — =z, + 2z, + 4zy — 92, — 2 =8
g+ —w=0
x o o (drop) (drop) @ @ l
(13) Cycle 3 (Phase II—Optimal)
12
—%z, + 23— $x 4+ s — AT+ A% =37 l
2 J—
—1tz, + z, — 3z, 4+ x5 — g + i, =%
V]
17gz1 -+ l7lx4 -+ %xs + 373'7"6 - %21'7 —z= %—
e o- (drop) (drop) e l
Optimal Solution: =z, = 3%, z, = %, all other z; =0,z = —82,
Illustrative Example 2.
TABLE 5-2-V
Simplex Method in Tableau Form for the Blending Problem, § 3-4
Cycle 0 (Phase I)
Basic Admissible Variables Artificial Variables ‘ .
Vari- stants
ables{| . z, zy E EA Zs Ze z, Zg E Ty Ty Tya Ty | T2 —W
Zo || 1 1 1 1 1 1 1 1 1 1
zy 1 1 4 8 3 3 3 5 2 1
Ths 1 3 5 3 3 4 2 4 3 1
|+ 3 6 1 1 4 3 5 1 5 1
-z 4.1 4.3 5.8 8.0 7.6 7.5 7.3 8.9 7.3 1 0
—wll-20 -20 -20 -20 -20 -20 -206 -—20 -2.0 1 ‘f:"-O
* e e ¢ O © o [
Cycle 1 (Phase I)
%asip Admissible Variables Artificial Variables .
ari-
ables{| =z, z, zs Tq z, Zq Ty [T Ty Tz T | —2 —W ts
T10 875 500 .62 375 876 375 1
T BEN 250 262 238 488 138 1
Ty BRM 250 362 138 38R 238 1
z, 1 125 500 375 .625 125 625
-z 1.22 5.29 5.49 5.55 5.96 4.74 6.39 4.74 1 05
—1w ~ 50 -175 -1.75 -1.00 -125 — .75 -175 — .75 1 0o
® * ® @ O drop @ @
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Cycle 2 (Phaso I)
Bai Admissible Variables Artificial Variables Con-
Vari stants
ables|] =z, Z3 Z z z5 %y 2y Zy Ty |%ie Tn By FTs| -2 -w
Zyp - 154 359 051 - .026 128 179 — 061 1 .06
£ - 154 + .359 051 —~ .026 128 179 — 051 .05
EN 462 580 513 744 282 795 487 .51
E 1 .692 .051 436 282 590 026 564 44
-2 -~1.22 2.37 2.84 2.03 3.25 2.18 2.16 1 —4.76
-0 . 31 -.72 - 10 05 — 26 — .38 10 . 1 j— .20
® [ J * ® O dropdror @ @
Cycle 3 (Phase I-II)
Basic Admissible Variables Artificial Variables Con-
Vari- stants
ables|i =, Ty Zs Ty Z Ty % Zs Ty Tio T T Ty | —Z2 —W
£ 0
z, - 428 1 142 — 071 357 500 —~ 143 14
Ty + 714 1 428 .786 071 500 571 43
£ 1 J14 428 286 571 0 571 43
-z - .20 2.50 2.20 2.40 1.00 2.50 1- ~5,10
—_— 1 0
| @ *x O @ @ drop dropdrop @ @
I Drop w-equation after dropping all variables with J, > 0 (in this case w only).
Cycle 4 (Phase IT—Optimal)
Basic Admissible Variables Artificial Variables Co
Vart- tants
ables|| =, s T3 Ty Ty Zs Ly Ty Ty T Ty T 2w |-z —w |°
Zy, 1 0
Pou 8 1 4 4 4 3 2 4
zy 1 1.4 8 1.1 1 7 3 8
% || 1 0
-2z 28 2.62 2.42 2.42 1.14 2.68 1 -~4.98
[ ] ® @ drop drop drop @ drop

5-3. PROBLEMS

1. What condition must be satisfied for a set of variables to be a basic set
of variables? What is the difference between a feasible solution, a basic
solution, a basic feasible solution, an optimal solution, and an optimal
basic solution? Why is the term “an” optimal solution used instead of
“the’ optimal solution?

The Simplex Algorithm. (Refer to §5-1 and § 5-2.)

2. Describe briefly in words the simplex algorithm. Make a “flow diagram”
of the sequence of steps, cycles, etc. What is degeneracy ?
3. Show for the redundant system

Ty + @13y + @a7s = by
Age%y + a2y = 0
— Byg%y — Ggg%y = 0

with 0 < @y, <1, 0 < a3 < 1, b, > O that augmentation by artificial
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10.

11.

12.

THE SIMPLEX METHOD

variables plus the usual Phase I procedure of the simplex method termin-
ates with two artificial variables, and that the two equations associated
with the artificial variables in the canonical form have one redundancy
when the artificial variables are dropped but neither equation vanishes.

. Show in general that if the original system is of rank r, i.c., has m —r

redundant equations, then there are at least m' > m — r artificial
variables left at the end of Phase I. If these artificial variables are dropped,
then the subsystem of equations associated with these artificial variables
is of rank m’ — (m — r), i.e., has also m — r redundant equations. If
m’' = m — r, these equations are vacuous.

Discuss weaknesses and possible ways to improve the final solution
to Phase I of the simplex method so as to have less Phase II cycles.

. Show, by changing units of any activity k¥ whose ¢; < 0, that it can be

chosen by the rule of &, = Min ¢&; to be the candidate to enter the next
basic set. Can you suggest another selection rule which might be better;
does it involve more work ?

. What is a sufficient condition that an optimum solution be unique? If

the condition is not satisfied, how can one go about constructing a different
optimal solution if it exists?

Show that if (z,, %, . . ., %,,) are basic variables, z, can replace z, as a
basic variable only if the coefficient of &, 7 0 in canonical form.

. Prove, using the method of artificial variables of Phase I of the simplex

method, that if any feasible solution to a system in m linear equations

in nonnegative variables exists, then one exists in which no more than m

variables are positive.
(T. Robacker): In some applications it often happens that many
variables initially in the basic set for some starting canonical form
remain until the final canonical form, so that their corresponding rows
in the successive tableaux of the simplex method, though continuously
modified, have never been used for pivoting. Devise a technique for
generating rows only as needed for pivoting and thereby avoiding
needless work.
Suppose that in the canonical form at the end of Phase I withw=0
an artificial variable remains in the basic set with its unit coefficient
in row k. Show that any admissible variable z; can replace the artificial
one, providing d,; % 0. If all d,; = 0 for admissible j, the k*® row may
be dropped from further consideration and this means that the kth
equation was redundant in the original system.
Prove: If there are no degenerate solutions after removal of the
redundant equations, then the number of artificial variables at the end
of Phase I, without removal of these equations, equals the number of
redundant equations; and the equations, associated with the artificial
variables in the canonical form (after dropping the artificial variables),
are vacuous.
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15.

16.
17.

18.

19.

20.

21.

22.

23.

5-3. PROBLEMS

Identify the redundant equation if no artificial variable is allowed to
re-enter when once dropped from a basic set. When can a class of
solutions each having m variables with positive values (m = number of
equations) have a lower bound of minus infinity ?

Show that if the rank (see Problem 4) of a system of equations is the
same as the number of equations and if feasible solutions exist, then
basic feasible solutions exist; moreover if z has a finite lower bound a
minimal basic feasible solution exists.

Discuss how the simplex method can be used to distinguish between a
consistent system which is not solvable in nonnegative numbers and an
inconsistent system.

How is redundancy identified in the simplex method ?

Given a basic nonfeasible solution (i.e., at least one b, < 0) with all
relative cost factors ¢; > 0, prove that Z, is a lower bound for possible
values of z in § 5-1-(2). '

Show that uniqueness of the canonical form means that there is one and
only one linear form which can express a basic variable in terms of the
non-basic variables. Use this to prove for the infeasibility form that.the
relative cost factors d; = 0 for non-artificial variables z;, and d; = 1
for artificial variables, if the basic set of variables contains no artificial
variables.

Show that the condition ¢; > 0 for all j is necessary for a nondegenerate
basic feasible solution to be minimal.

Show that a degenerate basic feasible solution may be minimal without
satisfying the condition ¢; > 0 for all j.

Show that no lower bound for z exists for the system

T, —z,=1 (@, =0, z, = 0)

—Z, — Ty, =2

and thus can be made to satisfy the conditions of § 5-1, Theorem 3.
In the following system one solution is 2, = 3, 2, = 1, 2, = 2, -z, = 2.

T+ -2+ x, =2 (z; = 0)
z, — 22, — 23+ 22, =3
2z, + 3z, =9

(a) Reduce to canonical form with respect to z,;, z,, z;; treat z, as an
independent variable; and show how to reduce z, from its value
z, == 2 toward zero and, at the same time adjust the values of the
basic variables to obtain a solution with at most 3 variables positive.
(b) Find all solutions with at most 3 positive variables.

(a) Using the approach outlined in Problem 22 above, develop a variant
of the simplex algorithm to reduce the number of positive variables
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by at least one if the rank (see Problem 4) of their subsystem is
less than their number. Under what circumstances can there be a
change of more than one variable from a positive value to zero’

(b) Along the same lines as above, develop a variant of the simplex
algorithm which begins with any feasible solution (basic or not) and
by adjusting the values of non-basic variables up or down (if not at
zero value), successively improves the solution towards optimality.

{(¢) Prove, using the above variant of the simplex algorithm, that (i) if
feasible solutions exist then a basic feasible solution exists, (ii) if an
optimal feasible solution exists then a basic feasible solution exists
which is optimal, and (iii) if feasible solutions exist and the values
of z associated with the solution set have a finite lower bound, then
a basic feasible solution exists which is optimal.

If there is a feasible solution involving k variables, and if the rank (see
Problem 4) of the subsystem formed by dropping the remaining variables
is r, show that there is a feasible solution involving at most r variables
where r << k.

. If a system of m equations in n» nonnegative variables has a feasible

soluticn, then a solution exists in which & variables are positive and
n — k are zero, where k << Min (m, n).

Show that in a nutrition problem with slacks where there is one food
F that contains a little of each nutrient, there is a starting basic feasible
solution involving m — 1 excess variablesand the variable associated with
F. Which excess variable is omitted ?

The Two Phases of the Simplex Method. (Refer to § 5-2.)

27.

28.

Use the simplex method, to solve the system

z,+ 1, >1
x, F w2
5 —r<l
x —xy = —1

—zy =2z

for nonnegative z; and Min z. Plot the inequalities using z; and z, as
coordinates, follow the solution steps graphically, and interpret the shift
from one solution to the next on the graph. See Fig. 7-2-L.

[Waugh, 1951-1): Dairy cows require a certain minimum combination
of nutrients for maintenance and for milk production. Part of these
requirements must be purchased. Given the following data, how much
of each feed should the dairyman buy in order to supply all needed
nutrients at the least possible cost? (Hint: Find proportions of re-
quirements supplied by $1 worth of each feed.)
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5-3. PROBLEMS

A. Wholesale Prices and Nutritive Content of Feeds
Wholesale Nutritive Contn?nt of Feeds
Price, (Pounds of each element in 100 pounds of feed)
Feed Kansas
Total
City, . . Digestible .
$/100 Tbs. ]131’11?::1:::: Protein Calcium | Phosphorus
Corn 2.40 8.6 6.5 0.02 0.27
Oats 2.52 70.1 9.4 0.09 0.34
Milo maize 2.18 80.1 8.8 0.03 0.30
Bran 2.14 67.2 13.7 0.14 1.29
Flour middlings 2.44 78.9 16.1 0.09 0.71
Linseed meal 3.82 77.0 30.4 0.41 0.86
Cottonseed meal 3.56 70.6 32.8 0.20 1.22
‘Soybean meal 3.70 78.5 37.1 0.26 0.59
Gluten feed 2.60 76.3 21.3 0.48 0.82
Hominy feed 2.54 84.5 8.0 0.22 0.71
B. Requirements for 249, total
protein 74.2 19.9 0.21 0.67

29.

30.

31.

Show that the feasible solution z, = 1, 2, =0, 23 =1, 2 =6 to the
system
T+ 2+ =2 (; =0)
Ty — 2yt =2
2z) + 32, + 423 = z (Min)
is not basic.
In the system below, the z form has all positive coefficients and
T, =xy=my=2x, =2%3=1; z=25 is a feasible solution. Without
doing any calculations prove an optimal basic feasible solution must
exist. Using Phase I and II of the simplex method construct an optimal
solution.
2= z;+ 2+ 23+ z,+ 2 . (2, >0, Minz)
2= 2z 4z, — w3+ 2 — -
= —x; + %y + 3v3 — 27, + ;4

Consider the system
22, — 2y + 23 =2 (z, 20,2, >0, 23, >0)
4z, + 2, + 23 =6
Tyt Tyt By =2

(a) What is the maximum number of solutions with at most two
positive variables ?

(b) ¥ind all solutions with at most two positive variables. Which
solution gives the smallest value of z?

(¢) Reduce the problem to canonical form relative to z, and z,. Is this
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33.

34.

35.

36.

Prek b ML RN M ETH oD

solittion optial £ 1 not, ase the iterative procedure of e mplox
algorithm to find the optimal solution. How does this agree with
the result of (b)?

Find 2; > 0 and Min = for cach of the following systems for the optimal

solution:

(a) 2z, — 3z, + 23+ 3r, — zZ5= 3
T+ 2, — 225+ 97, =4
2z, — 3a, + 6z + T — 225 =12
(b) 3y b Ty 2wy 4wy b Ty =2

22, — To+ x3+ T+ 4xs=3
Xy — X+ 3Ty — 22,4+ ZTz=2
(e) Ty + 2, + 325 + 22, — x5 =16
2z, + 4, — 4w, + 22z, =6
Zoy+ T3+ 24+ zs =25
—x; + 22, + w3+ 3Ty~ Tz =2
Solve the Product Mix Problem of § 3-5 by the simplex method. Note

that the model with the slack variables added is already in canonical

form.
Using the simplex method, solve Problem 12, Chapter 3.

Solve the following problems by the simplex method. Verify your
answers graphically (except c). Find x; > 0, Min z satisfying
(a) z, + Ty — 24 =2
i +r,=4
—2m, — Z, =2z
(b) z + Tyt 2, =2
z;, — 3z, —z, =3 -
—2z, — =, =z
(c) 22, + xp— 23+ 7 =2
2%, — 1wy 4 5z, + z =6
dr, + z+ % + 25 =
—x; — 2%, — X =
(d) —4:21 + Zy -+ Ty =
2z, — 3z, +z, =26
—z, — 2z, =z
Is the solution of the Illustrative Example 1, § 5-2, unique? Give a rule

for determining whether or not a solution is unique.
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37. Solve for the optimal solution of each part of Problem 32, using artificial

variables.
38. The problem of minimizing 4x, + 8z, + 3z, subject to the five con-
straints
T+ 2z =2
22, + 2, =5
=0 (j=1,2,3)

may be converted into the following form, for immediate application of
the simplex procedure:

Minimize 4z, + 8z, + 3z, + Wz, + Wx,, subject to the nine
constraints:

z + 7 — 4 x4 =2
2z, + x4 -z +z,=5
z; >0 G=12...7
where W is an arbitrarily large positive quantity.
(a) Explain the roles played by z, and z,.
(b) Explain the roles played by z, and z,.
(¢) Why is it necessary to introduce z4 and z,, if z, and z, have already
been introduced ?
(d) What is the role played by W? Show that if W is large enough the

sequence of steps is identical with the Phase I, Phase II procedure
(e) Solve using the simplex method.

39. Minimize —2y, —5y,

subject to Y1 + ys =4
Y+ 2y, + Y =38
Y2 +y;=3
and y;, =0
40. State and give the solution to the problem that is dual to the following
problem.
Maximize Uy + Uy + vy + v,
subject to U; 4+ v; = 1§ (the product of iand j; 4,5 =1,2)

A Nutrition Problem.

41. Formulate as a linear programming problem: Suppose six foods listed
below have calories, amounts of protein, calcium, vitamin A, and
costs per pound purchased as shown. In what amounts should these
foods be purchased in order to meet exactly the daily equivalent per
person shown in the last column at minimum: cost? How is the model
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modified if the daily requirements may be exceeded ; if the requirements

THE SIMPLEX METHOD

except for calories may be exceeded ?

Contents and Costs Per Pound Purchased

Daily
Bread Meat Potatoes Cabbage Milk Gelatin | Requirement
Calories 1254 1457 318 46 309 1725 | 3000
Protein 39 73 8 4 16 43 70 (grams)
Calcium 418 41 42 141 536 —_— 800 (mg.)
Vitamin A — — 70 860 720 — 500 (I.U.)
Cost §0.30 $1.00 $0.05 $0.08. $0.23 $0.48 Minimurmn

(a) Reformulate the model with exact requirements if the unit of each
activity is changed from a per pound purchased to a per 3,000
calories of bread, of meat, etc. purchased. Obtain graphically an
optimal solution for a simplified problem in which the material
balance equations for calories, proteins, and costs only are con-
sidered (i.e., those for calcium and vitamin A are dropped). Solve

the full problem using the simplex method.

42. [Greene, Chatto, Hicks, and Cox, 1959-1]:
a meat packing plant that wishes to know what proportion of hams,
bellies, and picnic hams should be processed for sale as smoked product,

Find the optimum plan for

and what proportion should be sold fresh, or “green.”

Maximum flow in the processing operation before overtime work is
necessary on any given day is smoked ham = 106 (per 100 weight),

total bellies and picnics = 315.

Total Amount of Fresh Product Available for Processing

Hams

480

Bellies
400

Picnics
230

Processing Costs in Dollars for Final Product

Smoked product
(Reg. time)

Smoked product
{Overtime)

Green product

Smoked products sell higher than green products: the difference between
the selling prices for smoked and green hams = $6.00; between smoked
and green bellies = $5.00; between smoked and green picnics = $6.00..

Hams Bellies Picnics
$5.18 $4.76 $5.62
$6.58 $5.54 $6.92
$ .50 $§ 48 $ 51
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CHAPTER 6

PROOF OF THE SIMPLEX ALGORITHM
AND THE DUALITY THEOREM

6-1. INDUCTIVE PROOF OF THE SIMPLEX ALGORITHM

The proof given in § 5-1 of the simplex algorithm assumed all basic
solutions generated by the iterative process to be nondegenerate. To cover
the degenerate case there are two types of proofs available. The first, based
on induction, has the advantage that at an early stage it yields a rigorous
elementary proof of the fundamental duality theorem [Dantzig, 1959-1].

From a constructive viewpoint, the second proof, based on perturbation
or lexicographic modification of the constant terms, has the advantage that
it yields an easy rule for deciding which basic variable to drop when there is
ambiguity [Dantzig, Orden, and Wolfe, 1954-1]. The proof requires, however,
more background knowledge and is therefore postponed until Chapter 10.
Either proof can be used to establish the simple random choice rule which
requires the least work and guarantees with “probability one” that the
simplex algorithm will terminate in a finite number of steps. Proof of the
latter will be found at the end of this section. Our immediate objective is to
show :

THEOREM 1: Given a linear program presented in feasible canonical form,
there exists a finite sequence of pivot operations each yielding a basic feasible
solution such that the final canonical form yields an optimal basic feasible
solution, or an infinite class of feasible solutions for which the values of z have
no lower bound.

Discussion: For a linear program to be presented in feasible canonical

form with the basic variables z,, . . ., ,, . . ., &y, Say, we must have
z + Gymi1 Tmar - T B T st Gy Ty = 51
(1) z, + a-‘r.m+1 Tmi1 + vt + drs Ts + . + drn Lp = 51‘

....................................
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6-1. INDUCTIVE PROOF OF THE SIMPLEX ALGORITHM

where Z,, d,;, and the §; > 0 are constants. (See §5-1.) The basic feasible
solution is obtained by assigning each of the non-basic variables the value
zero and solving for the values of the basic variables, including z.

The simplex algorithm described in Chapter 5 may be outlined as
follows: each iteration begins with a feasible canonical form with some set
of basic variables. The associated basic solution is also feasible, i.e., the
constants b, (as modified) are nonnegative. The procedure terminates when
a canonical form is achieved for which either & > 0 for all j (in which case
the basic feasible solution is optimal), or in some column with & < 0, the
coefficients are all nonpositive, @, << 0 (in which case a class of feasible
solutions exists for which z — — c0). In all other cases a pivot term is selected
in a column, s, and row, r, such that & = Min & < 0 and §,/d,, = Min (5,/d,,)
for d,, and d,, positive. The variable z, becomes a new basic variable replacing
one in the basic set—namely, by using the equation with the pivot term to
eliminate z, from the other equations. When the coefficient of the pivot
term is adjusted to be unity, the modified system is in canonical form, and
a new basic feasible solution is available in which the value of z = 2, is
decreased by a positive amount, if 5, > 0. In the nondegenerate case, we have
all b;s positive. If this remains true from iteration to iteration, then a
termination must be reached in a finite number of steps, because: (1) each
canonical form is uniquely determined by choice of the m basic variables;
(2) the decrease in value of %, implies that all the basic sets are strictly
different; (3) the number of basic sets is finite; indeed, not greater than the

number of combinations of n things taken m at a time, :;)

In the degenerate case it is possible that 5, = 0; this results in Z, having
the same value before and after pivoting. It has been shown by Hoffman
and Beale (see § 10-1) that the procedure can repeat a canonical form and
hence circle indefinitely. This phenomenon occurs, as can be inferred from
what follows, when there is ambiguity in the choice of the pivot term by
the above rules. A proper choice among them will always get around the
difficulty. To show this we establish first the convenient lemma:

Levma 1: If Theorem 1 holds for a system with at least one mon-zero
constant term, it holds for the system formed by replacing all constants by
zero.

ProoF: Suppose a system in canonical form has all constant terms
zero. Change one or more b; = 0 to b] = 1 (or any other positive value).
Then, by hypothesis, there exists a sequence of basic feasible solutions
obtained by pivoting, such that the final canonical form has the requisite
properties. If exactly the same sequence of pivot choices are used for the
totally degenerate problem, each basic solution remains feasible—namely
zero. Since the desired property of the final canonical form depends only on
the choice of basic variables, and not on the right-hand side, the lemma is
demonstrated.
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ey o "Prooniosnne | Voentabinh Che medn theorca for the degenciate
anc weldl i Che nondegenerate vase we mahe the tollowing,

INvuerive Assomerion:  clsswme for 1,200 | equations that
only a finite number of feasible basic set changes are required to obtain a
canonical form, such that the :-('q'uul.i(rn,‘ has all nonnegative coeflicients (&, 7 - 0)
or some colwman s his ¢, - O and all nompositive coefficients (@, - 0).

We first verify the truth of the inductive assumption for one equation.
If the initial basic solution is nondegenerate (b, > 0), then we note that
each subsequent basic solution must be nondegenerate (this remark holds
only for the casc of a single equation system). It follows that the finiteness
proof of the simplex algorithm outlined above is valid, so that a final
canonical form will be obtained that satisfies our inductive assumption. The
degenerate case b, = 0 is established by Lemma 1.

To establish the inductive step, suppose our inductive assumption holds
for 1,2, ... m — 1 equations and that b; # 0 for at least one i in the
m-equation system (1). If we are not at the point of termination, then the
iterative process is applied until on some iteration a further decrease in the
value of %, is not possible, because of degeneracy. By rearrangement of
equations, let b, =b,=. . .=5 =0and b; #0fori=r+1,.. . m
Note that for any iteration, r < m holds, because it is not possible to have
total degeneracy on a subsequent cycle, if it is assumed that at least one
of the b; # 0 initially. Let us set aside momentarily equationsr + 1,. . ., m.
According to our inductive assumption there exists a finite series of basic
set changes, using pivots from the first r equations, that results in a subsystem
satisfying all &; > 0, or for some s, all @, << 0, 1 << i<Zrand & << 0. Let
us perform these same pivots, but this time with the full system. Since the
constant terms for the first r-equations are all zero, their values will all remain
zero throughout the sequence of pivot term choices for the subsystem this means
we can apply the same sequence of choices for the entire system of m equations,
without replacing z,,q, - - ., T, as basic variables or changing their values in
the basic solutions.

It follows then, that if the final basis for the subsystem has all ; >0

then the same property holds for the system as a whole. If it has the property -

that for some s, &, < 0 and d;; << 0 for+ = 1,2, . . ., r, then either a;,, < 0
for all the remaining ¢« =r + 1, . . ., m (in which case the inductive
property holds for m equations) or @; > 0 for at least one 1 > r, in which
case the variable z, can be introduced into the basic set for the system as a
whole, producing a positive decrease in Z,, since b, > Ofori =r+1,. . ., m.
We have seen earlier that this value of z can decrease only a finite number
of times. Hence, the iterative process must terminate, but the only way it
can is when the inductive property holds for the m-equation system.

This completes the proof for m-equations, except for the completely
degenerate case where b, = 0 for all i =1, 2, . . ., m. The latter proof,
however, now follows directly from the lemma. Q.E.D.
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As a corollary to Theorem 1 we have the following theorem.

TaEOREM 2: If there is only one choice of vartable to drop under degeneracy,
the simplex algorithm will terminate in a finite number of steps.

Proof of the Random Choice Rule: This rule selects the variable to drop
from the basic set with equal probability among those r, satisfying

@ b,/d,, = Min b,/a,, (Gpe > 0, @y > 0)

- Starting with any basic feasible set, 7', we know by Theorem 1, there
exists a finite number of iterations leading to a final canonical form. Let
ky be the smallest number of iterations starting with 7'. Since there is only
a finite number of starting basic sets, there exists a k = Max kp, which is
the longest of these shortest chains of steps.

LemMa 2: The random choice rule will terminate in k iterations with
probability
3) P> (1/m)

where m is the number of equations and k the longest of the shortest chain of
steps leading to an optimal canonical form.

ProoF: There are m or less selections on each iteration. Thus, in %
iterations, there are at most m* sequences (*‘paths”) of which at least one
leads to an optimum; the probability of making a selection along such a
path on each step is at least (1/m), since we choose with equal probability.
Hence for & steps (3) holds. Moreover, the probability of failing to reach an
optimum before k iterations is less than [1 — (1/m)*]. It follows that the
probability of failing to reach an optimum by 2k iterations is less than
[1 — (1/m)*]* and failing to reach an optimum by N = tk iterations is less
than

(4) 1 — (1/m)*}t

This expression, however, tends to zero as ¢t — co; therefore

TEEOREM 3: Given a random choice rule of which basic variable to drop
from the basic set in case of a tie, the probability of failing to reach an optimum
in N iterations tends to zero as N — co.

6-2. EQUIVALENT DUAL FORMS

As noted in § 3-8, associated with every linear programming problem is
another linear programming problem called the dual. This fundamental
notion was introduced by John von Neumann (in conversations with the
author in October 1947) and appears implicitly in a working paper he wrote
a few weeks later [von Neumann, 1947-1]. Subsequently Gale, Kuhn, and
Tucker [1951-1] formulated an explicit Duality Theorem which they proved
by means of the classical lemma of Farkas [1902-1]. Farkas’s Lemma is
described in § 6-4, Theorem 6. A systematic presentation of theoretical
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propertios of dual linoar programs will be found in Goldman and Fucker
[1956-1], and Gale [1956-1). A review of von Neumann's contributions can
be found in Kuhn and Tucker [1958-1].

The original problem in its relation to the dual is. ealled the primal.
Feasible solutions to the primal and to the dual may appear to have little
relation to one another; however, their optimum basic feasible solutions are
such that it is possible to use one to obtain the other readily. It is often
more convenient to use the dual to solve a linear programming problem
than the primal. In this connection, it should be remarked that no advantage
can be derived by solving the dual of the dual problem, because the latter
turns out to be equivalent to the primal problem.

The Dual Problem.

A nearly symmetric relation between a primal problem and its dual
problem results if the following system of linear inequalities (rather than
equations) in nonnegative variables is considered.

Primal Problem: TFind z; > 0 and Min z, satisfying

Oy %+ Q@ + . - Gy 20y
Ao Xy + Qoo Ty + . . .+ Ggp Ty = by

ATy + BpgZs + -« + Cppnn = by
6% + Gyt . . .+ Cp, = 2z (Min)?

In this form the dual problem is obtained by transposing the coefficient
matrix, interchanging the role of the constant terms and the coefficients of
the objective form, changing the direction of inequality, and maximizing
instead of minimizing.

Dual Problem: Find y;, > 0 and Max v, satisfying

anYy + Gu¥Ye + . -+ AYa <6
Ay + Coolfy + . - -t Bl < Co
()Y i e
A1nl1 + QonYo + A + CrinYm S Cn
biyy + by + . . .+ bnYm = v (Max)

This form of the dual problem, due to von Neumann, has the particular
merit that it is easy to see that the dual of the dual is the primal (see
Problem 5).

To'see more clearly the connection between the primal and dual problems
we shall use A. W. Tucker’s detached coefficient array, Table 6-2-I. The
primal problem reads across, the dual problem down. A simple way to
remember the direction of inequality is to write the primal inequalities >

1 ¢z (Min)” means z is to be minimized; not to be confused with Min z, which is the
minimum value of z.
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8.2, EQUIVALENT DUAL FORMS

to correspond to the z-form, being always > Min z, and to write the dual
inequalities <C to correspond to the v-form, being always << Max v.

TABLE 6-2-1
TuckeER DIAGRAM
Primal
Variables | z, >0 2,>0 ... =z,20| Relation | Constants
=20 an Gy ‘e Q1in = b,
Y =0 Gy Gyq e Gy, P b,
Dual
Yn =0 Gy Qg .. Grn = by
Relation < < < <
Max v
Constants ¢ Cy . c, > Minz

The Duality Theorem is a statement about the range of possible z values
for the primal versus the range of possible v values for the dual. This is
depicted graphically in (3), for the case where the primal and dual are both
feasible.

(3) Dual , Primal

—0 v range «— z range +o0
or finite Max v — « Min z or finite

Duarrry THEOREM. If solutions to the primal and dual system exist, the
value z of the objective form corresponding to any feasible solution of the primal
18 greater than or equal to the value v of the objective form corresponding to any
Jfeasible solution to the dual; moreover, optimal feasible solutions exist for both
systems and Max v = Min z.

The Dual of a Mixed System.

It is always possible to obtain the dual of a system consisting of a mixture
of equations, inequalities (in either direction), nonnegative variables, or
variables unrestricted in sign by reducing the system to an equivalent '
inequality system (1). In fact, this approach can be used to establish that
the dual of a linear program in the standard form, as given in § 3-8, is the
same as the one given here. Both the primal and dual systems can be viewed
as consisting of a set of variables with their sign restrictions and a set of
linear equations and inequalities, such that the variables of the primal are
in one-to-one correspondence with the equations and inequalities of the
dual, and the equations and inequalities of the primal are in one-to-one
correspondence with the variables of the dual. When the primal relation is
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PROOF OF SIMPLEX ALGORITHM AND DUALITY THEOREM

a linear inequality (=), the corresponding variable of the dual is nonnegative;
if the relation is an equation, the corresponding variable will be unrestricted
in sign. The following correspondence rules apply:

Primal Dual

Objective Form (> Min z) Constant Terms
Constant Terms Objective Form (< Max v)
Coefficient Matrix Transpose Coefficient Matrix
Relation: Variable:

(s*2) Inequality: > y;, =0

(i*h) Equation: = y; unrestricted in sign
Variable: Relation:

z; >0 (j2) Inequality: <

z; unrestricted in sign (j*2) Equation: =

To illustrate, suppose we have the mixed primal system

@) 7, — 3z, + 4oy = 5 (2, > 0, 7, > 0)
z, — 2z, <3 (z; unrestricted in sign)
2z, — 3> 4

z + %+ z; =z (Min)

Applying the rules, we have the primal system in detached coefficient form
by reading across and the dual system reading down (Table 6-2-II).

TABLE 6-2-IT
Primal
Variables z, >0 z, >0 Ty Relation | Constants
A 1 —3 4 = 5
~yy 20 1 —2 < 3
Dual y3 =0 2 -1 = 4
Relation < < = <
Max v
Constants 1 1 1 > Min z

To see why this is the case, suppose we rewrite system '(.4) in equivalent
inequality form (see § 4-5).

(5) z; — 3z, + 4lx; —23) =5, (2,=>0,2,>0,2; >0, 23 =>0)
—[z, — 3z, + 4(z; — 23)] = —5
—(z, — 2x,) > -3

2z, — (z; — ;) >4
z,+ 23+ (r;—2;) >Minz

Here we have written z, = z; —  as the difference of two nonnegative
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variables and we have written the first equation of (4) as egquivalent fo
two inequalities, T, — 3z, 4 4%, =5 and x; — 3z, + 42, < 5. The rela-
tionship between the primal and dual by (1) and (2) is shown in Table 6-2-I11.

TABLE 6-2-II1

Primal
Variables | z, >0 2, >0 23>0 27 >0 | Relation | Constants
=0 1 -3 4 —4 p- 5
=0 -1 +3 —4 +4 > -5
Dual
=0 -1 +2 = -3
Y20 2 -1 +1 = 4
Relation < < < < <
Max v
Constants 1 1 1 -1 > Min z

Here it is convenient to let ; > 0 and y; = 0 be the dual variables corre-

- sponding to the first two inequalities. Since coefficients of y; and y; differ

only in sign in every inequality, we may set y; — y; = ¥, where y, can have
either sign. Note next that the coefficients in the inequalities of the dual
corresponding to z4 and zj differ only in sign, which implies the equation

4(3/{—3/1')—1’!3=1 or 4y, —y;=1

From these observations it is clear that Table 6-2-II is the same as Table
6-2-I11.

The Dual of the Standard Form.

We may apply the rules above to obtain the dual of the standard form ;
see Table 6-2-IV. It will be convenient to denote the dual variables (which
in this case are unrestricted in sign) by -, (instead of y; in (2), which were
restricted in sign).

TABLE 6-2-IV
Primal
Variables 2,>0 z,>0 2y = 0 |Relations | Constants
+m 11 Gy . = b, ’
s G Qg s e Gy = by (Dual
. . + obj.)
Dual | | it - .
+y Oy L Oyx = by
Relations < < .o < <
Max v
Constants ¢ Cy .o > Min 2
(Primal objective)
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6-3. PROOF OF THE DUALITY THEOREM
The primal problem for the standard linear program given in Table

6-2-1IV is to choose variables z; > 0 and Min z, satisfying
(1) wayxy | gy | agg ey o by

gy Ty - gy T + . . . + Ggy Ty = by

ayn®y + Gy + - - -+ GunTy = by

T+ Gy + . . .+ enZy = z{(Min)

The dual problem for the standard linear program is to choose variables

Ty, Ty, - - ., Ty and Max v, satisfying

(2) a11ﬂ1+a21‘ﬂ2+. ..+aM17TMScl
Qamy + Gppmy + . - F Oy TS Gy
@y N7y + Ganmme + . . -+ AyNTM S CN

bymy + bymy + . . .+ bymy = v (Max)
where 4, is unrestricted in sign.
Al four combinations of feasibility and infeasibility of the primal and
dual systems are possible. The four cases may be summarized as follows:

Primal has feasible Primal has no
solution(s) feasible solution
Dual has feasible solution(s) Min z = Max v Max v — +©
Dual has no feasible solution Minz—» — Possible

The following examples show that each case is possible.

Primal Dual l
(a) Primal feasible, |z, > 0 i
Dual feasible z, = m<1 o
z, = z (Min) 57, = v (Max) '
[Min z = Max v = 5]
(b) Primal feasible, z,>0,2, >0 m< -1
Dual infeasible Ty — T, = - < -1
—x; — 2, = z (Min) 57, = v (Max)
{2z = ~— 0]
(¢) Primal infeasible, z >0 !
Dual feasible z, = —5 m <1 :
z, = z (Min) —5m; = v (Max)
[v— + o] !
(d) Primal infeasible, z, >0,z, 20
Dual infeasible Ty — Ty = +5 o+ 7 < -1
x, — T, = —5 —_y — mp < 1
—z, — z, = z (Min) 5m; — 5w, = +v (Max)
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Proof of Duality Theorem and Related Theorems.

We shall use the simplex method to establish ‘a group of fundamenta]
theorems concerned with duality.
TeEOREM 1: Duality Theorem. If feasible solutions to both the primal

and dual systems exist, there exists an optimum solution to both systems and

Min z = Max v

TeEEOREM 2: Unboundedness Theorem.

(a) If a feasible solution to the primal system exists, but not to the dual,
there exists a class of solutions to the primal, such that z — — 0.

(b) If a feasible solution to the dual system exists, but not to the primal,
there exists a class of solutions to the dual, such that v — +-co.

THEOREM 3: Infeasibility Theorem.

(&) If a system of linear equations in normegatwe vartables is infeasible,
there exists a linear combination of the equations which 18 an.infeasible equation.

(b) If a system of linear inequalities is infeasible, there exists a nonnegative
linear combination of the inegqualities which 18 an infeasible inequality.

Since a system of equations in nonnegative variables is equivalent to a
linear inequality system, and conversely, Theorem 3(b) is a restatement of
Theorem 3(a) in the equivalent system. Since the dual of a dual system is
equivalent to the primal system, as we have just seen, Theorem 2(b) is a
restatement of Theorem 2(a) for the dual system.

We shall, however, give direct proofs of all parts of these theorems by
applying the simplex method. Before doing so, let us make a few preliminary
observations that are related to the proof of the duality theorem.

When feasible solutions exist for both the primal and the dual problems,
an important relation exists between the values of » and those of z, namely,
the values of v are always less than (or equal to) the values of z. This was
depicted in § 6-2-(3). To prove this, let (z;, 23, . . ., Zy, and 2) be any solu-
tion to the primal system (1), and let (mry, 7y, . . ., ™y, and v) be any solution
to the dual system (2). Let us denote by &; > 0 the differences between the
right and left members of (2), thus

' M
3) & — > aym = (j=12...N)
i=1

If we multiply the first equation of the primal system (1) by =, the
second by m,, . . ., and subtract the sum of the resulting equations from
the z-equation, we obtain immediately

4) &y + Gz +. . =2 —"

The fact that & > 0, z; > 0 implies that all terms which appear on the
left are nonnegative; hence, for any solution of the dual, 0 <<z — v or,

(5) z2=>0
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Thus, when solutions to both the primal and dual systems exist, the value
of z for any primal solution forms an upper bound for values of v, and: the
value of v of any dual solution forms a lower bound for values of z; therefore,
it is not possible in this case for either z — —o0 or v — + 0. Thus it is
clear, if optimum solutions exist? to the primal and dual problems, then for
such solutions

(6) Min z > Max v

This is known as the weak form of the Duality Theorem.

To establish Theorem 1, we consider an auxiliary problem formed from
(1) by first changing the signs of the terms of each equation ¢ (if necessary),
so that b, > 0, and then introducing an ‘“‘error’” or ‘“artificial” variable
Zy,i = 0. Let us define variables w > 0 and w’ = 0 by

M
"N w = Tniis w4 w =W
2

where w measures the total sum of errors zy,;. W is some known upper
bound on the total error, and w’ > 0 measures the slack between w and W.
For example, an upper bound which could be used for w is W = S¥p,
which corresponds to the initial basic solution of Phase I (see § 5-2).

Auziliary Problem. TFind z; > 0, w’, z such that z = Min 2, given that
w’ = Max w’, which satisfy

(8) @z + ...+ an2x+ Tnn =b
Ay + - - -+ GuN?y TN+M = by
Tner o - -+ Taey + (@) =W

6ry + .. -+ enTn (—2)=20

It will be noted that (8) is just the standard form for Phase I of the
simplex method, if w’ is replaced by W — w. It will be in canonical form
with respect to Zyq, - - - Tnsy W', —2 after elimination of these variables
from the w’-form. We can now proceed to maximize w’, which means we are
minimizing w = W — w’. Since a lower bound to w exists (namely 0), there
exists by Theorem 1 of § 6-1 an optimal canonical form at termination of
this Phase I, such that all the coefficients and the constant in the w’-equation

(9) are nonnegative.
N+M

(©) > dpy+w =+ ;20,2 0)
j=1 )
% Notice that at this point we do not know that a minimizing solution to the primal
or a maximizing solution to the dual exists.
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On the other hand, this equation was generated from the auxiliary system
(8) by a sequence of pivot operations; this jmplies that there exists some

linear combination of the equations i =1, 2, . . ., M of (8) with weights
0}, g3 . . ., o}, which, added to the w'-equation of (8), yields (9). The
weights g; = o} therefore satisfy
M
Zoga‘ﬁd,zo, forj=1,2,...N,
i=1
(10) a:+l=dN+i207 fOri=1,2,...,M,
M
Z 0%, + W = i, >0
i=1

Taking this same linear combination of equations of the primal system (1),
and setting W, = W — ,, yields

N
(1) > dig; = —iny (d; =0, B > 0)
jml

In particular, if feasible solutions to (1) exist, Min w = %, = 0. On the
other hand, if no feasible solution to the primal exists, so that @, > 0,
then (11) becomes an infeasible equation in nonnegative variables z;; this
establishes Theorem 3(a).

Let us now assume a solution (m, = =3, . . ., my = njy) to the dual
exists, so that
M
(12) z‘ﬂoﬂﬁs Cy (j = 1, 2, SR N)
i=1
N
z wh; = v°
t=1
then the dual relations (12) are also satisfied by the class of solutions
m= (] —00}), ... 7y=(n} — 00), v=1°+ 6, for any 6 >0
because, by (12) and (10),
M M
(13) z (2 — 8%, = Z o,y — 0d, < ¢
i=1 i=1

» .
> (2 — B0b; = v° + O, = v
fam]

Let us assume, in addition, that the primal problem is infeasible, so that
Min w = %y > 0. Then this class of solutions to the dual has the property
that v = v* 4 0, — o0 as § — + o, establishing Theorem 2(b).

Our objective now is to seek a solution to our system (8), that minimizes
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z for some specified value of W, starting with the last achieved canonical
form (end of Phase I). The value of W that we choose at this stage may be
the one we used initially or any other W > Min w. For example, we might
redefine W to be Min w, as is customary in the usual Phase II procedure,
in which case the value of the constant @, in the canonical form at the end
of Phase I becomes @, = 0. Whatever the choice of W > Min w, we shall
refer to this as the Phase 11 problem.

According to Theorem 1 of § 6-1, if we begin with this adjusted canonical
form, there exists a final canonical form, after a sequence of pivot operations,
that yields either a solution that minimizes z or a class of solutions for
which z — —o00. Let us consider the latter first.

The case z — —oo, for the auxiliary problem can arise only if some
column, j = s, in the final canonical form (obtained at the end of Phase II),
consists of all d,, << 0 and & < 0. We now observe that if an artificial
variable, Zy,;, is in the final basic set, the corresponding row coefficient
d;, = 0, because otherwise an increase of the variable x, — + oo would
generate an allowable class of solutions, with values of zy,; — + 0, contra-
dieting our hypothesis that w = >z y,; << W. For the same reason z, cannot
correspond to any artificial variable zy,;; hence, 1 << s << N. In the final
canonical form, we now note that we can obviously form the coefficients
in column s as a linear combination of the coefficients® in columns corre-
sponding to the basic variables z;, z;, . . . %y —W, —2 with weights
+ay, +dgg - - - e di & (because the matrix of coefficients of these
columns is all zero, except for ones down the diagonal). This same linear
combination must hold not only for the corresponding columns of the
auxiliary system (8) but also for those of the primal system (1) because the
weights d;, corresponding to augmented columns of (8), if any, have all
zero values.4 This is displayed in (14) in conventional matrix notation as
discussed later in Chapter 8.

- 4 r s -
Byj,  Qyjy - - - Gy 0 0 @15 a5 |
Qgj,  Gojy, + - - Oy 0 0 Agy Qoq
(14) . ) . . . =
Gy, O, - -Omi, O O Cpgs Qs
0 0 ...0 +1 0 d, 0
L c,'l CJ" . ij 0 + 1 n L -s A L €. A

3 By a linear combination of columns we mean a column of numbers formed by
multiplying the corresponding entries in each column by weights associated with the
column and summing the products. See Chapter 8 where such operations on column
“‘vectors’ are discussed.

4 Ezercise: Show that if a certain linear combination of the columns of a linear
system vanishes before pivoting, it will vanish after pivoting, and conversely.

Ezxercise: When is it valid to form linear combinations of inequalities to form a new
inequality ?
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As applied to the coefficients in the z-equation, this yields, in particular,
the relation +c,d,, + ¢ 8y + . . .+ ¢4y, + ¢ = ¢, Since the columns
of the primal are in one-to-one correspondence with the linear inequalities
of the dual system, this and the other relations state that if we multiply
inequality j, of the dual system (2) by —d,, >0, inequality j, by

—dy =0, . . ., inequality jy by —dy, >0, and inequality j = ¢ by +1,
and then sum, we will form the infeasible inequality
(15) Orm+0emp+.. . +0-1y<é (6, < 0)

This proves that the dual system is infeasible if z — —c0 for the aquziliary
problem.

The case of z having a finite lower bound for the auxiliary problem
arises only if a canonical form is obtained for (8) at the end of Phase II,
such that the coefficients are nonnegative in the z-equation,

N+M
(16) Dt tmw =z —% (G 20,4 =Min2)
=1
On the other hand, this equation can be formed directly from (8) by taking
some linear combination of equations ¢ = 1, 2, . . ., M with weights —=}¥,
the w-equation with weight +n*, and the z-equation with weight 1. Since
coefficients of z; for j = 1, 2, . . ., N are all zero in the w-equation, we have

constructed a feasible solution to dual 7; = =¥,

M

Zw;-“aﬁSc,- : (j=1:2:' . "N)
(17) i1

M

ZW}"IJ,- = Zy + m*W = v*

=]l

This proves that the dual system is feasible if z has a finite lower bound for
any auxiliary problem whatever be the choice of W = 0. Thus feasibility of
the primal depends on the outcome of Phase I and feasibility of the dual
on the outcome of Phase II (independent of the outcome of Phase I).

Assuming infeasibility of the dual system of inequalities, so that
z — —c0 for any W > 0, then we have constructed the infeasible inequality
(15). Theorem 2(b) is thus established. If the primal problem is also feasible
and W was replaced at the beginning of Phase II by W = 0, then a class of
primal feasible solutions has been constructed at the end of Phase II such
that the values of z tend to —co. This establishes Theorem 2(a).

Assuming a feasible solution to the primal exists and W replaced by
W = 0 for Phase II and assuming a feasible solution to the dual exists so
that Phase IT has & finite lower bound, then setting W = 0 in (17), we have
shown the existence of feasible solutions to both systems such that
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Min z = z, = v*. But any z associated with a primal feasible solution is an
upper bound for v, hence

(18) Max v = Min z
establishing the Duality Theorem (Theorem 1).

6-4. BASIC THEOREMS ON DUALITY

Consider a system in standard form—we now state and prove the
following related and important theorems.

TaeorEM 1: If (¥, . . ., 2%, 2*) is a feasible solution to the primal and
(mf, . . ., il v*) s a feasible solution to the dual, satisfying for j =1, 2,
. » N,
M M
(1) cF =, — > mlay 20, > mth;=ov*
i=1 1

a necessary and sufficient condition for optimality of both solutions is
(2) =0 for >0

THEOREM 2: If a feasible solution exists for the primal, and z has a finite
lower bound, an optimal feasible solution exists.

TaEOREM 3: If an optimal feasible solution exists for the primal, there
exists an optimal feasible solution to the dual.

Proor oF THEOREM 1: Let z; > 0 be any feasible solution satisfying
§ 6-3-(1), and =, be any multipliers, such that & >0 (see §6-3-(3)). If the
first equation of § 6-3-(1) is multiplied by =, the second by =, . . ., etc.,
and the weighted sum of the first M equations is subtracted from the z-
equation, there results

(3) Gy + Gy + . . F NIy =2 —

Since Z; > 0 and z; > 0 by hypothesis, the left-hand side is nonnegative
term by term, hence always

=

4) v= > ub, <z

=

-

and v is a lower bound for values of z. By the hypothesis of Theorem 1, there
is a particular feasible solution z; = z¥ > 0, z = z*, and particular multi-
pliers, 7; = w* and ¥, such that &* = 0, if zFf > 0. Substituting these
values in (3), the left-hand side vanishes term by term and v* = z*, and
we conclude, by § 6-3-(6), that Max v = v* = 2* = Min z.

To show the necessity part of Theorem 1, we assume »* = z*. Substi-
tuting into (3) all terms on the left must vanish, which means &f = 0 for
¥ > 0.
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Proor or THEOREM 2: A proof of this theorem was given in § 6-2 and
is an immediate consequence of applying the simplex algorithm to the
auxiliary problem specified there. We have shown that in & finite number
of cycles the process will terminate because (a) no feasible solution exists,
{(b) a class of feasible solutions has been constructed for which z — — oo, or
(c) & basic optimal feasible solution z; = x] has been obtained. Since cases
(a) and (b).are ruled out by hypothesis, the theorem follows.

Proor or THEOREM 3: Referring again to the auxiliary problem of
§ 6-3-(8), the hypothesis of Theorem 3 satisfies the case of a feasible primal
and finite minimum 2. Hence there exist optimal multlphers for the dual,
namely ¥, v* specified in § 6-3-(17), (18).

Complementary Slackness in the Primal and Dual Systems.

When the primal and dual systems are expressed as systems of inequali-
ties, Theorem 1 takes on & more symmetric form.

Let z; > 0 be any feasible solution satisfying § 6-2-(1) and y; > 0 be
any feasible solution satisfying § 6-2-(2). We write the former in standard-
equality form : Find z; > 0, Min z, satisfying

(B)  ana +apz 4. .+ Gy — Ty = b,
Qo1 Ty + Gga %y + - -« + Aon %y — Tnig = by
Cm®y + Ay + - - .t Gy — Zprm = b,

6% + czz2+ N =z(Mm)

where z,,, >0 are variables that measure the extent of inequality, or
negative slack, between the left- and right-hand sides of the ith inequality.

It will be convenient also to let y,,,; measure the positive slack in the
jttinequality,j = 1,2,. . ., n, of the dual system. Thus § 6-2-(2)in standard-
equality form becomes: find y; > 0, Max v satisfying

) anys + anye + . . . + G¥m + Y =0
G12Y1 + Gy + - - - F Cpuole + Ymsz = Cy
L e R T, + Ymin = Cq
by + bys+ . . .+ blYm = v (Max)
Multiplying the ith equation of (5) by y,, ¢ = 1, 2, . . ., m, and subtracting
their sum from the z-form yields
m m »
M (a— Z any:)r; + (cy — Z Qi) + . . .+ (6 — z GinY i) %n
{=1 =] =]

m

+ NZpir + YoTnias + - o - YmTngm =2 — Z Yibs

im]
or, from the definitions of y,,,, and » given in (6) we have,
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(8)  (Umur®i + YmeoZ2 + - - -+ Ymin®n)
+ W1%ns1 + YoZniz + o o - F YnTagm) =2 — 0

The left-hand side of (8) is nonnegative term by term, hence 0 <z —v
or v<z.

Since we are assuming that primal and dual solutions exist, the hypothesis
of the Duality Theorem is satisfied and there exist optimal feasible solutions
to both systems. We shall now prove

THEOREM 4: For optimal feasible solutions of the primal and dual
systems, whenever slack occurs in the kit relation of either system, the kth
variable of its dual vanishes; if the k'd variable is positive in either system,
the kb relation of its dual is equality.

Proor: Letz;=zF>0(j=1,2, ..., n),z=ztandy, =yr=>0
(4=1,2,. .., m), v = v* be the values associated with an optimal solution
to the primal and the dual, and let z* >0 and y%,; >0 be the corre-
sponding values of the slack variables obtained by substitution in (5) and
(6); then z* — v* = Minz — Max v = 0 by the fundamental theorem, so
that the right-hand side of (8) vanishes. However, as noted in the sequel to
(8), each term on the left is nonnegative and hence must vanish term by
term; ie., y*, x* =0 and y*z¥,, = 0. However, the term yx, aF =0 is
the product of the slack in the jtb relation of the dual and its corresponding
variable in the primal; the term y¥z*,; is the product of slack in the it
relation of the primal and its corresponding dual variable. Hence, if ., > 0,
then z* = 0; similarly, if z*,, > 0, then y* = 0. This is a restatement of
Theorem 1 on the correspondence between an optimal solution of the primal
system and the corresponding slack relations of an optimal solution of the
dual system.

Homogeneous Systems.

There are several important duality-type theorems that predated the linear
programming era [Tucker, 1956-1]. The earliest known result on feasibility is
one concerning homogeneous systems (systems with constant terms all zero).

THEOREM 5: [Gordan, 1873-1] Either a linear homogeneous system of
equations possesses a monirivial solution in monnegative variables or there

“exists an eguation, formed by taking some linear combination, that has all
positive coefficients.

ProoF: Let the homogeneous system fori =1,2,. .. m —1 be
’ n
(9) a,;,x, = 0 (xj 2 O)

If such a system possesses a nontrivial solution (not all z; = 0), a solution
exists that also satisfies

(10) Da=1
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We shall treat (10) as the mtt equation of the system. According to the
Infeasibility Theorem, §6-3, Theorem 3(a), either there exists a feasible
solution or there exist multipliers (m,, 7y, . . ., Mn_q; Tm), such that the
resulting linear combination is an infeasible equation in nonnegative
variables;

n
(11) z d,z, = "—'lbo where dj = O, ?I)o >0
j=1
It follows under the second alternative that ,, = —15, < 0 and
m
(12) D agm=d;—m>0 G=1,2...n)
i=1

Hence, if multipliers (my, s, . . ., 7,,) are used to form the linear combina-
tion of equations, the coefficients given by (11) of the resulting equation
are all positive.

ExErcisE: Show the converse of Gordan’s Theorem, namely, if there
exists a linear combination whose coefficients are all positive, the homo-
geneous system in nonnegative variables possesses only a trivial solution.

Tarorem 6. [Farkas’ Lemma, 1902-1] If a linear homogeneous
inequality,

m
holds for all sets of values of m; satisfying a system of homogeneous inequalities
b m
(14) zamg 0 G=12...n
i=1
then the inequality is a nonnegative linear combination of the inequalities of
the system.
Proor: Assume there exists no nonnegative linear combination of (14)
that yields (13). Then there exists no feasible solution to the system

n
(15) > =1, (2 = 0)
=1 .
By Theorem 3(a) of §6-3, there exist multipliers m; = =}, which, when
applied to (15), yield an infeasible equation; the coefficients of this equation
are

(16) za,,wggo (G=1,2...n)
tm=1
m
z bﬂfo == wO > 0
twm]

which contradicts (13).
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Exgrcise: What is the analogue of this theorem for linear equation
systems ?

THEOREM 7: (Stiemke, 1915-1] Kither a linear homogeneous system
possesses a solution with all variables positive, or there exists a linear combina-
tion that has all nonnegative coefficients, dbne or more of which are positive.

Proor: If the homogeneous system possesses a strictly positive solution,
there exists a solution to the system

(17) Za,—,-x,-=0 (i=12...m)
j=1
277-21 (j=l,2,...,7l)

Replacing z; > 1 by z; = z; + 1, where z; > 0, results in the system

n n :
(18) > gz =— > ay (; = 0)
j=1 j=1
By Theorem 3(a) of §86-3, either this system possesses a feasible solution
(which is the first alternative), or there exist multipliers my, 7y, . . ., 7, such
that the resulting linear combination

(19) | Z d; = —ib, (d; =0, +1, > 0).

is an infeasible equation in nonnegative variables. In the latter case @, > 0)
It is also easy to see that 37d; = 0, because the negative sum of the
coefficients of each equation (18), from which it was derived, equals the
corresponding constant term: It follows that at least one coefficient d; of
this equation must be positive (which is the second alternative).

Motzkin’s Transposition Theorem T1936-1].
Consider the dual linear programs satisfying the Tucker Diagram (20).

Primal
T -
Variables {2z, >0, ... %, >0 : Zp1 = 0,. .. =z, 20 |Constants
Uy ayu ce. G | Gun Q1n =0
Uy Agy I =0
(20) Dual 1 .
................ e
1
Uy [- 2 “ e s Gy : Tomkes1 [ . =0
L]
Relations < < ! < <
Constants 0 o 0 0
1
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We assume all columns are non-vacuous. Consider any arbitrary subset of
k columns; for example the first k columns shown in (20) to the left of the
vertical dashed line.

THEOREM 8: Either there exists a solution to the dual system, such that
all inegualities corresponding to the subset hold strictly, or the primal system
has a solution, such that at least one corresponding variable has positive value.

Proor: If there exists a solution to the primal system with the
requisite property, then one exists such that

(21) Tyt 2+, . .t =1
where j =1, 2, . . ., k is the assumed subset. The rémainder of the proof
parallels that of Theorem 5.

Theorem of Alternatives for Matrices [Ville, 1938-1].
Consider the dual homogeneous programs with vacuous objective forms,

n

(22) :ZQ%ZQ 2, >0 (=12, ...m)
. jm1
and
. .
(23) Da<0, =0  ((=L2%...m

i=1
and let either system be the primal and the other the dual.

TEEOBREM 9: Either there exists a solution to the primal where all in-
equalities hold strictly or there exists a nonirivial solution to the dual.

Exercise: Show that this theorem is a special case of the Transposition
Theorem by introducing slack variables into the primal system.

Exercise: Given two solutions to a homogeneous system (22), show
that the sum of their corresponding values is also a solution.

ExErcise: Suppose there exists a solution to a homogeneous system
of inequalities all satisfied with strict equalities. Show that there exists a
solution if the zero constants are all replaced by ones.

Tucker’s Complementary Slackness Theorem [1956-1].

A sharper form of the Theorem of Alternatives can be obtained by
judicious application of the Transposition Theorem.

THEOREM 10: There exist solutions to the homogeneous dual programs
(22) and (23) such that every variable and its complementary slack have one
positive and one zero value.

ProoF: Augment the systems with slack variables as in (5) and (6).
Partition the primal system so that the subset consists of the one slack
variable, z,,,. By Theorem 8, a solution can be obtained such that either
Znip > 0 for the primal system or y, > O for the dual. If a solution to the
primal exists with z,,,>0,let x; =22 forj=1,2,.. .,n,...,24+m
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he this solution, wnd et gy, ' O tor 1,2, . 0 omy, o om Lo be
an associated (trivial) solution to the dual. On the other hand, if solution
to the dual exists with y, > 0, let the values of y, for this solution be
y; = y? and let 2; = 2% == 0 be the values of o; for an associated (trivial)
solution to the primal. If now we add the corresponding values &} and y7
for different p, we will obtain a pair of ‘‘composite”” solutions to the primal
and dual systems with the property that every slack variable of the primal
or its corresponding dual variable has a positive value.

If we interchange the role of the primal and dual systems, we can generate
another pair of composite solutions with the property that every variable
of the (original) primal or its corresponding dual slack has positive value.
Let us now add these two pairs of composite solutions. This will yield
solutions to the primal and dual systems with the property that at least one
member of each complementary pair is positive. The proof of Theorem 10
is completed by proving the following:

ExERCISE: Referring to (8), show for the homogeneous case (all b; = 0,
¢; = 0) every solution to the primal and dual systems is optimal and the
products of all complementary pairs vanish.

6-5. LAGRANGE MULTIPLIERS

There is another way in which the dual system might arise. In the
calculus if we wish to minimize a function z of two variables

(1) F(z,, x,) =2
subject to the relation
2) Gy, 25) = 0

between z, and x,, the standard procedure is to find the unrestricted minimum
of the function Z given by

3 Z = F(z,, z,) — 7Gxy, ;)

where 7 is a parameter, called the Lagrange multiplier, whose value will be
specified later. If the unrestricted minimum of Z for some fixed value
m = 7° happens to be at values z; = 22, z, = 2 that satisfy (2), then these
clearly are the values that minimize (1) subject to (2), since Z = z for all
(z,, x,) satisfying (2). We assume that a value of 7 can be found for which
this is the case, and that at an unrestricted minimum the partial derivatives of
Z with respect to z, and z, exist and vanish. This yields two equations in two
unknowns, z, and z,, which can be solved for z, and z, in terms of . The
value of = is obtained by substituting the expressions of z; and z, into (2);
in other words, the value of 7 is then adjusted so that the unrestricted
minimizing solution satisfies (2).
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For example, let us find the point (z,, z;) on the unit circle the sum of
whose coordinates, z, is a minimum:

(4) o ai=1

T zy=2z
We consider the unrestricted minimum of the expression
(6) Z = (z + z,) —mlai + 23— 1)

At an unrestricted minimum the partials of Z with respect to z; and z,
vanish:

6 —— =) — 227 =
(6) Py 0: 1 T =0
oz
— =0 — 2w =0
axz 0 1 Py

Whence the minimizing solution is z, = }, z, = }7. We now determine
, 80 that the solution satisfies the equation of the circle; substituting,
(7) @32+ @Fm)=1

or = +V2/2, whence (#, =1/V2, z,=1/V2) or (z, = —1/V2,
%y = —1/V/2). The first solution maximizes the sum of the coordinates, and
the second (the solution sought) minimazes.
The same procedure is followed in general if the problem is to find
values that minimize F(z;, Z,, . . ., %,) = 2, subject to the % restrictions
(8) (%), Ty, . . .y T) =0
Golxy, Zgy - + %) =0

....................

In this case the unrestricted minimum of the function

9) Z=Flay,z,,. .. 5,) —[mGi(y, T+ - - L) + ToGo(@y, Ty« - o Tn)
+...+ '”ka(xls Loy o« o xn)]

is found, where the =;, Lagrange multipliers, are unspecified constants to

be determined later. It is assumed that values of 7; can be found so that

the unrestricted minimum solution satisfies the restrictions. The » equations
resulting from the vanishing of the n partial derivatives of this expression at

& minimum are solved for x,, z,, . . ., z, in terms of m, my, . . ., m. These
values are substituted into the k expressions Gy(z,, 7,, . . ., Z,) = 0, and the
resulting k equations in my, m,, . . ., m, are solved for my, 7y, . . ., Wi

For example, consider the linear programming problem
(10) x1+2x2+3x3=6 (z;ZO,szO,xsZO)

z, + 2+ =2z (Min)
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This is equivalent to the system in (real) variables z,, x,, 23 and the squares
of real variables u,, u,, u,:

Lagrange
multipliers:
(11) z, — ul =0 B4
Zy — Ul =0 '
z; —ug=0 A
z, + 2z, + 3z, =6 tar
z; + =z, + x4 = z (Min)

where the first three equations replace the nonnegative restrictions. We now
find the unrestricted minimum of the expression

(12) Z = (z; + x5 + 25) — &3, — “f) — Gz — ug)
— Eo(xy — ud) — m(x; + 224 + 373 — 6)
or
(13) Z=6r+ (1 —7—&)z, + (1 — 27 — &)z, + (1 — 37 — )%
+ ud + Gul + Gug

The vanishing of the six partial derivatives yields, on slight rearrangement,

51=1 - T, Elu1=0,
(14) & =1—2m, Gug = 0,
&g =1 — 3m, Equy = 0.

To these relations we may further add, if we like, conditions that guarantee
the existence of a minimum,

(15) 6 =0,6>08>0

for the function Z obviously does not possess an unrestricted minimum, if the
coefficient &; of u? is negative in (13).

In this case, if we try to solve explicitly (14) and (15) for z; and u; in
terms of Lagrange multipliers, a distressing thing happens—there are no
z; terms; moreover, for each j there are two possibilities—either &; = 0 or
u; = 0. Noting that z; = uZ, we may replace the condition &u; =0 by
&x; = 0, so that either & = 0 or z; = 0. Since j = 1, 2, 3, there is a total
of 28 different cases to be considered; in the general linear programming
problem as we shall see, there are 2" cases to be considered. In view of (15)
we may rewrite the Lagrange multiplier conditions for a minimum, as
finding z; and 3;, é; = 1, 2, 3 such that

(16) f(a) 2, >0, z,>0, x>0 satisfying z, + 2z, + 32, = 6,

HG=1— =7
(b) =0, 6>0, &3 = 0, m satisfying (¢, =1 — 27
G3=1—3=

(c) Gy =0, &xy =0, &zy=0.
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For the general linear programming problem, to determine xz; > 0 and
Min z satisfying
(17) A%y + Gy + . . b G 2, = by
Aoy Ty + Apg %y + . . o + ApuZ, = by
By %y + OpaZp + - - . Gy = b,
COTy + Coat . . .+ CaX, =2
we replace the nonnegative relations by
(18) zy—ud=0 G=12,...mn)
and seek an unrestricted minimum of the form

(19) Z = ”zc;xi - ["1 (i %5 — 61) +.. .ty (j O i®j — bm)}

jm=1 jeml j=1
—[a@ —ud) + . . .+ G, —ud)]

or
m m
(20) Z = ( Wibi) + (01 - Z"iau - 51) %
i=1 i=1
+...+ (c,, — Zw‘am —E,,) Zp

i=1
+ &ud + Gui 4+ . . .+ Gul

The function Z does not possess an unrestricted minimum unless (a) the
coefficients of x; vanish and (b) the coefficients of u} are nonnegative; hence
we can further require, if we like, that the multipliers 7; and ¢; satisfy for
i=12,...,n,
(21) C-j = c, —_— [’ﬂ'lalj + Tolo; + « a + ﬂ'mamj] 2 (1 i
Moreover, at the unrestricted minimum the partial derivative with respect
to u; must also vanish, yielding '
(22) Gu; =0 or &x; =0 G=12...,m)
If for fized n; = =¥, there exists ¢; satisfying (21) and u, or z; = u? satisfying
(22), this will clearly yield T #¥*b,, in (20), hence the true (global) minimum
of Z (ruling out the possibility of a local minimum; see Fig. 7-1-VII). Since
Z = z for any z; = u; and z satisfying (17), we conclude

TrEOREM 1: If there exist multipliers (m; = ¥) and (& = &}) satisfying
(1), and variables (x; = z¥ > 0, and z = z*) satisfying (17), such that all
products Cfx} = 0, then (zF, . . ., z*, 2¥) is a minimizing solution.

Conclusion.

If the linear programming problem is attacked by the method of
Lagrange multipliers, we find that the multipliers, if they exist, mvst

[143]



PROOF OF SIMPLEX ALGORITHM AND DUALITY THEOREM

satisfy a “dual” system—namely, the linear inequality system (21), and
maximize v = Db, when conditions (22) pertain (see §6-4, Theorem 1).
Also the multipliers & (or relative cost factors) have the property that
Gz;=0forj=1,2,.. . n The latter leads to 2" possible cases of either
& =0 or z; = 0. It is here that the Lagrange multipliers approach breaks
down, for it is not practical to consider all the 2" cases for large .

In a certain sense the simplex method can be viewed as a systematic
way to eliminate most of the cases and to consider only a few. Indeed, it
immediately restricts the number of cases by considering only those with
n —m of the z; = 0 at one time and such that the determinant of the
remaining m variables is non-zero and the unique value of these variables
is positive (under nondegeneracy). The conditions &z, = 0 tell us that
¢, = 0 for z; > 0, and this determines uniquely =; and the remaining ;.
If not all & > 0, the case is dropped and a special new one is examined on
the next iteration, and so on.

6-6. PROBLEMS

1. Prove that the optimal dual solution is never unique if the optimal
primal basic solution is degenerate and the optimal dual is not.

2. Show that if no artificial variables remain at the end of Phase I, o7 = 0
fori=1,2,.. . M See §6-3-(10).

3. Prove: If there exists one nondegenerate optimal basic feasible solution
the optimal dual multipliers =, are unique. (See § 6-3.) '

4. Prove: All d; = 0 at end of Phase I if there are no artificial variables
in the basic solution except w’. (See § 6-3-(11).)

5. Show that the dual of the dual is the primal by reversing first all signs
in § 6-2-(2), to have it in standard inequality form for finding the dual.

6. Let the “dual” be alternatively defined by. transposing and changing phe

" sign of the coefficient matrix, including the interchange of (and change
of sign of) the constant terms and coefficients of the objective form,
maintaining the same direction of inequality, and minimizing. Show in
this form that the proof of “the dual of the dual is the primal” is imme-
diate and that this definition of the dual is equivalent to the one of § 6-2.

7. Show that neither the primal nor the dual of the system

Ty - Xy =2 (¢, =0, 2, > 0)
—z;, + 2, = —1
z, — 2z, = z (Min)

has a feasible solution.

8. Construct other examples to illustrate all four cases of primal and dual
feasibility and infeasibility.

9. Is it possible for the primal and dual problems §6-3-(1), {2) to have
solutions if the restrictions z; > 0, y; = 0 are removed, but no solutions
if the restrictions are included ?
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10.

11.

12.

13.
14.

15.

16.

8.0. PROBLEMS

Prove in general that an équa.tion in the primal corresponds to an
unrestricted variable in the dual and a variable unrestricted in sign
corresponds to an equation.

Suppose 2°; 22 >0, 22>0, ..., ;>0 and 23, =. . . =2, =0
constitute a feasible solution to a linear program. Show that, if the
canonical form for the subsystem formed by dropping Zy,,, . . -, %, has

less than & equations, a new solution can be formed involving fewer
variables with positive values and a value of z not greater than z°.
Show that this process can be repeated until a subsystem is formed
with an equal number of variables with positive values, as in its canonical
form. Show that this solution is unique if all other variables are zero.
Apply the results of Problem 11 to give a direct proof that if a feasible
solution to a linear program exists, and if the values of z have a finite
lower bound, then an optimal feasible solution also exists.

Assuming Farkas’ Lemma, is true, derive the Duality Theorem.

(8) Consider the following ‘“‘game” problem; find y; >0, MinM

satisfying "
Dy=1 (i=1,2...,m
=1
n
Z 2y <M
i=1

Show that the dual is to find z; > 0 and Max N satisfying

m

in=l

Z zay; = N
i=1
(b) Prove N<< D70, D7 128,59 < M and Max N = Min M.
(¢) Prove that feasible solutions to primal and dual systems always
exist.
(d) Why is Max N = Min M positive, if all a;; > 0? See Chapter 13 for
application of this type of system.

Find the dual of a bounded variable linear program:

o< < B Gg=12,...,mn)
n

Zaﬁx,-=b,- (i=1,2,. B .,m)
j=1

n

Zc,x,- = z (Min)

j=1

The Fourier-Motzkin elimination method permits one to drop a variable
by increasing the number of inequalities. Dualize the procedure and
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17.

18.

19.

20.

21.

22.

PROOF OF SIMPLEX ALGORITHM AND DUALITY THEOREM

find a method for decreasing the number of inequalities by increasing
the number of variables.

Suppose that an optimal solution with respect to a given objective form
z is not unique and that it is desired to introduce an alternative objective
z* and to minimize z*, given that z'is minimum. Show that an optimal
solution exists which is basic in the restraint system, excluding the z
and z* forms. Prove that this solution can be obtained by first dropping
all variables z;, such that & > 0 at the end of Phase II, and then
replacing the z-form by the z* form.

Generalize the usual Phase I, Phase II procedure to find a solution that
is as “feasible as possible”” (Min w) and given that it is and is not unique,
find the one which minimizes z, given that w = Min w.

Show that it is not possible for z — — oo, if no positive combination of
activities vanishes. Discuss what this means in a practical situation if a
positive combination vanishes except for a positive cost, a negative cost,
a zero cost. Show that if z — — oo, there exists a homogencous feasible
solution to the system. Show that it is possible to have z — + 0 and
z — — o0 in the same system.

Generalize the Phase I procedure to allow an artificial variable to have
either sign. Allow the variable entering to increase as long as the sum
of the absolute values of the artificial variables decreases.

Prove that if an optimal solution zf >0, z =2° = Min z exists, then
the system of equations formed by dropping all z;, such that =} =0
and setting z = z°, is redundant.

Does a column with all negative entries in the original tableau imply
that (if feasible solutions exist) a class of solutions exists such that
z2—> —00?
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CHAPTER 7
THE GEOMETRY OF LINEAR PROGRAMS

7-1. CONVEX REGIONS

Convex Two-Dimensional Regions.
The set of points (x,, z,) satisfying the relation

(1) T+ z,22

consists of a region in two-dimensional space on one side of theline (see
Fig. 7-1.Ia)

2) z, + 2y =2

This is an example of a convex region, or, what is the same thing, a convex
set of points. The region defined by the angle between two lines, Fig. 7-1-Ib,
is also a convex set. '

of 3

\/

__ .
/

Figure 7-1-Ia. ) Figure 7-1-Ib.

Other examples in two dimensions are the region inside the rectangle,
Fig. 7-1-I1a; the circle, Fig. 7-1.IIb; or the polygon, Fig. 7-1.1lc.

In three dimensions the volumes inside a cube and inside a sphere are also
convex sets. The region defined may include or exclude the boundary. It
may be bounded in extent or unbounded.
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@ '

Figure 7-1-IIa. Figure 7-1-IIb. Figure 7-1-IIc.

On the other hand the sets deplcted by the shaded region in Figs

7-1-I11a, I1Ib, ITlIc are not convex. .
-
‘ I
7725
Figure 7-1-II1a. Figure 7-1-1IIb. Figure 7-1-I11c. I

DEFINITION: A set of points is called a convex set if all points on the
straight line segment joining any two points in the set belong to the set. l
DEFINITION: A closed convex set is one which includes its boundaries.

(For example, a circle and its interior is a closed convex set; the interior of
a circle is a convex set, but is not closed.) l
Thus the “L” shaped region of Fig. 7-1-11Ta is not a convex set because
it is possible to find two points, p and ¢, in the set such that not all points
on the line joining them belong to the set.
TuEOREM 1: The set of points common to two or more convexr sets isl
convex.
For example, the region common to two circles, Fig. 7-1-IVa, is convex
or the points in the intersection of two or more regions defined by Iinea.rl

o

/ﬂ

Figure 7-1-IVa. Figure 7-1-IVb.
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inequalities form a convex region, Figs. 7-1-IVb, IVe and Figs. 7-1-Ib, Ile.
In § 4-3, a succession of convex regions of feasible solutions was formed by
successively adding restrictions (§ 4-3-(1), Fig. 4-3.I, and sequel).

] )

Figure 7.1-IVe. Figure 7-1-V.

Proor: LetC and C' be two convex sets and R the set of points common
to € and ¢’ (see Fig. 7-1-V). Let p and ¢ be any two points in R. Since p
and g are also in C and since C is convex, then the line segment joining p to
g must be in C; for a similar reason the segment must be in ¢’. Hence the
segment lying in both € and ¢’ is in R.

ExeRrcise: Extend the proof to more than two convex regions.

General Convex Regions.

Since in linear programming we will be dealing with linear inequalities
involving many variables, it will not be possible to visualize the solution as
a point in many dimensions. Accordingly we must be able to demonstrate
algebraically whether or not certain sets are convex. The definition of a
convex set requires that all points on a straight line segment joining any
two points in the set belong to the set. It will be necessary to define in
general what is meant by a “point” and a “straight line segment.”

DerivtTION: By a8 poini z in n dimensions is meant an ordered set of
n values or coordinates (z,, z,, . . ., 2,). The coordinates of x are also
referred to as the components of z.

Dermvrrion: The line segment joining two points, p and ¢, with co-
ordinates (py, Dy, . - -, Pn) a0d (g1, @y, - - -, gn), Tespectively, in n-dimensional
space is all points z whose coordinates are

=i+ (1 —Aq
3 Ty = Apz + (1 — }‘)QZ

...................

Ty = Ap, + (1 — A)n
where 1 is a parameter such that 0 << A << 1. For example, consider the
two points in two-dimensional space: p = (6, 2) and’'q = (1, 4). These are
represented geometrically in Fig. 7-1.VI.
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Consider now the point z, with coordinates (z,, Z,). By definition if z is to
be on the line segment joining p and g, then

{z1=1p1+(1—}.)q1=6).+1(1—}.)= 54+ 1

4
@) Ty =Ap,+ (1 =g =21+ 41 — )= —21+4.

For example, let 4 = 1, then z, - - 6 and x, == 2 and the point x is point p.
Likewise let 1 = 0, then z = ¢. For other 4 values (0 < 4 < 1) we get all

-

q=(14)
r:(5A+1,-2X1+4)

p=(e..2)

i A A 5 i i A J

Figure 7-1-V1.

points between p and ¢. For example, when 1 =}, the coordinates of =
become x; = %, 2, = 3 which is the point midway between p and ¢.
ExercisE: Obtain the straight line relationship between z; and z, by
eliminating 4 in (4).
With this definition of a line segment, it is possible to determine whether
a given set is convex. For example, consider the region R defined by all
points whose coordinates satisfy

(5)

Y

To prove that this region is convex, let p = (py, po) and ¢ = (¢;, ¢2) be any
two points in R. For p and ¢ to be in R their respective coordinates must

satisfy (5), whence

(6) P1+p222
@+ =2
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Then the coordinates (z,, z,) of an arbitrary point, z, on the segment joining
» to g, are found by forming a weighted combination of the coordinates of
the two points as in (7) and (8).

e D=(p, Py)
"N o z=[Ap; + (1 — 1)%, Aps+ (1 — A)gs)
. 9= (9 g)

where } is the ratio of the distance zg to pq. Using vector notation (this

will be discussed more fully in § 8-2), the identical weighting of the corre-

sponding coordinates of p and ¢ may be written compactly z = Ap 4 (1 — A)g,

which means

8) z = Apy + (1 — gy 0<igl)
Ty = Apy + (1 — A)g,

To prove convexity for (5) we wish to show that z lies in R, which means
its coordinates should satisfy z, + z, > 2 or to show that

(9) . i+ (1 =N+ Apa+ (1 —Ag. =2
To prove this we multiply the first inequality of' (6) by 4 >0 and the
second, by 1 — 4 > 0 to obtain
(10) Apy + Apy = 24

1—Ag+ 10— =>201—-2)
These two inequalities, when added together, result in (9), which establishes
the convexity of R.

Convexity of Regions Defined by Linear Inequalities and Equations.
In n dimensions, the set of points whose coordinates satisfy a linear
equation
(11) ax, +ax,+ .. .+ az,=0b
is called a Ayperplane, and the set of points whose coordinates satisfy a
linear inequality such as
(12) 0%y + Ay + . .+ 2z, < b
is called a Aalf-space or to be precise, a closed half-space because we include
the boundary. (In two dimensions it is called a half-plane.)
To prove the half-space defined by a linear inequality is convex, let p
and g be any two points in the set, so that.
(13a) Py + GgPy + . ot AP <D
(13b) &g+ g+ .. e, < b

Let 0 << A< 1 be the value of the parameter associated with an arbitrary
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point z on the line segment joining p to ¢g. Multiplying (13a) by 4 = 0 and
(13b) by (1 — 1) = 0 and adding, one obtains

(14) ay[dp; + (1 — A)gy] + axAp, + (1 — Ag] + - - -

+ afAp, + (1 — g < b l
whence, substituting z; = Ap; + (1 — d)g; by (3),
(15) @2y + Ay + . . AT, << b l

Hence, an arbitrary point z on the line segment joining any two points lies
in the half-space, establishing convexity.
To prove that a hyperplane is convex, let (11) be written as

(16) Ty + Gy + . . .+ AT < b
Ty + BgZy + . . ot BT, =

THE GEOMETRY OF LINEAR PROGRAMS

Each of these inequalitics defines a half-space and their intersection defines
a hyperplane. Since a half-space is a convex set, then, by Theorem 1, a
hyperplane is also a convex set. An n-dimensional space may contain many
such convex sets. By Theorem 1, their common intersection is a convex set.

DEFINITION: A convex polyhedron is the set common to one or more
half-spaces. In particular, a conver polygon is the intersection of one or
more half-planes.

Convexity of the Set of Feasible and Optimal Feasible Solutions.

Consider now a general linear programming problem given by

(17) BTy F CaZy + . o L G Th = b, (z; = 0)
An %yt Qg% + . - -+ Qe Zn = 0 '
Ty + ATy + - . - + @mna =Um

(18) %y +  Cp . . .+ Cnyp —2 =10

where z is to be minimized. We have just established

TEEOREM 2: The set of points corresponding to feasible (or optimal
feasible) solutions of the gemeral linear programming problem constitutes al
convex set. l

Thus, if p = (p;, P - - -» Pn 2,) is a feasible solution and ¢ =
(@1, 92» - - -» Gn» Z,) is another, the weighted linear combination of these twog
feasible solutions, '

(19) [zpl + (1 - 1)41’ ] }*pn + (1 - }')Qn; }'zn + (1 - A)za]

where A is a constant, 0 << A <C 1, is also a feasible solution. (This may bel
written compactly z = ip + (1 — A)g.) Moreover, assigning a fixed value
for z, say z = z,, the set of points satisfying (17), (18), and z = z, is also a
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convex set. In particular, setting z, — Min z, it is clear that the set of -
minimal feasible solutions is also a convex set.

A Local Minimum Solution Is Global.

In the calculus, the minimum (or maximum) of a function f(x) with a
continuous derivative is attained at a value z whose derivative is zero. This
can result in a point like z = z, in Fig. 7-1-VII where f(x) is minimum in the

f(x)

Zee s =L OCGI
minimum

— -~ Global
minimum

o —————
x -

Figure 7.1.VIL

neighborhood of z,; this is called a local minimum, However, it will also be
noted there is another local minimum at xz = z, where f(z) attains its lowest
value; this is called the global minimum. Any solution that is a local minimum
solution is also a true (or global) minimum solution for the linear program-
ming problem. To see this, let p = (py, Ps, . - -, Pns %p) be & local minimum
solution and assume that it is not a true minimum solution, so that there is
another solution ¢ = (gy, s, - - -, qn, %,) With z, > z,. Then any point z =
(%, %3, . . ., Ty, 2) On a line segment joining these two points is a feasible
solution and its z = Az, 4+ (1 — 1)z,. In this case the value of z decreases
uniformly from z, to 2, and thus all points on the line segment between p
and ¢ (including those in the neighborhood of p) have z values less than z,
and correspond to feasible solutions. Therefore, it is not possible to have a
local minimum at p and at the same time another point ¢ such that z, > z,.
This means for all ¢, 2, < z,, so that z, is the true (global) minimum value.

DErmvrTION: A function f(z,, Z,, . - ., %,) I8 & convex function if (1)
it is defined over a set of points p = (zy, #,, . . ., %,) Which lie in a convex
get C and if (2) the set of points in the one higher dimensional space
P= (2, Zy, . . ., Z,; 2), where z > f(x;, y, . . ., ), i8 & convex set C.

For example, the funetion f(z) = z2 is convex because the set of points
(z, z) where z > 2? is a convex set (see Fig. 7-1-VIII).

A Property of Convex Functions: If we let ' = (x;, %3, . . ., %) and
z" = (24, 23, . . ., 2;) be any two points in the convex set C over which the
convex function f(zx) = f(z;, %5, . . ., 2,) is defined and z* be any point on
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thoe sogment joining 2" to ", so thata* - Ae” | (1 A" whore 0~ A~ 1,
then

(20) M@+ (1 = A fl=") = flz¥)

For consider the two points # = (2], z;, ... %; %) and P =
(x], a5 . . ., 2); 2") where 2’ = f(z'), =" = f(z"). The point p* = (xF, 23, - - -

z*; z*) where z* = A2’ + (1 — A)z" lies in the convex set C, and z* > f(z*)
because all points in the convex set ¢ whose first » coordinates z = z*
have a z coordinate greater or equal to f(z*) by definition. Geometrically
(20) states that the z coordinate of § = [z¥, z¥, . . ., Zn; f(z¥)] will never
be higher than $* if f(z*) is a convex function (see Fig. 7-1-VIII).

{¢

:12!(:)} z

C is convex

N o —————

|

i

I

|

!

i
x%* x"

Figure 7-1-VIIL. The curve z = f(z) is called convex if z > f(z) defines
. a convex set C.

ExERCISE: Show that if the function f(z) is not convex then (20) does
not hold for at least two points 2’ and z” in C.

DEFINTTION: Any point z in a convex set C which is not a midpoint

of the line segment joining two other points in C is by definition an extreme
point or vertex of the convex set. (Referring to Fig. 7.1.IX, the corners of

S

fiih

Figure 7-1-I1X.

the square and every point on the circumference of a circle are extreme
points. The points where three or more facets of a diamond come together
are extreme points.)

THEOREM 3: A basic feasible solution corresponds to an extreme point in
the convex set of feasible solutions.
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It is easy to show that a basic feasible solution corresponds to an extreme

point. For example, suppose z° = (b;, 8,, . . ., b, 0, . . ., 0) is & basic
feasible solution for (17) with basic variables z,, z,, . . ., %, and suppose it
is the average of two other feasible solutions » = (py, Pay + + +» Pms + + «» Pn)
and g= (g 9 - - Oms » = +» In)- Then

Hps+4)=0

for all j corresponding to independent variables. But p; >0 and ¢; >0

because p and ¢ are feasible solutions to (17). This is possible only if

ps;=¢;=0forj=m+1,. . . n Thus p, g, and z° have the same values .
(namely zero) for their independent variables. But the values of the basic

variables are uniquely determined by the values of the independent variables

and hence must be the same also. This shows p = ¢ = 2° and proves that

«° cannot be the average of two solutions p and ¢ different from 2°.

DEFINITION: An edge of a convex polyhedron C is the straight line
segment joining two extreme points such that no point on the segment is
the midpoint of two other points in C not on the segment; in this case the
two extreme points are said to be neighbors or adjacent to each other.

TeEOREM 4: The class of feasible solutions generated by increasing the
value of a non-basic variable and adjusting the values of the basic variables in
the change from one basic solution to the next corresponds to a movement along
an edge of the convex set. '

Proor: Supposep = (b, b, . . ., 5,;0,0,. . ., 0)is one basic feasible
solution and g = (0; b%, . . ., 8%, 6%,,; 0, 0, . . ., 0) is a basic feasible
solution found by replacing z, in the basic set by, say, %,,,,. It is clear that
any point % = Ap 4+ (1 — A)g on the segment joining p to ¢ has u, 5 =
Upig = . . .= u, = 0. Hence, if u is to be the midpoint of two points p’
and ¢’ which are in the convex of feasible solutions, these components of
P’ and ¢’ must also vanish. This permits one to express each of the first m
components of p’ and ¢’ as a linear function of the value of the (m + 1)s¢
component of p’ and ¢’, respectively. In fact, for any point z in the convex

C whose components %,,,, = T3 = . . . = %, = 0 and z,,,, is arbitrary,
we have

(21) 2y = b; — GimirTmin (t=12,...m);
in particular, we have for ¢ = (0; 5%, 5%, . . ., 6%, 8%,,; 0, . . ., 0) that
(22) b¥ = b; — Gypmiibtiy ¢=12,...m

Multiplying (22) by A = ,,,,/b% ., and subtracting from (21) yields

(23) z, =2 + (1 -2 (t=12...m)
Tmyy = A4 + (1 — A)0
z, =20 +Q-0 (G=m+2...,n)
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This proves that any two points, ’ and ¢’ in C, whose midpoint is » on the
line segment joining p and g, are also on the line joining p and g. The
assumption that p and g are extreme points implies 0 < 4<C 1, so that
p’ and ¢’ are on the line segment joining p to ¢, which proves the line segment
joining p and ¢ forms an edge.

[Tucker, 1955-1] is recommended as collateral reading for this section.

7-2. THE SIMPLEX METHOD VIEWED AS THE STEEPEST
DESCENT ALONG EDGES

Using a Set of Independent Variables as Coordinates of a Point in
n — m Dimensions.

Consider a linear programming problem with » = m -+ 2 that has a basic
feasible solution with respect to some m basic variables, say 2, g, - + - Tmas-
The canonical form with respect to these variables is

(1 1Ty + Gy %y + 73 =5 (6; =0)
Ay %y + Gop T + x4 = b,
a-mxxl + dmzxz -+ Ty = Bm

- ' 6%, + G, =z—%

where the problem is to find z; > 0 and Min z satisfying (1). This is equivalent
to finding values of z, and z, and the smallest constant ¢, = z — Z, satis-
fying the system of linear inequalities

2) &y =0
z, =0

G2y + G2y < by

A %) + G % < b,

G2y + Gmga < b

6% + &%y =G

We may graph these m + 2 relations in the two-dimensional space of
the non-basic or independent variables z, and z, as illustrated in Fig. 7-2-I.

The convex region K formed by the half-spaces (in this case half-planes)
dy%, + digx, < b, is shown by the solid lines in Fig. 7-2-1. The optimum
solution is found by moving the dotted line &z, + &%, = & parallel to
itself until the line just touches the convex and ¢, is minimum. (If ¢; and ¢,
are both less than zero this would be in the direction away from the origin.)
Associated with every point P in K is a unique feasible solution to (1). In
fact such a point P must satisfy all the inequalities (2) and the nonnegative
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difference between the values on the left hand side of (2) and the right hand
side are the unique values of the basic variables in (1) when the non-basic
variables z; and x, have the specified values (xf, z3). The value z;,, = 27,,
of the it basic variable is proportiénal to the distance of the point
P = (23, 29) from the boundary of the itt constraint because, from analytic

ol

Figure 7-2.1, Geometrically the simplex algorithm
moves along edges of the convex.

geometry, the distance of P from d,x, + G, = b; is given by (3) for
1=1,2,...m,

b — Guaf — Gy _
[@% + anlt
If the point (2, z3) satisfies the inequality, then the geometric picture is

4)

(3) distance =

i+2

where k; = (@% + a%)-t.
If the variables are replaced by y; = k@, fori=1,2,. . ., m, and the
coordinates of a point P are the values of the independent variables, then
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the value of the it basic variable is just the distance from the point P to the
corresponding ©*b constraint.

Every basic solution to (1) has at least two z; = 0, hence the corre-
sponding £ is at the same time a point in K and is at zero distanco to two
distinct boundary lines of A. It is intuitively evident (and we show this
rigorously below) that such a P is a vertex of K. In particular, the basic
feasible solution with respect to the canonical form (1) is associated with the
point (2] = 0,z = 0) in Fig.7-2-1, hence the origin is always in the convex K.

We now show in a little more rigorous manner that associated with every
extreme point in the convex set of feasible solutions to (1) is an extreme point of
K and conversely. To this end, let P = (5, 23) and @ = (¥}, ,) be any two
points in K, and let the corresponding feasible solutions satisfying (1) be
p= (2223 ...2) and ¢ = (z}, %3, . - -, %,) Which as we have seen in
Theorem 2 of § 7-1 lie in a convex set C. It is easy to see that any point
AP + (1 — 2)Q on the line joining P to @ corresponds to a point Ap +
(1 —A)q that satisfies (1), and conversely. Hence line segments in the convex
C of solutions satisfying (1) correspond to line segments in K, and in particu-
lar the midpoint of a segment in C corresponds to the midpoint in K and
conversely. It follows that non-extreme points must correspond to each other
and it must logically follow that extreme points (basic feasible solutions) to
(1) correspond to extreme points of K and conversely.

Moreover, the movement along the edge corresponding to the class of
feasible solutions generated by increasing a non-basic variable and adjusting
the values of the basic variables in the shift from one basic solution to the
next, must correspond to a movement around the boundary of K from one
vertex to the next. To see this, let p and ¢ be successive distinct extreme
points corresponding to basic feasible solutions obtained by the simplex
method under non-degeneracy, so that the line segment joining p to ¢ is an
edge in C. If now the corresponding vertices P and @ in K were not neighbors,
there would be a point X on the segment joining P to @ that would be the
midpoint of two points P’ and @’ in K, but not on the segment. We shall
show, however, that P’ and Q' must lie on the line joining P to @. We have
shown that z, corresponding to X must be the midpoint of p’ and ¢’ corre-
sponding to P’ and Q’. However, z must also be on the line joining p to ¢
since X was on the line joining P to Q. It follows since the segment pg is
an edge (§7-1, Theorem 4), »’ and ¢’ must both be on this edge and hence
their corresponding points P’ and @’ must lie on the line joining P to Q.
This shows that edges in the convex of feasible solutions to (1), correspond
to edges in Fig. 7-2-1.

Thus the simplex method proceeds from one vertex to the next in the
space of a fixed set of non-basic variables. Starting with the vertex at the
origin and moving successively from one neighboring vertex to another,
each step decreases the value of &, until a minimum value for &, is obtained
as shown by the arrows in Fig. 7-2-1.
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The General Case.

While our remarks have been restricted to the case of n = m -4 2 for
simplicity, they hold equally well for the general case of n =m 4+ k. In
this case, the values of k = n — m of any set of non-baasic variables become
the coordinates of a point in k dimensions. In this geometry the convex K
of feasible solutions is defined by a set of m inequalities formed by dropping
the basic variables in the canonical form and adding the k inequalities
z; = 0 where z; are the non-basic variables. Each basic feasible solution
corresponds to a vertex of K. In the general (non-degenerate) situation,
there are n — m edges from each vertex leading to n — m neighboring
vertices; these correspond to the » — m basic solutions obtained by intro-
ducing one of the » — m non-basic variables in place of one of the basic
variables. The simplex criterion of choosing ¢, = Min & < 0 followed by an
tncrease in x, corresponds to a movement along that edge of the convex which
induces the greatest decrease in z per unit change in the variable introduced.

(8)
\\lz
\
\
\
\
N
o A N\ xy
A
\ ‘)*
/*\
\ S,
\ e
\

For example, for n = m + 2, see (5), if § < &, then any movement for
a distance A along the z;-axis produces a greater decrease in z than an
equal movement along the z,-axis.

It can be shown in general that the simplex method is a steepest descent
‘“‘gradient” technique in which the ‘“gradient direction’” is defined in the
space of non-basic variables, say ,,.1, Zmse, - - -» Z,. Translating the origin
to some trial solution point, the usual steepest gradient direction is defined
by finding the limiting direction as A — 0 from this origin to a point on
the spherical surface

(6) Thn + Tpua+ . . F =A% (=, =0)
where the function z is minimized. In contradistinction, the simplex
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algorithm’s steepest gradient direction is found using a planar surface
instead of a spherical surface ‘

(7) xmll | "7m|2 l o l xﬂ A ('rl':())

In other words, in defining the gradient, the usual (Euclidean) distance (8)
from the origin (located at some trial solution point) is replaced by one
based on the sum of the absolute values of the coordinates (7).

Exercise: Consider the problem of minimizing &,.1%m+1 + ¢ms2¥mse +
. . . + &z, subject to (7) for fixed A where z; > 0. Show that the solution
is to choose z, = A and all other z; = 0 where ¢, = Min ¢;. What is the
steepest gradient direction as A - 0?

Exercise: Consider the problem of minimizing émi1Zmi1 + Cmse¥mez +
. . . &z, subject to (6) for fixed A where z; is unrestricted in sign. Show
that the solution is to choose z; = —¢&;0 where § = A?/Xéf. What is the
steepest gradient direction as A —0?

7-3. THE SIMPLEX INTERPRETATION OF THE
SIMPLEX METHOD

While the simplex method appears a natural one to try in the n-dimen-
sional space of the variables, it might be expected, a priors, to be inefficient
as there could be considerable wandering on the outside edges of the convex
of solutions before an optimal extreme point is reached. This certainly
appears to be true when n — m = k is small, such as in Fig. 7-2-1 where
k = 2. However, empirical experience with thousands of practical problems
indicates that the number of iterations is usually close to the number of
basic variables in the final set which were not present in the initial set. For
an m-equation problem with m different variables in the final basic set, the
number of iterations may run anywhere from m as a minimum, to 2m and
rarely to 3m. The number is usually less than 3m/2 when there are less
than 50 equations and 200 variables (to judge from informal empirical
observations). Some believe that for a randomly chosen problem with fixed m,
the number of iterations grows in proportion to =.

It has been conjectured that, by proper choice of variables to enter the
basic set, it is possible to pass from any basic feasible solution to any other
in m or less pivot steps, where each basic solution generated along the way
must be feasible. For the cases m << 4 the conjecture is known to be true.
[W. M. Hirsch, 1957, verbal communication.]

Moreover, when the simplex method is viewed in the m-dimensional
space associated with the columns of coefficients of the variables, as will be
done in this section, the method appears to be quite efficient. It was in this
geometry that the method was first seriously proposed after it had been
earlier set aside as unpromising.

In Chapter 3, both the Blending Model II and the Product Mix
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Model were graphically solved using as the coordinates of & point the
coefficients of a variable in one of the equations and the cost form. For this
purpose it was assumed that one of the equations of the model could be
written in the form

(1) Byt z,+. ..t =1 (x; = 0: )
leaving, for the case m = 2, one other equation and cost form

2 Ty + AsZa + . o . Gy =b *(:my)
(3) °1"’1+°2x2+- .-+ cnxn=z(Min)

The variables 2, were interpreted as nonnegative weights to be assigned to
a system of points 4; = (a, ¢;) in two-dimensional space (u, v) so that their
weighted average (center of gravity) is a point R = (b, Min z); that is to say
the z; > 0 are chosen so that the center of gravity lies on the “requirement
line” % = b (constant) and such that the v coordinate is minimum (see
Fig. 7-3-1).

Convex Hull.

In Fig. 7-3-1, the shaded area C represents the set of all possible centers
of gravity @ formed by assigning different weights x; to the points 4;. It is

Requirement line (v =0 ) —am

2% (0j. )

Figure 7-3-1. Geometrically a linear progra.ni is a center of gravity problem.

easy to prove these form a convex region C, called the convex hull of the
set of points 4,. To see this, let G’ be any point in C obtained by using
nonnegative weights w], w;, . . ., w, and G” any other point obtained by
using nonnegative weights wf, wj, . . ., w),. Let G* = AG"' 4 (1 — A)G", where
0 < A< 1, be any point on the line segment joining G to @”. G* must lie in
C also because it can be obtained by using weights w* = Aw; 4 (1 — A)w}
forj =1, 2, .. ., n; moreover, if w; >0, w] >0, Zw; = 1, Zwj =1 and
0 < A< 1, then w¥ > 0, Zw} = 1. This establishes the convexity of C.
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It is also easy to see that any column (activity) corresponding to a point
A; which is not an extreme point of the convex hull can be dropped from the
linear programming problem. Thus the points A4y, 4,, 4, in the interior cf
C in Fig. 7-3-1 and A, on an edge can be dropped; that is to say, one can
set 7, = z, = 24, = z, = 0 and still obtain a feasible solution with just as
low a minimum value.

A basic feasible solution corresponds to a pair of points, say 4, and 4,
in Fig. 7-3-1, such that the line joining 4, to 4, intersects the constant line
% = b in a point @ on the line segment between 4, and 4,. For this to be
true we would want

Ay + (1 — Aag =b,; 0<igl)

But this corresponds to the basic feasible solution to (1) and (2) found by

setting z, = A, g = (1 — 4) and z; = 0 for all other j.

To improve the solution, the simplex method first ‘computes the relative
cost factors &; by eliminating the basic variables from the cost equation.
We shall now show that this is the same as first computing the line joining
A, to A, which we will refer to as the solution line, and then substituting
the coordinates of a point 4; into the equation of the line to see how much
(if any) in the v-direction it is above or below the line; see Fig. 7-3-IL

€j, it negative, is the
vertical distance to 4,
below the solution line.

Requirement line
{v=0)

New solution line

(] b

Figure 7-3-1I. The simplex associated with a cycle of the simplex
algorithm (m = 2).

To eliminate basic variables z; and z; from (3), suppose equation (1) is
multiplied by =, and equation (2) by =, and subtracted from (3). Then m,

and 7, must be chosen so that
(4) ¢ — (mo + ma,) =0
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(6) g — (m + mag) =0
and the relative cost factors ¢; are given by
(6) €y = ¢; — (my + may) ,

Let us compare this with what would be required to compute the line
(7) v =1y + MU

where constants 7wy and =, are chosen so that the line passes through the
points 4, = (a,, ¢;) and 44 = (ag, ¢g). Substituting » = a, and » = ¢, into
equation (7) gives the condition that A, lies on this line, while substituting
% = a4, ¥ = ¢¢ yields the condition for A4 to be on this line. But these are
precisely conditions (4) and (5). To determine how much a point with
coordinates u = a;, v = ¢; is above or below the solution line in the v-
direction, we first determine the ordinate of the point where the line u = a;
cuts v = 7y 4+ mu, namely at v = my 4 ma;, and then subtract this value
from the ordinate ¢; of 4;, denoted by ¢ in (6). Thus A, is above, on, or
below the line according as §; > 0, & = 0, or &; < 0.

The condition that a basic feasible solution is minimal is that & >0
for all non-basic variables ¢;. Geometrically it states that a basic feasible
solution 1s optimal if all points 4, lie on or above its solution line. For example,
in Fig. 7-3-1, the requirement line w = b cuts the line segment joining A,
to A4,,, and all other points 4, lie above the extended line joining these two
points; hence the minimal solution is obtained by using z; and z,, as basic
variables.

On the other hand, if there is a point A, as in Fig. 7-3-II, below the
solution line, then join 4, to 4, and to 4, and consider the convex figure S

_ formed by A,4 4. This is the convex hull of three points in m = 2 dimensions

and is called a two-dimensional simplex. If A, is below the solution line,
every point of § is also. If G is not at a vertex, there is a segment G*G on
the requirement line belonging to 8 below the solution line with G*, the
lowest point. Thus there exists a new solution line passing through G*. It
is either 4,4; or A¢4; depending on whether A, is on the right or left of
= b.

In Fig. 7-3-II1, we illustrate the steps of the simplex method geometn-

cally on (8) the Product Mix Problem, § 3-5.

N1t Y+ Y+ Yt Y5+ Ye=1 (y; =0)
(8) { 2y 4+ dya+ 3y + By, +0y; + 1y = 4
- ""2.4y1 — 2.0y2 -_ 1-8y3 hunad -8y4 + Oys + Oya =2 (Min)

Let the coordinates of a point 4, in Fig. 7-3-IIT be the coefficients of y, in
the second and third equations:

4, = (2, —24), 4,=(1,—20), 4= (3, —1.8),
= (.8, —8), A45=1(0,0), Ad,=(1,0)
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Figure 7-3-III. The simplex algorithm geometrically illustrated on
the product mix problem.

The simplex iterations may be summarized as follows:

. Basic Solution .
Tteration variables line Simplex
0 Yss Ys Agdy > Agded,
1 Y1> Ye A4, > A,4,4
2 Y1» Ya 4,4, e

Simplex Defined.

In higher dimensions, say m, the convex hull of m + 1 points in general
position (see definition below) is called an m-dimensional simplex; thus

0-dim. simplex is a point

1- ,, »  » @ line segment
2- ., . ,» & triangle and its interior
3- ., " ,, & tetrahedron and its interior

DeFNrTION: Let A; = (ay;, @9y, . - ., @ms) be the coordinates of a

point 4, in m-dimensional space. A sét of m 4 1 points [4,, 4,, . .
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is said to be a general position if the determinant of their coordinates and
a row of ones, as in (9), is non-vanishing,

9) 1 1 ...1
G Tz ¢ v Ty
. . . £0

A1 Omg - « + Cpy e

For m = 3 dimensions, consider the problem of finding z; > 0 and
Min 2 satisfying

Multipliers
(10) Z+zg4+...+z=1 (2,=>0) sy
and
(11) Oy + Gig%s + - L+ Gy = by 1m
A%y + Gpe%g + ¢ . L+ ATy = by 1y

G% + CZy+ .. .+ =2

Define as coordinates (u,, u,, v) of a point the coefficients of z; in (11); thus
A; = (ay, agy, ¢;). The requirement line is u, = b,, u, = b,. A basic feasible
solution corresponds to three points, say 4,, 4,, 4, such that the require-
ment line intersects the “solution plane’” formed by 4,, 4,, 4, at a point
of the two-dimensional simplex formed by 4,, 4,, 4, as in Fig. 7-3-IV. If

Requirement line
v (u,:b,,uz=bzv)

Initiol solution plane

New soiution plone

v (blu vao)

“@y

Figure 7-3-IV. The simplex associated with a cycle of the
simplex algorithm (m = 3).
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A; is a point below the solution plane, v = my + m%; + a0y, associated
with A4,, A, A, then & = c¢; — my — may; — M8y < 0. In this case, a
three-dimensional simplex A;4,4,4; can be formed and a point G* found
where the requirement line pierces the simplex at a lower point. G* is on
one of the three faces A,4,4;, A,A;d;, A;A;A; depending on the position
of 4,. In Fig. 7-3-IV, G* was assumed to be in the face A,A4,4;, and it
is these three points that are used to determine the new solution plane.

The simplex criterion used to select a new basic variable z, does not
select an arbitrary x; corresponding to an 4; below the solution plane, but
an A, = 4; which is a mazimum distance, ¢, = Min ¢; below the plane.
Inspection of figures such as Figs. 7-3-I and 7-3-1I give credence to the
belief that such a point would have a good chance of being in the optimal
solution. Empirical evidence on thousands of problems confirms this and is the
reason the simplex method is efficient in practice.

Exercise: Study Fig. 7-2-1 and §7-2-(5); construct an example to
show for n = m + 2 that the simplex criterion ¢, = Min ¢; could cause a
maximum number of cycles to be performed.

7-4. PROBLEMS

Convex Regions. (Refer to § 7-1.)

1. Review the relationship between convex sets and linear programming.
2. Determine which of the following are convex sets.

(@) Azt 2 =6

z, — 2y + 3wy =>4

z; >0
(b) 22+ 22>5
() 224223<3
(d) 22—2z,<2
(e) z —2221>3
z, + 21, < 4
22, + 31, > 6

3. (a) Solve graphically and by the Fourier-Motzkin Elimination Method

of § 4-4: maximize 2, — =,, subject to
4+ 2,5
z, — 32, >0
x; >0
2, >0
2z, + 3z, > 6.

(b) State in standard form.
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7-4. PROBLEMS

(c) Indicate the convex set of feasible solutions. Why is the optimal
solution an extreme point ?

(d) Omitting the conditions z, > 0 and z, > 0, reduce to standard form
by two methods.

. Transform the two systems of inequalities (A) and (B) below into systems

of equations in nonnegative variables by a change of variables; graph
(B) in terms of the original variables. Graph the dual of (A).

7+ 2, <1
4y — Tz, + 32, < 4 T+ x4
— 2z, >2

- The process of increasing the variable z, in the simplex method, while

holding the other independent variable fixed at zero, generates a class
of solutions corresponding to an edge in a convex polyhedron of feasible
solutions if the vertex corresponds to a nondegenerate basic feasible
solution. What can happen under degeneracy ?

- If a basic solution is nondegenerate, there are precisely n — m neighbors

of its corresponding extreme point and these are generated by increasing
one of the n — m independent variables, while holding the remainder
fixed at zero. What_can happen under degeneracy ?

- Show that if z, is a variable unrestricted in sign, it is possible to obtain

an optimal solution for the system by eliminating «, from all but one
equation, setting this equation aside and optimizing the remaining
modified system, and then determining z, by a back substitution.

. Suppose that one equation of a linear program in standard form has one

positive coefficient, say that of z,, while all remaining coefficients of the
equation are nonpositive and the constant is positive. This implies that
z; > 0 for any solution, whatever the values of the remaining z, > 0.
Pivot on any non-zero term in z, to eliminate z, from the remaining
equations and set aside the one equation involving z,. Prove that the
resulting linear program in one less equation and one less variable can
be solved to find the optimal solution of the original problem.

. If it is known in advance that a solution cannot be optimal unless it

involves a variable z; ab positive value, show that this variable can be
eliminated and the reduced system with one less equation and variable
solved in its place.
Devise a method for finding the second best basic feasible solution.
Generalize to the third best, the fourth, etc. Discuss any complications."
Show, if r variables have unique and nonnegative values when the
remaining variables are set equal to zero, the feasible solution is an
extreme point solution.
Given an extreme point solution (v;, vy, . . ., v,), show that if the
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14.

15.
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17.

18.

19.

20.

21.

22.
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variables z; are set equal to zero corresponding to v; =0, then the
remaining variables are uniquely determined and z; = v; > 0.

(W. M. Hirsch, unsolved.) Does there exist a sequence of 'm or less
pivot operations, each generating a new basic feasible solution {b.fs.),
which starts with some given b.f.s. and ends with some other given
b.f.s., where m is the number of equations? Expressed geometrically:

In a convex region in n — m dimensional space defined by n half-
planes, is m an upper bound for the minimum-length chain of adjacent
vertices joining two given vertices?

Prove that a square homogeneous system of m equations always has a
nontrivial solution (a solution in which at least one variable is not
zero) if there are redundant equations (i.e., if the rank of the system
is less than m).

(Gale.) Prove that a square homogeneous linear inequality system
always has a nontrivial solution.

Show that the set of possible values of any variable z, of a linear
program forms a convex set, in this case, a straight line segment
o<z, <b

Show that the set of possible values of two variables, say (x,, x,) or
(z,, z) satisfying a linear program, forms a convex set in two dimensions.
As a corollary to problem 17, show, if z; is treated as a parameter and
can take on a range of possible values, that the value of Min z becomes
a convex function of z;. T
Show, in general, that Min z is a convex function of 0, if the constant
terms of a linear program are linear functions of the parameter 8. How-
ever, show that the value of some other variable, such as z, for Min z
in the example below, need not be either a convex or a concave (the
negative of a convex) function of 6.

6 —nmta .y (2> 0)
z + z, =0
zy — 3 + x5 =1
+ =z, +zg=1
4x; + 2z, + z, = z (Min)
Show that, if P = (a,, a,, - . ., @) is & point in m dimensions, the set
of points C with coordinates a4, a,4, . . ., @ud, where A can take on

any value in the range 0 << A < oo, is convex. This set is called a ray.
Graph the ray for P = (1, 1, 1).
A set of points is called a cone if, whenever P is in the set, so is every

point in the ray of P. Construct an example to show that a cone, in
general, need not be convex.

Show that, if P = (a,, 4y, . . -, G) 80d @ = (ag, @3 - - - al) are two

points in m dimensions, the set of points C with coordinates

X = (Ja, + ual, Aay + pay, . . ., Ay + pa,) for arbitrary A and g in
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25.
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the ranges 0 < A < o, 0< 4 < oo forms a convex cone. In vector
notation (see § 8-2), X is given by X = AP + 4@Q. This set is called the
cone generated by two rays AP and uQ. Graph the cone generated by
P=(1,1,1),and Q = (1, 1, 0).

- In general, the set generated by forming nonnegative linear combinations

of points P,, P,, ... P, is called a cone. Thus, C is all points
X =3Py + P+ ...+ 4P, for arbitrary A, in the range
0 < 1; < . Prove C is a convex cone.
Show that a convex cone is formed by the set O of all points P'=
(b1, by, - . ., by,) given by choosing z, > 0, z, >0, . . ., 7, > 0 in the
expressions

Q% + Qe+ . . .t Ay =b; (=12,...m)

Suppose P,, P,, . . ., Py, . .. is an infinite collection of points in
m dimensional space. Let C be the set of points generated by forming
nonnegative linear combinations of finite subset of these points. Let C’
be the set of points generated by forming nonnegative linear combina-

tions of subset of m or less of these points. Show that C and C’ are
identical convex cones.

Interpretations of the Simplex Method. (Refer to §§ 7-2, 7-3.)

26.

28.

30.

Carry out the steps of the simplex method both algebraically and
geometrically on (a) the Product Mix Problem and (b) the Blending
Problem II and show the correspondence. (Refer to § 3-4 and § 3-5 for
the problems.)

. Take the warehouse problem (§ 3-6) and solve algebraically and geo-

metrically using the simplex method in three dimensions.
Using the Fourier-Motzkin elimination procedure, solve

4+ Yo 2
=3+ < -3
h—2y< 6
3+ 9, < 1
-~ % < -2

3y, + 4y, = v (Max)

- Solve the above, using the following variant of the simplex method: for

those with positive right-hand sides introduce slack variables y; > 0;
for those with nonpositive right-hand sides introduce artificial excess
variables y; > 0. Apply the usual simplex method to minimizing the
sum of artificial variables, in this case y, + y, = w. However, note that
¥ and y, are not restricted in sign. See problem below.

Invent a variant of the simplex method which permits specified variables
to be unrestricted in sign. Apply this to Problem 28.
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Solve
2y + ¥ <2 (y1 =0,9,=0)
Y — 2y, <6
3y + 9y << 1
3y, + 4y, = v (Max)

using the simplex method. Interpret geometrically the simplex steps in
the 2-dimensional space of y; and y,.
Given a system
Ty 4+ Tyt ..o+ Zp=1 (z; = 0)
Oy + gty + . . A, =0b
€%y 4 Coy + . . A CpTp =2 (Min)

show that the solution line v = =¥ + w¥u associated with the minimal
basic solution must satisfy

(a) ¢ — (m§ + mfa;) =0

(b) m¥ 4+ 7t = Minz
Prove in the above that the convex hull of points 4; = (a;, ¢;) lies
above an arbitrary line v = 7, + mu, if

Gj -— (770 + 1‘rla,~) >_._ 0

Use this to show that such a line must cut the requirement line % = b,
in a point, whose ordinate v << Min z.

Use the results of the above two problems to prove that the values of
m and ;, and Max v, satisfying the (dual) inequality system

4 ma; < ¢ forj=1,2,.. .7
my + mb = v (Max)
are given by the solution line v = =¥ + m}u associated with the minimal

basic solution and
Max v = Min 2

Review this particular geometrical interpretation of the duality theorem
given in § 3-4 and displayed in Fig. 3-4-1.

Note that the dual of a standard linear program is a system of inequalities
in unrestricted variables. Suppose one is given a system in the latter
form ; review how its dual may be used as a third way to get a standard
linear program from a system of linear inequalities. Find the standard
linear program of which this is the dual:

my + 2m < —2.4
e + Jdm > —2.0
my + 3m < —1.8
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my+ 8m < — .8

770 s 0
Ty + ™ S 0
m, < v (Max)

Solve the dual, by using the simplex method and also by using the
elimination method, and prove that Max v = Min z of the dual original
system.

If v = my + mu, + myu, represents the solution plane associated with
A,, 4,, Ay in Fig. 7-3-I1I1, interpret the conditions

_ v; — (7 + m8y; + Tellyy) = 0 (1=12,3)
and the quantities
vy — (mo + ity + magy) = G
both algebraically in the simplex method and geometrically.
A third geometry of the simplex method can be obtained by regarding
a column j as representing a line my + ar; = ¢; in (m, m) space. Thus,
this procedure can be interpreted to be in the same space as the space
of independent variables m, and =, of the dual linear programming
problem my + agm, < ¢, my + b, = v (Max) forj =1, 2,. . ., n. Show
that the simplex procedure for solving the dual is different from the
interpretation of the simplex procedure for solving the original problem
in this geometry. (The procedure of Kelley for solving nonlinear
programs is based on this geometry.) See [Wolfe, 1960-1].
In the text the relation between the classical gradient procedure and
the simplex method is outlined. Show that each iteration of the simplex
method expresses the function to be minimized in terms of a different
set of independent variables. Show that the direction of maximum
decrease of the function under the restrictions Zz; = A, z; > 0 is just
the one given by the simplex criterion. What would it be if Xz} = A?
were used instead ?
(a) Use the “Center of Gravity Method” to find z; > 0 and Minz
satisfying

%) + 2y -+ 32, + 4, = z (Min)

Tt Tt 2t z=4

2y — 2z + 3u; — 4y, = —2

(b) Dualize and graph the dual problem.

(c) Solve the dual using the Fourier-Motzkin Elimination Method
(§ 4-4).

(d) Solve the primal using the simplex method. Trace the steps of the
procedure as graphed in (a) and (b).

. [Minkowski, 1896-1.] Theorem: A feasible solution of a bounded

linear program can be expressed as a linear nonnegative combination of
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basic feasible solutions. Geometrically stated, a point of a bouynded
convex polyhedron C, defined as the intersection of finitely many half-
spaces, can be expressed as a linear nonnegative combination of extreme
points of C.

Show that the theorem is false if C is unbounded.

Advanced Problems.

4].

42.

Theorem: Let M be a given set of points in a Buclidean (m — 1)
dimensional space and let @ be in the convex hull of M. It is possible
to find m points P,, P,, P,, . . ., P, (not necessarily different) of M,
and m real numbers z, . . .z, sothatz; >0, >7z;=1,and 37"z, P; = Q.
(E. Steinitz, Reine Angew. Math., Vol. 143, 1913, pp. 128-275.)
Theorem: Let M be a given infinite set of points in Euclidean m-
dimensional space and let @ be in the convex cone spanned by M. It is
possible to find m points Py, P,, . . ., P, (not necessarily different) of
M, and m real numbers x, = 0, . . ., &,, = 0, so that 27"z, P; = @
Hint: Establish this theorem for any point @ representable as a
nonnegative finite linear combination of points P; € M. Show that all

such points Q define the convex cone spanned by M.

REFERENCES
Convex Sets and Functions
Beckenbach, 1948-1 Motzkin, 1936-1
Fenchel, 1953-1 Saaty, 1955-1
Gaddum, 1952-1 Stokes, 1931-1
Gale, 1951-1, 1956-1 Tucker, 1955-1
Gerstenhaber, 1951-1 Weyl, 1935-1
Goldman and Tucker, 1956-1 Wolfe, 1960-1
Minkowski, 1896-1 (See also Chapter 4.)
[172]




CHAPTER 8

PIVOTING, VECTOR SPACES,
MATRICES, AND INVERSES

8-1. PIVOT THEORY!?

Our purpose is to extend the discussion of §4-2 regarding properties
preserved by pivot operations and characteristics of pivot operations. The
first of five important properties concerns redundancy and inconsistency. -

THEOREM 1: If there is a linear combination of equations of a system with
non-zero weights which results in a null equation (redundancy), or in an incon-
sistent equation, then the same is true for a system obtained from it by a sequence

“of elementary (or pivot) operations.

Proor: Let E, represent alternatively either a vacuous or an incon-

sistent equation. Let E,, E,, . . ., E, denote a subset of the equations of
the system that, by the hypothesis, satisfy
09 MEy + 2By + . .+ LBy = E, where 4; 7 0

If the first of a sequence of elementary operations does not involve these E,,
the same relation will hold in the resulting system. The same is clearly true
if an elementary operation replaces E, by kE,, say, where k 5 0. If E, is
replaced by E, 4 kE, = E|, then E, = E; — kE, and the relation

2) 11{+(12_'11k)E2+---+1kEk=E0

bolds for the resulting system. Since 1, ¢ 0 in this case too, a non-zero
linear combination of the equations of the resulting system yields E,.

Finally, if E,, say, is replaced by E, + kE, = E| where t %1, 2, . . ., k,
then the relation _
3) ME, + AEy + . . . + MBy — MkE, = E,

holds, and again the result follows since 4, 0. By induction the theorem
holds for any number of elementary operations. Since pivot operations are
a particular case of the latter, the proof is complete.

The second important property of the pivot operation is its irreversibility
except in certain situations.

11 am indebted to A. W. Tucker for his suggestions for developing this section
based on the idea of the irreversibility of the pivot operations except when applied to a
canonical form.
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Throrem 20 Lf @ system 08 tn canonical forne before a proot operation,
then it i in canonical form after the pivol operation.

ProoF: Suppose a system is in canonical form with basic variables
T Tjyy + + o Ty Let the pivot term be chosen in equation r using variablq
z,. Then, as we have seen in §5-1, the resulting system is in canonical form
with z, replacing z; as a basic variable. In the new system, if a new pivot
term is sclected in equation 7 using variable x,, then a second pivot operation
will restore the original system; henee

COROLLARY 1: If a system is in canonical form, the inverse of a pivoi
operation is a pivot operation.

CoROLLARY 2: If a subsystem S is in canonical form before a pivol
operation and if the pivot term is selected in an equation of S, then the corre-
sponding subsystem after a pivot operation is in canonical form; the inverse of
the pivot operation is a pivot operation (assuming zero coefficients for basic
variables in the non-canonical equations).

CoROLLARY 3: If a subsystem S is in canonical form before a pivot
operation and if the pivot term is selected in an equation E not in S, then the
subsystem corresponding to {S, E} after a pivot operation is in canonical form;
the inverse of the pivot operation is not a pivot operation unless {8, E} was in
canontcal form initially.

The third important property of the pivot operation is that there is a
one-to-one correspondence between equations and that easily defined subsets
of the original and the derived systems are equivalent.

DerFiniTion: The pivotal subsystem is that set of equations P of the
original system corresponding to those selected for pivot terms in a sequence
of pivot operations.

It is clear that the number of equations in the pivotal subsystem increases
or remains the same during a sequence of pivot operations, depending on
whether or not the successive pivot terms are selected from among equations
corresponding to the pivotal system or from among the remainder. Let S
be any subset of the original equations that includes the pivotal set P and
let & and P’ be the corresponding subsets after a sequence of pivot
operations.

THEOREM 3: The system S’ is equivalent to S; in particular, P’ is
equivalent to P and, moreover, P’ is in canonical form. ‘

Proor: That P’ is canonical, follows from Corollaries 2 and 3. To prove
S and §’ are equivalent systems, note that if the equations not in § are
deleted, the same sequence of pivot operations can be performed on those
corresponding to S and hence the latter are all equivalent to S.

THEOREM 4: The pivotal subsystem P i3 independent and solvable.

ProoF: P’ isin canonical form by Theorem 3 and is therefore solvable
and independent. Since P is equivalent to P’, it is solvable also. It cannot
contain any redundancies because by Theorem 1 the same would have to
hold for P’.
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TeEROREM 5: (A redundancy and inconsistency tracing theorem.) If an
equation E, of a reduced system is vacuous (or inconsistent), then in the original
system, E, is either redundant with respect to the pivotal system P (or a linear
combination of the equations of P and E, can form an inconsistent equation).

Proor: Note {P, E,} can be generated from {P’, E;} by a reverse
sequence of elementary operations, hence applying Theorem 1 there exist
weights 1; > 0 not all zero such that

4) By + ABy + . . .+ LBy + 2B, = E, (A = 0)

where (Z,, . . ., E,) are the pivotal equations (not necessarily the first k)
and E, is alternatively either a vacuous or an inconsistent equation. In
either case, 4, 5= 0 because of Theorems 3 and 4; hence, if E, is vacuous,
E, is dependent on the others.

Testing Systems for Equivalence.

The fourth important property of the pivoting operation is that it
provides a way to show whether or not two systems have the same solution
set by trying to reduce them simultaneously by pivoting. step by step, using
the same pivotal variables. The same process will test the equivalence of two
systems.

THEOREM 6: T'wo solvable systems have the same solution seis if and only
if they are equivalent. .

TeEEOREM 7: Two systems are equivalent if and only if it is possible to
prvot with respect to the same ordered sequence of variables and (a) if consistent,
the canonical parts of the two systems are identical and the remainder vacuous;
(b) if inconsistent, the canonical parts are identical except possibly for the
constant terms, and the remainder each have one or more inconsistent equations.

Proor or THEOREMS: Let us suppose first that it is possible to reduce
two systems using the same set of pivot variables. We assume the equations
of the canonical parts are reordered so that both subsystems are canonical
with the same set of basic variables. If the two systems are to be equivalent,
it is necessary that their canonical part be identical, because there is only
one way to form the left-hand side of an equation of the canonical part
of one system as a linear combination of the equations of the reduced system
of the other. Their constant terms may not agree if there are inconsistent
equations in the non-canonical part (but may be made to agree by adding
in & suitable multiple of the latter). If the two systems are solvable with
the same solution set, the canonical parts are identical; (see proof of Theorem
1 in §4-2). In general, the non-canonical parts must either both contain an
inconsistent equation or both be vacuous because the only way to generate
an inconsistent equation of one system from that of the other is as a linear
combination of the inconsistent equations of the other.

Now let us suppose that it is not possible to reduce two systems using
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the same seb of pivol varinbles, but that it i possible to pivot on the same
variables for the first ¢ steps, say variables z,, Z,, . . ., . in the first { equa-
tions, and that on step (¢ + 1) it is possible to pivot on the z,,; term in
equation ¢ | 1 in system I, and it is not possible to use x,,, for pivotal
variable in system 1l beenuse the coeflicients of x,,, are zero i all the
remaining m — ¢ equations of 11. Note that it is not possible to generate the
t + 18t equation of system I from those of system II because the weights
on the first ¢ equations must be zero and this makes the coefficient of z,,,
automatically zero whatever be the weights on the remaining equations.
Hence the two systems cannot be equivalent.

Nor can the two systems, in this case, be solvable with the same solution
set. To see this, let 2, . . ., 2%, 22,,, . . ., 2} be any solution to system I
Either it does not satisfy system II, or if it does, then a solution for system II
exists which does not satisfy system I, namely z¥, . . ., 2¥; 2%, 2712, - - %
obtained by changing z°,, to z*, % z,, and adjusting the values of
Z,, . . ., %, in canonical part of the first r equations of system II. Note that
this solution satisfies the remaining equations of system II (there are no
z, . . ., %, %, terms) but cannot satisfy system I because it does not
satisfy equation r + 1 of system I. Hence, in either case, the two systems
do not have the same solution set.

The fifth important property of pivoting is that it provides a way to
prove a number of interesting theorems concerning the number of independent
and dependent equations of a system.

THEOREM 8: Two equivalent, independent, consistent systems have the
same number of egquations.

Proor: Invoking Theorem 4 it is possible simultaneously to reduce the
two systems, and the canonical parts of the reduced systems are identical.
No vacuous equations can result because pivoting is actually a sequence of
elementary operations, so that, by Theorem 1, the appearance of such
equations would imply a redundant equation in the original systems. There-
fore, the identical canonical equivalents have the same number of equations
as their respective original systems.

The following three theorems are consequences of the above.

TEEOREM 9: Two equivalent canonical systems have the same number of

equations.
_ Taeorem 10: If a system has a canonical equivalent with r equations,
any partition of the system into an independent set of equations and a set of
equations dependent upon them will have exactly r equations in the independent
set.

TeEOREM 11: If a system has a canonical equivalent with r equations,
then any r independent equations of the system can generate the remainder by
linear combinations.

Derivrrion: The largest number of independent equations in a solvable
system is called its rank. :
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Exggrcise: Prove Theorems 9, 10, and 11. Show that r in Theorem 10
is the rank of the system. '

8-2. VECTOR SPACES
Vector Operations.

Many operations that are performed on a system of equations can be
viewed as performing a number of operations in parallel. For example, we
may rewrite the system,

(1) 2, + 3z, — day =5
—dz, — 22, 4+ 32y =T

in the form

@ [ e+ []=+ 7)==

and interpret this to mean that when the corresponding elements (gom-
ponents) in the column are to be multiplied by the unknowns and added
across, their sums give the corresponding elements in the right-hand column.
The columns are called column vectors. Operations, called “‘addition” and
“scalar multiplication” of vectors, are performed upon them in a manner
analogous to ordinary numbers.

The coefficients [2, 3, —4] that appear in the first equation (or [—4, —2, 3]
in the second equation) may likewise be considered as an entity called a row
vector. Vectors whose elements are drawn from a row are usually written
with brackets [ ] or parentheses ( ). Often vectors whose elements are
from a column are written in text as row vectors to conserve space; when
this is the case for us, angle parentheses { > will be used instead of { Jor ( ).
Thus (2, —4) stands for the column vector [_i] .

DEFINITION: An m-vector is an ordered set of m numbers called
components (elements).

‘We shall begin by defining two fundamental operations on vectors which
are a natural extension of addition and multiplication of numbers to sets
of numbers in parallel. '

Dervrrion: The scalar multiple of an m-vector by a number (scalar)
z is an m-vector formed by multiplying each component by x. Thus for a
column vector,

a 7%
y g%
(3) =1
Gy B
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Durinreion ;. The s of two me veetors s the vector Iurmml-h‘\' adding
the corresponding components. Thus
a, [/ a, + b,
a, by a, -+ b,

(4) S+

(K

G bm Gy - O
DeFmNITION: Two m-vectors are equal if their corresponding components
are equal. Thus

a, by
@y by .

(5) " 1=|" |meansa;=b;fori=1,2,...,m
A b,

With this interpretation of operations on vectors it is clear that (2) is the
same as (1) because, by the scalar multiplication of vectors, (2) is the same as

® [+ 3]+ (] = [7]

and by addition of vectors (say, by adding the third vector to the sum of
the first two)

e |: 2z, - 3z, — 4x3:] _ ['S]
—4x, — 2, + 324 7
and by equality of vectors (7) means (1).

We are now in a position to make the important observation that the so-
called elementary operations on equations are in essence the scalar multiplication
and addition of the row vectors formed by detaching the coefficients and constant
terms of the equations. The variables play a passive role throughout. For
example, if the first equation of (1) is multiplied by 2 and added to the
second, we obtain 0z, + 4z, — 5z, = 17. This corresponds to the opera-
tions 2[2, 3, —4, 5] + [—4, —2, 3,71 = [0, 4, —5, 17].

Linearly Dependent Vectors.

A vector each of whose components is zero is called a zero vector (or null
vector). Thus by a vector ¥V = 0 is meant

0

(8) V=

A vector V 3 0 mcans that at least one component of V differs from zero.
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A vector {y;, Ya - + - Ymy i8 said to be linearly dependent on n other
vectors P; = {ay;, Gyj, . . ., Gy if one can find numbers (scalars) z;, z,,
. . &,, such that

an a2 Q1n Y1

ayn Q32 Aan Ya
9) Ty T e+ o+ T =

aml am am y

Exzrcisg: Choose particular values of a;; and y;, such that there are
no z; that satisfy (9); choose values, such that there are unique z; that
satisfy (9); choose values, such that there are many sets of z; that satisfy (9).

DerFiNrTIoN: A set of  vectors 2; is linearly independent if

(10) Pay+ Pxy+...+ Px,=0

tmplies 2, = z, = . . . = z, = 0. If a set of vectors is not linearly indepen-
dent, then (10) holds with at least one z; 7% 0 and the set is said to be linearly
dependent. It is easy to see that this P, is linearly dependent on the others.

Exercise: Show that the set consisting of a single vector is an
independent set unless it is the zero vector. Given any set of vectors show
that the null vector is linearly dependent upon them.

An m-vector whose it element is unity and all other elements are zero
is called a unit vector. The m different unit vectors are denoted by

17 0] 0]
0 1 0
0 0 0
(11) Uy=|.[,U=|.[-+ s Un=
0] 0] 1]

Exercise: Show that the vectors U, are linearly independent. Show

“that any other vector can be expressed as a linear combination of the unit

vectors U,.

Vector Equations.

If, as above, we use symbols to denote vectors, we can write a single
vector equation to represent = linear equations. For example, let

Y ay;
Y Qoj

(12) Q=|"|; Pi=| " (Gj=1,2...n)
Ym. Qons



Then (9) becomes the problem of determining weights x; (if possible) which
express a linear dependence between the vectors P; and @, l

(13) Pz, + Py + . . .+ Pz, =@

PIVOPING, VECTOR SPPACES, MATRICES, AND INVERSES

Vector Space.
Instcad of secking numbers z; that satisfy (13), we may reverse the

process and generate column vectors @ = <{¥y, ¥, - - -» Ym) bY varying the
values 2z,, Z,, . . ., Z,. The set of vectors {y,, ¥z, . - -» Ym, generated by all
possible choices of (z,, #,, . . ., z,,) is called a vector space.

\ For example, if we plot in two dimensions the points with coordinates
(#,, y3) obtained by choosing different values of 2, and z, in (14), it is clear
that it will describe the entire (y;, y,) plane.

14) B] at m "= Bﬂ

On the other hand, the points (y;, y,) of (15) lie on the line 2y, = y,.

a HENdH

The vector space for (¥, ¥, ¥,) in (16) is the plane y, =y, + ¥, in
'3 dimensions,

1 2 Y
(16) [2:| z + [1] Ty = [yz]
3 3 Ys

It is easy to see that the points (y;, ¥, ¥s) in (17) also lie in the plane
Y3 = ¥, + ¥, because the column vectors associated with z; and z, are
linearly dependent on those corresponding to x; and z,.

: 1 2 3 17 %
(17) 2izy, + |12+ 3} z3 + l:—{-l z, = |y
3 3 | 6 0 Y3

In fact, substituting in (17) the expressions

o -Gl B

one obtains
17 2 1

(19) [2 (@ + 23 + 2,) + I:I:I (@ + 23 — 2,) = [yz]

. 3 3 Ys

and it is clear that the class of vectors (yy, ¥,, ¥ generated by (19) is no'
smaller than that generated by (16).
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DErFINTTION: A basis of a vector space is any set of independent vectors
in the space such that all other vectors in the space can be generated as
linear combinations of the vectors in the set.

It is easy to see that there can be many sets of independent vectors that
can generate the same vector space. Thus the vector spaces associated with
(14) and with (20) below are the same.

e+ [-

Rank or Dimensionality of a Vector Space.

The rank of a vector space is the largest number of independent vectors
in the space. We shall show that, if a vector space can be generated from r
independent vectors, any other set of r independent vectors in the space
can also serve as a basis. Moreover, it is not possible to generate the space
with fewer than r vectors nor is it possible to find in the space more than r

‘independent vectors. The number r is called the rank or dimensionality of

the vector space.
THEOREM 1: Let Q be any vector in the vector space generated by a set of

independent vectors (Py, P,, . . ., P,); then the values x,, ,, . . ., %, such that
(21) Pz 4 Pz, +.. .4+ Pz, =@
are unigue.

Proor: If not unique then there exists another set of values z; such
that

(22) P!+ Pai+ ...+ Pz, =@

Subtraction yields

(23) Py, —z}) + Pylay —23) + . . . + Polz, —2) =0

and we conclude that if not all (x; — z;) = 0, the vectors P,, Py, . . ., P,

are not independent, contrary to assumption.

DerntrioN: The expression (21) is called the representation of the
vector @ in terms of the basis (P, P,, . . ., P,), and (2, @5, . . ., 2,) are
called the coordinates of Q relative to this basis.

" ExgrcisE: Show that the set of unit vectors (11) constitute a basis in
the space E,, of all vectors with m coordinates, and the coordinates of a
vector relative to this basis are the same as the components of the vector.

THEOREM 2: Qiven a basis and a vector B #% 0 in a vector space, it is
possible to replace one of the columns of the basis by R to form a new basts.

Proor: Let the representation of R in terms of the basis be

(24) Py, + Pyw,+...+ Py, =R
At least one v; % 0 in (24), since R # 0. Suppose v; 7= 0; then we will
show that a new basis can be formed by replacing P, by R. First of all,
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P,, P, . . ., P,; R are linearly independent; for, assuming they are linearly
dependent implies that R has a non-zero coefficient and thus can be expressed
in terms of the others in a representation different from the unique repre-
sentation (24), a contradiction (see Theorem 1).

Now we only need to show that an arbitrary @ can be expressed in terms
of the independent vectors P,, P, . . ., P,; R to prove these vectors form
a basis. In fact, multiplying (24) by an arbitrary constant 0 and subtracting
from (21) yields

(25) Py(x, — 0v)) + Pylzy — Ovy) + . . . + Pz, — Ov,) + RO =@Q
whence setting
(26) 6 = /v, (v #0)

shows that Q is linearly dependent upon the others, since 2, — 6v, = 0.
Hence, these independent vectors can generate any other vector @ in the
space. '
THEOREM 3: Given a basis and k independent non-zero vectors R,, R,,
. . ., Ry, in the vector space generated by the basis, it is possible to replace k
vectors in the basis by Ry, Ry, . . ., B;.

Proor: The proof is inductive. The case k¥ =1 was shown by the
previous theorem. Suppose that a new basis can be formed by substituting
k —1 vectors R, Ry, . . ., By, for k — 1 vectors in the basis, say, by
replacing P, P,, . . ., P,_;, so that the new basis is Ry, Ry, . . ., Bey;
P,, . . ., P, Let the representation of R, in terms of this basis be

27) Rpy+ Ry + ...+ R+ P+ ...+ Po. =R,

At least one v; = 0, for 1 > k, otherwise R, would be linearly dependent
on R, R,, . . ., R;_,, contrary to assumption. Let v, .0 for some ¢t > k.
Then, following the argument of the previous theorem, R, can replace P,
in this basis to form a new basis consisting of vectors R, R,, . . ., Ry,
R, Pers - - - P, (omitting P,). The following are left as exercises:

THEOREM 4: If there exists a basis consisting of r vectors, then any r
independent vectors in the vector space form a basis.

THEOREM 5: If there exists a basis consisting of r vectors, then it is not
possible to have more than r independent vectors in the veclor space.

THEOREM 6: If there exists a basis consisting of r vectors, then it is not
possible to find in the vector space a basis with fewer than r vectors.

ExeRcISE: Show that the symbolic operations on equations E; in
§ 8-1 may also be viewed as vector relations. Let B, = (ay, aigy - - - Qi3 b))
be the row vector, defined by the coefficients and constant of E;; then
§ 8-1-(1) may be interpreted to mean

ME, + ABy + MWEy+ . . .+ ME = E,
Interpret the other symbolic relations in § 8-1.
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Exercise: Show that the rank of a consistent system of equations
E,, E,, . . .is the same as the rank of the system of row vectors £,, £,, . . .
associated with these equations. The definition for equations is given at the
end of § 8-1. ‘

8-3. MATRICES

Matrix Operations.

A rectangular array of numbers is called a matrix. Thus the detached
coefficients of § 8-2-(1)

w [ = 73]

constitute a 2 X 3 matrix, i.e., a matrix of two rows and three columns.
More generally an m X » matrix is

Ay Q12 - - -0

a. Qog « - . QA
(@) R e Y
aml amz . e am"

which may be denoted by a single letter, such as 4, or by {a;;], where a;;
is the symbol for the value in row ¢ and column j. The transpose of the matrix
4 is denoted by A’ or AT and is obtained by interchanging rows and
columns. If A = [a;] and AT = [b,;], then b,; = ay.

DzermnrrioN: Twom X n matrices are equal if all corresponding elements
are equal. Thus,

(3) [aﬁ] = [b“] means q;; == b,-j (1: == 1, 2, . v ey m;j = 1, 2, e ey n)

Dermnrrion: The sum of two m X n matrices is the m X » matrix
formed by adding the corresponding elements. Thus,

(4) [eis] = [@y] + [bi4]
means that fori =1,2,. . ., mandj=1,2,.. ., n,
(5) Cis = @y + by
For example,

2 3 4 1 1 0] (3 4 4
(©) [567]+[101:|=[668]

It is through the concept of the multiplication of two vectors that a signi-
ficant generalization of operations on numbers is achieved. The basic idea is
to consider

" 2z, + 3z, — 4z,
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as the product of two vectors (2, 3, —4) and (2}, 25, %) The convention
is to make one of them a row vector and the other a column vector with the
row vector preceding the column vector.

DerFNITION: The (scalar) product of a row vector by a column vector,
each of n components, is a number (scalar) equal to the sum of the products
of corresponding components; i.e.,

251
Zg

(8) [a;, as. . . ., a,] = @, % + ATy + . . -+ AT,

Tn

If n = 1, (8) becomes ordinary multiplication of two numbers.

DrriNtTion:  The product of an m < n matrix A by an n-vector Xis

@y G An T
gy Go ®an T
(9) AX =
Ay Omz - - - Cmn 2y
A%+ ATyt - G Ta
T e R
Em1Ty + AmoTs +... + Crmnn

This definition supersedes § 8-2-(3) and (8) above since the former is obtained
if n = 1, and the latter is obtained if m = 1. According to (9), the product
AX is a vector, the ith component of which is the product of the 2 row of
A (considered as a row vector) by the column vector X. Indeed, if A; denotes
the 1th row of the matrix (2), i.e.,

1,2,...

E]

(10) A.- == (aﬂ, a,-z, . o oy a,-,,) (1: ==

the matrix 4 may be viewed as a column of row vectors

@y Qg - - - Gyn A,

Gy Qo2 - - - O2n A4,
§98)] A = =

aml a’mz « « +Qmp Am

[184]




8-3. MATRICES

Now letting X symbolize an n-vector,

I'xl
Zy

(12) X =

n,
it is seen that, analogous to the multiplication of a column vector by a
scalar § 8-2-(3), the multiplication of a matrix by a vector (9) is defined as

4, 4,X
4, 4,X

(13) Ax=| " |x=| -
A, A, X

A matrix may also be viewed as a row of column vectors. Thus, if P;
denotes the jtb column of (2), i.e.,

Y]
Qy;
(14) P=| G=1,2...,m)
)
then
Ay Qg - - -y
(15) Ad=| G-\ _ip p .. P,
Gy g - - - O

Therefore, analogous to the multiplication of a row vector by a column
vector (8), the product of a matrix by a vector (9) is given by

Ty
s

(18) AX =[P, P,..  P)| |=Pumx+ Peo+ ...+ Py,

Tn,
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since

17) Pz, + Pz + . . .+ Pz,

[an A1 21n
ag %) Qon

= A R e + Ty
L Bm1 Bms. , Bmn

(@) %y + Gya %y + - - -+ C1n Ty

_|an® t Gyt . . T Gy
L 2m1 Ty + Mol 4. 4 AmnTn
We can also define the product of a row vector m = (my, my, . . ., mp) of m

components by anm X = matrix by analogy to vectors (sce § 8-2-(3)). Thus,
we would expect

(18) A = #[P, P,,. . ., Pl =[nPy, 7P, .. . 7P,]

DeriniTION: The product of a row vector 7 of m components by an
m X n matrix is a row vector whose jt2 component is the product of = by
the jtt column of 4 (considered as a column vector). Thus

Gy Gy - - - Oqn
gy Qgg . - - Qg
(19) [mpme - o 7wl | m | = (7P, wP,y, . . ., 7P,]
Cpmi Qo - - Opp
where
7P, = ma,, + mlgy + . - o TG

7TP2 = Mg + Toligg + « oo '+‘ TmGme

..................................

This definition supersedes § 8-2-(3) which is obtained by setting m = 1;
when n = 1, it agrees with (8) which is a special case of (9). However, it is
possible to generalize the definition of product once more and make both
{9) and (19) special cases of the following:

Definition of multiplication of matrices: The product of an (m X k)
matrix 4 by a (k X n) matrix 4 is an (m X n) matrix A4 whose element l
in row 4, column j, is the product of the it row of 4 (considered as a row
vector) by the jth column of 4 (considered as a column vector).
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To illustrate, let

(@11 @p - - -0 T4,
Ay Qg . . . Ay A,

(20) M= =
La"ml Az + « +Amp Am
f¢§11 %12 . e 'tf'ln

(1) d=|% %---O%m| _(p B .. B
_dn dks. . °dlm

where we have denoted the columns of 4 by P,. Then, by definition,

4, AP, AP, ...AP,
A, AP, A,P,...A,P,
22) 4d=|" ([P P,...P)=| ° ' '

4, A,P, A,P,,..4,P,
where the element in row 4, column j of 44 is
(23) AL; = ayly; + Gigllys + - - - + Gy

This definition is & natural generalization of the multiplication of &
scalar by a row vector; for viewing A4 as the multiplication of a matrix
by a row of column vectors, we would expect

(24) : M=.A[P1,P2,..., n]=[AP1,AP2,...,AP"]

which is clearly the case, since the j‘h column of A4 from (22) is AP,
Again, by anslogy to multiplying a column vector by a scalar, we can view
A4 as the product of a column of row vectors by a matrix

A, A4

4, A,J
(25) Ad = " |1d= ‘

A.,,. A.,:,J

which again is clearly the case, since the ith row of A4 is 4,4.

The Laws of Matrix Algebra.

Just as ordinary numbers (scalars), matrices satisfy the associative and
distributive laws with respect to matrix addition and multiplication. The
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commutative law also holds for matrix addition. However, the commutative
law with respect to matrix multiplication does not hold in general even

when the matrices are square.
Let A = [a;], B = [by), C = [c;] each be aJ X K matrix; let D = [d]
be an I x J matrix; and E = [e;;] be a K x L matrix.

1. The Associative Law for Addition states:

A+ B +C=A4A+(B+C0)
ProoOF:

(a5 + bued + [e] = [@5 + bix + i) = [@n] + [bs + ]
2. The Commutative Law for Addition states:

A+ B=B+ 4
Proor:
(a5 + bl = (b + a3l

3. The Distributive Law for Multiplication with Respect to Addition has
.two forms:

D[4 + B)= DA + DB; [A + BIE = AE + BE

Proor: To show the first of these, let [ ] indicate matrices, and let the
summation (below) be the (i, k) element of a matrix:

J J J
[l o + byl = [2 dislaze + bm] = [(zdi,a,-k) + (Zdﬁb,-kﬂ

j=1 j=1 j=1

J J
= [Z d,.,a,.k] + {z d,,-b,-,,} = DA + DB
j=1 j=1

4. The Associative Law for Multiplication states:
D(AE) = (DA)E
Proor: Let AE = F =[f;;]and DA = @ = [g;], then

J J X
D(4E) = [d;]{fal = I:Z dyf, “] = [Z di (z aikekl):l !

= =1 \k=1
K K | J
(DA)E = [gi][eri] = [;Z gikekl] = Z (Zdﬁaik) ekz:l
=1 =1 \je=1

It will be noted that the order of summation can be interchanged in the last
expression for (DA)E and therefore the value of every (i, 1) element is equal
to that of D(AE) shown in the equation above it.

DrrFmxiTioN: The rank of a matrix is the rank of the vector space

generated by its columns.
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TEEOREM 1: The rank of the columns of a matriz i3 the same as the rank
of its rows.

" Proor: Consider a homogeneous system of equations whose coefficients
are the elements of the matrix. Its canonical equivalent has the same
number of equations as the rank of the matrix by rows, Since pivot operations
leave invariant any dependent or independent relation among the columns,
the rank of the reduced form by columns is the same as the original system.
But the column rank of the reduced form is the same as the row rank or
the number of basic variables because the columns of these variables are
unit vectors, are independent, and can be used to generate the columns by
linear combinations,

8-4. INVERSE OF A MATRIX

A square m X m matrix is called nonsingular if the columns are inde-
pendent. By § 8-2, Theorem 4, these m columns must form a basis in the
space of all m-vectors because the m unit vectors form a basis. If it is possible
to reduce an m-equation system to canonical form with basic variables
Tys Ty - o T, then coeflicients of these variables in the original system
viewed as vectors form a basis. To see this, note that if a set of columns
is independent (or dependent) before a pivot operation, the same is true
for its corresponding columns after a pivot operation and conversely. It
follows that because the unit vector columns of Zy, %, . . - T; in the
canonical form are obviously independent, the same is true for their corre-
spondents in the original system. '

Given any set of m independent columns of coefficients for variables
%, %, . - . T; in an m-equation system, it is always possible to reduce
the system to canonical form with these variables basic. To see this, try to
reduce the system using Z;, %, - . . ;. Assume, on the contrary, that it
is not possible at the r'® stage (r < m) to pivot using z;  (because its
coefficients are all zero in the equations corresponding to the nonpivotal
set). It is obvious that in this partially reduced system, column j,,, can be
formed as a linear combination of the r unit vectors in columns jy, js, - . -, 55
But then the same is true for the corresponding columns of the original
system, contradicting the independence assumption. We have therefore
established :

THEOREM 1: A set of m m-veciors i3 linearly independent if and only if
it 18 possible to reduce an m-equation system to canomical form with m basic
variables whose coefficients are the m-vectors.

The above theorem provides a constructive way to determine whether
or not a matrix is nonsingular. Associated with a nonsingular matrix (or
basis) is another matrix known as its inverse, which we will illustrate below
and define later. In particular, the inverse of a basis associated with the
kt cycle of the simplex algorithm provides a convenient way to reduce a
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standard lincar programming problem to canonical form and pruvid.cu the
alternative way of performing the computations of the simplex method to
be discussed in the next chapter.

An Illustration.
In system (1), 2, and z, may be used for basic variables, since it can be
reduced to canonical form using these variables:
(1) 5x, — 4z, + 13xy — 22, + 24 == 20 (E,)
Z, — Tyt Szy— Z+ =8 (&)

The array of coefficients of these variables is

@ ;3

and, according to the above definition, constitutes the basis associated with
the variables (z,, z,).

Tt is convenient to use a symbol, such as B, to denote a basis. The
symbol [a;] is used where the latter indicates that the element in the 1th
row and jtb column of B is a;;. Thus we may write, for the example above,

@) B=ea=[; 1]

Where all. = +5! a12 = ""4, azl = +l, a22 == —'1. )
To find the inverse of the matrix (basis) B in (3), consider the canonical
system of equations with basic variables y,, ¥:
4) 5z, — 42y + 1y =0
T — % +y,=0
where the coefficients of z, and z, constitute the basis B. Solve (4) for z,
and z, in terms of ¥, and y,; by elimination we obtain
(5) .+ — =0
Zy+yy — 5y, =0
It is clear that (5) is equivalent to (4) and is in canonical form with basic

variables, z, and z, The array of coefficients of y, and y, in (5) is called
the inverse of the matrix (3) and is written B~1. Hence,

e

Conversely, if the coefficients of y, and y, in (5) are considered as a matrix,
then since (4) is equivalent to (5), the coefficients of z;, and x, constitute
the inverse of this matrix, and we immediately conclude that the inverse of
the inverse of a matrix is the matrix itself. This is the analogue, for a square
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array of numbers, of the familiar fact that the reciprocal of the reciprocal
of a number is the number itself.

The inverse of a basis may be used to reduce a linear programming
system, such as (1), to canonical form relative to the associated basic
variables. We interpret the first equation of (5), namely, 2, + ¥, — 4y, = 0,
to mean that if the first equation of (4) is multiplied by 1 and the second
equation by —4, and the two summed, all basic variables, except z,, will
be eliminated. (If this were not so, the equating of the two different expres-
sions would lead to a linear relation in z, and z, contradicting (4) where
these variables are independent.) Similarly, from xz,+ y, — 5y, =0 it
follows that, if the first equation of (4) is multiplied by 1 and the second
by —5, and the two summed, all basic variables, except z,, will be eliminated.
Now let us see what the effect of these same operations is on the original
system, (1). Since the coefficients of 2, and x, are the same as (4), these same
operations performed on (1), instead of (4), will reduce (1) to canoniecal
form with basic variables z, and z,:

(7) z, — Txy4 2z, — 3z5= —12 (E{ = E; — 4E,)
zy — 12z, + 3z, — 425 = —20 (B; = E, — 5E,)
On the right in (7) are the operations required to obtain (7) from (1); note

that the array of coefficients of E| and E, is the inverse of the basis given
in (6). -

General Properties of a Matrix and Its Inverse.

Qur objective is to formalize and to prove, in general, the assertions
made for the illustrative example.
A square array of numbers

a4y @9 ¢ - -0y
Ay Qg o o . Qgy

(8) B =

Omi Omg - - - O

is nonsingular and its columns constitute a basis, by Theorem 1, if the
system of equations

(9) )+ G+ . .t Gy T + Yy =0
A%y + Gy + -« - + G Ty + ¥ =0
A%y + Gy + « « . + Gy + Yn=0

is equivalent to some system (10) in canonical form, with basic variables
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Ty, Zgy -« - Ty); 1€, B is a basis, if we can solve (9) for x;, 3, - - s T in
terms of ¥, ¥g, - - - Ym Obtaining
(10) Ty +ﬂn?/1+ﬁl2y2+~ . '+/31‘mym=0

T2 +}321?/1+522y2+' . -+.Bzm?/m=0

xm+ﬁm1yl+.3m2y2+' . '+l3mmym=0
It is clear that, if (8) is the array formed by the coefficients of some subset
of m variables of an m X n linear programming problem, it is possible to
reduce the problem to canonical form, using the corresponding variables as
basic variables.
Dermrrion: The matrix of coefficients of y; in (10) is the inverse of
the matrix B of coefficients of z; in (9). We denote the inverse of B by

B-1. By definition

Bu Bz - - Bim
(11) B-l = B Baz - - ﬂzm
1 Bmz- - Bm

Theorem 1 of § 4-2 establishes the uniqueness of the canonical form, hence
the uniqueness of the inverse. Conversely, since (9) is equivalent to (10) and

in canonical form relative to ¥, ¥2 - - > Ym» W€ have established both

theorems that follow. ,

TuEOREM 2: The inverse of a basis is unique.

THEOREM 3: The inverse of the inverse of a mairiz i3 the matrixz stself.

If in (10), the values of all independent variables y, are set equal to
zero, except ¥, = —1, we obtain the obvious solution for the basic variables
#) = B %2 = Pars + - -+ Tm = Bmx Since (9) has the same solution set,
these values of z; and y; must also satisfy it. Substituting in the it equation
of (9) yields a relation between the itt row of a basis B and the k*h column
of its inverse B!, namely,

TuEorEM 4: The sum of the products of the corresponding terms in the
itk row of B and ktt column of B~ are zero or one according as i # kori = k:

0ift#k
(12) B + @B + . - -+ AimPme = :l if3 i A
For example, for the basis given by (2), we see that
(13) 8Py + G = G+ (1) =1 (i=1k=1)

ayBre + @1ofae = (B)(—4) + (—4)(—8) =0 (=1k=2)
Py + B = WD+ (=DHV) =0 (=2k=1)
nfrs + BaaBoy = ()(—4) + (=1)(=B) =1 (=2 k= 2)
Having established Theorem 4, we may proceed to interchange the roles
of B and B-! to obtain
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THEOREM 5: The sum of the products of corresponding terms in the itt
row of B-1 and k't column of B are zero or one, according as t % k or ¢ = k:

Oifk#1
(14) Butre + Bl + - - '+ﬂimamk={1 lsz:
For our example, we observe that
(15) Buty + froom = QB+ (=4 =1 G=1k=1)

Pudys + Brates = (I)(—4) + (—4)(—1) =0 (i =1,k=2)
Bano1s + Besan 1B+ (=5)1)=0 (E=2,k=1)
Budiz + Baatey = (I)(—4) + (=5) (=) =1 (1 =2,k=2)

THEOREM 6: If a canonical system (10) can be formed from a canonical
system (9) by linear combinations, it is equivalent to (9), and the array of
coefficients of the y, in (10) is the inverse of the basis, and conversely.

Proor: Consider the combined system (9) and (10). By § 8-1, Theorems
8, 9, 10, the rank of the system is m because the first m equations are inde-
pendent and by hypothesis the remaining m are dependent upon them.
However, the last m equations are independent and, since m is the maximum
number that can be independent, this implies the first m equations of (9)
are dependent on (10). Hence, (10) implies (9) and the two systems are
equivalent. The rest of the theorem follows by the definition of the inverse.

Let us now consider another theorem, the converse of Theorem 4 (or of
Theorem 5). Suppose we are given system (10) with an array of coefficients
{B:;] and another array of coefficients [a;;] which satisfy the row-column
relations (12). We wish to prove that (9) is equivalent to (10) and hence
[a;;] is the inverse of [8;;].

To see this, multiply the first equation of (10) by a,, the second by
@, - . ., the mt2 equation by a,,,, and sum; we will obtain the i*® relation
of (9). Thus (12) and (10) imply (9). Applying Theorem 6, we have shown

THEOREM 7: A necessary and sufficient condition that the inverse of [a;]
18 [B:;] ¢s that the row-column relations (12) or (14) hold.

Recall that the transpose of a basis B is an m X m array of elements
obtained by interchanging rows and columns of B; it is left as an exercise
to prove that relations (12) and (14) imply:

THEOREM 8: The inverse of the transpose of a basis i3 the transpose of
the tnverse of a basts.

The basis B consisting of all ones down the main diagonal and zero
elsewhere is called the identity matriz and is given the symbol I or I,,: it is
so called because for any m X n matrix M, I, M = M. For example, the
identity matrix for m = 4 is

I

1 000
0100
(16) B=1I,= 001 0 (m = 4)
00 01
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It is easy to verify that B-! = B because the associated system (9) is in
this case in canonical form with respect to both z,, x5, Z;, 2, and ¥,, ¥s, Y3, Ys-

Reduction of an m x n System to Canonical Form.

To reduce
17) A%y + Gy + . o AT = by
Qg1 Ty + Bga Ty + . - « + Bon Ty = by
U@y + Cpg®s + « + « + BpnZy = by
to canonical form with basic variables z,, z,, . . ., ZTn, assume that the
square array B = [a,;] is a basis and its inverse B-! = [f;;] is known. If
the first equation of (17) is multiplied by f,,, the second by f,,, . . ., the

mth by £, then the weighted sum is

(18) (i ﬂlka’ld) z, + (iﬁuﬂke) Zo+ ...
k=1 k=1
+ (Zﬂlka’kﬂ) Ty = Z Biibr

k=1
In general, the rth equation of system (19) can be generated by multiplying
the first equation of (17) by B,,, the second by 8,5, . . ., the m!t by 8., and
forming the weighted sum; this will result in the canonical system.:
(19) T + & i1 Tmr + - - -t Gin %y = by
Tr + dr,m+1 Tmt1 + -t dfﬂ Tn = 61‘
T + G msr@mer + -+ -+ GmaZn =5,
where, forj = 1,2, . . ., n, we have set
(20) Gy = Brity; + Praei + - - -+ Bim Wi

dy; = P y; + Paegs + - - - + Pom Oy

dm:’ = .Bmla'li + .Bm2a2.’l +...+ ﬂmmami
and
(21) 51 = ﬂub1 + ﬁxzbz +...+ ﬁlmbm
62 = »lebl + ﬂzzbz +...+ ﬂzmbm

................................

5m = Bmby + Bmeba + . . .+ ﬂm‘mbm
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Note that (19) is in canonical form with respect to z,, z,, . . ., Z, because
of the row-column relationship between B-! and B; namely by (14), it
follows forj =1, 2, . . ., m, that

0 fore=1,2,.. ., ,mands #j

(22) @’={1 fori=j

8-5. THE SIMPLEX ALGORITHM IN MATRIX FORM

The central problem in vector notation is to find ; >0, 2, =0, . . .,
Z, = 0 and Min z, satisfying

(1) P1$1+P2$2+...+Pnz"=0
(@) o+ Gt .t =2
where

Gy b,

Qg b,
3) P, = ' ;@ =

ami bm

and ay, b;, ¢; are constants.
It is required for the simplex algorithm that m of the vectors P; be

independent.? Let P;, P;, . . ., P; be such a set of independent vectors.
These form a basis, B, in the vector space generated by Py, P, . . ., P,:
4) B=[P;,P;,...P]

A canonical form is obtained by multiplying (1) by B, ie.,

(5) (B-1P))z, + (B-1Py)zy + . . . + (B-1P,)x, = B~

or

(6) Pz + Py + ...+ Pz, =@

where (see § 8-2)

(7 B-1P,=P,; B-1Q=¢

are the representations of P, and Q, respectively in terms of the basis. Note
that from B-1B = I (identity matrix) follows

(8) P,“ = B—lPi‘ = U;

where U, is a unit vector with unity in component ¢ and zero elsewhere.
But the latter, by definition, means (6) is in canonical form with “basic”
variables Ty Tjyy o - vy T (See § 4-2.)

1 Phase I of the simplex algorithm takes care of the situation where this is not true.
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The basic solution is obtained by setting non-basic variables x; = 0;
thus the values of the basic variables are given by

9) Uz; + Ugj, + - . - + Unz;, =@
or

z;

sz
(10) =@

x

ExERcisE: Show what would be affected by a change in the ordering of
the basic variables and the basis vectors.

The basic solution is feasible, if
(11) @=0

DermsrTion:  § > 0 means each component 5, of @ satisfies 5; > 0.
The relative cost factors, ¢, are obtained by eliminating z; from the
z-equation. If we define the row vector

(12) y=1[isCip- - 6]
and multiply (6) by y, we obtain
(13) Pz, + (yPxy + . . . 4 (yPa)z, = (¥Q)

where (yP;) are constants (for cach is the product of a row vector by a
column vector). 1n particular, yP; = yU,; = ¢, , so that (13) has the same
coefficients for the basic variables as does (2). Hence, by subtracting (13)
from (2), we eliminate the basic variables, obtaining
(14) (¢, — yP)x; + (ca — yPxy + -« . + (6o — YPo)zn =2 — ¥Q
Therefore the relative cost factors are given by
(15) &=0¢; —yP;

= ¢; — y(B-'P,)

= c,- — (yB-l)P’
or
(16) &G =c¢; —mP;
where we have set the row vector
(17) 7 = yB-!

In words, (18) states that the relative cost coefficients, ¢;, are obtained by
subtracting from ¢; a weighted sum of the coefficients a,;, ay;, . . ., @y,
where the weights (the same for all j) are the m components 7y, mp, . . ., 7y
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of 7. The elements ; are called simplex multipliers (these will be discussed
more fully in the next chapter). Multiplying (17) by B, we obtain

(18) nB=y
or
(19) ‘ﬂ’(P,l, P’.:’ . . ey P,m) = (G,l, Cj’, “ .oy ij)

Hence, in particular,
(20) -rrP,‘ = ¢, fori=1,2,...,m

Thus the weights =, are just the numbers required to multiply through the
original equations (1) and sum in order to eliminate the coefficients of the

basic variables from (2). ‘
The basic solution is optimal, if all & > 0. If not all & >0, then an
improved solution is sought by first choosing s, such that

and then increasing the value of z, as much as possible, keeping other non-
basic variables at zero. In order to be nonnegative, the vector of values of
the basic variables must satisfy

(22) . (@—Pz)=0

At some critical value z, = 2*, the value of some component r of this
vector will change sign while all others remain nonnegative (otherwise
z — — 0 a8 %, — + o). The components of @, P,, and r are defined by our
earlier notation to be

51 dla
52 a'—23
. . * Br . 5:’ -
(23) Q—_- 5 Ps= H xs='_—'=M1n'Z_ (an>0)
* ° rs 345>0 Qs
6m dm:

Hence, P;_ is replaced in the basis by P, to form the basis B* of the next
cycle. This completes the description of the simplex process in matrix
notation. We shall now go deeper into the nature of the transformations
from cycle to cycle.

The Transformations from Cycle k to k + 1.

The last step of the simplex process is to transform the tableau by
pivoting on &,,. Instead, here we shall use the inverse of the new basis to
adjust slightly the representations of P; and @ in terms of the old basis,
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B, given by (7) to obtain their representations in terms of the new basis,
B*. First, we note that P, = B-1P; or P, = BP;, so that

(24) ay,
a-ZS
P,=[Pj‘,P7'2,...,ij] ) =P,-ldl_,+...—{——P,-fdn—}-.r..—'r-ijdm,
dms
where {4y, Qys, - . ., Gpey 18 the representa.t;ion of P, in terms of B. We
may use (24) to express P; in terms of the new basis B*; thus
(25) Pj'=lek1+...+P3k'+.-.+Pimkm=B*K
where we have set K = {k;, ky, . . ., kn}, B*=[P;,. . , P,,. . ., P ] and
(26) ki = “dis/a_rs (7' # 1)
27 k. = 1/a,,

For all other 7 % r we may trivially represent P; in terms of B*,
(28) P;=P; - 0+...+P-0+...4+P;-14+...+ P -0=B*T,
so that the relation between the old and new basis is given by
29) B=[P,,P,,... P 1=BU, Up .o o Kye o Ul
Multiplying through on the right by B-! and by (B*)~! on the left, we

obtain the relation between the inverse of the new basis and the previous inverse:
(30) (B¥y ' =[U,Uy. .. K,...,UyB?
Matrix (31) is practically the identity matrix, except that column 7 consists

of k; values. A matrix that differs from the identity in just one row (or
column) is called an elementary matriz.

(31) [UpUs .. ,K,.. . U,l= k,

Thus, according to (30), the new inverse is the product of an elementary mairiz
and the inverse of the previous basis. If we now multiply both sides of (30) on
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8-5. THE SIMPLEX ALGORITHM IN MATRIX FORM

the right by any P;, we can obtain the representation of P; in terms of the
new basis from its representation in terms of the old basis, P; = B-'P;:
(32) (B*)'P; =[U,, Uy, . . o K,. . ., UnlP;
It is convenient to write matrix (31) as the sum of an identity matrix and
& null matrix except for one column:
33) [UpUy.. K,.. ,Uld=[U,Us...U,...,Unl

+[0,0,.. . K—-U,...0]
and to write the vector

Pkl - -kl -
(34) ReK—U =8 |=|k—1
.km_‘ _I;m -

We now have
(36) BY1=[U,,U,...U,...,U,B?
+,9,...,.K-0,0,...0]B"?
= B-1+1{0,0,.. .. K,...0]B
If now we denote the rows of B-1 by B, so that

[B1 ]
) | Bi- |4
| Bom
and substitute above, we have
(61 ]
@37 (B*)-! = B-14[0,0,.. ,K,...0] ,é,
| Bm ]
(38) = B-1 4 Rp,
{199]
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Note that (B*)-! differs from B-1 by a matrix Rp,, which is the product of a
column vector K and a row vector f,. Thus .

—kl-

(39) Kﬂ, = k.i [.3711 o vy ﬂn’v L] ﬂrm]! B_l = [ﬂii]

En.
The (i, j) element of K, is simply £,8,;. Hence, to form the (2, j) element
of (B*)-1, we add kiﬁ‘l‘j to ﬁu; i.e.,

(40) [B*]! = [By] + [kiBs]
Finally, to form the new representation from the old we have from (38)
(41) (B*)-1P; = (B~ + Rp,)P; = B-'P, + (RB,)P;

= P, + Ka,;

where we have replaced the constant §,P; by d,; the value of the 7t
component in the representation of P; in terms of B. Thus, the new b,
differs from the old by a vector proportional to K ; the factor of proportionality
18 the rt component of P;.

Product Form of the Inverse.

Relations (30) and (40) are two ways to express the new inverse in
terms of the old. It will be noted that (40) requires in general m? changes
in the components of B-1; whereas (30) shows that the process of obtaining
(B*)-1 from B-1, by multiplying by the elementary matrix defined by (31),
requires only knowledge of the m components of the vector K and ifs
column location r in the matrix.

A. Orden, in the early days of linear programming, proposed that it
can be computationally convenient to represent the inverse of the basis as
a product of elementary matrices. For example, the inverse of the initial
basis could always be arranged to be the identity by using artificial variables.
The inverse of the basis for cycle 1 would then be a single elementary matrix
which could be easily recorded on a magnetic tape of an electronic computer
as the single vector column K (and its location r). The inverse of the basis
for cycle 2 would then Le the product of a new elementary matrix and the
previous one for cycle 1. This product could be stored by simply recording
the new column K after the first column K on the same magnetic tape, etc.
Both the Orchard-Hays—RAND Code {1956-1] and the Philip Wolfe~-RAND
Code (using a flexible language medium for the IBM-704 Computer) make
use of Orden’s suggestion for recording the inverse.
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ExErcisE: Review the relationship between the vector K in (31) and
the representation of the new vector P, entering the basis.

ExERcISE: Suppose the inverse of the basis is given in product form;
determine the detailed computational process of representing a vector P,
in terms of a basis by multiplying it on the left by the successive elementary
matrices generated by cycle 1, cycle 2, etec.

Block-Pivoting.

Tucker [1960-3] generalizes the notion of pivot by introducing several
columns into the basic set at once. With regard to the detached coefficient

array (42), let 2.1, Tmess + - > Tmoz T€Place y, Ty, . . ., T, a8 basic variables.
1 {Oimet - - - Crmake | cee Oy 5,
i ?
| |
(42) A = 1 Temsr - - - Cemer |
1
L 1 Gy« - - Gt e .. Omn b,
. . entering the other
- basis | g —j— — | constants |
basis columns

Note that the new basis has the structure

L [P O
Br = {Q Im—k]

where P represents the square block array dotted in (42) called the block-
pivot. Since the value of the determinant of B* is the same as the value of
the determinant of P, it follows that in order for B* to be a basis it is
necessary that the determinant of P be non-zero. To “pivot,” let P-1 be
the inverse of P. Analogous to the first step of ordinary pivoting (of dividing
through by the non-zero pivot coefficient) the first ¥ rows of (42) are
multiplied by P-. Let the original array in matrix form be

I, 0 P R &
#3) ‘4=[o In.Q@ 8 f]

Then multiplying by P-! yields
A = I:P"l 0 I, PR P*le:]
0 In. @ 8 f

[ 201 ]
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The next step is to ‘“‘eliminate” the set of variables Z,.;, - - Zmix
from the remaining equations. To do this, the first k rows are multiplied
by —@Q on the left and added to the bottom rows, yielding the new array

I p-1 0 I, P-IR . Ple
T |—-@QP1 I,,. O 8§ —QP1'R f—QPle
Note that the columns corresponding to the new basis when properly
ordered are an identity matrix so that 4* is in required canonical form.

8-6. PROBLEMS
Review.

1. Prove the values of G,; in the canonical form do not depend, in general,
on the order of elimination provided only that the unit coefficient of each
basic variable in the canonical system is in the same row. If not, the
canonical forms will be identical after proper reordering of the rows.

2. For the following, determine if each system is consistent or inconsistent,
and if there are any redundant equations. If consistent, determine its rank.

(a) 2z, — 2z, + z3=3
22, + zy — 223 =2
52, + z,+ 23 =3
Ty — 23=1
(b) 2z, — z,+ 3z, =1
—4z, + 3z, + 23 =3
—5z, + 4z, + 323 =5
z; + 2z, + Ty =2
(e) T 42y + 31+ T+ T+ Bzg=1
28, 2y — Tyt %, — 225 — 2xg =23
4z, + z, + 515 -+ 37, + 10zg =5
6x, — 2, — 92y + 22, — Txs + 1224 =5
3. The classical Hitchcock-Koopmans transportation problem consists in
finding nonnegative solutions to the system

n
in:i=a'i (t=12,...m;a,=0)
i=1
m

Zxﬁ-_-b, (G=12...,7;b>0)

te]

i i d;@y; = z (Min)

i=1 j=1
Show that >T'a; = 37 b; is necessary for the equations to be consistent.
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What is the rank of a transportation problem without slacks? With
slacks? Give proof (see Chapter 3, Problems 4 and 35).

Given two linear systems, how would you show whether or not they
have the same solution set? Are equivalent? Prove that system (A) and
(B) are equivalent.

(A) 2z, + Bz, + 423, = 9 B) 2+ 2+ 73=3
Xy — Typ+ Ty=1 Tz, — 2z4 + 5253 = 10
4z, + 3zy + 22 =9 5z, — 2z, + Ty = 10

. For solvable systems of rank r, show that there is only one way to form

a dependent (r 4 1)8t equation as a linear combination of r independent
equations.

. Given a set of r independent equations and a set of m — r dependent

equations, prove that the role of any independent equation and any
dependent equation can be interchanged providing there is a non-zero
weight on the independent equation in forming the dependent equation
as a linear combination of the independent equations.

Invariance Properties under Pivoting. (Refer to § 8-1.)

8.

Construct an example to show that a sequence of elementary operations
does not preserve one-to-one correspondence of solvable independent
equations and of the remaining dependent or contradictory equations as
does a sequence of pivot operations.

. Find the rank r of the system below by finding the number of equations

in the canonical equivalent. Find the largest number of independent
equations of the original system and check if this number is equal to the
rank. Show that this is the same as the rank of the matrix of coefficients
and constant terms.

22, + 3z, + 42, =9
Ty — ZTy+ 23=1
3z, + 2z, + Sz, =10
4z, + =z, + 6z =11
6z, + 4z, + 10z, = 20

Show how to generate all solutions to this system of equations.

10. How is the largest number of independent equations of a system gener-

11.

ated? How does one determine whether a system is consistent or
inconsistent? Does an inconsistent system have rank? Show that if the
rank of the matrix of coefficients and constant terms is the same after
deletion of the constant terms, the system is solvable.

Why does any set of independent equations equivalent to a given
solvable system have the same number of equations as the rank of the
system ?
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14.

16.

- PIVOTING, VECTOR SPACES, MATRICES, AND INVERSES

. If a given system has a set of k independent equations and the remaining

equations are dependent upon them, show that k is the maximum
number of independent equations in the system.

Show that systems generated by successive elementary transformations
from a given system have the same rank.

Let z; =29, . . ., 2, = 2 and 2, = . . . = 2, = 0 be a solution to
a system of equations where z? # 0 for ¢ =1, 2, . . ., k. Suppose r is
the rank of the subsystem formed by dropping terms in z;,,, . . ., Zs.

Show there exists a solution involving no more than r variables with
non-zero values.

. Suppose no upper bound on the objective function z for a system of

linear equations in nonnegative variables exists; let k be the minimum
number of positive variables necessary to achieve a class of solutions
in which z — + c0. Show that k = r + 1 where r is the rank of the
subsystem formed by dropping all variables of zero value in the above
solution.

Suppose 3, Ty = G, O Fije = bixy 2 Tije = €y, Wheret =1,2, . . ., m;
i=12 .. ,7:k=1,2, ... p. What relations must be satisfied by

the a,x, b;;, and c;; for the system to be consistent ? How many equations
are independent ?

Vector Spaces. (Refer to § 8-2.)

17.

18.

Review the definition of an independent set of vectors; show that a

single vector is an independent vector, except the null vector. Show

also that the null vector is not part of any independent set.

(a) Show thatif P, P,,. . ., P, and @ are m-component column vectors
and

Pz, + Py + ...+ Pz, =@
where the z; are scalars, then for any scalar £,
Py(kz,) + Pylkag) + . . . + Polkz,) = Qk
(b) Show that if Py, + Py, + . . . + Py, = R also holds, then
Py(yy + kxy) + Polys + kzg) + - - - + Polyn + k2a) =@ + kR
Show that if a system of linear equations is written in vector form
(a) Pa, + Py + ...+ P2, =@

where P; and @ are the jt® column vector of coefficients and constant
terms respectively, then

(b) Pz, + Pz, + ...+ Pz, =¢Q

where P; and Q' are the corresponding columns after an elementary
transformation.
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8-6. PROBLEMS

Show in Problem 18 that if P, P,, . . ., P, are lincarly independent,

then P, P, . .., P, are also and if there is a lincar dependence
relation between Py, P,, . . ., P,, the same relation holds for P, P,
... P

Matrices. (Refer to § 8-3.)

20.
21.
22.
23.

24,

217.

Let A4, =1[4, 4, 2] P ={l, -2, 3}
4,=1[6, 3, —1]

Show that 4, P, = 2 and that 4,P, = —3.

Find 34,; 4, + 4,; A, + 34,.

If 4, + 4, = 4,, what are the components of 4,?

Suppose 4, = {2, 1], 4, = [1, —1], and R = {=,, x,}. If 4,P, = 1 and
A, P, = 3, what are the components of P,?

A buyer for a department store bought 10 dresses at $12.00 each, 15
sweaters at $6.00 each, 3 suits at $§40.00 each, and 20 blouses at $4.00
each. Let the vector 4 = [10, 15, 3, 20] represent the quantities and
P = {12, 6, 40, 4} the price vector. Show by vector multiplication that
the total value of his purchases is $370.

. A plastics manufacturer discovers that the molding machine set-up time

for molding a certain part requires two men for three hours. The pay
scale is $20.00 per hour for set-up men. Suppose each part requires 20
seconds for molding. Labor costs, including overhead, are $2.50 per
hour. Also the part requires 2 ounces of material which costs $.16 per
pound. Write a four component row vector that represents the costs of
producing one part, each of two parts, each of three parts, etc. Using
vector multiplication, find the cost of producing one part. By vector
operations find the total cost of a run of 300 parts.

. Find the components of X = {z, z,} where

R

If 4 is a row vector and P a column vector, show that A(kP) = k(4 P),
where k is a constant.

28. Perform the indicated operations:

2 31 -1
® 11 sl 1
N
Ml —1772 3
©@ h 1l 3]
@ e -u] 3
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@) 2 3+ 1 3 -1
3]|12 o 2 2
3 1 -1
. 9
()3 [1 3] - [1 1}

29. Let I be a 3 x 3 identity matrix and M any 3 X 3 matrix. Show that
MI=IM=M.

30. Let O be a square null matrix (all elements zero). Show that
MO =0M=0.

ot

Lo

31 2 :
1. Let M =|—1 O 2:I, and 7 and O be defined as in Problems 29 and
1 21
30. Find
(a) M2, M3, M4
(by I2 I3, I4
(e¢) 02 03 04

Inverse of a Matrix. (Refer to § 8-4.)
32. Find the inverse of each of the following matrices:

2
(a) [; 4}
3 2 1
®) |1 —2 1
2 2 3

ol

33. What are the inverses of each of the bases of examples 1 and 2, § 5-2?
For each inverse show that relations (12) and (14) of § 8-4 hold.

34. Each element B;; of the inverse B-1of B can be written as D;,(—1)**/D,
where D is the determinant associated with B, and D, is the determinant
formed by dropping row 4 and column j of B. Show that this is true.

35. The familiar equations for the rotation of coordinates are given by

Yy, =z co8f — x,sin 0
Yo = 2, 8in § + z, cos O
Solve for z, and z, in terms of y, and y,. What is the inverse of the

basis ? Show that relations (12) and (14) of § 8-4 hold.
36. (a) Find the inverse of the coefficients of z; and x, in

32, — 2y + 4oy + 22y — 25 + T =4
%+ T+ 2+ 3z, 4+ oz +z, =3

(b) Reduce to canonical form relative to z; and x,.
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37.

38.

39.

40.

4]1.

8.6, PROBLEMS

How do the coefficients of z, and x, comparg with the elements of the
inverse? - ' ’

Show in general that the elements of the inverse of any set of basic
variables of the m X n system (m < n) of nonnegative variables

@ %+ G+ . A Tp + T =b,

Cn Ty + GopZy + .+ .+ Bon Ty + Tnyo = b,

A1y + Cmg®y + . . .t G, + Tmin = bp
will be the coefficients of z,,;, %pip - - -, Zpim When the system is
reduced to canonical form.
Show that if z,, z,, . . ., x,, is a basic set of variables (so that it is possible
to reduce Problem 17 to canonical form relative to these variables by
a series of elementary operations) that P, P,, . . ., P, are linearly

independent and form a basis in m-dimensional coordinate space.
Show that the rank of a matrix is the same as the rank of the vector
space generated by its row vectors. Compare with the definition given
in § 8-2.
Show that the determinant of an m X m matrix vanishes if its rank r
is less than m and does not vanish if its rank is m.
(a) Given 27, a,x; =y, for i=1, 2, . . ., m (see § 8-2-(2)), show

that particular values of a,; and y; can be chosen so that

(i) there is no set of values of z; that satisfy the system;
(ii) there is a unique set of values of z; that satisfy the system;
(iii) there are many sets of values of z; that satisfy the system.

(b) Prove: If there is always a unique set of z; satisfying the system
whatever be the choice of y,, ¥, . . ., Y, then n = m and [a,;] is a
basis.

The Simplex Method in Matrix Form. (Refer to § 8-5.)

42.

43.

Show that if P, P,, . . ., P, is a basis, then

81, P) + Gy Py + . . . + Gy, P, = P,
dlscl + 8y +. .+ Cpslm = Cg — &

where @;, and ¢, are the coefficients of the corresponding canonical form.
Define linear spaces, vector spaces, dimensionality, affine vector
geometry, a basis in a vector space, absolute coordinates, coordinates
relative to a basis, convexity, convex hull, convex cone, rays, half-space,

supporting half-spaces, hyper-planes. (Some of these terms are not
defined in the text.)
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46.

47.
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Lakling o veobor o 0 i veetor of all nonnegative compononts,

l"'()\'ﬁ

(a) The cquation Aw -~ a has no solution x 2> 0 if and only il there
exists a vector 7 such that 74 < 0, ma > 0.

(b) The inequality system Az < @ has no solution if and only if there
oxinte o - O, wueh that 7t O and e - 0.

(¢c) The inequality system Az ~ a has no solution z >0 if and only if
74 > 0 and ma < 0 for some =.

Theorem: Assume there are 4 sets of basic feasible solutions in a

system S™+2 Px; = @, where P; are m-component vectors.

j=1
(1) Pray + Poay + Pauy + Pag+ - - -+ Propsltpy =@
Pb, + Pybs + Pb, 4 Phg+ . . o+ Ppibmia =@
Pycy + Pycy+ Pges + Pece + - - -+ PriaCmiz =@
Pyd, +P4d4+P5ds+Psdc+--~+Pm+zdm+2=Q
Then the basic solution
2) Pie, + Pyey + Pyey + Pegg+ . . - + Pe,=@q

is feasible if
€3 — Qg by — ay

3

3) - < 5

and

) . k=6, ...,m+2)
Ca Ci

and not feasible if (3) is false, or if (4) is false for some £ and a selected
range of values of b,.

Let
e
Za,-,-:r,-=bi (z; =>0;t=1,2,.. ., m)
i=1
be an infinite linear programming problem, which has a feasible solution.
Prove that there is a feasible solution involving no more than m variables
with x; > 0.
Theorem: Let (P, P,, . . ., P,) be m linearly independent vectors in
m-space and P, any other vector. If we let
£
&2
2, P, + 2,Py + . . .+ Ppxn = Py +
n
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48.

49,

REFERENCES

then there exists an ¢, such that forall 0 < ¢ < g

z; #0 (t=12,...m)
(a) Consider a “Ma.rl;ov” system of equations
(=1 +pu)r + P+ . - -+ Prn®n =0
Py + (=1 + po)zs 4+ . - .+ PonZn = 0
(l) .....................................................
PmZy + Pne%e+ « - -+ (=1 + Paa)2n =0
(2) r, + g+ .. .+ z, =1
where p;; > 0 and 37, p;; = 1forj=1,2,. . ., n Prove that the

first n equations in » unknowns are redundant; but if each equation
i is modified by subtracting from it the last equation multiplied by
A; > 0, where A, is chosen so that p,; — 4; > 0, then the corrected
system of m-equations is non-redundant and there is a unique
solution which is feasible, in fact, with z; > 0.

(b) A system (1), where 37 ;p; <1 for j=1, 2, ... n and the
constants (column of zeros) are replaced by b; < 0, is referred to as
a “Leontief” system. Show that such a system always has a unique
feasible solution and that the above process can be used to reduce

a Markov system to'a Leontief system.

Prove or disprove for a three-equation system the conjecture that if
z,, ¥, are in the optimal basic set when the third equation is dropped,
Ty, 2, when the first equation is dropped, and z,, z; when the second
equation is dropped, then if z,, x,, z; forms a feasible basic set, it is
optimal.
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