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We consider the problem of constructing a minimum-weight, two-connected network spanning

all the points in a set V. We assume a symmetric, nonnegative distance function d ( ' ) defined on

V x V which satisfies the triangle inequality. We obtain a structural characterization of optimal

solutions. Specifically, there exists an optimal two-connected solution whose vertices all have

degree 2 or 3, and such that the removal of any edge or pair of edges leaves a bridge in the

resulting connected components. These are the strongest possible conditions on the structure of

an optimal solution since we also show thar any two-connected graph satisfying these conditions

is the unique optimal solution for a particular choice of'canonical' distances satisfying the triangle

inequality. we use these properties to show that the weight of an optimal traveling salesman cycle

i, ui -ort f times the weight of an optimal two-connected solution; examples are provided which

approach this bound arbiirarily closely. In addition, we obtain similar results for the variation of

thii problem where the network need only span a prespecified subset of the points.

Keywords:spanningnetworks, two.connect iv i ty , t ravel ingsalesmanproblem.

1. Introduction

Consider a set of uertices V with a nonnegative, symmetric distance function (or

metric) d(.) defined on Vx V which satisfies the triangle inequality, i.e.,

( a )  d ( u ,  u ) : 0 ,
( b )  d ( u , u ) > 0 ,
( c )  d (u ,  u ) :  d (u ,  u ) ,

( d )  d (u ,  w )<  d (u ,  o ) - r  d ( t s ,  w ) ,

for all u, u ar1d w in V. We call d(u,u) the weight or length of the edge (u,u)' A

subset  of  edges EcVxV def ines a network or  graph G:(v,E)  whose weight  is

g iven by i t (E) :L<"." ) .ed(u,o) .  In  order to avoid t r iv ia l  specia l  cases,  we assume

throughout that I yi ; i. We consider the problem of constructing a minimum-weight

two-connected network spanning the vertices in V
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The widely-studied traueling salesman problem 11,5,24,30] is closely-related in

that the objective is to find a minimum-weight (Hamiltonian) cycle spanning all

vertices in V In fact, it is easy to see [14] that the problem of determining if a graph

G:(V,-E) contains a Hamiltonian circuit can be reduced to the minimum-weight

two-connected spanning network problem. (Assign a weight of one to the edges in

E and a weight of two to all nonedges; then there is a Hamiltonian cycle in G if

and only if an optimal solution has weight lVl.) Hence, the problem is NP-complete.

(See [1S] for an overview of the theory of computational complexity.)

The primary motivation for studying the minimum-weight two-connected spanning

network problem is because of its application to the design of survivable communica-

tion and transportation networks. The simplest network design problem involves

finding a minimum-weight spanning tree and is easily solved [20] for arbitrary

weights. An important survivability consideration is for a constructed network to

remain connected even after the removal of some edges or vertices. These consider-

ations have been explored from several points ofview 16,341 building on previous

work on the traveling salesman problem.

In Section 2 we obtain a number of structural properties of optimal two-connected

spanning networks. In particular, we show that there exists an optimal two-connected

solution whose vertices all have dogree 2 ot 3, and such that the removal of any

edge or pair of edges leaves a bridge in the resulting connected components. This

is the strongest possible restriction on the structure of an optimal solution since we

also show that any two-connected graph satisfying these conditions is the unique

optimal solution for a particular choice of 'canonical' distance function. These

conditions may be useful in restricting the search for an optimal solution.

In Section 3 we use these structural properties to give a simple proof that the

weight of an optimal traveling salesman cycle is no greater than I t imes the weight

of an optimal two-connected solution; examples are provided which approach this

bound arbitrari ly closely. This result was conjectured and almost proved by

Frederickson and Ja'Ja'[15]. We discuss the relationship to their work in Section

3. We also include a result due to W.H. Cunningham which relates the weight of

an optimal two-connected solution to the value of a well-known linear programming

relaxation of the traveling salesman problem. We extend some of our results to the

Steiner version of the minimum-weight two-connected network problem where only

a prespecified subset of the vertices must be spanned. Concluding remarks and open

problems are presented in Section 4.

2. Structural properties

In this section we develop strong properties describing the structure of optimal

two-connected spanning networks. We first give some useful definitions and lemmas.

A cut uertex (resp. bridge) in a graph G:(V,E) is a vertex (resp. edge) whose

removal increases the number of connected components in G. A connected graph
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G:(V, E) is called two-uertex (resp. two-edge) connected

vertex (resp. bridge). Clearly, two-vertex connected implies

although the converse is not true.

1 5 5

if G contains no cut

two-edge connected,

Lemma I l2l. I:he following are equiaalent statements for a graph 6:(V, E).
(a) G is two-uertex connected.
(b) Eoery two uertices of G lie on e common cycle.
(c) Euery two edges of G lie on a common cycle.
(d) Euery uertex and edge of G lie on a common cycle.

These equiualences holds for two-edge connected graphs by replacing 'cycle' by 'circuit' 
,

i.e., allowing uertices, but not edges, to be repeated.

Proof. Easy. !

We consider the problem of constructing a minimum-weight two-vertex connected

network spanning all vertices in V under the assumption that the weight function

satisfies the triangle inequality. Under this assumption it is easy to show that the

minimum weight of a two-edge connected spanning network is equal to the minimum

weight of a two-vertex connected spanning network [15, Section 3, f irst paragraph].

As a result, we will often use the term 'two-connected' later in the paper without

specifying 'edge' or 'vertex'.

An approach which is used repeatedly later is to make a local change to an

optimal solution which preserves feasibility and optimality. The following lemma

shows that a wide class of local changes preserves two-connectedness.

Lemma 2. Let G: (V, E) be a two-connected graph with G' : (V', E') a subgraph of

G induced by V'. Then replacing E' in G by any collection of edges E" defined on V',

where G" : (V', E") is two-connected, results in a graph G* : ( y, (E\E') w E") which

is two-connected.

Proof. Suppose G* is not two-connected and let u be a cut vertex. Since G is

two-connected, every component of G*(y\{u}) must contain a vertex of V'. Since

G' is two-connected, we can find a path in G* which avoids o between these vertices

in any two of these components. This contradicts u being a cut vertex. tr

Theorem 3. For any set of uertices V with distance function d (' ) on V x V, there exists

a minimum-weight two-connected graph G : (V, E) satisfying the following conditions.
(a) Euery oertex in G has degree 2 or 3.
(b) Deleting any edge or pair of edges in G leaues a bridge in one of the resulting

connected components of G.

Proof. Let G: (V, E) be a minimum-weight two-vertex connected solution not

satisfying condition (a). There must be a vertex u with distinct neighbors a, b, c
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and d. Since G is two-vertex connected, there must be paths between any pair of

these four neighbors which avoid vertex u.

Case A. If one of these paths, say from vertex a to vertex c includes one of the

other vertices, say b, then by Lemma 2 we may delete the edge (u, b) and still remain

two-vertex connected. (See Fig. 1(a).)

Case B. If no path as described in Case A exists between any pair of the vertices

a, b, c and d, then the paths from a to b, e to c, and, a to d are of the form shown
in Fig. 1(b) (with possibly the identities of vertices b, c and d interchanged). We

consider here the case where vertices u and w are distinct. Replacing the edges
(u,b) and (u, c) by the edge (b, c) preserves two-connectedness, by Lemma 2, and

does not increase the cost by the triangle inequality.

Cqse C. Consider the case shown in Fig. 1(c) where u : w. Let er, br, cr, and d,

be the last vertices in paths from u to u through a, b, c and d, respectively, which

need not be distinct from a, b, c, and d. Replacing the edges (u, a) and (u,b) by
the edge (q,b) ,  and replac ing the edges (o,br)  and (o,c)by the edge (bt ,c t )

preserves two-connectedness, by Lemma 2, and does not increase the cost by the

triangle inequality.

o l " -

,

I

i-\'
!,t/

Fig. l. Cases for Theorem 3, condition (a).
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In all three cases, the degree of vertex u is reduced by at least one, the degree
of all other vertices remain the same, and the solution is still two-vertex connected
and optimal. Repeating this process establishes condition (a).

Let G: (V, E) be a minimum-weight two-connected solution satisfying condition
(a) but not condition (b). Suppose there exists an edge which can be deleted without
creating a bridge. (See Fig. 2(a).) Doing so results in a two-edge connected solution
whose cost is no greater. A cut-vertex in a two-edge connected graph must have
degree at least four, so in fact this solution must also be two-vertex connected.
Hence we can simply delete all such edges, and so assume that G is edge minimal.

Suppose there exist edges (ar, u) and (*,r), with possibly x:D, whose deletion
results in no bridge, i.e., the connected components are all two-edge connected.
Again, since (a) holds, each component is two-vertex connected.

Case A. The edges are of the form (u,u) and (o,w) with u*w. Since G is
two-vertex connected, u and w must be in the same connected component, which
we have seen is two-vertex connected. Hence, by Lemma I, there is a vertex-induced
subgraph with (u, u) and (u, w) as a 'two-chord' of a cycle, as shown in Fig. 2(b).

Since G is edge minimal two-connected, we may assume Ihat a, b, c and d are

/ - - - \
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Fig. 2. Cases for Theorem 3, condition (b).
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different from u and w, although it may be the case that a: c andlor b : d. Now

by the triangle inequality,

d (a ,  u )<  d (o ,  u ) - r  d (u ,  u ) ,

d (b ,  u )<  d (b ,  u ) *  d (u ,  u ) ,

d (c ,  u)  < d (c ,  w)  *  d (w,  u) ,

d(d,  u)  < d(d,  w)  *  d(w,  a) .

Therefore, at least one of the following must hold:

d (a,  u)  < d (a,  u)  *  d (u,  w) ,

d (b ,  u )<  d (b ,  u ) *  d (u ,  w ) ,

d (c ,  u)  < d ( r ,  w)  + d (u,  u) ,

d (d,  u)  < d (d,  w)  *  d (u,  a) .

Without loss of generality, assume that the first inequality holds. We now replace

the edges (a, u) and (u, w) by the edge (a, u) to form a cycle in the induced subgraph.

Clearly, the cost does not increase, condition (a) is still satisfied, and, by Lemma

3, the graph is still two-vertex connected.

Case B. The four vertices u, t), w) x are distinct. Since G is two-connected and

edge-minimal we may assume that the removal of (u, u) and ( w, x) yields exactly

two two-vertex connected components with u and w in one component I{, and with

u and x in component K. Also, by two-connectivity and condition (a), these four

vertices are all of degree three and each has two distinct neighbors as shown in Fig.

2(c). Also, since G is edge-minimal, their neighbors are different from u, u, w and,

x,  as shown. I t  may,  however,  be the case that  {u, . ,u t ) . \ { } t r ,  w2}+0,or  {ur ,ut }o

{xr, xr} + 0. By the triangle inequality,

d (u r ,  u r )  <  d (u t ,  u )  - t  d (u ,  u )  *  d (u ,  u )

and

d (w t ,  x t )  < d (* r ,  w)  + d (w,  x)  *  d (x ,  x ' ) .

Therefore, either

d (u r ,  u r )  <  d (u r ,  u )+  d (u ,  u t )+  d (w ,  x )

or

d (wr ,  x )  <  d (w t ,  w )  +  d (x ,  x ' )  *  d (u ,  u ) .

Suppose, without loss of generality, that the former inequality holds. We replace

the edges (ur ,u) ,  (u,  ot )  and (w,x)  in  G by the edge (u1,  ut ) .  Clear ly  the cost  does

not increase, and condition (a) still holds.
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It remains to be shown that the new graph is two-vertex connected. By Lemma

1, it suffices to show that any pair of vertices a and b lie on a common cycle.

Suppose first that both a and b are in the two-vertex connected component H. (The

proof is similar if both are in K.) If the cycle in G did not contain the edge (ut,u)

then we are done. If i t did, then we replace the edge (ur, u) in the cycle by a path

through K from ut Io u using the edges (u,, or) and (u, u), and the fact that K is

two-connected to complete the path from 01 to u.

To complete the proof, suppose that a is H and b is in K. By Lemma 1, since

FI is two-vertex connected, there is a cycle in H containing the vertex a and the

edge (2,,,,,, u). Therefore, there are vertex disjoint paths from a to ut and a Io u in

H. Similarly, there are vertex disjoint paths from b to ut and b to o in K. These

together with the edges (ur, u1) and (u, u) provide the desired cycle. This completes

the proof of Theorem 3. X

For any connected graph G we define the canonical distancefunction d(u,o) to

be equal to the number of edges in a shortest path from u to u. Note that d is

trivially a symmetric, nonnegative distance function satisfying the triangle inequality.

Theorem 4. Let G:(V, E) be a graph which satisfies the following conditions:

(i) G ts two-connected.
(11) Euery uertex of G has degree 2 or 3.

(iii) G is edge minimal, i.e., deleting any edge leaues a bridge.

(iv) Deleting any pair o.f edges in G leaoes a bridge in one of the resultant connected

components.
Then C is the unique minimum-cost two-connected network spanning Vfor the canonical

distance function.

Proof. Let X be the set of incidence vectors of edge sets of two-connected spanning

networks on V. Let P be the convex hull of X. Then, for any vector c of distances,

finding a minimum-cost two-connected spanning network of V is the same as

minimizing cx over P. All members of P satisfy the following inequalit ies:

0 < x ( u ,  o ) <  1  f o r  a l l  u , D € V ,

L 6 @ , u ) : u e  S ,  u e  V \ S ) > 2  f o r  a l l  0 l  S c V .

Note that here, as throughout this paper, (u, o) denotes the edge joining vertices u

and o and (u, u) isjust another way of referring to the same edge. This also applies

in the above:  x(u,u)  and x(u,u)  are the same var iable.

Let i be the incidence vector of E. We show that G is the unique minimum cost

two-connected network spanning V by showin g that i is the unique integer member

of P that minimizes dx over P. This we do by considering the relaxation of the

convex hull of X obtained by only taking the constraints (1) and (2), and showing

( 1 )

(2 )
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that i is the unique integer optimum solution to the linear program

minimize dx

subject to 0< x < 1,
(3 )

L G @ , u ) :  a e V \ { u } ) > 2  f o r  a l l  u e V ,

L 6 @ , u ) :  u e S ,  u e  V \ S ) > 2  f o r  a l l  S c

The dual linear program is

V such that lSl>2.

maximize 
"Zrrr,* l  

(2ws: S- y, lsl  =r) -, . Irp(u, u)

(4)subject to 
?,? !,7!r'rr, u) - p(u, u) < d(u, a) for an u, n e v,

where  fo r  any  u ,aeV  we  le t  w (u ,u ) : I  (w r :  S -  y ,  l s l>2  and  lSn {2 ,  o } l : 1 ) .
We prove that i is the unique optimum solution to (3) by constructing a feasible

solution to the dual which also satisfies the complementary slackness conditions
for optimality and then showing that it is, in fact, the unique integer solution to (3)

which satisfies these conditions. These complementary slackness conditions are:

x(u, u) > 0 impl ies ru* ru4 w(u, o) -  p(u, u):  d(u, u),

r , > 0  i m p l i e s  l ( x ( u ,  u ) : o e  V \ { u } ) : 2 ,

ws)0  imp l ies  Z6@, o) :  ueS,  o  e  V \S)  :2 ,

p(u, u) > 0 impl ies x(u, u):  l .

(s)

(6)

(7)

( 8 )

lf G: (V, E) is a single cycle then trivially G is the unique two-connected spanning
network on V of minimum cost (equal to lf l). So assume thal G contains some
vertices of degree three. Let G be the graph obtained from G by replacing each
maximal path of degree two vertices in G with an edge. Then G is a cubic graph,

although not necessarily simple, such that G is a subdivision of G. The vertices of
G are the degree three vertices of G. Each edge (u, u) of G corresponds to a path

u ,  ( u , w r ) ,  w r ,  ( w r , w z ) , . . . , ( w u , u ) ,  u  i n  G  w h e r e  w r , w 2 , . . . , w k  a r e  d e g r e e  t w o
vertices of G. Since G was two-connected, so too must be G. Let C be the set of

edges of G which belong to two-edge cutsets, and let Po be the set of corresponding
paths of G. Let Pr be the set of paths of G corresponding to edges of G not in C.

The following result is well known: The set C partitions into Ct w C2v ' ' 'w C^

such that {7, k} is a two-edge cutset in G if and only if U,k}= C; for some i. (This

follows easily from the fact that if {j, k} and {k, l} are two-edge cutsets, then it we
delete just ( both j and 1 become bridges. Therefore, if we delete l, j and add back
k, the resulting graph must be disconnected, i.e., {j,1} is also a two-edge cutset.
Therefore, "form a two-edge cutset" is an equivalence relation and the C; are the

equivalence classes.)
Let  i€  {1,2, . - . ,m|  and consider  the graph G\Cr.  I t  consis ts  of  at  least  two

components, each has exactly two edges of G in its coboundary, and moreover,
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each such component must be two-connected. Now we define

It if u is a degree 2 verrex in a path of Pl,

,": 
l i  

i f u is a degree 2 vertex in a path of Po,

[0 if p is a degree 3 vertex;

, I t i l  u, u are adjacent degree 2 vertices in a path of P',
P (u '  u ' :  

t o  o the rw ise ;

; if S is the vertex set of a connected component formed

by choosing one C

and deleting all paths in Po corresponding to edges of C;,

0 otherwise.

Note that w contributes to (4) for an edge j of G if and only if j is an end edge of

a path of Po.

We must verify that F, p, w is feasible and that it satisfies complementary slackness

with respect to i, the incidence vector of E We have immediately that (6)-(8) are

satisfied. We now verify that (a) and (5) hold. In doing so we will also determine

which pairs u, u of vertices satisfy rui_ rul w(u, u) - p(u, o): d(u, o). It is straightfor-

ward to verify that this holds for all edges (u, u)eE.
Fo r  any  Sc  V  de f i ne  5 (S ) : { (u ,o )eE :ue  S ,ue  V \S } .  Tha t  i s ,  6 (5 )  i s  t he

cobounda ry  o f  S .  We  l e t  / (S )  : l pePow Pr :  one  end  o f  p  i s  i n  S  and  the  o the r

end is in V\S).

Let u,u e V be nonadjacent in G and let rr be a shortest path in G from u to a.

Then d(u, u) : lE(n)1. This path consists of a sequenca po, Pt, . . . , Pt where, for

each i  e  {1,  2,  .  . . ,  k  -  l } ,  p ,  is  a path of  Po u Pt  andpo and p1 are par t ia l  or  complete

paths from Po u Pl. (We may even have k : 0, i.e., po : pr.) Since (u, u) E E, p(u, o) :

0. Let Sc V satisfy u e S, ue V\S. Then an odd number of edges of z' must belong

to 5(S) and,  i f  ns)0,  then l5(S) l :2 .  Therefore:
(A) For any Sc V such that wr)0, ue S and ue V\S, exactly one edge of a'

b e l o n g s t o S ( S ) . T h e r e f o r e , f o r a n y s u c h S t h e r e i s a u n i q u e i e { 0 , 1 , 2 , . . . , k } s u c h

that p; e a(S). Therefore,

l E ( , ) l : l E ( p ) l > I  ( l E ( p ' ) l :  i : 0 ,  1 ,  . . . , k ;  p i e  P " ) > ' -  w ( u , u ) .

(BXl) Suppose that u and o are of degree three. Then 7u:Fu:0 so (4) holds

and we have equality in (a) if and only if each path pi consists of a single edge and

each pre Po.
(2) Suppose that u is of degree 3 and o is of degree 2.Then again (4) holds

and we have equality if and only if, for each i e {0, 1, . . ., k - l}, p, e Pu; lE(p' )l : t

and u is a degree 2 vertex of a path of Po or Pt which is adjacent in G to the degree

3 vertex of G which is common Io p*t and pp.

161
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(3) Finally, if both u and D are of degree two, then, again (4) holds and we

h a v e e q u a l i t y i f  a n d o n l y i f  f o r  i e  { 1 , 2 , . . . , k - l } , p i  € p o  a n d  l E (  p , ) l : l , a n d e a c h

of p6 and pk consists of a single edge.

One additional consequence of (A) which we use is the following.

(C) Suppos e (u, u) satisfies (4) with equality but (u, u) e e. Suppose, in addition,

that there is some part C, of the cutset partition of G such that, when we delete

the paths of P0 corresponding to the edges of C, from G, u and t) are in distinct

components, say Kr and K2, of the resulting graph. Then Kr and K2 must be joined

by a path of Po which consists of a single edge.

Since we have shown that 7, p, w is feasible and since (4) holds with equality for

all edges of -8, we have established that G is a minimum-cost two-connected spanning

network on V, and also that r, p, w is an optimal dual solution. Therefore, we can

use complementary slackness to deduce properties which must be satisfied by any

optimal integer-valued solution x to (3).

Bv (7) :
(D) Suppose we choose any C, from the cutset partit ion of C and delete from

G those paths in Po which correspond to edges of C. Let K be the vertex set of a

component  of  the resul t ing graph.  Then 1, . " , ,€v\K x(u,  D) :2.

Bv (6) :
(E)  For  any degree two ver tex u of  G,  we must  have l , .v \ { , }x(u,  u) :2.

Also, we have:
(F) For any edge (u,u)e E where u, u have degree two in G, we must have

x ( u ,  u ) :  l .

For  i f  (u ,  u)  belongs to a path of  P '  then th is  is  just  (8) .  Suppose (u,  o)  belongs

to a path rr of Po.If there exists another vertex w adjacent in G to r-r such that w

has degree two, then (u, o) and (u, w) are the only pairs including u which satisfy
(a) with equality, so (F) must hold. So suppose z- contains exactly three edges and

x(u,u) :O.  Let  C be the member of  the cutset  par t i t ion conta in ing the edge

corresponding to r. Deleting the paths corresponding to edges of C' from G we

obtain at least two components. Let K, and K, be the components containing the

ends of rr and assume that u is adjacent in G to a vertex of K,. By (g), the only

vertices w*u for which (u, w) satisfies (a) with equality belong to Kr. Therefore,

bV (D) and (E), a is the only vertex of C adjacent to a node w of K' such that

x(u,w):1.  But  th is  means that  the support  of  x  is  not  connected,  contradic tory to

x being a feasible solution to (3).

Let E: be the set of edges of the complete graph on vertex set V which satisfy
(a) with equality. As we have noted, E c- E:. Let G' : (.V, E') be any minimum-cost

two-connected spanning subgraph. Then .E' c E:. We show that G' : G by consider-

ing two cases. Recall that m is the number of parts of the partit ion Cr u Cze ' '  'a C^

of C.
Case 1. m:0. Then G is three-edge-connected and so each edge of G is sub-

divided at least twice in G for otherwise we would contradict (i i i) or (iv). By (E),

every degree two vertex of G also has degree two in G'. Moreover, by (F), any
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edge of G which joins two vertices of degree two (in G) is present in G'. Suppose

(u, u) eE:\E and (u, u) e E'. Both u and u must be of degree two in G, and hence

in  G ' .  S ince  (u ,  u )eE ,  d (u ,u )>2 .  Bu t  s i nce  d (u ,u ) :7 ,+7 ,<2 ,  we  mus t  have

d(u,o) :2.  Let  s  be adjacent  in  G to u and u.  I f  s  is  of  degree two,  then by (F) ,

each of (s, u) and (s, u) must be in E'. By (E), {u, u, s} must therefore be adjacent

only to each other in G', contradicting G' being two-connected. Therefore s is of

degree 3.  For  any w e V\{s} ,  f ** r , :  i ,+0< 1.  Therefore (s ,  w)e E:  i f  and only

if w is a degree two vertex of G adjacent to s. In other words, the neighbours of s

in G' must be a subset of at least two of the neighbours of s in G. Let w be the

vertex, other than u and o, adjacent to s. By (F), each of u and ar is adjacent to

other degree two vertices of G' as well as each other, so, by (E), w is the only vertex

of G'which can be adjacent to s, contradictory to G'being two-connected. Therefore

E': E and so G is the unique optimum.

Case 2. m> 0. We proceed by induction on the size of G. For each i e {1,2, . . . , m),

i t  i s  easy  to  see  tha t  each  C1 , ,  f o r  he {1 ,2 , . . . ,  m} \ { t } ,  mus t  be  con ta ined  i n  t he

edge  se t  o f  one  componen t  o f  G \C .  Thus  we  a re  ab le  t o  choose  i e {1 ,2 , . . . ,m \

and a component K of G\C in such a way that K contains no edge of C. Let C
be the set of edges of G belonging to those paths of P'which correspond to edges

of C,. Let 6 be obtained from G by deleting the edges of C,. Then components of

G "un be of two types: some will correspond to components of G\Ci and others

will consist of isolated degree two vertices of G. We call the latter triuial and the

former nontriuial. Note that by (iv), lC,l>3 Therefore d ttat at least three com-

ponents, at least two of which are non-trivial, and the edges of Cr join these

components in a cyclic fashion. Let K be the component corresponding to K. See

Fig.  3.
Now let (u,u) be any edge of E:\E such that u and u belong to difterent

components of d. We show that an edge of G joins these components. Only edges

of E join vertices belonging to trivial components, so at least one of u and u belongs

to a nontrivial component. If both u and u belong to nontrivial components, then

bV (C) these components are joined by an edge of G. If one is in a trivial component

and the other in a nontrivial component then again these components are joined

by an edge of  C.

BV (D) and (E) each component of G must have exactly two edges of E' in its

coboundary. fet G and G' be obtained from G and G' respectively by shrinking

the vertex sets of all components of d other than K. It follows that 6 and d' must

agree on all edges except possibly those incident with a vertex of K. We now show

that

G-- G,. (e)

Let u, and u2 be the vertices of K adjacent in G to vertices of other components

of  d.Let  urandu. .bethever t icesof  Kadjacent inG'  tover t icesofothercomponents

of d. 
.|hen u, and u2 must be distinct and each must be either equal ro ut or 1)2 Qr

else be a degree two vertex adjacent to or or u2 in G, since by (D) these are the
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Fig. 3.

only vertices of K joined by an edge of E: to a vertex not in K. We show that

{ur, uz}: {ur, uzl.suppose that this is not the case and that u1 is of degree two and

is adjacent to u1. Since K contains no edges belonging to paths of Po, u, is joined

by an edge (ur,fr) of K to another degree two vertex i; of K. By (F), (ur,f i)eE'

and by (E), ar has degree two in G' . Let w be the vertex of G' other than f adjacent

in G'to u1 . Then the only vertices to which u1 QA1r be adjacent in G' are the other

incident vertex il, of K plus vertices in other components of G. See Fig. 4.

Since u, has degree at least two in G', o, must be adjacent in G'to a vertex w

which bV (B) must lie in the component K of d which contains w. But by (D),

(ur,w) and (ur, f i) are the only edges of the coboundary of K and K in G'.

Therefore V(K)u V(K) induces a connected component of G'. But since G has

I
t

I

I* l

\

" " r

?'\/.-
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at least three components, this is a contradiction. Therefore or and t;2 are the two
vertices of K adjacent in G' to vertices not in K.

Let d be the set of distances defined by d. Since d satisfies (i)-(iv), by induction,
d is the unique minimum-cost two-connected spanning subgraph on this vertex set.
Suppose G' + G. We have seen that they coincide on all edges not in K, so this
means  tha t  a (E ' (K ) )>  a@6) ) :  d (E (1 ( ) ) .  Bu t  d (E ' � (KD>  a@' � (K ) ) ,  s i nce  the
distance between each pair of vertices is at least as large in G as in d. Therefore
d(E' (K))> d(E(K)) .  Therefore we can replace G' lV(K) l  wi th K in  G'and obta in
a two-connected spanning subgraph of V with lower cost, with respect to d, than
that of G', a eontradiction. Hence (9) is established.

Now let f i and iI '  be obtained from G and G' respectively by shrinking the
vertex set of the component K. Let d be the vector of distances in A. Since l i
satisfies (i)-(iv), by induction l i is the unique minimum-cost two-connected span-
ning subgraph of  the ver tex set  of  I i ,  wi th d is tance d.  Now dtnta l l :  d . (E)  -  lE( / ( )1.
Since G and G'were both min imum cost  wi th respect  to  d,  we had d(E):d(E' ) .
S i n c e  d ( u ,  u ) < d ( u , o )  f o r  a l l  ( u , u ) ,  a n d  u s i n g  ( 9 ) ,  d @ G i ) ) < d ( E ) - l E ( K ) l :
dtn@ll. There A'is also a minimum-cost two-connected spanning subgraph, with
respect to d, so FI: FI'. But this implies that G: G', as required, completing the
proof of Case 2. tr

Theorems 3 and 4 are useful for studying optimal two-connected solutions because
we may restrict our attention to cycles, cubic two-connected graphs with subdivided
edges, and graphs of the form shown in Fig. 5. We note that contracting the degree
two vertices in the graph of Fig. 5 results in two vertices with three parallel edges
between them; we treat this as a separate case since normally such a graph is not
considered to be two-vertex connected. Such graphs, however, form an important
class of two-connected solutions. They are the unique minimal two-connected graphs

which are not cycles.

Corollary 5. Any two-connected graph G: (V, E) satisfying conditions (a) and (b)

of Theorem 3, and which is not a cycle, contains the graph shown in Fig. 5 as a
uertex-induced subgraph.

A
\ l )
V

Fig.  5.  Graph in which the broken ru les are paths consist ing of  one or  more edges.
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Proof. Since G is two connected, it contains a cycle C. By condition (b) of Theorem

3, C contains at least three vertices. Since G is not itself a cycle, there must be at

least one vertex z noI in C. By Lemma l, z is contained on a common cycle with

every vertex in C. By condition (a) of Theorem 3, this implies that there exist two

vertices x and y in C with vertex paths to z which avoid C (except for the end

nodes x and /). Condition (b) of Theorem 3 implies thatthis vertex-induced subgraph

must be of the form shown in Fig. 5. !

Another consequence of Theorem 3 is that an optimal two-connected network

need not be planar since Kr. with all edges subdivided two or more times satisfies

conditions (a) and (b). This contrasts with the case of points in the plane where if

the Euclidean metric is used, then there always exists a planar optimal solution.

(Clearly, condition (a) precludes the possibil i ty that a subgraph wil l be homeomor-

phic to K5.)

3. Comparison to traveling salesman problem

In this section we discuss the relationship of the minimum weight two-connected

spanning network problem to the traveling salesman problem ll, 5,24,30]. Much

work has been done on the worst-case analysis of heuristics to obtain minimum-

weight cycles [4, 8,15-l '1,29,32]. By Theorem 4, we know that a cycle need not

produce an optimal two-connected solution. We show that Theorem 3 makes it easy

to establish a tight worst-case bound on the ratio of an optimal cycle length to an

optimal two-connected length. We also relate these results to a 'Steiner' version of

the problem.

Before proceeding, we need a few additional definit ions and a useful lemma. A

perfect  matching of  Wc V inagraph G:(V,E) is  a subset  of  edges M c '  E which

meet every vertex in W exactly once. For any set ofvertices V and distance function

d( . ) ,  we let  C"o,(V)  denote an opt imal  cyc le and TC"o,(V)  denote an opt imal

two-connected solution of weight d(C"rr(V)) and d(TC"p,(V)), respectively. When

the context is clear, we drop the specification of V.

The following result follows easily from Edmonds' characterization of the match-

ing polytope [12] .

Lemma 6 1281. Let G: (V, E) be a cubic, two-edge connected graph. Then for any

nonnegatiue edge weight function c(.), there is a perfect matching M such that

c ( M ) < l c ( E ) .  I

In our search for a worst-case example for the tatio d(C"o)ld(TC"pr), we may

restrict our attention in the following useful ways' Suppose that G:(V,E) is an

optimal two-connected solution for the distance function d(').SV the triangle

inequality, d(u, u) is at most the length of a shortest path from u to u in G. Since

we are looking for a worst-case example, we may make d(u, u) equal to this length
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for  a l l  (u ,u) lE.  Fur thermore,  under the reasonable assumpt ion that  d( ' )  is  a

rational-valued function, we may multiply all distances by a large enough number

to obtain an integer-valued function. Finally, it is easy to see that any edge with

integer weight h> | can be subdivided into a path of length h with all edges having

weight one without increasing the cost of the solution or changing any of the other

edges shortest-path lengths; furthermore, the best cycle in this enlarged problem

cannot be shorter than the best cycle in the original problem. Therefore the worst

case ratio will be realized by some graph with the canonical distance function.

Theorem 7. For any set of uertices V and distance function d('),

d  (  c  op,(  v  ) )  I  d  ITC "" , (  y  )  )  < 1.

Furthermore, this bound can be approached arbitrarily closely by the class of graphs

shown in Fig. 5 with d(') their canonical distance function.

Proof. Let G: (V, E) be a minimum-weight two-connected spanning network

satisfying the conditions of Theorem 3. Assume, without loss of generality, thar G

is not a cycle, and that d(') is the canonical distance function for G.

Let V be the set of degree three vertices of G. Then G is a subdivision of the

cubic bridgeless graph G:(V, E) obtained by repeatedly contracting all edges

adjacent to degree two vertices, and each (u,u)e E corresponds to a maximal path

in G, all of whose internal vertices have degree two. For each such (u, o) e E, let

d(u,  u)  be the number of  edges in the corresponding path.  Then d(E):  d(E) .  By

Lemma 6, G has a perfect matching M of weight at most ldtEl. By duplicating

the edges of the paths corresponding to the edges of M in C, we obtain an Eulerian

mu l t i g raph  G ' : (V ,E ' )  on  V  and  d (E ' )< iap l .S ince  d  sa t i s f i es  t he  t r i ang le

inequality, we can apply a standard shortcutting argument to construct a hamiltonian

c i r cu i t  C  on  V  such  tha t  d (C )<  d (E ' )<3d (TC" " , (V ) ) .

We can see that the bound of 1 is t ight by considering the graph of Fig. 5 in

which each path between the degree three vertices, call them s and /, has k interval

vertices, the best cycle has distance 4kI2 under the canonical distance function.

Since the graph has 3k*3 edges,  th is  g ives a rat io  of  Gk+2) l (3k+3) which

approaches I as k approaches oo. n

Theorem 7 was proved by Fredrickson and Ja'Ja' [15] for the case that the optimal

solution to the two-connected problem is planar, and indeed, they observed that

Lemma 6, if i t were true, would imply the result for general solutions. (Ironically,

[28] containing Lemma 6 appeared the year before I l5].) Moreover, they conjectured

a result which would imply Lemma 6. This result is an easy consequence of Edmonds'

matching polyhedron characlerization [12] and was the tool used in [28] to prove

Lemma 6. The proof of Theorem 7 which we give here follows similar l ines to that

of [15]. However, the existence of Theorem 3, in particular, the fact that there

always exists an optimum solution of maximum degree three, simplif ies things. In

[15] an arbitrary two-connected graph G is first transform'ed into a cubic bridgeless
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graph Gt by replacing high degree nodes with cycles and replacing degree two nodes
with suitable subgraphs. All new edges are given cost zero. If G is planar, so too
will be G', so the Four Color Theorem can be used to show that the edges can be
partitioned into three perfect matchings, at least one of which has cost at most

id(G). A variation of the argument given above then constructs the desired cycle
in G.

We note that any lower bound 7 for the worst-case ratio of a heuristic H to an
optimal cycle C"o. produces a worst-case lower bound for an optimal two-connected
solution TCoo, of at least 7 since d(TC"pt) <d(C"o,).An upper bound of B for the
worst-case ratio of a heuristic H to an optimal cycle C"n, produces a worst-case
upper bound of at most 1B using Theorem 7.

The following interesting lower bound on d(TC"o,), which relates closely to the
proof technique of Theorem 4, was obtained by W.H. Cunningham. The subtour
polytope of the traveling salesman problem is the set of all solutions to the following
linear system:

0 ( x < 1 ,

L Q@, u): u e V\{u}) :2 for all u e V,

L G @ , o ) :  u e S ,  u e  V \ S ) > 2  f o r  a l l  S c  V  s u c h  t h a t  l S l > 2 .

Note that this differs from (3) only in that the inequalit ies correspondingto ueV
have been made into equations, which are satisfied by the incidence vector of any
Hamiltonian cycle, but not by the incidence vector of an arbitrary two-connected
spanning subgraph. Let Soo, be a solution to the subtour polytype for which dx is
minimized, and let d(S"n,) denote its value. Trivially d(S"n,) <d(C"o,), but in fact
it also provides a lower bound on d(TC"",).

Theorem 8 (W.H. Cunningham). For any set V of uertices and distance function d(.),
d(s"o, )  < d(TC"p,) .

Proof. Let H be a minimum-cost two-connected spanning network. Doubling each
edge in H yields a multigraph FI'spanning V and having cost twice d(TC"o,). Each
vertex o has even degree in F/'and Ff is four-edge connected. Successively choose
a ver tex o of  degree more than four  and apair  (u,u) , (o,w) of  inc ident  edges such
that deleting these edges and adding the edge (u, w) preserves the four-edge con-
nectivity of H'. (This is always possible by a result of Lov6sz [25].) Notice that this
step also preserves the even degree property of H' and by the triangle inequality,
the cost of the FI' does not increase. When this step can no longer be performed,
.Ff is a four regular, four-edge-connected, spanning network of V of cost at most
twice d(TC"o,). Define i(u, u) to be ] the number of edges of H' joining u and u.
Then x belongs to the subtour polytope, and d(S"o,) < dt < d(TC"p,) as required. tr

An interesting variation of the minimum-weight two-connected spanning network
problem is to specify a subset of special vertices D c V and find a minimum-weight
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two-connected network spanning D. (Other vertices may be used if they help reduce

the overall cost.) We call this problem Ihe Steiner two-connected network prob-

lem. Theorem 3 implies that any vertex in V\D used in an optimal network is of

degree 3.

We note that the minimum Steiner tree problem is a well-studied 111, 13,19,20,

3ll generalization of the minimum spanning tree problem. The next theorem provides

a worst-case bound for the ratio of an optimal two-connected solution spanning D

and a Steiner two-connected solution. We denote an optimal Steiner two-connected

solution by STC"o,(D, V) with weight d(STC"pt(D, y)). We omit D and Y when

the context is clear.

Theorem 9. For any set of uertices V,D=V and distancefunction d('),

d (TC"p , (  D )  ) / d (STC.p , (  a  y )  )  <  1 .

Proof. Let G: (W, E) be an optimal Steiner two-connected solution; clearly, D c

W. Now, TC"p,(D) < C"o,(D)< C"n,( W) and STS"pt(D, V) : STC"',( D, W):

TC"o,( IV) imply that

TC"p,(D)/STC"p,(D,  V)  < C"o,(  W)/TC"p,(  W)<i .

The final inequality follows from Theorem 7. tr

We note that the Steiner two-connected network problem is NP-hard even for

the special distance functions considered in this paper. However, this problem can

be solved efficiently for special classes of graphs even for arbitrary distance functions;

e.g., for outerplanar graphs [36]. It is easy to see that this problem can be efficiently

solved for the more general series-parallel graphs as well, in a manner similar to

those used to solve other problems on these graphs 121 ,351. A different generalization

of outerplanar graphs, called D-planar graphs, requires that the graph have a planar

representation where all vertices in D be on a common face. The Steiner tree problem

f13,31] and the more general concaae-cost network flow problem [13] can be

efficiently solved on D-planar graphs with arbitrary weight functions. It can be

shown that an optimal two-connected solution spanning D wil l be a cycle passing

through the vertices in D in the order they appear around their common face in

the planar embedding. We leave as an open question whether this fact can be used

to derive an emcient solution procedure.

4. Concluding remarks

We have studied the problem of f inding a minimum-weight two-connected spanning

network given a non-negative, symmetric distance function satisfying the triangle

inequality. Our results apply equally to two-vertex connected and two-edge con-

nected requirements and are applicable to the design of survivable communication

and transportation networks.
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Strong structural properties of optimal two-connected spanning networks were

derived in Section 2. Recent work [3] extends Theorem 3 to minimum-weight

k-connected solutions for all k>2.That is, there exists a minimum-weight k-edge
(resp. k-vertex) connected network satisfying (a) every vertex is degree k or k-1,

and (b)  delet ing any 1,2, . .  . ,  or  k  edges does not  resul t  in  a l l  connected components

being k-edge (resp. k-vertex) connected. It is also shown that the analogue to

Theorem 4 does not  hold for  k>3.
An important research direction which has not yet received adequate attention

is to determine valid inequalit ies for the polyhedron of the convex hull of k-

connected networks. Obtaining 'nice' classes of inequalit ies would be useful in

further understanding the problem and could be used in cutting-plane approaches

to solving practical problems to optimality. This approach has been successfully

applied to the traveling salesman problem l1 ,9,101. A first step in this direction is

taken in [21] .
Finally, we note that the transformations implicit in the proof of Theorem 3 along

with methods similar to those used for the traveling salesman problem have been

implemented into an Interactive Network Design System (INDS) on the IBM PC

[26]. These methods have been tested on real-wor1d problems of designing survivable

fiber optic communication networks and consistently produce 'near-optimal'

networks.
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