
COMBINATORICA
Bolyai Society – Springer-Verlag

0209–9683/101/$6.00 c©2001 János Bolyai Mathematical Society

Combinatorica 21 (1) (2001) 39–60

A FACTOR 2 APPROXIMATION ALGORITHM
FOR THE GENERALIZED STEINER NETWORK PROBLEM*

KAMAL JAIN

Received March 6, 1998

We present a factor 2 approximation algorithm for finding a minimum-cost subgraph
having at least a specified number of edges in each cut. This class of problems includes,
among others, the generalized Steiner network problem, which is also known as the sur-
vivable network design problem. Our algorithm first solves the linear relaxation of this
problem, and then iteratively rounds off the solution. The key idea in rounding off is
that in a basic solution of the LP relaxation, at least one edge gets included at least to
the extent of half. We include this edge into our integral solution and solve the residual
problem.

1. Introduction

We consider the problem of finding a minimum-cost subgraph of a given
graph such that the number of edges crossing each cut is at least a specified
requirement. Formally, given an undirected multigraph G= (V,E), a non-
negative cost function c :E→Q+, and a requirement function f : 2V →Z,
solve the following integer program (IP):

min
∑

e∈E

cexe(1)

subject to: ∀S ⊆ V :
∑

e∈δG(S)

xe ≥ f(S)

∀e ∈ E : xe ∈ {0, 1}
where δG(S) denotes the set of edges having exactly one endpoint in S.

Mathematics Subject Classification (2000): 68W25, 90C57

* Supported by NSF Grant CCR 9627308.

40 KAMAL JAIN

In this paper, we assume that we are given a separation oracle for the lin-
ear relaxation in which xe’s are allowed to take any fractional value between
0 and 1 (see LP 2).

We further assume that f is weakly supermodular, i.e., it satisfies:

1. f(V)=0
2. For every A,B⊆V , at least one of the following holds

• f(A)+f(B)≤f(A−B)+f(B−A)
• f(A)+f(B)≤f(A∩B)+f(A∪B)

The problem was first considered in [15] with the stronger assump-
tion that f is proper (see Definition 2.1). The authors of [15] give a
2k-approximation algorithm, where k is the maximum requirement of a
set. The approximation factor was later improved to 2Hk in [5], where
Hk = 1+ 1

2 +
1
3 + · · ·+ 1

k . The algorithm in [5] also works for weakly su-
permodular functions.

No better approximation factor was known even for the generalized
Steiner network problem, which was the main motivation for studying this
class of problems. In the generalized Steiner network problem, given re-
quirements rij for each pair i,j of vertices, we need to find a minimum-cost
subgraph that has rij edge-disjoint paths between i and j. This problem can
be reformulated as IP 1 by taking f(S)=maxi∈S,j �∈S rij. It was known that
such an f is proper and hence weakly supermodular.

Moreover, a separation oracle for the generalized Steiner network prob-
lem can be constructed using the max-flow min-cut theorem. If the require-
ment of some pair i,j is not satisfied then the inequality corresponding to
minimum i-j-cut is violated. Otherwise the solution is feasible. Hence the
generalized Steiner network problem is a special case of the problem we are
considering.

The factor was not any better for the version of the problem in which we
are allowed to choose multiple copies of edges. This version is usually con-
sidered a specialization of the generalized Steiner network problem because
we can make k copies of each edge, where k is the maximum requirement.
Technically, k can be exponentially large, so we can not write those edges
explicitly. Our algorithm does not need an explicit representation of edges
and hence solves this version too.

The most general case with factor 2 was the Steiner forest problem ([1,6]),
where f(S) is 0-1 proper function. Hence our algorithm puts the generalized
case at par with this special case.

Our algorithm falls into the class of rounding algorithms. Rounding algo-
rithms use an optimal fractional solution to obtain a good integral solution.
Some problems, like vertex cover [10] and node multiway cut [4], have the
remarkable property that they admit an optimal fractional solution which

A FACTOR 2 APPROXIMATION ALGORITHM 41

is half-integral. When this property holds, rounding up gives an approxima-
tion factor of 2. Unfortunately, the half-integrality property does not hold
for our problem: consider the Petersen graph with unit cost on edges and
ruv=1 for every pair u and v. In any fractional solution, x(δ(v)) is at least
1 for every vertex v. Hence, the cost of a fractional solution is at least 5.
Since the Petersen graph is three edge connected, assigning 1

3 to every edge
will satisfy all the cut requirements. So, the cost of an optimal fractional
solution is 5. If there is a half-integral optimal solution then the edges with
xe= 1

2 will form a cycle. In fact, that cycle must cover all the vertices, for
otherwise its vertex set will be an unsatisfied cut. It is well known that the
Petersen graph does not have a Hamiltonian cycle.

Iterative rounding, which is introduced in this paper, does not need half-
integrality. It is enough to find an optimal fractional solution, x, in which at
least one edge e has xe at least half. Such an xe can be rounded to 1 while
at most doubling its contribution to the cost of the solution. The part of
cut requirements which is not satisfied by the integrally chosen edges defines
a residual problem; this problem can also be modeled by IP 1. Assuming
that we can find an optimal fractional solution for the residual problem
in which at least one edge is picked to the extent of at least half, then,
by iterating the rounding procedure, we get an approximation factor of 2.
This is naturally extending the Rounding based algorithms, which as they
were known, solve the LP once and obtain an integral solution by a suitable
rounding process. Seemingly this method did not exploit the full power of
linear programming. After part of the fractional solution had been rounded,
the current solution might not be the best solution to continue with the
rounding process. Iterative rounding round the fractional solution in phases.
After each phase, it recomputes the best fractional solution, maintaining the
rounding achieved in the previous phases.

The key result that makes iterative rounding work is that any basic
feasible solution, x, of LP 2 has an edge e with xe at least half (Figure 2
demonstrates this fact in the Petersen graph). Using this result we get an
approximation factor of 2, thus proving that the integrality gap of LP 2 is
at most 2. It was already known that this integrality gap is not less than 2,
so, the integrality gap of LP 2 is exactly 2. We leave open the developing of
purely combinatorial constant factor algorithm for the problem.

2. Preliminaries

In this section, we briefly establish a few facts about weakly supermodular
functions, submodular functions and proper functions. These facts can also
be found in [5].

42 KAMAL JAIN

Definition 2.1. A function f : 2V → Z+ is proper if f(V) = 0 and the
following two conditions hold

1. For every subset S of V , f(S)=f(V −S).
2. For all disjoint subsets A and B of V , f(A∪B)≤max{f(A),f(B)}.

Theorem 2.2. ([5]) Every proper function, f , is weakly supermodular.

Proof. From the definition of proper functions, we have

1. max{f(A−B),f(A∩B)}≥f(A),
2. max{f(B−A),f(A∪B)}=max{f(B−A),f(V−(A∪B))}≥f(V−A)=f(A),
3. max{f(B−A),f(A∩B)}≥f(B), and
4. max{f(A−B),f(A∪B)}=max{f(A−B),f(V−(A∪B))}≥f(V−B)=f(B)

By summing the two inequalities which involve the minimum of f(A −
B),f(B−A),f(A∪B),f(A∩B), we get the required result (for example,
if f(A−B) is minimum then we sum the first and the last inequalities).

Definition 2.3. A function f : 2V →Z is submodular if f(V) = 0 and for
every two sets A,B⊆V , the following two conditions hold

1. f(A)+f(B)≥f(A−B)+f(B−A).
2. f(A)+f(B)≥f(A∩B)+f(A∪B).

Lemma 2.4. For any multigraph G, the function |δG(.)| is submodular.

S

S S

S

1

2

3

4
A B

14

24

34

12

13

23

Fig. 1. Line labeled ij represents all the edges between sets Si and Sj .

A FACTOR 2 APPROXIMATION ALGORITHM 43

Proof. Let A and B be arbitrary subsets of V . For simplicity, denote the
four quadrants by S1≡A−B, S2≡A∩B, S3≡B−A and S4≡V−(A∪B). Let
x(Si,Sj) be the number of edges of x which have one end point in Si and the
other in Sj. The lemma is clear by observing the following (see Figure 1):

1. |δG(A)|=x(S1,S3)+x(S1,S4)+x(S2,S3)+x(S2,S4).
2. |δG(B)|=x(S1,S2)+x(S1,S3)+x(S2,S4)+x(S3,S4).
3. |δG(A−B)|=x(S1,S2)+x(S1,S3)+x(S1,S4).
4. |δG(B−A)|=x(S1,S3)+x(S2,S3)+x(S3,S4).
5. |δG(A∩B)|=x(S1,S2)+x(S2,S3)+x(S2,S4).
6. |δG(A∪B)|=x(S1,S4)+x(S2,S4)+x(S3,S4).

Theorem 2.5. ([5]) Let G be a graph. Let x∈{0,1}E(G) be any subgraph
of G. If f :2V (G)→Z is a weakly supermodular function, then f(S)−|δx(S)|
is also a weakly supermodular function.

Proof. The theorem follows from the fact that |δx(.)| is submodular.

3. A factor of 2 approximation algorithm

In this section we will show how to take a fractional solution to the following
LP and round it to an integral solution whose objective value is within a
factor of two of the objective value of the LP. This LP is in fact the linear
relaxation of IP (1).

min
∑

e∈E(G)

cexe(2)

subject to:

∀S ⊂ V :
∑

e∈δG(S)

xe ≥ f(S)

∀e ∈ E(G) : 1 ≥ xe ≥ 0

where G is a multigraph and f is a weakly supermodular function. We also
assume that f takes a positive value somewhere.

To get a factor of 2 integral solution, we first solve the LP (2) fractionally;
then we round off the solution iteratively using the following theorem.

Theorem 3.1. In any basic solution to LP (2), for at least one edge, e, xe

is at least 1
2 .

44 KAMAL JAIN

We will prove this theorem in the next section. Now let us see how this
theorem helps us to iteratively round off the solution.

Let x∗ be some optimal basic solution of the LP (2). Let E 1
2

+ be the set of

edges which took value at least 1
2 in the solution x∗. Suppose Gres=G−E 1

2

+ .

Now consider the LP, which is the residual LP, obtained from LP (2) by
fixing the values of all the edges in E 1

2

+ to 1.

min
∑

e∈E(Gres)

cexe(3)

subject to:

∀S ⊂ V :
∑

e∈δGres (S)

xe ≥ f(S)−
∑

e∈E 1
2
+∩δG(S)

1

∀e ∈ E(Gres) : 1 ≥ xe ≥ 0

From Theorem 2.5, f(s)−∑
e∈E 1

2
+∩δG(S) 1 is weakly supermodular; hence,

LP (3) has the same form as LP (2).

Theorem 3.2. Let optimal value of LP (2) and LP (3) be z∗ and z∗res

respectively. If Eres is an integral solution to LP (3) with value at most
2z∗res, then Eres∪E 1

2

+ is an integral solution to LP (2) with value at most

2z∗.

Proof. Clearly, Eres∪E 1
2

+ is a feasible integral solution to LP (2). Notice

that the restriction of x∗ to Gres is a feasible solution for LP (3), hence we
have

z∗res ≤ z∗ −
∑

e∈E 1
2
+

x∗ece,(4)

i.e.,
2z∗ ≥ 2z∗res +

∑

e∈E 1
2
+

2x∗ece.

We know that for every e∈E 1
2

+ , 2x∗e≥1, hence we have

2z∗ ≥ 2z∗res +
∑

e∈E 1
2
+

ce.

A FACTOR 2 APPROXIMATION ALGORITHM 45

We also know that
∑

e∈Eres
ce≤2z∗res, hence we have

2z∗ ≥
∑

e∈Eres

ce +
∑

e∈E 1
2
+

ce.

Now we have a high level description of a 2-approximation algorithm:
Algorithm Iterative Rounding

1. Find an optimal basic solution to LP (2).
2. Include all those edges which have values 1

2 or more, in the solution.
3. Delete all the edges, which have been included in the solution, from the
graph; and solve the residual problem.

Note that the LP’s involved have exponentially many constraints. So we
need to produce a separation oracle for LP (3), so that we can solve it in
polynomial time using the ellipsoid algorithm ([9]). We also need to show
that, once we have an optimal solution, we can find an optimal basic solution.

Suppose we have a separation oracle for LP (2). Let xres be some vector in
[0,1]E(Gres) for which we either want to determine whether xres is a feasible
point for LP (3) or, if not, then we want to produce a constraint of LP (3)
which is not satisfied.

Let us extend the vector xres from [0,1]E(Gres) to [0,1]E(G), by assigning
1 to the fields corresponding to the edges in E 1

2

+ . Let us call the extended
vector x.

Clearly, for any set S,

xres(δGres(S)) ≥ f(S)−
∑

e∈E 1
2
+∩δG(S)

1

if and only if ∑

e∈δG(S)

xe ≥ f(S).

And hence, if xres is feasible for LP (3) then x is feasible for LP (2); and if
xres violates any constraint in LP (3) then x violates the same constraint in
LP (2). So given a separation oracle for LP (2), we can obtain a separation
oracle for LP (3). From the assumption made, a separation oracle for LP (2)
is given. Hence LP (3) belongs to the class of problem we are solving here.

To complete the algorithm, we need to show that, how an optimal solution
can be converted into an optimal basic solution. Now let us say we have some
optimal solution, x∗, which is not a basic solution to LP (2). In that case
we can get one more inequality tight. Hence at some point we will get an
optimal basic solution.

46 KAMAL JAIN

Let E be the set of inequalities which are tight, i.e., are satisfied by x∗

as equality. Since x∗ is not a basic solution, the affine subspace which the
equalities in E define is at least one dimensional. Hence, it contains a line,
L, passing through x∗. Because of constraints, 1≥xe≥ 0, polytope defined
by LP (2) is bounded. Hence L has only a finite segment common with
the polytope. Either end of that segment satisfies all the equalities in E
plus at least one more, which is linearly independent of the equalities in E .
Algorithmically,

1. E←∅
2. While x∗ is not a basic solution do
(a) Find a line passing through x∗ in the affine subspace defined by E .
(b) Find one of the end point of the segment defined by the intersection

of the line and the polytope of LP (2). Replace x∗ by that point.
(c) That end point makes one more inequality tight. Since this new equal-

ity was not tight earlier, this is linearly independent of equalities in
E . Include this equality in E . This will increase the dimension of E
which is bounded above by the number of edges.

Lemma 3.3. Any optimal solution can be converted into an optimal basic
solution in polynomial time.

Theorem 3.4. Given a separation oracle for the LP (2), algorithm Iterative
Rounding described in this section, solves the LP integrally within twice the
fractional optimal.

4. Proof of Theorem 3.1

In this section we will prove Theorem 3.1.
Let x be some basic feasible solution. If there is some edge which takes

the value 1, then the theorem holds trivially. So assume that no edge takes
the value 1. Also, if some edge takes the value zero, then we can assume that
the edge was never there. By assuming that we do not increase the cost of
the optimal fractional solution. Hence, we may assume that no edge takes
the value 0 either, i.e., x is totally fractional.

For notational convenience we represent the row of the constraint matrix
corresponding to a set S by AG(S). Let x(A,B) represent the sum of all
xe’s, where e has one end in A and the other in B.

We say that a set A is tight if
∑

e∈δG(A)xe=f(A).

Lemma 4.1. If two sets A and B are tight then at least one of the following
must hold

A FACTOR 2 APPROXIMATION ALGORITHM 47

1. A−B and B−A are also tight andAG(A)+AG(B)=AG(A−B)+AG(B−A).
2. A∩B and A∪B are also tight and AG(A)+AG(B)=AG(A∩B)+AG(A∪B).

Proof. Denote the four quadrants by S1=A−B, S2=A∩B, S3=B−A and
S4=V −(A∪B). Since A and B are tight we have (see Figure 1)

f(A) = x(S1, S3) + x(S1, S4) + x(S2, S3) + x(S2, S4),

and
f(B) = x(S1, S2) + x(S1, S3) + x(S2, S4) + x(S3, S4).

Since the solution is feasible, we also have

f(S1) ≤ x(S1, S2) + x(S1, S3) + x(S1, S4),

and
f(S3) ≤ x(S1, S3) + x(S2, S3) + x(S3, S4).

Since f is weakly supermodular, either f(A)+f(B)≤f(A−B)+f(B−A)
or f(A)+f(B)≤f(A∩B)+f(A∪B). If the former holds then x(S2,S4)=0
and S1 and S3 are both tight. By our assumption, every edge has a non-zero
value, so, x(S2,S4) is 0 only if there is no edge between S2 and S4. In that
case AG(A)+AG(B)=AG(A−B)+AG(B−A).

Similarly, we can prove the second case in the lemma when f(A)+f(B)≤
f(A∩B)+f(∪B).

Let us denote the family of all tight sets by T . For any family, F , of tight
sets, we denote the vector space spanned by the vectors AG(S), S ∈F , by
Span(F). We say that two sets A and B cross if none of the sets A−B,
B−A, and A∩B is empty. We say that a family of sets is laminar if no two
sets in it cross.

Lemma 4.2. For any maximal laminar family, L, of tight sets, Span(L)=
Span(T).

Proof. Since L⊆ T , Span(L)⊆ Span(T). If the converse is not true then
there exists a set S in T such that AG(S) �∈ Span(L). Choose one such S
which crosses the minimum number of sets in L.

Since, AG(S) �∈Span(L), S �∈L. From the maximality of L, S must cross
some set in L. Let L be one of those sets. From the Lemma 4.1 one of the
following must hold

1. S−L and L−S are also tight and AG(S)=AG(S−L)+AG(L−S)−AG(L)
2. S∩L and S∪L are also tight and AG(S)=AG(S∩L)+AG(S∪L)−AG(L)

48 KAMAL JAIN

Let us consider the first case; the second is similar. Since AG(S) �∈
Span(L), either AG(S − L) �∈ Span(L) or AG(L− S) �∈ Span(L). Again,
since the two cases are similar, we consider the former only.

We claim that any set from the laminar family which crosses S−L also
crosses S. The fact that L crosses S but does not cross S−L contradicts the
choice of S.

Suppose L′∈L and L′ crosses S−L. From set theory we get the following
two implications.

1. (S−L)∩L′ �=∅ ⇒ S∩L′ �=∅ and L′−L �=∅
2. (S−L)−L′ �=∅ ⇒ S−L′ �=∅
Since left hand sides of both implications are true, we get S∩L′ �=∅, L′−L �=∅,
and S−L′ �=∅.

Since L and L′ both belong to a laminar family, they do not cross. So
either L⊆L′ or L∩L′=∅. We claim that in both cases L′−S �=∅. This claim
together with the facts S∩L′ �=∅ and S−L′ �=∅ proves the crossing of L′ and
S.

If L⊆L′ then L−S⊆L′−S. Since L and S cross, L−S �=∅, so, L′−S �=∅.
If L∩L′=∅ then L′−S=L′−(S−L). Since L′ and S−L cross, L′−(S−L) �=∅,
so, L′−S �=∅.

Because x is a basic solution, the dimension of Span(T) is |E(G)|. Since
Span(L)= Span(T), it is possible to choose a basis for Span(T) from the
vectors in {AG(S) : S ∈ L}. Let B ⊆ L such that {AG(S) : S ∈ B} forms a
basis for Span(T). Hence we have the following lemma.

Lemma 4.3. There exists a laminar family, B, of tight sets satisfying the
following:

1. |B|= |E(G)|.
2. The vectors AG(S), S∈B are independent.
3. For every set S∈B, f(S)≥1.

Proof. The first two parts follow from the previous discussion. For the third
part, notice that if f(S) is less than zero then S can not be tight; and if
f(S) is zero then AG(S) is the zero vector, hence contradicting the second
part of the lemma.

We are now ready to prove the Theorem 3.1. But before that, to convey
the idea in a simpler setting, we will first prove an approximation factor of 3:

Theorem 4.4. There is a tight set with positive requirement and at most
three edges incident on it. Hence at least one of those edges takes a value of
at least 1

3 .

A FACTOR 2 APPROXIMATION ALGORITHM 49

Proof. Take a laminar family, B, as given by Theorem 4.3. Form a directed
forest, F , with node set B and an edge from W to U whenever U is the
smallest set containing W . We say that U is the parent of W and W is a
child of U . A parent-less node is called root and a child-less node is called
leaf.

To avoid confusion, we are using the word “node” for the nodes of the
forest, F , and are using the word “vertex” for the vertices of the graph, G.
Nodes will be represented by capital letters because they are also the sets
of vertices, whereas vertices will be represented by small letters only.

We say that an edge crosses a node if it has one end inside the node and
the other outside it.

Every edge e≡ (u,v) has two endpoints, denoted by eu and ev. Since we
have |E(G)| edges, we have 2|E(G)| endpoints. We say that an endpoint is
incident to a node, U , if U is the smallest set containing that endpoint. So
an endpoint is incident to one node only.

Note that from Theorem 4.3, we have |V (F)|= |E(G)|, i.e., the number
of endpoints is exactly twice the number of nodes in the forest. Assume
that Theorem 4.4 is not true. Under this assumption we will distribute
the endpoints to the nodes of the forest such that every node gets at least
two endpoints and every root at least four endpoints. This contradicts the
equality |V (F)|= |E(G)|.

The subtree of F rooted at the node R consists of R and all its descen-
dants. We will do the distribution inductively on every rooted subtree of
F . An endpoint which is incident to any node in the subtree is said to be
contained in the subtree.

Lemma 4.5. For any rooted subtree of the forest, we can distribute the
endpoints contained in it such that every node gets at least 2 endpoints and
the root gets at least 4.

Proof. If a leaf node has three or less edges crossing it, then one of those
edges will take a value of at least 1

3 . So we can assume that each leaf has at
least four endpoints in it. So the lemma is true if the subtree is just a leaf
node of F .

Consider a subtree rooted at R. If R has two or more children then by
induction each child gets at least four endpoints, and each of their descen-
dents gets at least two endpoints. We will re-distribute the endpoints. R
takes two endpoints from each of its children; they are still left with at least
two endpoints each. Moreover, since R has two or more children, it now has
at least four endpoints.

The only case that remains is when R has exactly one child. Let C be the
only child of R. By induction, C gets at least four endpoints and each of its

50 KAMAL JAIN

descendents at least two. Since C has a surplus of at least two endpoints, we
can re-distribute and assign that surplus to R. If R had two more endpoints
of its own, i.e., endpoints which were incident to R, then the lemma follows.
So, we may assume that R has at most one endpoint incident to it.

Since AG(R) and AG(C) are different vectors, there should be at least
one edge which crosses C but not R, or else crosses R but not C. In both
cases there will be an endpoint incident to R. Since we have assumed that R
has at most one end point incident to it, R has exactly one endpoint incident
to it.

The value of the edge which is giving one endpoint incident to R is the
difference between the requirements of R and C. But this has to be an integer
and we have assumed that the value of every edge is strictly fractional. This
gives a contradiction.

To prove the Theorem 3.1, let us assume the contrary, i.e., every edge
takes a value strictly less than half. For this proof instead of working with
the value of edges we will be working with their half complements, i.e.,
ye= 1

2 −xe. Clearly ye’s lie strictly between zero and half.
For any tight set, S, let us define its co-requirement as the sum of ye’s for

all the edges crossing that set. It is easy to see that the co-requirement is∑
e∈δG(S) ye= 1

2 |δG(S)|−f(S). Since f(S) is integral, the co-requirement of S
is integral or semi-integral (i.e., integral plus half) depending upon whether
|δG(S)| is even or odd.

Similar to Lemma 4.5 we can prove the following lemma, which will prove
Theorem 3.1.

Lemma 4.6. For any rooted subtree of the forest, we can distribute the
endpoints contained in it such that every vertex gets at least 2 endpoints
and the root gets at least 3. Moreover, the root gets exactly 3 endpoints
only if its co-requirement is half.

The proof of this lemma is by case analysis. Many cases in the proof are
abstracted as the next lemma by Vazirani [14].

Lemma 4.7. ([14]) Suppose a node S has α children and has β endpoints
incident to it, where α+β =3. Furthermore, each child of S, if any, has a
co-requirement of half. Then the co-requirement of S is half.

Proof. Since each child of S has co-requirement of half, each child has an odd
degree. Using this and the fact that α+β=3, number of crossings of edges
by S or its children is odd. Since an edge which does not have an endpoint
incident to S crosses either none or two children, degree of S is odd. Hence

A FACTOR 2 APPROXIMATION ALGORITHM 51

its co-requirement is semi-integral. Next, we show that co-requirement of S
is strictly smaller than three halves, thereby proving the lemma. Clearly,

coreq(S) =
∑

e∈δG(S)

ye ≤
∑

S′
coreq(S′) +

∑

e

ye,

where the first sum is over all children S′ of S, and the second sum is over
all edges e having an endpoint in S. Since both the sums together have
exactly three terms and the terms in the first sum are halves and in the
second sum are strictly less than half, if second sum is over a non-empty set
then coreq(S)< 3

2 . So we may assume that β=0 i.e. there are no endpoints
incident to S. In this case all edges incident to the children of S cannot also
be incident to S, since otherwise the vector corresponding to S will be the
sum of the vectors corresponding to its children. Therefore,

coreq(S) <
∑

S′
coreq(S′) =

3
2

Proof of Lemma 4.6 A leaf node must have at least three edges crossing
it otherwise one of the edge takes a value of at least half. In case exactly
three edges cross the leaf then by Lemma 4.7 co-requirement of it is half.
So, the lemma is true for all the subtree consists of only a leaf node.

Now consider a subtree rooted at R. If R has four or more children then,
by induction, each child has at least three endpoints. So, R can take one
endpoint from the surplus of each child, thus getting at least four endpoints.
It remains to consider the cases when R has three or fewer children.

R has three children: If one of them has a surplus of two then R can get
four endpoints from its children. R can also get four endpoints in case there
is an endpoint incident to it. So we may assume that all the three children
have surplus of exactly one and there is no endpoint incident to R. So R can
take three endpoints from the surplus of its children and by Lemma 4.7 its
co-requirement is half.

R has two children, C1 and C2: If each child has a surplus of at least
two then R can take two endpoints from each of them. So we may assume
that at least one child, say C1, has a surplus of exactly one. Hence the co-
requirement of C1 is half. Now, we claim that R has an endpoint incident
to it. By means of contradiction, let us assume the contrary.

Let α denote the number of edges running between C1 and C2. Since
there is no endpoint incident to R,

|δG(R)| = |δG(C1)|+ |δG(C2)| − 2α.

52 KAMAL JAIN

Since the co-requirement of C1 is half, |δG(C1)| is odd. So, the parity of
|δG(R)| is different from the parity of |δG(C2)|.

Again, since there is no endpoint incident to R, the co-requirements of
R and C2 can differ by at most the co-requirement of C1, which is half.
Because AG(R) �=AG(C1)+AG(C2), there should be an edge between C1

and C2. This implies that the co-requirement of R cannot be half more than
the co-requirement of C2. Also, because AG(C2) �=AG(R)+AG(C1), there
should be an edge which is crossing both C1 and R. So, the co-requirement
of R cannot be half less than the co-requirement of C2.

Because of the different parities of |δG(R)| and |δG(C2)|, the co-
requirement of R and the co-requirement of C2 cannot be same either. This
contradiction shows that there is an endpoint incident to R. If one child has
a surplus of two or there are two endpoints incident to R, then we can clearly
give four endpoints to R. So, we may assume that each child has a surplus
of exactly one endpoint and there is only one endpoint incident to R. In this
case we assign three endpoints to R and by Lemma 4.7 its co-requirement
is half.

Fig. 2. A thick line represents an edge of value half. A thin line represents an edge of
value quarter. The edge which is missing has a value of zero. Dashed lines represent a

laminar family of tight sets which defines a basis for the solution.

A FACTOR 2 APPROXIMATION ALGORITHM 53

R has only one child, C: If there are at least three endpoints incident to
R, then we can assign one more endpoint to it from the surplus of C. We
already have proved in Lemma 4.5 that R has at least two endpoints incident
to it. So, we may assume that R has exactly two endpoints incident to it. If
C has a surplus of at least two then also R can get four endpoints. So, we
may assume that C has a surplus of exactly one and so its co-requirement
is half. In this case we can assign three endpoints to R and by Lemma 4.7
its co-requirement is half.

5. An example

Consider the Petersen graph with unit cost on edges and ruv =1 for every
pair u,v. An optimal basic solution is shown in Figure 2. There are fifteen
such possible solutions. The uniform solution, where every edge has a value
one third, is the average of those fifteen optimal basic solutions.

6. Tight example

Consider the wheel on the vertex set {c,a1,a2, . . . ,an}, where c is the center
of the wheel. All the edges incident on the center of the wheel are of length
1, whereas all others are of cost 2−ε. The requirement of each pair, ai,aj is 1
and between c and any other node is 0. The solution given by the algorithm
is of the cost (n−1)(2−ε), while the optimum is of cost n only.

7. Running time improvement

The algorithm stated in Section 3 solves an LP at each iteration. In this
section we will show that this is not necessary. The solution from one itera-
tion can be used to compute a basic feasible solution for the next iteration.
Details of this are given in the next section, here we describe the high level
idea.

Note that to prove Theorem 3.2 we just need inequality (4), and to prove
Theorem 3.1 we just need a basic feasible solution (not necessary optimal)
of LP (3).

Let us denote the projection of x∗ on Gres by xGres . We know that xGres

is a feasible solution for the LP (3) and also satisfies inequality (4). We will
next show how to convert xGres into a basic solution of lower or the same
cost, using an algorithm similar to the algorithm which we used in the proof
of Lemma 3.3.

54 KAMAL JAIN

If xGres is not a basic solution, then the affine subspace defined by the
equalities satisfied by xGres has dimension at least one. Hence this affine
subspace contains a line passing through xGres . Since the feasible region is
bounded, the part of the line contained in the feasible region is also bounded.
Each of the end points of that line segment tightens at least one more in-
equality. Since the objective function is linear, at least one of the two end
points does not increase the cost of the solution. We replace xGres by this
end point. Hence we get one more tight inequality and still keep the inequal-
ity (4) satisfied. We can repeat this procedure until we get a basic feasible
solution.

8. Implementing the algorithm

We are restating the problem so that it includes both the version in which
multiple copies of an edge are allowed and the version in which they are not.
Given a connected undirected multigraph G = (V,E), a non-negative cost
function c :E→Q+, an availability function a :E→Z+∪{∞}, and a weakly
supermodular requirement function f :2V →Z, solve the following IP

min
∑

e∈E

cexe(5)

subject to:

∀S ⊆ V :
∑

e∈δG(S)

xe ≥ f(S)

∀e ∈ E : xe ∈ {0, 1, . . . , ae}.

Let n be the number of vertices and m be the number of edges in the
graph. Let T be the maximum size of the numbers involved, if they are
represented in binary.

We first solve the linear relaxation of this IP by Vaidya’s algorithm ([13]),
for which we need a separation oracle. We will give a separation oracle for
the linear relaxation of the problem, under the assumption that f(S) =
maxi∈S,j �∈S rij , for some r :V ×V →Z+.

Let x ∈RE
+ be a given vector such that, for every e, xe ≤ ae. We want

to find whether x is feasible for the linear relaxation of IP (5) or not; if not
then we want to find a set, S, such that the constraint corresponding to S
is not satisfied. Note that x is infeasible if and only if there is a pair (i,j) of
vertices such that the capacity of minimum i-j-cut is strictly less than rij ,
where the capacity of an edge e is xe. Moreover, if there exist such a pair
(i,j) then any minimum i-j-cut is an unsatisfied set.

A FACTOR 2 APPROXIMATION ALGORITHM 55

So we have to check whether the capacity of minimum i-j-cut is at least
rij, for all pairs (i,j). The best way to do this is through Gomory-Hu cut
([7]) trees. Computing a Gomory-Hu cut tree can be done with n−1 max-
flow computations. So, a Gomory-Hu cut tree can be found in O(n)M(m,n),
where M(m,n) is the time taken by one max-flow computation. After com-
puting a Gomory-Hu cut tree, we can find a minimum i-j-cut in O(n). Since
there are O(n2) pairs we can do the checking in O(n3) time.

Hence we obtain a separation oracle that runs in O(n)M(m,n)+O(n3)=
O(n)M(m,n) time. By plugging this in the running time of Vaidya’s algo-
rithm [13], it follows that an optimal solution to the linear relaxation of IP
(5) can be found in O(m2n(T + logm))M(m,n) +O(m2(T + logm))P (m)
time, where P (m) is the time to multiply two m×m matrices.

In the previous section we gave a high-level description of the algorithm
that converts a feasible solution x into a basic feasible solution of lower or
same cost. The detailed description follows:

1. E←∅; S←Rm

2. While dim(S)>0 do
(a) We will maintain the invariant that any point in S satisfies all the

equalities in E . To find a line passing through x in S, let D be a vector
orthogonal to every vector AG(S), where AG(S)=f(S) belongs to E
(D can be found in P (m) time). The line, L(t)=x+tD, passes through
x and lies in S.

(b) Without loss of generality, assume that the cost of x decreases as we
move on the line in the direction D (if this is not true then we can
replace D by −D). Using binary search and the separation oracle, find
the largest t for which L(t) is a feasible solution. Denote the largest
t by t∗. As explained below, we can find one inequality, σ(x)≥f , not
dependent upon the equalities in E , such that σ(L(t∗))=f .

(c) x←L(t∗)
E←E ∪{σ}
S←S∩{x : σ(x)=f}
(Note that dim(S) decreases by one.)

A computation similar to that in the analysis of the ellipsoid algorithm
[9] shows that we have to run the binary search in step (2.b) until we get
two points tlow < tup such that L(tlow) is feasible, L(tup) is infeasible, and
tup− tlow < 1

m!2T Poly(m)
. Then, t∗ will be the unique rational number with

denominator bounded above bym!2TPoly(m). Moreover, we can take σ(x)≥
t to be the unsatisfied inequality returned by separation oracle on L(tup).

56 KAMAL JAIN

Since the initial interval for the binary search has length at most
√
m,

the number of iterations (i.e., calls to the separation oracle) in the binary
search is O(m(T +logm)). So, each iteration of the loop in step (2) takes
P (m)+O(m(T+logm))O(n)M(m,n) time. As the loop is repeated m times,
the total time taken by the above algorithm is O(m)P (m) +O(m2n(T +
logm))M(m,n).

Now we will give the implementation of the main rounding algorithm. For
any real number I+f , where I is an integer and f is a non-negative fraction,
[I+f] is defined as : I if f is strictly less than half and I+1 otherwise.

Solve the linear relaxation of IP (5) and then apply the above algorithm
to obtain a basic feasible optimal solution, x∗.

1. lp← linear relaxation of IP (5).
2. For every e, xI

e←0
3. xlp←x (we will maintain the invariant that xlp is a basic feasible solution
to lp).

4. While xI is not a feasible solution to IP (5), do
(a) for every edge e, xI

e←xI
e+[xlp

e], xlp
e ←max{0,xlp

e − [xlp
e]}

(b) lp← residual LP.
(c) Remove all edges e for which xlp

e =0.
(d) Convert xlp into a basic solution to lp, of same or lower value.

The loop in the algorithm is repeated O(m) times and each iteration of
the loop takes O(m)P (m)+O(m2n(T+logm))M(m,n) time. Hence the total
time taken by rounding is O(m2)P (m)+O(m3n(T +logm))M(m,n) time.

By taking into account the time taken by Vaidya’s algorithm [13], the
time taken by the implementation is O(m2(T +logm))P (m)+O(m3n(T +
logm))M(m,n).

9. Implementing the algorithm in strongly polynomial time

Tardos gave a strongly polynomial algorithm to solve combinatorial LPs in
[12]. In that algorithm she requires an explicit declaration of all the con-
straints. If we can write LP (3) compactly with polynomial number of con-
straints then we can use Tardos’ algorithm [12]. Note that LP (3) is a re-
striction of LP (2). It is obtained by taking a partial solution and then fixing
the values of some of the edges in that partial solution. So, if we represent
LP (2) compactly then we can do the same with LP (3).

In general we might not be able to represent LP (2) compactly. But
we can do so in the special case when the function f(S) is derived from
requirements rij as in the last section. The LP relaxation of IP (5) is:

A FACTOR 2 APPROXIMATION ALGORITHM 57

min
∑

e∈E

cexe(6)

subject to:

∀S ⊆ V :
∑

e∈δG(S)

xe ≥ max
i∈S,j �∈S

rij

∀e ∈ E : ae ≥ xe ≥ 0.

The idea to represent it compactly is as follows: we can consider x as
the capacity function on the edges, i.e., xe is the capacity of the edge e
purchased at the cost of ce per unit. We can purchase at most the capacity
ae on the edge e. Now we want to purchase capacities on edges so that we
can transport at least rij unit of flow from i to j (we can pre-select the
direction of flow required for each pair ij). This constraint can be written
for each ij pair independently.

Suppose fij represents the flow of the commodity ij from i to j. Also
suppose fuv

ij represents the flow on the edge (uv) of the commodity ij from
u to v, where (uv) represents the undirected edge between u and v.

The compact program is the following:

min
∑

e∈E

cexe(7)

subject to:
∀e ∈ E : ae ≥ xe ≥ 0

∀ij ∈ V ×V such that rij > 0 (note that the direction of flow required is
pre-selected and hence rji=0):

fij ≥ rij

fij =
∑

v∈V

f iv
ij

∀w ∈ V :
∑

u∈V

fuw
ij =

∑

v∈V

fwv
ij

∀(uv) ∈ E : x(uv) ≥ fuv
ij ≥ 0.

By the maxflow-mincut theorem, the feasible region of LP (6) is same as
the projection of the feasible region of LP (7) on the variables xe.

By Tardos’ result in [12], we can find an optimal solution to LP (7).
But this solution may not be a basic solution to LP (6). The algorithm
for converting it into a basic solution given in the previous section is not

58 KAMAL JAIN

strongly polynomial, so, we have to use a method that avoids the use of
basic solutions.

First find any optimal solution, x∗, to LP (6) using the Tardos’ algorithm
on LP (7). Clearly, by modifying ae to "x∗e# we do not increase the fractional
optimum. So, after picking $x∗e% copies of each edge e, the residual problem is
of the form IP (1) (i.e., each edge can be picked at most once). Theorem 3.1
shows that, for at least one edge e, we can add the constraint xe≥ 1

2 to the
residual problem without increasing its optimal cost. We will simply try this
for all edges.

So, we can find a factor 2 solution to IP (5) by solving LP (7) O(m2)
times. Tardos’ algorithm takes O(n10m5) to solve LP (7) since it has O(n2m)
variables. So, the total time for this implementation of the algorithm is
O(n10m7).

10. Discussion

Iterative rounding requires that in each iteration, one variable should take a
value of at least half. This condition is strictly weaker than half integrality, in
which all non-zero variables should take half integral values. Besides having
larger applicability, iterative rounding might be also easier to establish than
half integrality, like in the case of vertex cover problem.

Several aspects of iterative rounding remain to be explored. Right now,
iterative rounding requires the solution of a linear program in each iteration.
A more efficient way would be to choose the variables to be made 1 in
the integral solution, through a combinatorial method, and then show the
decrease in the optimal value of the residual LP.

This work shows that the integrality gap of LP 2 is 2. This fact makes
the open problem of finding a purely combinatorial factor 2 approximation
algorithm even more plausible. Integrality gap of LP 2 remains 2 even when
modeling the Minimum Spanning Tree problem. Edmonds [3] gave an exact
LP for this special case through the bidirected-cut formulation. It is believed
that the LP obtained through this formulation for Steiner Tree problem has
integrality gap close to 1. Recently, Rajagopalan and Vazirani [11] showed
the integrality gap of this formulation to be 3/2 for quasi bipartite graphs,
graphs which do not have edges running between two Steiner vertices.

Consider Node Connectivity problem, which is same as Generalized Net-
work problem except that instead of edge disjoint paths we require node
disjoint paths. The problem is essentially unsolved except for the case when
the graph is unweighted and the requirement function is a constant [2]. The
difficulty arises in defining the residual requirement of a set when a partial

A FACTOR 2 APPROXIMATION ALGORITHM 59

solution is given. Recently, Jain et. al. defined Element Connectivity prob-
lem [8] which is same as Node Connectivity except that it allows two paths
to intersect at required vertices (i.e., vertices with positive requirements).
This relaxation allows them to define the residual requirement of a set, which
enables them to give a primal-dual schema based approximation algorithm,
using ideas from [15,5]. It will be interesting to see whether the ideas in this
paper work for the Element Connectivity problem.
Acknowledgments I would like to thank my research advisor Vijay V.
Vazirani, without whose help, this research would not have been possible.
I would also like to thank Ion Măndoiu, who gave constructive comments
during the research and on the writeup, to Michel Goemans, who gave the
idea to represent the LP compactly, to Carl Burch, who gave the idea to
present the Lemma 4.5 nicely, and to the unknown refree who gave helpful
comments to improve the writeup.

References

[1] A. Agrawal, P. Klein, and R. Ravi: When trees collide: An approximation al-
gorithm for the generalized Steiner problem on networks, SIAM J. Computing, 24
(1995), 440–456.

[2] J. Cheriyan and R. Thurimella: Approximating minimum-size k-connected span-
ning subgraphs via matching, to appear in SAIM J. Computing .

[3] J. Edmonds: Optimum branchings, J. Res. Nat. Bur. Standards, 71 (1967), 233–240.
[4] N. Garg, V. V. Vazirani, and M. Yannakakis: Approximation algorithms for mul-

tiway cuts in node-weighted and directed graphs, Proc. 21th International Colloquium
on Automata, Languages and Programming, 1994.

[5] M. X. Goemans, A. Goldberg, S. Plotkin, D. Shmoys, E. Tardos, and D. P.

Williamson: Approximation algorithms for network design problems, SODA, 223–
232, 1994.

[6] M. X. Goemans and D. P. Williamson: A general approximation technique for
constrained forest problem, SIAM J. Computing, 24 (1995), 296–317.

[7] R. Gomory and T. Hu:Multi-terminal network flows, SIAM J. Applied Mathematics,
9 (1961), 551–570.

[8] K. Jain, I. Măndoiu, V. V. Vazirani, and D. Williamson: Primal dual schema
based approximation algorithm for the element connectivity problem, Proc. 10th an-
nual Symposium on Discrete Algorithms, 1999, 484–489.

[9] L. G. Khachiyan: A polynomial algorithm for linear programming (in Russian),
Doklady Akademiia Nauk USSR 244 (1979), 1093–1096. A translation appears in:
Soviet Mathematics Doklady 20 (1979), 191–194.

[10] G. L. Nemhauser and L. E. Trotter, Jr.: Vertex packing: structural properties
and algorithms, Mathematical Programming, 8 (1975), 232–248.

[11] S. Rajagopalan and V. V. Vazirani: On the bidirected cut relaxation for the
metric Steiner tree problem, Proc. 10th annual Symposium on Discrete Algorithms,
1999.

60 KAMAL JAIN: A FACTOR 2 APPROXIMATION ALGORITHM

[12] É. Tardos: A strongly polynomial algorithm to solve combinatorial linear programs,
Operations Research, 34 (1986), 250–256.

[13] P. M. Vaidya: A new algorithm for minimizing convex functions over convex sets,
Mathematical Programming, 73 (1996), 291–341.

[14] V. V. Vazirani: Approximation Algorithms, Book in preparation. Available at
http://www.cc.gatech.edu/fac/Vijay.Vazirani/book.ps, 2000.

[15] D. P. Williamson, M. X. Goemans, M. Mihail, and V. V. Vazirani: A primal-
dual approximation algorithm for generalized Steiner network problems, Combinator-
ica, 15 (1995), 435–454.

Kamal Jain

College of Computing

Georgia Institute of Technology

kjain@cc.gatech.edu

mailto:kjain@cc.gatech.edu

	Heading
	1. Introduction
	2. Preliminaries
	3. A factor of 2 approximation algorithm
	4. Proof of Theorem 3.1
	5. An example
	6. Tight example
	7. Running time improvement
	8. Implementing the algorithm
	9. Implementing the algorithm in strongly polynomial time
	10. Discussion
	References

