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To Gabriella



As long as a branch of science offers an abundance of problems, so long
is it alive; a lack of problems foreshadows extinction or the cessation of
independent development. Just as any human undertaking pursues certain
objects, so also mathematical research requires its problems. It is by the
solution of problems that the investigator tesis the temper of his steel; he
finds new methods and new outlooks, and gains a wider and freer horizon.

David Hilbert, Mathematical Problems,

International Congress of Mathematicians,
Paris, 1900.



Apologia

This book has grown out of Graph Theory — An Introductory Course (GT), a book
I wrote about twenty years ago. Although I am stifl happy to recommend GT for
a fairly fast-paced introduction to the basic results of graph theory, in the light
of the developments in the past twenty years it seemed desirable to write a more
substantial introduction to graph theory, rather than just a slighily changed new
edition.

In addition to the classical results of the subject from GT, amounting to about
40% of the material, this book contains many beautiful recent results, and also
explores some of the exciting connections with other branches of mathematics that
have come to the fore over the last two decades. Among the new results we discuss
in detail are: Szemerédi's Regularity Lemma and its use, Shelah’s extension of the
Hales-Jewett Theorem, the results of Galvin and Thomassen on list colourings, the
Perfect Graph Theorem of Lovasz and Fulkerson, and the precise description of
the phase transition in the random graph process, extending the classical theorems
of Erdds and Rényi. One whole field that has been brought into the light in recent
years concerns the interplay between electrical networks, random walks on graphs,
and the rapid mixing of Markov chains. Another important connection we present
is between the Tutte polynomial of a graph, the partition functions of theoretical
physics, and the powerful new knot polynomials.

The deepening and broadening of the subject indicated by all the developments
mentioned above is evidence that graph theory has reached a point where it should
be treated on a par with all the well-established disciplines of pure mathematics.
The time has surely now arrived when a rigorous and challenging course on the
subject should be taught in every mathematics department. Another reason why
graph theory demands prominence in a mathematics curriculum is its status as that
branch of pure mathematics which is closest to computer science. This proXimity
enriches both disciplines: not only is graph theory fundamental to theoretical
computer science, but problems arising in computer science and other areas of
application greatly influence the direction taken by graph theory. In this book we
shall not stress applications: our treatment of graph theory will be as an exciting
branch of pure mathematics, full of elegant and innovative ideas.
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Graph theory, more than any other branch of mathematcs, feeds on problems.
There are a great many significant open problems which arise natrally in the
subject: many of these are simple to state and look innocent but are proving to
be surprisingly hard to resolve. It i1s no coincidence that Paul Erdds, the greatest
problem-poser the world has ever seen, devoted much of his time to graph theory,
This amazing wealth of open problems is mostly a blessing, but also, toc some
exient, a curse. A blessing, because there is a constant flow of exciting problems
stimulating the development of the subject: a curse, because people can be misled
into working on shallow or dead-end problems which, while bearing a superficial
resemblence to important problems, do not really advance the subject.

In contrast to most traditional branches of mathematics, for a thorough ground-
ing in graph theory, absorbing the results and proofs is only half of the battle. It
is rare that a genuine problem in graph theory can be sclved by simply applying
an existing theorem, either from graph theory or from outside. More typically,
solving a problem requires a “bare hands” argument together with a known re-
sult with a new twist. More often than not, it turns out that none of the existing
high-powered machinery of mathematics is of any help to us, and nevertheless a
solution emerges. The reader of this book will be exposed to many examples of
this phenomenon, both in the proofs presented in the texi and In the exercises.
Needless to say, in graph theory we are just as happy to have powerful tools at
our disposal as in any other branch of mathematics, but our main aim is to solve
the substantial problems of the subject, rather than to build machinery for its own
sake.

Hopefully, the reader will appreciate the beauty and significance of the major
resuits and their proofs in this book. However, tackling and solving a great many
challenging exercises is an equally vital part of the process of becoming a graph
theorist. To this end, the book contains an unusually large number of exercises:
well over 600 in total. No reader is expected to atiempt them all, but in order to
really benefit from the book, the reader is strongly advised to think about a fair
proportion of them. Although some of the exercises are straightforward, most of
them are substantial, and some will stretch even the most able reader.

Qutside pure mathematics, problems that arise tend to lack a clear structure
and an obvious line of attack. As such, they are akin to many a problem in graph
theory: their solution is likely to require ingenuity and original thought. Thus the
expertise gained in solving the exercises in this book is likely to pay dividends not
only in graph theory and other branches of mathematics, but also in other scientific
disciplines.

“As long as a branch of science offers an abundance of problems, so long is it
alive”, said David Hilbert in his address to the Congress in Paris in 1900. Judged
by this criterion, graph theory could hardly be more alive.

B.B.
Memphis
March 15, 1998



Preface

Graph theory is a young but rapidly maturing subject. Even during the quarter of
a century that [ lectured on it in Cambridge, it changed considerably, and 1 have
found that there is a clear need for a text which introduces the reader not only to
the well-established results, but to many of the newer developments as well. It is
hoped that this volume will go some way towards satisfying that need.

There is too much here for a single course. However, there are many ways of
using the book for a single-semester course: after a little preparation any chapter
can be included in the material to be covered. Although strictly speaking there are
almost no mathematical prerequisites, the subject matter and the pace of the book
demand mathematical maturity from the student.

Each of the ten chapters consists of about five sections, together with a selectton
of exercises, and some bibliographical notes. In the opening sections of a chapter
the material is introduced gently: much of the time resulis are rather simple, and
the proofs are presented in detail. The later sections are more specialized and
proceed at a brisker pace: the theorems tend to be deeper and their proofs, which
are not alwavs simple, are given rapidly. These sections are for the reader whose
interest in the topic has been excited.

We do not attempt to give an exhaustive list of theorems, but hope to show
how the results come together to form a cohesive theory. In order to preserve
the freshness and elegance of the material, the presentation is not over-pedantic:
occasionally the reader is expected to formalize some details of the argument.
Throughout the book the reader will discover connections with varnious other
branches of mathematics, like optimization theory, group theory, matrix algebra,
probability theory, logic, and knot theory. Although the reader is not expected to
have intimate knowledge of these ficlds, a nodest acquaintance with them would
enhance the enjoyment of this book.

The bibliographical notes are far from exhaustive: we are careful in our attribu-
tions of the major results, but beyond that we do little more than give suggestions
for further readings.

A vital feature of the book is that it contains hundreds of exercises, Some are
very simple, and test only the understanding of the concepts, but many go way
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beyond that, demanding mathematical ingenuity, We have shunned routine drills:
even in the simplest questions the overriding criterion for inclusion was beauty. An
attempt has been made to grade the exercises: those marked by — signs are five-
finger exercises, while the ones with + signs need some inventiveness. Solving
an exercise marked with T+ should give the reader a sense of accomplishment,
Needless to say, this grading 1s subjecttve: a reader who has some problems with
a standard exercise may well find a T exercise easy.

The conventions adopted in the book are standard. Thus, Theorem 8 of Chap-
ter IV is referred to as Theorem 8 within the chapter, and as Theorem V.8
elsewhere. Also, the symbol, (3, denotes the end of a proef; we also vse it to
indicate the absence of one. :

The guality of the book would not have been the same without the valuable
contributions of a host of people, and 1 thank them all sincerely. The hundreds
of talented and enthusiastic Cambridge students I have lectured and supervised
in graph theory; my past research students and others who taught the subject and
provided useful feedback; my son, Mark, who typed and retyped the manuscript a
number of times. Several of my past research students were also generous enough
to give the early manuscript a critical reading: 1 am particolarly grateful to Graham
Brightwell, Yoshiharu Kohayakawa, Imre Leader, Oliver Riordan, Amites Sarkar,
Alexander Scott and Andrew Thomason for their astute comments and perceptive
suggestions. The deficiencies that remain are entirely my fault.

Finally, I would like to thank Springer-Verlag and especially Ina Lindemann,
Anne Fossella and Anthony Guardiola for their care and efficiency in producing
this book.

B. B.
Memphis
March 15, 1998
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I

Fundamentals

The basic concepts of graph theory are extraordinarily simple and can be used
to express problems from many different subjects. The purpose of this chapter is
to familiarize the reader with the terminology and notafion that we shall use in
the book. In order to give the reader practice with the definitions, we prove some
simple results as soon as possible. With the exception of those in Section 3, all
the proofs in this chapter are straightforward and could have safcly been left to
the reader. Indeed, the adventurous reader may wish to find his own proofs before
reading those we have given, to check that he is on the right track.

The reader is not expected to have complete mastery of this chapter before
sampling the rest of the book; indeed, he is encouraged to skip ahead, since
most of the terminology is self-explanatory. We should add at this stage that the
terminology of graph theory is still not standard, though the one used in this book

is well accepted.

1.1 Defimtions

A graph G is an ordered pair of disjoint sets (V, E} such that E is a subset of
the set V@ of unordered pairs of V. Unless it is explicitly stated otherwise, we
consider only fimite graphs, that is, V' and E are always finite. The set V is the set
of vertices and E is the set of edges. If G is a graph, then V = V() is the vertex
set of G, and E = E{((G) is the edge set. An edge {x, v} is said to join the vertices
x and y and 15 denoted by xy. Thus x¥ and yx mean exactly the same edge, the
vertices x and y are the endvertices of this edge. If xy € E{G), then x and y are
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adjacent, or neighbouring, vertices of G, and the vertices x and y are incident with
the edge xy. Two edges are adjacent if they have exactly one common endvertex.

As the terminology suggests, we do not usually think of a graph as an ordered
patr, but as a collection of vertices some of which are joined by edges. It is then
a natural step to draw a picture of the graph. ln fact, sometimes the easiest way
to describe a small graph is to draw it; the graph with vertices 1,2, ..., 9 and
edges 12, 23, 34, 45, 86, 61, 17, 72, 29, 95, 57, 74, 48, 83, 39, 96, 68, and &1 is
immediately comprehended by looking at Fig. 1.1.

FIGURE L1. A graph.

Wesay that G’ = (V/, E) isasubgraphofl G = (V, E)If V' C Vand E' C E.
In this case we write G’ < G. If G’ contains aif edges of G that join two vertices
in ¥/ then G’ is said to be the subgraph induced or spanned by V' and is denoted
by G{V']. Thus, a subgraph G’ of G is an induced subgraph if &' = G|V (G)].
If V! =V, then G’ is said to be a spanning subgraph of &. These concepts are
itlustrated in Fig. 1.2.

7N
S

FIGURE 1.2. A subgraph, an induced subgraph and a spanning subgraph of the graph in
Fig. L.1.

We shall often consiruct new graphs from old ones by deleting or adding some
vertices and edges. If W < V(G), then G — W = GV \ W] is the subgraph of G
obtained by deleting the vertices in W and all edges incident with them. Similarly,
if E' C E(G),then G — E' =(V(G), E(G)\ E"). If W = {w}and E' = {xy},
then this notation is simplified to G — w and G — xy. Similarly, if x and y are
nonadjacent vertices of &, then G 4 xy is obtained from & by joining x to ».
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If x 1s a vertex of a graph &, then occasionally we wnte x € G instead of
x € V(G). The order of G is the number of vertices in G it 1s denoted by |G,
The same notation 15 used for the number of elements {cardinality) of a sez: | X|
denotes the number of elements of the set X. Thus |G} = [V(G)]. The size of &
is the number of edges in G; it 1s denoted by e((z). We write G" for an arbitrary
graph of order n. Similarly, G(n, m) denotes an arbitrary graph of order n and
size m.

Given disjoint subsets &/ and W of the vertex sct of a graph, we write £(U/, W)
for the set of U/ — W edges, that is, for the set of edges joming a vertex in {/ to
a vertex in W, Also, e(UU, W) = |E(U, W)| is the number of U/ — W edges. If
we wish to emphasize that our underlying graph is G, then we put £ (U, W) and
eq(U, W).

Twao graphs are isomorphic if there is a cormespondence between their vertex
sets that preserves adjacency. Thus G = (V, E) is isomorphic to G’ = (V/, E')
if there is a bijection ¢ : V — V' such that xy € E iff ¢(x)¢(y) € E’. Clearly,
isomorphic graphs have the same order and size. Usually we do not distinguish
between 1somorphic graphs, unless we consider graphs with a distinguished or
labelled set of vertices (for example, subgraphs of a given graph). In accordance
with this convention, if & and H are isomorphic graphs, then we write either
G = H or simply G = H.In Fig. 1.3 we show all graphs (up 1o isomorphism)
that have order at most 4 and size 3.

AN 1V Vg

FIGURE 1.3. Graphs of order at most 4 and size 3.

The size of a graph of order n is at least 0 and at most {3}. Clearly, for every
m,0 < m < (3), there is a graph G(n, m). A graph of order n and size () is
called a complete n-graph n-graph and is dencted by K,;; an empty n-graph £,
has order n and no edges. In K, every two vertices are adjacent, while in £, no
iwo vertices are adjacent. The graph K| = E| is said to be trivial.

As E, is rather close to the notation for the edge set of a graph, we frequently
use K, for the empty graph of order n, signifying that it is the complement of
the complete graph. In general, for a graph G = (V, E} the complement of G is
G = (v, V@ — E); thus, 1wo vertices are adjacent in G if and only if they are
not adjacent in G,

The set of vertices adjacent to a vertex x € G, the neighbourhood of x, is
denoted by I'(x). Occasionally one calls I'{(x) the open neighbourhood of x, and
I' U {x} the closed neighbourhood of x. Also, x ~ y means that the vertex x
is adjacent to the vertex y. Thus y € I'(x), x € T'(y), x ~ y,and y ~ x
are all equivalent: each of them means that xy is an edge. The degree of x 1s
d(x) = |T'(x)]. If we want to emphasize that the underlying graph is G, then we
write [ {x) and dg(x); a similar convention will be adopted for other functions
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depending on an underlying graph. Thus if x € H = G[W], then
Px)={ve H:xye E(H)}=Tgx)NW.

The minimal degree of the vertices of a graph G is denoted by §{G) and the
maximal degree bv A(G). A vertex of degree 0 is said to be an isolated vertex. If
(&) = A(G) = k, that is, every vertex of  has degree &, then G is said to be
k-regular or regular of degree k. A graph is regular if it 1s k-regular for some k. A
3-regular graph is said to be cubic.

If V(G) = {x1,x2,....%a}, then (d(x;})] is a degree sequence of G. Usually
we order the vertices in such a way that the degree sequence obtained in this way
1s monctone increasing or monotone decreasing, for example, §(G) = d(x)) <
-+« = d(xn) = A(G). Since each edge has two endvertices, the sum of the degrees
is exactly twice the number of edges:

"
Y dxi) = 2¢(G). (1
1
In particular, the sum of degrees is even:
"
Ed{x.-) =0 (mod?2). 2
1

This last observation is sometimes called the handshaking lemma, since it
expresses the fact that in any party the total number of hands shaken is even.
Equivalently, (2) states that the number of vertices of odd degree is even. We see
also from (1) that 8{G) < |2&(G)/n] and A(G) = [2e(G)/n]. Here | x| denotes
the greatest integer not greater than x and [x] = —[—x] is the smallest integer
not less than x.

A path is a graph P of the form

V{P) = {x0.x1.,...,x1}, E(P) = {xox1, x1x7, ..., xp— 101}

This path P is usually denoted by xpx) - - - x;. The vertices xp and x; are the
endvertices of P and ! = e(P) is the length of P. We say that P is a path from xg
to x, or an xo—x; path. Of course, P is also a path from x; to xp, or an x;—xp path.
Sometimes we wish to emphasize that P is considered to go from xg to x;, and we
then call xg the initial and x; the terminal vertex of P, A path with initial vertex x
is an x-path.

The term independent will be used in connection with vertices, edges, and paths
of a graph. A set of vertices (edges) is independent if no two elements of it are
adjacent; also, W C V{G) consists of independent vertices iff G[W] is an empty
graph. A set of paths-is independent if for any two paths each vertex belonging
to both paths is an endvertex of both. Thus Py, Py, ..., Py are independent x—y
paths iff V(P;) N V(P;} = {x, y} whenever i # j. The paths P; are also said to
be internally disjoint. There are several notions closely related to that of a path in
a graph. A walk W in a graph 1s an alternating sequence of vertices and ed.es,
58Y X0, €1, X1, €2, ..., €1, X] where &; = x;_1x;, 0 = { < l. In accordance with the
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terminology above, W is an xp—x; walk and is denoted by xpx| - - - xy; the length
of W is [. This walk W is called a trail if all its edges are distinct. Note that a path
is a walk with distinct vertices. A trail whose endvertices coincide (a closed traib)
is called a circuit. To be precise, a circuit is a closed trail without distinguished
endvertices and direction, so that, for example, two tmangles sharing a single
veriex give rise precisely fwo circuits with six edges. If a walk W = xox; -+ xy
is such that I > 3, xg = x;, and the vertices x;, 0 < i < [, are distinct from each
other and xg, then W 1s said to be a cycle. For simplicity this cycle is denoted by
x1x2 -+ x;. Note that the notation differs from that of a path since x| x; is also an
edge of this cycle. A cycle has neither a starting veriex nor a direction, so that
X|X2 oo X[, XIX[—] -+ X], X2X2 <+ xpx], and xpxj—y < - - X1X¢x0—1 - - - Xi41 all denote
the same cycle.

We frequently use the symbol Py to denote an arbitrary path of length € and
Cy to denote a cycle of length £. We call C3 a triangle, C4 a quadrilateral, Cs a
pentagon, and so on; also, C¢ is called an £-cyele (see Fig. 1.4). A cycle ts even
(odd) if its length is even (odd).

I e

FIGURE 1.4. The graphs K4, E3, P4, C4 and Cs.

It would be Iess confusing to use Pt and C*? for generic paths and cycles, and to
reserve P, Py, ..., C1, Cy, ... for particular paths and cycles. However, in crder
to conform to the widely accepted usage of subscripts, we also opt for subscripts,
although with some reluctance. It is to be hoped that this convention will not Iead
to any misunderstanding.

Before continuing with our definitions, let us present two results concerning
cycles, The first was noted by Veblen in [912.

Theorem } The edge set of a graph can be partitioned into cycles if, and only if,
every vertex has even degree.

Proof. The condition is clearly necessary, since if a graph s the union of some
edge disjoint cycles and isolated vertices, then a vertex contained in & cycles has
degree 2k.

Suppose that every vertex of a graph G has even degree and e(G) > 0. How
can we find a single cycle in G7 Let xpx) - - - x¢ be a path of maximal length £ in
G. Since xgx; € E(G), we have d(xg) > 2. But then xg has another neighbour y
in addition to x;; furthermore, we must have y = x; forsome i, 2 < { < £, since
otherwise yxox| - - - X¢ would be a path of length £ 4 1, Therefore, we have found
our cycle: xgxj - - - x;.

Having found one cycle, C|, say, all we have to do is to repeat the procedure
over and over again. To formalize this, set G| = G, so that C) is a cycle in G,
and define G3 = G — E(C)). Every vertex of G2 has_even degree, so either
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E{(G2) = @ or else G contains a cycle Cy. Continuing in this way, we find vertex
disjoint cycles Cr, Cy, . .., Cs such that E(G) = | JI_; E(C()). O

To prove the second result, a beautiful theorem of Mantel from 1907, we shali
use observation (1) and Cauchy’s inequality.

Theorem 2 Every graph of order n and size greater than |n* /4| contains a
triangle.

Proof. Let G be a tnangle-free graph of order n. Then I'(x) N '(y) = & for every
edge xy € £(G), so

d{x) +d{y) <n.
Summing these inequalities for all (G) edges xy, we find that
Y " d(x)? < ne(G). (3)

1elc
Now by (1) and Cauchy’s inequality,

2
(26(G))* = (Zd(x)) <n del)_
el

xels
Hence, by (3),
(2e(G))? < n’e(G),
implying that e(G) < n2/4, [

The bound in this result is easily seen to be best possible (see Exercise 4).
Mantel’s theorem was greatly extended by Turan in 1941: as we shall see in
Chapter 1V, this theorem of Turin is the starting point of extremal graph theory.

Given vertices x and y, their distance d(x, y) is the minimal length of an x-y
path. If there is no x—y path then d{x, y) = oo.

A graph is connected if for every pair {x, y} of disunct vertices there is a path
from x to y. Noete that a connected graph of order at least 2 cannot contain an
isolated vertex. A maximal connected subgraph is a component of the graph.
A cutvertex is a vertex whose deletion increases the number of components.
Similarly, an edge is a bridge if its deletion increases the number of components.
Thus an edge of a connected graph is a bridge if its deletion disconnects the graph.
A graph without any cycles is a forest, or an acyclic graph; a tree 1s a connected
forest. (See Fig. 1.5.) The relation of a tree to a forest sounds less absurd if we note
that a forest is a disjoint union of trees; in other words, a forest is a graph whose
every component 1§ a tree.

A graph (& is a bipartite graph with vertex classes V| and V3 if V(G) =
ViU Ve, VinVa = 0 and every edge joins a vertex of V| to a vertex of V3.
One also says that G has bipartition (V), V7). Similarly G is r-partite with vertex
classes V1, Va, ..., V; (orr-pattition (V|, ..., V;, )} if V(G) = VUV, U-- . UV,
ViNV; = @whenever 1 </ < j < r, and no edge joins two vertices in the same
class. The graphs in Fig. I.1 and Fig. 1.5 are bipartite. The symbol X' (ny, ..., n,)
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Yy

FIGURE L.5. A forest.

denotes a complete r-partite graph: it has n; vertices in the f th clags and contains
all edges joining vertices in distinct classes. For simplicity, we often write K ,
instead of K'(p, g) and K, (¢) instead of K (2, .. ., 1).

We shall write G U H = (V(GYU V(H), E(GYU E(H)}and ¥G for the union
of & disjoint copies of G. We obtain the join G + H from & U H by adding all
edges between G and H. Thus, for example, K33 = E3 + E3 = K2 + K3 and
K)=FE+.. . E=K,+...+ K.

There are several notions closely related to that of a graph, A hypergraph is a
pair (V, E} such that V N £ = @ and E is a subset of P(V), the power set of V,
that is the set of all subsets of V (see Fig. 1.6). In fact, there is a simple 1-to-1
correspondence between the class of hypergraphs and the class of certain bipartite
graphs. Given a hypergraph H = (V| E), the incidence graph of H is the hipartite

1

FIGURE [.6. The hypergraph of the Fano plane, the projective plane PG (2, 2) of seven
points and seven lines: the lines are 124, 235, 346, 457, 561, 672, and 713,

graph with vertex classes V and E in whichx € V is joined to a hyperedge S € E
iff x € § (see Fig. 1.7).

By definition a graph does not contain a loop, an “edge” joining a vertex Lo itself;
neither does it contain multiple edges, that is, several “edges” joining the same
two vertices. In a multigraph both multiple edges and multiple loops are allowed;
a loop is a special edge. When there is any danger of confusion, graphs are called
simple graphs. In this book the emphasis will be on graphs rather than multigraphs.
However, sometimes multigraphs are the natural context for our resuits, and it is
artificial to restrict ourselves to (simple} graphs. For example, Theorem 1 is valid
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1 713

235

N\

. .
124 235 346 457 561 672 713

4 457

FIGURE L.7. The drawings of the Heawood graph, the incidence graph of the Fano plane
in Fig. L.6.

for multigraphs, provided that a {oop is taken to contribute 2 to the degree of a
vertex, and we allow cycles of length 1 (loops) and length 2 (formed by two edges
joining the same vertices.

If the edges are ordered pairs of vertices, then we get the notions of a directed
graph and directed multigraph. An ordered pair (@, b} is said to be an edge directed

Jrom a to b, or an edge beginning at a and ending at b, and is denoted by ab or
simply ab. The notions defined for graphs are easily carried over to multigraphs,
directed graphs, and directed multigraphs, mutatis mutandis. Thus a {(directed)
trail in a directed multigraph is an alternating sequence of vertices and edges:
Xy, €1, X1, €3, - . ., €, x;, such that e; begins at x;_| and ends at x;. Also, a vertex
x of a directed graph has an outdegree and an indegree: the outdegree d™ (x} is
the number of edges starting at x, and the indegree d— (x) is the number of edges
ending at x.

An oriented graph is a directed graph obtained by orienting the edges of a
graph, that is, by giving the edge ab an orientation ab or ba. Thus an oriented

graph is a directed graph in which at most one of ab and ba occurs.

Note that Theorem ] has a naturai variant for directed multigraphs as well: the
edge set of a directed multigraph can be partitioned into (directed) cycles if and
only if each vertex has the same outdegree as indegree, that is, d¥ (x) = d~(x)
for every vertex x. To see the sufficiency of the condition, all we have to notice is
that, as before, if our graph has an edge, then it has a (directed) cycle as well.

1.2 Paths, Cycles, and Trees

With the concepts defined so far we can start proving some results about graphs.
Though these results are hardly more than simple observations, in keeping with
the style of the other chapters we shail call them theorems,
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Theorem 3 ' Let x be a vertex of a graph G and let W be the vertex set of a
component containing x. Then the following assertions hold.

i. W= {ye G: G contains an x—y path}.

ii., W={y e G :G contains an x—y trail}.

. W={ye G dx,y) <o}

iv. Foru,v € V = V(G) put uRv iff uv € E(G), and let R be the smallest
equivalence relation on V containing R. Then W is the equivalence class
of x. ()

This little result implies that every graph is the vertex disjoint union of its
components (equivalently, every vertex is contained in a unigue component), and
that an edge is a bridge ift it is not contained in a cycle.

Theorem 4 A graph is bipartite iff it does not contain an odd cycle.

Progf. Suppose ( is bipartite with-vertex classes V) and V2. Letx x2-. . x; be a
cycle in . We may assume that x; € V). Then x2 € V3, x3 € V), and so on:
x; € Vyiff { is odd. Since x; € V3, we find that { is even.

Suppose now that G does not contain an odd cycle. Since a graph is bipartite
iff each component of it is, we may assume that & is connected. Pick a vertex
x € V() and put V| = {y : d(x, y) 15 odd}, V2 = V \ V|. There is no edge
joining two vertices of the same class V;, since otherwise & would contain an odd
cycle. Hence G is bipartite. )

A bipartite graph with bipartition {V1, ¥z} has at most |V;]} V2| edges, so a
bipartite graph of order » has at most max; k(n -- k) = |72/4] edges, with the
maximum attained at the complete bipartite graph X|,/2),(n/2)- By Theorem 4,
L#2 /4] is also the maximal size of a graph of order n containing no odd cycles, In
fact, as we saw in Theorem 2, forbidding a single odd cycle, the triangle, restricts
the size just as much.

Theorem 5 A graph is a forest iff for every pair (x, v} of distinct vertices it
conlains at most one x—y path.

Proof. If xyxp---x; is & ¢ycle in a graph G, then xyx2 - - x; and xyx; are two
x1—x; paths in G.

Conversely, let Py = xpx| - --x;and P2 = xgy(y2 * - - kX be two distinct xo—x;
paths in a graph G. Leti + 1 be the minimal index for which x; 1 # yi+i and let
7 be the minimal index for which j > i and y; ) is a vertex of Py, say ¥+ = Xa.
Then X;iXj4+( - Xnyj¥j—1-- Yi+l isacyclein G. !

Theorem 6 The following assertions are equivalent for a graph G.

1. G isa tree
ii. G is @ minimal connected graph, that is, G is connected and if xy € E(G),

then G — xy is disconnected. [In ather words, G is connected and every edge
is @ bridge. |

i, G is a maximal acyclic graph; that is, G is acyclic and if x and y are
nonadjacent vertices of G, then G + xy contains a cycle.
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Proof Suppose G is a tree. For an edge xy € E(G), the graph G — xy cannot con-
tain an x—y parth xz|2z - - - £ ¥, since otherwise G contains the cycle xz(zz - - 24 y.
Hence & — xy is disconnecied; and so & is a mimimal connected graph. Simi-
larly, if x and y are nenadjacent vertices of the tree (& then G, contains a path
xz123---2¢ ¥, and so G + xy contains the cycle xz1z2---z3v. Hence G + xy
contains a cycle, and so G is a maximal acyclic graph.

Suppose next that & is a minimal connected graph. If G contains a eycle
xZ122 '+~ k¥, then & — xy Is still connected, since In any #—v walk in &7 the edge
xy can be replaced by the path xzz2 - - - Zx y. As this contradicis the minimality
of G, we conclude that G is acyclic and so it is a tree.

Suppose, finally, that & i1s a maximal acyclic graph. Is & connected? Yes, since
if x and y belong to different components, the addition of xy to G cannot create
a cycle xz7,22 - - Zx ¥, since otherwise the path xz(z7 - zzyisin G. Thus G is a
free. U

Corollary 7 Every connected graph contains a spanning tree, that is, a tree
containing every vertex of the graph.

Proof. Take a minimal connected spanning subgraph. |

There are several simple constructions of a spanning tree of a graph G; we
present twe of them. Pick a vertex x and put V; = {y € G : d(x,¥) = i},
i=0,1,....Note that if y; € V;, i > 0, and xzjzz - --zj-1¥; is an x—y, path
(whose existence is guaranteed by the definition of V), then d(x,z;)} = j for
every j, 0 < j < i In parucular, V; 5 3, and forevery y € Vi, i > 0, therc 15
a vertex ¥’ € V;_| joined to y. (Of course, this vertex vy 1s usually not unique,
but for each y # x we pick only one y'.} Let T be the subgraph of G with vertex
set V and edge set E(T) = {yy' : ¥y # x}. Then T is connecled, since every
y € V — {x} is joined {0 x by a path »y'y” - . - x. Furthermore, T is acyclic, since
if W is any subset of V and w is a vertex in W furthest from x, then w is joined
to at most one vertex in W. Thus T is a spanning tree.

The argument above shows that with k = max, d(x, y), we have V; # @ for
0<i<kandV = V(G) = |V, At this point it is difficult to resist the
remark that diamG = maxy y d(x, y) is called the digmeter of G and radG =
min, max, d(x, y) is the radius of G.

If we choose x € G with k = max, d(x, y) = rad, then the spanning tree T
also has radius k.

A slight variant of the above construction of T goes as follows, Pick x € G and
let T) be the subgraph of G with this single vertex x. Then T is a tree. Suppose
we have-constructed trees T) € I, ¢ --- C Ty € G, where T; has order {. If
k < n = |G| then by the connectedness of G there is a vertex y € V(G) \ V(T)
that is adjacent (in G) to a vertex z € 7. Let Ty be obtained from 7; by adding
ta it the vertex y and the edge yz. Then Ti4 is connected and as yz cannot be an
edge of a cycle in Tp4, 1t is also acyclic. Thus Tp 4 is also a tree, so the sequence
To € 71 C - - can be continued to T,,. This wree T, is then a spanning tree of G,
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The spanning trees constructed by either of the methods above have order n (of
course!) and size n — 1. In the first construction there is a 1-to-1 correspondence
between V — {x} and E£(T), given by y > yy’, and in the second construction
e(Ti} = k — 1 for each &, since e(T)) = 0 and 7;4| has one more edge than 7.
Since by Theorem 6 every tree has a unigue spanning (rec, namely itself, we have
arrived at the following result, observed by Listing in 1862,

Corollary 8 A trec of order n has size n — 1; a forest of order n with k components
has size n — k.

The first part of this corollary can be incorporated into several other character-
izations of trees. In particular, a graph of order » is a tree iff it is connected and
has size n - 1. The reader 1s invited to prove these characterizations (Exercises 5
and 6).

Corollary 9 A tree of order at least 2 contains af least 2 vertices of degree |.

FProof Letdy < dj €.+ < d, be the degree sequence of atree T of ordern > 2.
Since T is connected, 8(7") = d| > 1. Hence if T had at most one vertex of

degree 1, by (1) and Corollary 8 we would have
2n—2=2e(T)=}:d,-31+2(n—1}. 0
i

A well-known problem in optimization theory asks for a relatively easy way of
finding a spanning subgraph with a special property. Given a graph G = (V, E)
and a positive valued cost function f defined on the edges, f : E - R*, finda
connected spanning subgraph T = (V, E’) of ( for which

FTy= 3 fixy)

xveE!

is minimal. We call such a spanning subgraph T" an economical spanning subgraph.
One does not need much imagination to translate this into a “real life” problem.
Suppose certain villages in an area are to be joined to a water supply situated in
ane of the villages. The system of pipes is to consist of pipelines connecting the
water towers of two villages. For any two viliages we know how much 1t would
cost to build a pipeline connecting them, provided such a pipeline can be built at
all. How can we find an economical system of pipes? .

In order to reduce the second question to the above problem about graphs, let G
he the graph whose vertex set is the set of villages and in which xy 15 an edge iff it
is possible to build a pipeline joining x (¢ y; denote the cost of such a pipeline by
f(xy) (see Fig. 1.8). Then a system of pipes corresponds to a connected spanning
subgraph T of G. Since the system has to be economical, T is 2 minimal connected
spanning subgraph of G, that is, a spanning tree of G.

The connected spanning subgraph T we look for has to be a minimal connected
subgraph. since otherwise we could find an edge & whose dcletion would leave
T connected, and then 7 — & would be a more economical spanning subgraph.
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FIGURE L8. A graph with a function f : E —> R*; the number next to an edge xy is the
cost f{xy) of the edge.

Thus T is 2 spanning tree of G. Comresponding to the vanous characterizalions
and constructions of a spanning tree, we have several easy ways of finding an
economical spanning tree; we shall describe four of these methods.

(1) Given G and f : E(G) -» R™, we choose one of the cheapest edges of G,
that is, an edge o for which f () is minimal, Each subsequent edge will be chosen
from among the cheapest remaining edges of & with the only restriction that we
must not select all edges of any cycle; that is, the subgraph of G formed by the
selected edges is acyclic.

The process terminates when no edge can be added to the set £’ of edges
selected so far without creating a cycle. Then 71 = (V(G), E’) is a maximal
acyclic subgraph of G, so by Theorem 6(iii), it is a spanning tree of G.

(2) This method is based on the fact that it is foolish to use a costly edge
unless it is needed to ensure the connectedness of the subgraph. Thus ket us delete
one by one a costliest edge whose deletion does not disconnect the graph. By
Theorem 6(ii) the process ends in a spanning tree 7.

(3) Pick a vertex x; of G and select one of the least costly edges incident
with x[, say x xz2. Then choose one of the least costly edges of the form x;x,

where 1 <i < 2 and x ¢ {x1, x2}. Having found vertices x;, x7, ..., x; and an
edge x;x;,i < j, foreach vertex x; with j < k, select one of the least costly edges
of the form x;x, say Xixg+1, where 1 <{ < k and xg1 & {x1,x2,...,xx}. The

process terminates after we have selected n — 1 edges. Denote by 73 the spanning
tree given by these edges (see Fig. 1L.9).

FIGURE L.9. Three of the six economical spanning trees of the graph shown in Fig. [.8.
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(4) This method is applicable only if no two pipelines cost the same. The
advantage of the method is that every village can make its own decision and start
building a pipeline without bothering to find out what the other villages are going
to do. Of course, each village will start building the cheapest pipeline ending in
the village. It may happen that both village x and village y will build the pipeline
xy; in this case they meet in the middle and end up with a single pipeline from x
to y. Thus at the end of this stage some villages will be joined by pipelines but
the whole system of pipes need not be connected. At the next stage each group
of villages joined to each other by pipelines finds the cheapest pipeline going
to a village not in the group and begins to build that single pipeline. The same
procedure is repeated until a eonnected system is obtained. Clearly, the villages
will never build all the pipes of a cycle, so the final system of pipes will be a
spanning tree (see Fig. 1.10).

1+

FIGURE 1.10. The graph of Fig. 1.8 with a slightly altered cost function (0 < ¢ < %) and
its unigue economical spanning tree,

Theorem 10 Each of the four methods described above produces an ecanomical
spanning tree. If no two edges have the same cosi, then there is a unique economical

spanning tree,

Proof, Choose an economical spanning tree T of & that has as many edges n
common with 71 as possible, where T is a spanning tree constructed by the first
method.

Suppose that E(T;) # E(T). The edges of T have been selected one by one:
let xy be the first edge of T that is not an edge of T'. Then T contains a unique
x — y path, say P. This path P has at least one edge, say uv, that does not belong
to T1, since otherwise 77 would contain a cycle. When xy was selected as an edge
of T7, the edge wv was also a candidate. As xy was chosen and not «v, the edge
xy cannot be costlier then uw; thatis, f(xy) < f{uv). Then TV =T - uv + xy
is a spanning tree, and since f(T') = f(T) — f(uv) + flxy) < f(T), the new
tree T’ is an economical spanning tree of G. (Of course, this ineguality implies
that f(T"y = f(T)and f(xy) = f(uv).) This tree 7’ has more edges in common
with 7| than T, contradicting the choice of 7. Hence T = T, so0 T} is indeed an
econormical spanning tree.



14 I. Fundamenials

Siight variants of the proof above show that the spanning trees 7; and T3,
constructed by the second and third methods, are also economical, We invite the
reader to Turnish the details (Exercise 44),

Suppose now that no two edges have the same cost; that 1s, f(xy) # f(uv)
whenever xy # uv. Let T3 be the spanning tree consiructed by the fourth method
and let T be an economical spanning tree. Suppose that T # Ty, and let xy be
the first edge not in T that we select for Ty, The edge xy was selected, since it is
the least costly edge of G joining a vertex of a subtree F of T3 to a vertex outside
F. The x — y path in T has an edge «v joining a vertex of F to a vertex outside
F so f(xy) < f(uv). However, this is impossible, since T/ = T — uv + xy
is a spanning tree of G and f(T’) <« f(7). Hence T = T;. This shows that
74 15 indeed an economical spanning tree. Furthermore, since the spanning tree
constructed by the fourth method 1s unique, the economical spanning free is unique
if no two edges have the same cost. O

1.3 Hamilton Cycles and Euler Cireuits

The so-cailed travelling salesman problem greatly resembles the economical span-
ning trec problem discussed in the preceding section, but the similarity is only
superficial. A salesrnan is to make a tour of n cities, at the end of which he
has to return to the head office he starts from. The cost of the journey between
any two cities is known. The problem asks for an efficient algorithm for find-
ing a least expensive tour. (As we shall not deal with algorithmic probiems,
we leave the term “efficient” undefined; loosely speaking, an algorithm is ef-
ficient if the computing time is bounded by a poiynomial in the number of
vertices.) Though a considerable amount of work has been done on this prob-
lem, since its solution would have important practical applications, it is not
known whether or not there is an efficient algorithm for finding a least expensive
roufe.

In another version of the travelling salesman problem the route is required to be
a cycle, that is, the salesman is not allowed to visit the same city twice (except the
city of the head office, where he starts and ends his journey). A cycle containing
ail the vertices of a graph 1s said to be a Hamilton cycle of the graph. The origin of
this term is a game invented in 1857 by Sir William Rowan Hamilton based on the
construction of cycles containing all the vertices in the graph of the dodecahedron
(see Fig. I.11). A Hamilton path of a graph is a path containing all the vertices of
the graph. A graph containing a Hainilten cycle is said to be Hamiltonian.

In fact, Hamilton cycles and paths in special grapbs had been studied well before
Hamilton proposed his game. In particular, the puzzle of the knight's tour on a
chess board, thoroughly analysed by Euler in 1759, asks for a Hamilton cycle in
the graph whose vertices are the 64 squares of a chessboard and in which two
vertices are adjacent if a knight can jump from one square to the other. Fig. 1.12
shows two solutions of this puzzle.
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FIGURE I.11. A Hamilton cycie in the graph of the dodecahcdron.

FIGURE 1.12. Two tours of a knight on a chessboard,

If in the second, more restrictive, version of the travelling salesman problem
there are only two travel costs, I and 0o (expressing the impossibility of the
journey), then the question is whether or not the graph formed by the edges with
travel cost 1 contains a Hamilton cycle. Even this special case of the travelling
salesman problem is unsolved: no efficient algorithm is known for constructing a
Hamilton cycle, though neither is it known that there is no such algorithm.

If the travel cost between any two cities is the same, then our salesman has no
difficulty in finding a least expensive tour: any permutation of the n — | cities (the
nth city is that of the head office} will do. Revelling in his new found freedom,
our salesmar decides to connect duty and pleasure, and promises not to take the
same road xy again whilst there is a road #v he hasn’t seen yet. Can he keep his
promise? In order to plan a required sequence of journeys for our salesman, we
have to decompose K, into the union of some edge-disjoint Hamlton cycles. For
which values of # is this possible? Since K, is {(n — |)-regular and a Hamilton cycle
is 2-regular, a necessary condition is that n — 1 should be even, that is, » should be
odd. This necessary condition also follows from the fact that e(K) = %n(n -1

and a Hamilton cycle contains n edges, so X, has to be the union of %{n -~ 1)
Hamilton cycles.
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FIGURE I.]3. Three adge disjoint Hamilton paths in K.

Let us assume now that # is odd, n > 3. Deleting a vertex of K, we see that if
K is the union of -21-(11 — 1) Hamilton cycles then A, is the unton of %{n -1
Hamilton paths. (In fact, n — 1 has to be even if K,_ is the union of some
Hamilton paths, since ¢(K,-]) = %(n — 1)(n — 2) and a Hamilton path in K,
has n — 2 edges.) With the hint shown in Fig, I.13 the reader can show that for odd
values of n the graph K,,_ is indeed the union of %{n ~ 1) Hamuilton paths. In this
decomposition of X, into %(n — 1) Hamilton paths each vertex is the endvertex
of exactly one Hamilton path. (In fact, this hoids for every decomposition of K.
nto %(n — 1) edge-disjoint Hamilton paths, since each vertex x of K,,_ has odd
degree, so at least one Hamilton path has to end in x.) Consequently, if we add a
new vertex to K, | and extend each Hamilton path in K, to a Hamilton cycle in
K., then we obtain a decomposition of K, into %(n — 1) edge-disjoint Hamilton
cycles. Thus we have proved the following result.

Theorem 11 Forn > 3 the complete graph Ky, is decomposabie into edge disjoint
Hamilton cycles iff n is odd. For n > 2 the complete graph K, is decomposable
into edge-disjoint Hamilton paths iff n is even.

The resuit above shows thatif n > 3 is odd, then we can string together % (n—1)
edge disjoint cycles in K, to oblain a circuit containing all the edges of K. In
general, a circuit in a graph G containing all the edges is said to be an Euler circuit
of G. Similarly, a trail containing all edges is an Euler trail.

A graph is Eulerian if it has an Euler circuit. Euler circuits and trails are named
after Leonhard Euler, who, in 1736, characterized those graphs that contain them.
At the time Buler was a professor of mathematics in St. Petersburg, and was led to
the problem by the puzzle of the seven bridges on the Pregel (see Fig. 1.14} in the
ancient Prussian city Kénigsberg (birthplace and home of Kant and seat of a great
CGerman untversity, which was taken over by the USSR and renamed Kaliningrad
in 1946; since the collapse of the Soviet Union it has belonged to Russia). The
good burghers of Kénigsberg wondered whether it was possible to plan a walk in
such a way that each bridge would be crossed once and only once? It is clear that
such a walk is possible iff the graph (or multigraph) in Fig. 1.15 has an Euler trail.
Here is then Buler’s theorem inspired by the puzzle of the bridges of Konigsberg.

Theorem 12 A non-trivial connected graph has an Euler circuit iff each vertex
has even degree.
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FIGURE L15. A graph of the Konigsberg bridges and its simpler representation by a
multigraph.

A connected graph has an Euler trail from a vertex x to a vertex y # x iff x
and y are the only vertices of odd degree,

Proof. The conditions are clearly necessary. For example, if G has an Buler circuit
X1X2 -+ - Xm, and x occurs k times in the sequence x1, X2, . .., X, then d(x) = 2%.
We prove the sufficiency of the first condition by induction on the number
of edges. If there are no edges, there is nothing to prove, so we proceed to the
induction step. .

Let G be a non-trivial connected graph in which each vertex has even degree.
Since ¢(G) > 1, we find that §(G) = 2, so by Corollary 9, G contains a cycle. Let
C be a circuit in G with the maximal number of edges. Suppose C is not Eulerian,
As G is connected, C contains a vertex x that is in a non-trivial component 4
of G — E(C). Every vertex of H has even degree in H, so by the induction
hypothesis, H contains an Euler circuit D. The circuits C and D (see Fig. L.16) are
edge-disjoint and have a vertex in common, so they can be concatenated to form
a circuit with more edges than C. As this contradicts the maximality of e(C), the
circuit C is Eulerian.

Suppose now that G is connected and x and y are the only vertices of odd
degree. Let G* be obtained from G by adding to it a vertex # together with the
edges ux and uy. Then, by the first part, G* has an Euler circuit C*. Clearly,
C* — u is an Euler trail from x o y. O

- —



18 . Fundamentals

FIGURE 1.16. The circuits C and .

The alert reader has no doubl noticed that Theorem 12 is practically the same as
Theorem |: every Euler circuit is a union of edge-disjoint cycles, and if a connected
graph is a unicn of edge-disjoint cycles, then these cycles can be concatenated to
form an Euler circuit. Like Theorem 1, Theorem 12 holds for multigraphs as well:
in fact, the natural models that arise (as in Fig. 1.}5) arc frequently multigraphs.

It is also very easy to guess the variant of Theorem 12 for directed multigraphs:
a directed multigraph has a (directed) Euler circuit if and only if the underlying
multigraph is connected and each vertex has the same outdegree as indegree. To
see this, we proceed as before, but take care to concatenate the circuits in the right
(that is, permissible) direction,

There is a beautiful connection between the set of Euler circurts and certain
sets of oriented spanning trees. In order to state this connection prectsely, let
G be a directed multigraph with vertex set V(G) = {v;,..., vy}, such that
dt(v;) = d (v} for every i. We know that if & has a (directed) Euler circuit, then
these conditions are satisfied. Let £ be the set of {directed) Euler circuits, and et &
be the set of (directed) Euler trails starting and ending in v;. Since each Euler circuit
passes through v; exactly d*(v;) = d™(v;) imes, |&| = dT(V)IE] = d~ (¥;))E].

We say that a spanning tree is oriented towards v;, \tS root, if for every j # {
the unique path from v; to v; is oriented towards v,. Let 7; be the set of spanning
trees oriented towards v,

Qur aim is to define a map ¢ : & — 7, but for notational simplicity we take
i = 1. Given an Euler trail § ¢ £, for j = 2,..., nr, let ¢; be the edgc through
which § exits from v; for the last time, never to return to v;. In particular, ¢; is not
a loop but an edge from v; to another vertex. Also, if e; goes from v; to v; then on
§ the edge ¢; precedes ¢;.

Let T be the directed graph with vertices vy, ..., v, and edges ea, ..., ;. We
claim that T € 7. To prove this, we have to show that (F} T is atree, and (2} T
1s oriented towards vy.

Suppose first that T contains a cycle C. Since d;f(ul) = 0 and d;f(uJ,) = 1 for
i > 1, it follows that C is an oriented cycle that does not contain vy. But if e; iy
the last edge of S on C, going from v; to vy, say, then § geis back tc v, after
having left it for the last time (through ey, ). This contradiction shows that T is

indeed a tree.
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Is T oriented towards v;? Suppose T contains the path vgvg_ | - - - v1. Then the
edge vyv, is ey, since there is no ;. What about vav,? It is either €3 or e3. But 1t
is not ez, so it s e3. Continuing in this way, we find that our path vyvg_y -- - v| 18
indeed oriented towards v|. Hence T° € T, as claimed.

To getourmap ¢t : £1 — Ty, set ¢ (S) = T.Now, for T € Ty, the seté,_i(T)
is easily described. Indeed, to construct an Euler trail § € &; with ¢,(8) = T,
one has to proceed as follows. Start at v through any edge; also, having returned
to vy, leave it by an unused edge, if there 1s any; otherwise; terminate the trail.
More importantly, having arrived in v;, j > 1, leave v; by an unused edge that
is different from ¢;, if there are any such edges; otherwise, leave v; by e;. Since
d*(v;) = d™(vy) for every j, this process does give us an Euler trail § € £ with
@1 (S) = T. Consequently,

o (D =d ! ] @ ) — D,
F=2

and so

€] = 1T ] [ () = DL

i=I
With this, we have proved a theorem of de Bruijn, van Aardenne-Ehrenfest, Smith,
and Tutte; the result is occasionally called the BEST theorem.

Theorem 13 Let G be a directed multigraph with vertexset V(G) = (v, ..., vn).
such thatd™(v;) = d~(v;) foreveryi. Denote by s(G) the number of Euler circuits
of G, and by 1; () the number of spanning trees oriented towards i. Then

$(G) = t(G) [ @ wp - 1!
j=1

foreveryi, | <i <n. Inparticular, t;(G) = -- - = 1,(G).

Note that the conditions of Theorem 13 are satisfied if G is Eulerian, that 1s,
has an Euler circuit.

Concerning the puzzle of the seven bridges on the Pregel, Theorem 12 tells
us that there is no suitable tour, since the associated graph in Fig. I.15 has four
vertices of odd degree (and, needless 10 say, so has the associated multigraph: each
of its vertices has odd degree).

The plan of the corridors of an exhibition is also easily wumed into a graph: an
edge corresponds to a corridor and a vertex to the conjunction of several corridors.
If the entrance and exit are the same, a visitor can walk along every corridor exactly
once iff the corresponding graph has an Eulerian circuit. In general, a visitor must
have a plan in order to achicvc this: he cannot just walk through any new corridor
he happens to come to. However, in a well planned (!) exhibition a visitor would
be certain to see all the exhibits, provided that he avoided going along the same
corridor twice and continied his walk until there were no new exhibits ahead of
him. The graph of such an exhibition is said io he randomily Eulerian from the
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x L

FIGURE 1.17. The graph G is randomly Eulerian from x; H is randomly Eulerian from
both u and v; the multigraph M is randomly Eulerian from w.

vertex corresponding to the entrance (which is also the exit). See Fig. .17 for three
examples. Randomly Eulerian graphs are also easily characterized (Exercises 50—
52).

To conclude this section, let us note & result from the first half of this
century, concerning two-way infinite Euler trails in infinite graphs. These
are the patural analogucs of Euler circuits in finite graphs: given an infinite
graph G = (V, E}, a wo-way infinite Euler trail in G is a two-way in-
finite sequence ---x_ax_jxpxixz--- of vertices of G such that x; ~ =xjy)
for all i € Z and each edge of G occurs precisely once in the sequence

ces X_2X_1, X—1X0, X0X1,X1X2, ---. [n 1936, Erdds, Griinwald and Weiszfeld
proved the following analogue of Theorem 12.

Theorem 14 Let G = (V, E) be a connected multigraph with E infinite. Then
G has a two-way infinite Euler trail if and only if the following conditions are
sanisfied:

(i) E is countable,

(ii) every degree is even or infinite,

(iii) for every subgraph G' C G, G' = (V, E'), with E' finite, the graph
G — E’ has at most two infinite components; furthermore, if dg:(x) is even for
every x € V, then G — E’ has precisely one infinite component.

Although the proof is not too difficult, we do not give it here. The reader is
encouraged to do Exercises 54-56, which are related to this resolt.

14 Planar Graphs

The graph of the corridors of an exhibition is a planar graph: it can be drawn in the
plane in such a way that no two edges intersect, Putting it a little more rigorously, it
is possible to represent it by a drawing in the plane in which the vertices correspond
to distinct points and the edges to simple Jordan curves connecting the points of
its endvertices. In this drawing every two curves are either disjoint or meet only
at a common endpoint. The above representation of a graph is said to be a plane
graph.

There is a simple way of assoclating a topological space with a graph, which
leads to another definition of planarity, trivially equivalent to the one given above.
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Let p1, pa, . .. be distinct points in R?, the 3-dimensional Euclidean space, such
that every plane in R? contains at most 3 of these points. Write {p;, p;) for the
straight line segment with endpoints p; and p; (open or closed, as you like), Given
agraph G = (V, E), V = (x1, x2, ..., xp), the topological space

RG) = | Jips, py) s mixj € EYO| Jip) ¢ B3
l

is said 1o be a realization of G. A graph G is planar if R(G) is homeomorphic to
a subset of R?, the plane.

Let us make some more remarks in connection with R{G). A graph i 15 said to
be a subdivision of a graph G, or a topological G graph if H is obtained from G by
subdividing some of the edges, that is, by replacing the edges by paths having at
most their endvertices in common. We shall write TG for a topological G graph.
Thus TG denotes any member of a rather large family of graphs; for example,
T K7 is an arbitrary cycle, and 7 Cg is an arbitrary cycle of length at least 8. It is
clear that for any graph G the spaces R((G) and R(T ) are homeomorphic. We
shall say that a graph G is homeomorphic to a graph H if R(G) 1s homeomorphic
to R{H) or, equivalently, G and H have isomorphic subdivisions.

At first sight one may think that in the study of planar graphs one might run
into topological difficulties. This is certainly not the case. It is easily seen that
the Jordan curves corresponding to the edges can be assumed to be palygoens,
More precisely, every plane graph is homotopic to a plane graph representing the
same graph, in which the Jordan curves are piecewise linear. Indeed, given a plane
graph, let § > 0 be less than half the mimmal distance between two vertices,
For each vertex a place a closed disc D, of radius & about a. Denote by J, the
curve corresponding to an edge @ = ab and let a4 be the last point of J, in Dy
when going from a to k. Denote by J,, the part of J, from a4 t0 . Let £ > 0
be such that if & # B then J, and J; are at a distance greater than 3¢, By the
uniform continuity of a Jordan curve, each J, can be approximated within £ by
a polygon J; from ag to b. To get the required piecewise linear representation
of the original grapb simply replace each J, by the polygon obtained from J, by
extending it in both directions by the segments aa, and b, b (see Fig. L.18).

FIGURE 1.18. Constructing a piecewise linear representation.
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A less pedestrian argument shows that every planar graph has a straight line
representation: it can be drawn in the plane in such a way that the edges are
actually straight line segments (Exercise 63%).

If we omit the vertices and edges of a plane graph G from the plane, the
remainder falls into connected components, called faces. Clearly, each plane graph
has exactly one unbounded face. The boundary of a face is the set of edges in its
closure. Since a cycle {that is a simple closed polygon) separates the points of the
plane into two components, each edge of a cycle is in the boundary of two faces. A
plane graph together with the set of faces it determines is called a plane map. The
faces of a plane map are usually called countries. Two countrics are neighbouring
if their boundaries have an edge in common.

If we draw the graph of a convex polyhedron in the plane, then the faces of
the polyhedron clearly correspond to the faces of the plane graph. This leads
us to another contribution of Leonhard Euler to graph theory, namely Euler’s
polyhedron theorem oc simply Euler’s formula.

Theorem 15 If a connected plane graph G has n vertices, m edges, and f faces,
then

n—m+ f=2

Proof, Let us apply induction on the number of faces. If f = 1, then G does not
contain a cycle, so it is a tree, and the result holds by Corollary 8.

Suppose now that £ > 1 and the result holds for smaller values of f. Let ab
be an edge in a cycle of G. Since a cycle scparates the plane, the edge ab is in
the boundary of two faces, say § and T, Omitting ab, in the new plane graph G’
the fuces S and T join up to form a new face, while all other faces of G remain
unchanged. Thus if ', m’ and £’ are the parameters of G/, thenn’ = n, m’ = m~1
and f'= f — 1.Hencen—m+ f=n'—m' + f' = 2. O

Let G be a connected plane graph with » vertices, m edges, and [ faces;

furthermore, denote by f; the number of faces having exactly i edges in their
boundaries. Clearly,

D2 fi=f (4)

and if G has no bridge, then
> ify=2m, 5

1

since every edge is in the boundary of two faces. Relations (4), (5), and Euler’s
formula give an upper bound for the number of edges of a planar graph of order n.
This bound can be improved if the girth of the graph, that is the number of edges
in a shortest cycle, is large. (The girth of an acyclic graph is defined to be oc.)

Theorem 16 A planar graph of order n > 3 has at most 3n — 6 edges. Further-
maore, a planar graph of order n and girth at least g, 3 < g < ©0, has size at
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maost

max{ g n—2), n— l] .
g—2

Proof. The first assertion is the case g = 3 of the second, so it suffices to prove
the second assertion. Let & be a planar graph of order n, size m, and girth at least
2.1fn < g— 1, then G is acyclic, som < n — 1. Assume now that n > g and the
assertion holds for smaller values of n. We may assume without loss of generality
that G is connected. If ab is a bridge then G — ab is the union of two vertex
disjoint subgraphs, say G and Ga. Putting n; = |G|, m; = ¢(G;),i = 1,2, by
induction we find that

m=m;+m+1 smax{gfz(m —2},n;~1]
4
+rnax[ (nz—-2}.n2-—l}+1
g—2
g
Emax[ (n—Z}.n—I].
g—2

On the other hand, if G is bridgeless, (4) and (5} imply that

=3 ifi=) if zg) fi=¢gf.

i i>g
Hence, by Euler’s formula,

2
m+2=n+f<n+-r,
8

and so

g
5n =2} : 0

m=

Theorem 16 can often be used to show that certain graphs are nonplanar. Thos
K5, the complete graph order 5, is nonplanar since e(Ks) = 10 > 3(5 - 2).
Another nonplanar graph is K3 3, the complete 3 by 3 bipartite graph, also called
the Thomsen graph, since its girth is 4 and e(K33) = 9 > (4/(4 - 2)}(6 — 2).
The nonplanarity of K3 3 implies that it is impossible to join each of 3 houses to
each of 3 wells by non-crossing paths, as demanded by a well-known puzzle (see

FIGURE 1.19. The Thomsen graph: three houses and three weils,
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FIGURE 1.20. & contains a T K's and f contains a T K1 3.

if a graph G is nonplanar, then so is every topological G graph and every graph
containing a topological G graph. Thus the graphs in Fig. 1.20 are nonpianar, since
they contain T X5 and T K33, respectively.

It is somewhat surprising that the converse of the trivial remarks above is also
true: this beautiful result was proved by Kuratowski in 1930,

Theorem 17 A graph is planar iff it does not contain a subdivision of K5 or K1 3.
O

A variant of Theorem 17 characterizes planar graphs in terms of forbidden
minors, rather than forbidden topological subgraphs. At first sight, the concept of
a minor may seem a little artificial, but it is, in fact, the right notion related to
drawing graphs on surfaces.

Given an edge xy of a graph G, the graph G/xy is obtained from G by con-
tracting the edge xy; that is, to get G/xy we identify the vertices x and y and
remove all resulting loops and duplicate edges. A graph  obtained by a sequence
of edge-contractions is said to be a contraction of G. A graph H is a minor of
G, written G > H or H < G, if it is a subgraph of a graph obtained from G
by a sequence of edge-contractions (see Fig. 1.21), 1t is easily checked that if
V(H) = {y1,y2...., %!} then H < G if and only if G has vertex-disjoint con-
nected subgraphs G1, Ga, ..., Gi such that if y;¥; € E(H), then G has an edge
from G; to G; (see Exercise 887).

In 1937, Wagner proved the following analogue of Kuratowski’s theorem.

Theorem 18 A graph is planar iff it contains neither K5 nor K3 3 as a minor. O

G Gixy H

FIGURE 1.21. A graph G, its contraction G /xy and a minor H.
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It is easy to see that Theorems 17 and [8 are equivalent. Indeed, if G D TH,
then, rather trivially, G > H. In fact, if / has maximal degree at most 3, then
G DO THIf G » H. In particular, G O TK33 if and enly if G > H. Also, if
G > K5 then either &G > T K5 or G O T K3 3. The reader is encouraged to fill in
the details (see Exercise 91).

L5 An Application of Euler Trails to Algebra

To conclude this chapter we shall show that even simiple notions like the ones
presented so far may be of use in proving important resufts. The result we are
going to prove is the fundamental theorem of Amitsur and Levitzki on polynomial
identities. The commutator of two elementsa and b of aring 8'is [a, &) = ab —ba.
Similarly, ifa; € 5, 1 < <k, we write

[a1,a2,...,ak) = ngn{a}ﬂalaaz ~lgks
T

where the summation is over all permutations o of the integers 1,2, ..., k, and
sgn(o) is the sign of o. For example, [ay, a2, @3] = a1a:a3 — ayjazaz +azaiaz —
ata) +maia) —arayas. ilay, az, ..., a4} = Oforalla; € 5,1 <t <k, then§
is said to satisfy the kth polynomial identity. The theorem of Amitsur and Levitzki
states that the ring Mi(R) of k by k matrices with entries in a commutative ring

R satisfies the (2)kth polynomial identity.

Theorem 19 Let R be a commutative ring and let the matrices A1, Ao, ..., An
be in My(R). Then [A1, Az, ..., Az] =0,

Proof. We shall deduce the result from a lemma about Euler trails in directed
multigraphs. Let G be a directed multigraph of order # with edges e1, €2, . . ., €m.
Thus to each edge ¢; we associate an ordered pair of not necessarily distinct
vertices: the initial vertex of ¢; and the terminal vertex of ¢;. Every (directed)
Euler trail P is readily identified with a permutation of {1, 2, . . ., m}; define (P}
to be the sign of this permutation. Given not necessarily distinct vertices x, y of
G, put £(G; x, ¥) = ¥ p £(P), where the summation is over ali Euler trails from

xtoy.
Lemma 20 [fm > 2n then s(é;x,y} =10,

Before proving this lemma, let us see how it implies Theorem 19. Write Ej; €
M, (R) for the mairix whose only non-zero entry is a 1 in the ith row and jth
column. Since [A1, A2, ..., A2,)is R-linearineach variableand [E;; 1 1 <4, ] <
n} is a basis of M, (R) as an R-module, it suffices to prove Theorem 19 when A, =
E;, ;, for each k. Assuming that this is the case, let G be the directed mulrigraph
with vertex set {1, 2, . . ., n} whose set of directed edgesis {i1 J1. i2j2. . . .. i2n J2n).
By the definition of matrix multiplication, a product A¢yAg2- - Ag2a is Ejj if
the corresponding sequence of edges is a (directed) Buler trail from / to j and
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otherwise it is 0. Hence [A1, A2, ..., Anl} = Z:,_;- 5(5; i, NEj. By Lemma 20
each summand is 0, so the sum is also 0, and Theorem 19 is proved. O

Proof of Lemma 20. We may clearly assume that G has no isolated vertices. Let G’
be obtained from G by addmg to it a vertex x’, a path of length m + 1 — 2 from x”
to x, and an edge from y to x’ (see Fig. 1.22). Then G has ordern+ (m+ 1 —2n) =
m+1—nandsizem+m+1 —2n+1=2(m +1 — n). Furthermore, it is easily
checked that [£(G; x, ¥} = [e(G’; x/, x")|. Hence it suffices to prove the theorem
whenm = 2nandx = y.

x ¥
FIGURE [.22. The construction of G'.

Given a vertex z, recall that 4+(z) is the number of edges starting at z and
recall that d~(z) is the number of edges ending at z. Call d(z) = d*(z) + d7(z)
the degree of z and £(z) = d¥(z) — 47(z) the flux at z. We may assume that G
contains an Buler circuit (an Euler trail from x to x; otherwise, there is nothing to
prove. In this case, each vertex has 0 flux, even degree, and the degree is at least
2. Furthermore, we may assume that there is no double edge (and so no double
loop), for otherwise the assertion is trivial.

In order to prove the theorem in the case m = 2n and x = y we apply induction
on n. The case n = 1 being trivial, we turn to the induction step. We shall
distinguish three cases.

(i) There is a vertex b # x of degree 2, say e,_1 = abends at b and &, = bc
starts at b. If @ = ¢, the assertion follows by applying the induction hypothesis
to G — b. If a # ¢, then without loss of generality x # ¢. Let ey = ccy,
€2 = €C2,..., €t = ccy be the edges starting al c. For eachi, ] < <, construct
a graph G, from G-b by ommmg e; and adding e; = ac; (see Fig. [.23). Then
E(G. X, x)= Zf:] E(Gn X, X) =

(i) There is a loop at a vertex b # x of degree 4. Let e, be the loop at b and
let em—2 = ab and e,,_1 = bc be the other edges at b. Let G be obtained from

el

FIGURE 1.23. The construction of G1.
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G—-b by adding to it an edge e, , = ac. Then (G x, X)= e(Go: x, x}, which
is O by the induction hypothesis.

(ii1y The cases (i) and (ii) do not apply. Since m = 2n = %ZT d; and each
vertex distinct from x has degree at least 4, either each vertex has degree 4 or else
d(x) = 2 and there 1s a vertex of degree 6 and all other vertices have degree 4. It is
easily checked (Exercise 93) that there are two adjacent vertices of degree 4, say
a and b, since otherwise (ii) holds. Now we shall apply ovr fourth and final graph
transformation. This is more complicated than the previous ones, since we shall
construct two pairs of essentially different graphs from G the graphs G, Gz, He.
and Hy shown in Fig. 1.24. Each Euler trail from x to x in Gi is transformed to an
Euler trail in exactly one of G| and G. However, the graphs G| and G2 comtain
some spurious Euler trails: Euler trails that do not come from Euler trails in G. As
these spurious Euler trails are Euler trails in exactly one of H5 and Hy and they
exhaust all the Euler trails of H(, and H—;, we find that

o (Bix.x) = 2o (Grxx) = e (inx).

The first two terms are 0 because of (i), and the second two terms are 0 because
of (i), so £((+; x, x} = 0, completing the proof of Lemma 20. O

A\l .y

FIGURE 1.24. The graphs G, G1, G2, Hs and H;.
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The operations G +> Gy, G2, He, H7 are somewhat similar to various graph

operations used to construct graph polynomials; a simple example is that of the
chromatic polynomial, to be studied in Chapter V.

1.6 Exercises

1.
2.

Prove that either a graph or its camplement is connected.

{1} Show that every graph contains two vertices of equal degree.
(i1) Determine all graphs with one pair of vertices of equal degree.

3.7 Let a be a vertex of a connected graph . Show that G is bipartite if and

only if d(a, b) # d(a, c) for every edge bc.

Prove that the bound in Mante!l’s theorem (Theorem 2) is best possible: even
more, for every n > 1, the complete bipartite graph X, /2),1»/2] is the unique
triangle-free graph of order » and maximal size.

Show that the following conditions are equivalent for a graph G of size at
least 2:
{1} G is connected and has no cutvertex,
(ii) any two vertices are on a cycle,
(iii) any two edges are on a cycle,
(iv) for any three vertices x, y and z, there is an x-z path containing y.

Let  be a graph of order n. Prove the equivalence of the following assertions.
{1) G isatree.

(ii) G is connected and has at most n — [ edges.

(iit) & is acyclic and has at least n — 1 edges.

{iv) G=K, forn= 1,2, and if n > 3, then G # K, and the addition of an

edge to G produces exactly one new cycle.

7.~ Show that every connected graphr G of order at ieast two contains vertices x

8.

10.

and y such that both G — x and G — y are connected.

In the puzzle of jealous husbands, three husbands and their wives wish to
cross a river, They have only one small boat, which can take two persons
at a time. No husband ever allows his wife to be in the company of other
men unless he is also present. Draw the graph of permissible distributions of
people and advise the travelers how they could cross the river.

In the puzzle of the man and his dog, goar, and (large) cabbage, a man
wishes to cross the river with his dog, goat, and (large) cabbage, but the small
boat he has access to can take only one of his possessions besides himself.
To complicate matters, for obvious reasons, the goat cannot be left in the
company of the dog or the cabbage, unless the man is also present. Draw the
very simple bipartite graph of permissible situations, and advise the man how

he should proceed.

Show that in an infinite graph G with countably many edges there exists a
set of cycles and two-way infinite paths such that each edge of & belongs to
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exactly one of these iff for every X C V(G) either there are infinitely many
edges joining X to V(G) — X, orelse ¢(X, V(G) — X) is even.

11. Show that every graph (4 has a bipartition V(G) = UUW suchthate({f, W) >
3e(G). Show aiso that if G is cubic of order n, then we may demand that
e(U, W) > n.

12. Show that for every graph & = (V, E) there is a partition V = V| U V5 such
that

1
e(GIV1)) + e(GLV2D) = 5e(G).
Show also that one may also demand that each V; span at most a third of the
edges, that is, e(G[V;]) < %e(G} fori=1,2.
13. Show that every graph with average degree 4 contains a subgraph of minimal
degree at least d /2.

i4. Show that every graph with average degree d contains a bipartite subgraph of
average degree at least 4 /2.

15. Show that every graph of order n and average degree J contains a subgraph
of order greater than n/2 and maximal degree at most d.

16. Let G be a graph of average degree d > 0. Show that for some vertex x of
G the average of the degrees of the neighbours of x is at least 4. What if we
replace “at least™ by *“at most™?

17. Showthatd) < dj <. < d), is the degree sequence of atree iff 4| = [ and
Yldi=2n-12

18. Show that every integer sequence d; < dy < -+ < d, with d; > | and
31 di = 2n—2k,k > 1,is the degree sequence of a forest with £ components.

19. Characterize the degree sequences of forests!
20, Show that there is a unigue graph with degree sequence 2,2, ...,2,1, 1.

21. Show that for every degree sequence (d;)],1 <d <--- <dy <n— 1, there
are at most (n — 2)! trees on {x), ..., X}, with d(x;} = d; for every i. Show
also that, for every n there is a unique degree sequence on which this upper
bound is attained. :

227 Show that there is a unique sequence (d;)], 1 < dj < .-+ < dy, for which
there is only one tree on {x1, ..., x,} with d(x;} = d; forevery i.

23. Show that if n is large enough, then for every sequence 1 < d; < --- < dp <
n—2,with 3\, di = 2n — 2, there are at least n — 2 trees on [x|, ..., Xu}
with 4(x;) = d; forevery i.

24. Prove that a regular bipartite graph of degree at least 2 does not have a bridge.

25. Let V(G) = Uf=, Vi be a partition of the vertex set of a connected graph
G into k > 2 nonempty subsets such that each G[V;] is connected. Prove
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26.

27.
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that there are indices ! < < j < ksuchthaiboth G — V; and G — V; are
connected.

~ Let & be a connected graph of order # and let 1 < £ < n. Show that &

contains a connected subgraph of order k.

Let A = {A), A3, ..., A,} be a family of n > 1 distinct subsets of a set X
with  elements. Define a graph G with veriex set A in which A; A; is an edge
iff there exists an x € X such that A;AA; == {x}. Label the edge 4;A; with
x.For H C G let Lab{ H) be the set of labels used for edges of H. Prove that
there is a forest F ¢ G such that Lab{F) = Lab{G).

(Exercise 27 contd.) Deduce that there is an element x € X such that the sets
A] —{x}, A2 — {x}, ..., Ay — {x] are all distinct. Show that this need not

hold forany nif |Aj=n+ 1.

29.% (Exercise 27 contd.) Describe aff familtes A = {A(, A3, ..., A} of n + |

30.

distinct subsets of X, jX| = n. such that for every x € X there are /, J,
l<i<j<n+1,withA; —{r}=A; -{x).

A tournament is a complete oriented graph, that 1s, a directed graph in which
for any two distinct vertices x and y either there is an edge from x to y or there
is an edge from y to x, but not both. Prove that every tournament contains a
(directed) Hamilton path.

31.~ Prove that the radius and diameter of a graph satisfy the inequalities

radG < diam(G < 2radés,

and both inequalities are best possible.

32.” Givend > 1, determine

33.

34,

35.

max min{diam7 : T is a spanning tree of &},
ciamii=

Let 2 and b be vertices of a tree 7' at maximal distance d{a, b) = 2r, and let
¢ be the vertex on the unigue g — b path at distance r from @ and b. Show that
¢ is the unique vertex of T withd(c, x) <r foreveryx € T.

Deduce from the proof of Theorem 1 the following strengthening of the
assertion. Let G be a triangle-free graph of order n. Then e(G) < {n?/4},
with equality iff G is a complete bipartite graph Ky ;21,127

Denote by «(G) the maximal cardinality of a set of independent verticesin G.
Prove that if G does not contain a triangle, then A(G) < () and deduce
that e(G) < $na(G), where n = |G,

36.~ Show that if for every vertex z of a directed graph there is an edge starting at

37.

z (that is, d*(z) > 0) then the graph contains a {directed) cycle.

A grading of a directed graph é_.= (v, E)isa partitioning of V into sets
Vi, Va,..., Vi suchthatif xy € E, thenx € V; and y € V. for some i.
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Given a directed graph G and a (nondirected) path P = xpx) - - - x;, denote by
v(xp, X5; P) the number of edges I;‘;f:_ } minus the number of edges xj:xj .
Prove that G has a grading iff v(xg, x5; P} is independent of P for every pair
of vertices xp, Xz.

Is it true that, for every n > 2, the complete graph X, is the union of cycles
Ci, C4,...,Ch_), an edge, and a path of length 27

Show that a complete graph K, has a decomposition into edge-disjoint paths
of length 2 if and only if n = 0 or 1 (mod 4).

Show that for n > 2 the complete graph K, is the union of paths of distinct
lengths.

A Steiner triple system of order n is a decomposition of a complete graph X,
into edge disjoint triangles. Equivalently, a Steiner triple system on a set X is
a set system .A ¢ X@ such that every pair £ € X@ is contained in precisely
one triple A € A; the number of elements of the ground set X is the order
of .A. Show that if there is a Steiner triple system of order n thenn = 1 or 3

{mod 6).

Show that up to relabelling, there is a unique Steiner triple system of order 7,
namely the Fano plane in Fig. L.6.

Let A ¢ X® and B ¢ ¥ be Steiner triple systems. Let C < (X x ¥)¥¥
consist of all triples of the form

(D {(x1, ¥), (x2, ¥), (3, P} with A = {xp, 2, x3} € Aand y € ¥,

) {(x, y1), (x, ¥2), (x, ¥3)} with B = {y1, y2, y3} € Band x € X,

(3 {(x1, y1), (a2, y2), (23, ¥3)) with A = {x,x2,x3} € Aand B =

{y1. ¥2, y3} € B.
[Note that in (3) each pair of triples (A, B) gives rise to precisely six different

triples.] Show that C, the product of A and B, is a Steiner triple system on
X x ¥. Deduce that there are infinitely many Steiper trple systems of order

congruent to I (mod 6}, and likewise for 3 (mod 6).

Complete the proof of Theorem 10 by showing in detail that both the second
and third methods construct an economical spanning tree.

Show how the fourth method in Theorem 10 can be applied to find an
economical spanning tree even if several edges have the same cost (¢f. Fig. L8).

Show that every economical spanning tree can be constructed by each of the
first three methods.
Deduce from Theorem 12 that a graph contains an Euler circuit iff all but

at most one of its components are isolated vertices and each vertex has even
degree. State and prove an analogous statement about the existence of an

Euler trail from x to y.

Show that every multigraph with 2£ > 2 vertices of odd degrees is the
edge-disjoint union of £ trails.
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50.

51,
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Fleury gave the following algorithm for finding an Evler circuit xjxz - - - xp
in a graph G. Pick x| arbitrarily. Having chosen x, x2, ..., x¢, put G =
G — {xyx2, X2%3, ..., Xx—tXi}. If every edge incident with x; in Gy is a
bridge (in particular, if x; is an isolated vertex of Gy), then terminate the
algorithm, Otherwise, let a;; be a neighbour of x; in G such that xgx; . is
not a bridge of Gy.

Prove that if G has an Euler circuit, then the trail x;x2 - - - x¢ constructed by
the algorithm is an Euler circuit.

Recall that a graph G is randomly Eulerian from a vertex x if any maximal
trail starting at x is an Euler circuvit. (If 7 = xx; - - - x¢, then T is a2 maximal
trail starting at x iff x; is an isolated vertex in G — E(T).) Prove that a
nonempty graph G is randomly Eulerian from x iff G has an Euler circuit and
x is contained in every cycle of G,

Let F be a forest. Add a vertex x to F and join x to each vertex of odd degree
in F. Prove that the graph obtained in this way is randomly Eulenan from x,
and every graph randomly Eulerian from x can be obtained in this way.

Prove that a graph G is randomly Eulerian from each of two vertices x and
y Hf G is the union of an even number of x—y paths, any two of which have
only x and y in common.

53.% A one-way infinite Euler trail in an infinite multigraph G = (V, E) is an

54.
55.

56.
57.

infinite sequence x|, €1, x2, €2, ... such that x1,x2,... € V, & is the edge
Xixip1. € Fejifi# jand E = {e), e, ...).

Let G be a connected infinite multigraph with countably many edges and with
one vertex of odd degree. (Thus d(x;) is odd for some vertex x|; for every
other vertex x either d(x) is infinite or it is finite and even.) Show that G has
a one-way infinite Euler trail if, and only if, for every finite set £¢ C E, the
graph G — Ep has only one infinite component.

Show the necessity of the conditions in Theorem 14.

Show that condition (jii) in Theorem 14 can be replaced by the following

condition:
(iii’) there is a vertex x such that if T is a finite trail starting at x then

G — E(T) has at most two infinite components; furthermore, if T is a closed
trail (circuit), then G — E(T') has precisely one infinite component.

Deduce Theorem [4 from the resuits in the previous two exercises.

Show that for every n > 1 the graph of the lattice Z" has a two-way infinite
Euler wrail.

58.% Each of n > 4 elderly professors know some item of gossip not known to the

others, They communicate by telephone and in each conversation they part
with all the gossip they know. Show that 2n — 4 calls arc reeded before each
of them knows everything.
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59. How would you define the nmmber of sides of a face so that formula (4)
continues to hold for graphs with bridges? Rewrite the proof of Theorem 15

accordingly.

60. Let G be a planar graph of order at least 3, with degree sequence (d;)}. Show
that

Y 6-d)z X":(é ~d;) > 12.

i <6 i=1

Deduce that if §(G) > 5, then G has at least 12 vertices of degree 5, and if
3(G) = 4 then G has at least 6 vertices of degree at most 5.

61.%7 Let (d; )] be the degree sequence of a planar graph of order n > 3, Prove that
for k > 3 we have

k
3 d; <2n+ 6k — 16.
i=l
62.~ Make use of the nonplananty of K5 to show that every face of a maximal
planar graph is a triangle.
63.7 Prove that every planar graph has a drawing in the plane in which every edge
is a straight line segment. [Hint. Apply induction on the order of a maximal
planar graph by omitting a suitable vertex.)

64. A plane drawing of an infinite graph is defined as that of a finite graph with
the additional condition that each point has a neighbourhood containing at
most one vertex and meeting only edges incident with that vertex.

Show that Kuratowski's theorem does not hold for infinite graphs,; that is,
construct an infinite nonplanar graph without T X5 and T X 3.
Is there an infinite nonplanar graph without a T K4?

65. Show that there is no hipartite cubic planar graph of order 10, but for every
n = 4, n % 5, there is 2 connected bipartite cubic planar graph of order 2n

(see Fig. 1.25).

FIGURE 1.25. A bipertile cubic planar graph of order 12.
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66. There are 2 convex sets in the plane such that the boundaries of any two of
them have at most two common points. Show that the boundary of their union
consists of at most 6n — 12 connected arcs of the boundaries of the sets.

67. Let (d;)] be the degree sequence of a planar graph &.
(i) By making use of an upper bound for }_| d;, show that if §{G) = 4 then

Y d} <2(n+3)" - 62.
[
(ii) Prove by induction on n that if n > 4 then
> dF <2(n+3) - 62.
1

Show that equality can hold for every n > 4,

68.F Determine the maximum of ZT d?, where (d;)] is the degree sequence of a
planar graph of girth at least 4 (that is without triangles). What is the maximum
if the girth is at least g > 47

69. Let G be a graph of order n = 4 such that every graph obtained from & by
deleting a vertex is regular (i.e.; all vertices have the same degree). Show that
G is either the complete graph K,; or the empty graph E,,.

70. Show that every graph of maximal degree at most r is an induced subgraph
of an r-regular graph: if A(G) < r, then there is an r-regular graph H and a
set W C V(H)such that G = H — W. Show also that we can always find a
pair {(H, W) with

|W| < max lr - 8(G), [Z(r - d(x)){'r-l

xcly

+ L

71. Lei G be a graph with 3(G) > 2. Show that there is a connected graph H with
the same degree sequence, that is with V(H) = V(G) and dg(x) = dg(x)
forall x € V(H).

72. Show that for every graph & = (V, E) and nawral number k, there is a
partition V == U‘Ll V: such that if x € V; and { # j, then x is joined to at
least as many vertices in V; asin V;.

73. Let G be a planar graph, with the edges coloured red and bine. Show that there
15 a vertex x such that going round the edges incident with x in the clockwise
direction, say, we encounter no more than two changes of colour.

74. Suppose we have n > 3 great circles of the sphere S ¢ R?, not all through
the same point, coloured red and blue. Deduce from the result in the previous
exercise that there is a point x € 52 such that there are at least 2 great circles
through it and they all have the same colour.
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75.% Let Py, P2, ..., Py be points in the plane, not all on a line, coloured red and

76.

77.

78.

79.

80.

81.

82.

R3.

84.

85,

86.

87.

blue. Prove that there is a line through two of these points such that all points
on this line have the same colour.

Let xjx3- - x, be a regular n-gon, with n > 2k + 1, &k > 1. Show that if
kn -+ 1 of the pairs (x;, x;) are joined by straight line segments, then £ + 1 of
themn are pairwise disjoint. Does this hold for kn pairs?

Prove that in the game of Hex (played on an n x n board) precisely one of the
players wins,

Let Ty, ..., Ty be subtrees of atree T such that forall 1 </ < j < k the
trees T; and 7; have a vertex in common. Show that T has a vertex that is in

all the T;.

Given a graph G and an equivalence relation R on V(G), let G/ R be the graph
whose vertices are the equivalence classes V; of R, and V;V; € E(G/R) if
G contains a (V; — Vj)-edge. Show that for every connected graph H there
is a tree T and an equivalence relation R on V(T) such that # = T/R and
e(H) =e(T).

Show that every connected graph with an even number of edges has an
orientation in which every vertex x has even outdegree d (x).

Let G be a connected infinite graph and let £ : Vg — {0, 1}, where Vp is
the set of vertices of finite degree. Show that G has an orientation such thas
dt(x) = £(x) (mod 2) forevery x € Vg.

Show that every multigraph has an orientation in which the out degree and in
degree of every vertex differ by at most 1.

Show that for every graph G there is a set W C V(G) such that every vertex
in W has an even number of neighbours in W and every vertex in V — W has

an odd number of neighbours in W.

Determine all graphs of order # with a loop at some of the vertices such that
no two vertices have the same degree. [A ioop at a vertex x adds 1 to the
degree of x.]

Let G = (V, E) bea(simple) graph, with V = {x), ..., xz},and letty, ..., 1,
be distinct real numbers. Show that the map V —» R x; o (4, rf. :?), gives
an embedding of G into R* with straight line segments.

Let pi, g1, P22, - - -+ Pm. Gm be 2m distinct points in the plane. Show that
there are m disjoint polygonal arcs, with the j" arc connecting p; (0 g;.

A k-book i5 a topological space homeomorphic to the union of k squares i
R*, with any two sharing the same segment as a common side, called the
spine of the hook. Show that every graph has an embedding into a 3-book.
[Hint. Put all vertices on a line in a square, paralle) to the spine, and join each
vertex x with d({x) straight line segments to points on the spine.]
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88.7 Let G and H be graphs, with V{(H) = {y1, y2...., y&}). Justify the remarks
before Thecrem 18, namely that G > H iff G has vertex=disjoint connected
subgraphs G1, G2, ..., Gy suchthatif y;y; € E(H),then G contains an edge
from G; to G;.

89. Show that G > K, if and only if T K4 C G, that is, G contains a subdivision
of K4.

90. Show that if H is a cubic multigraphand G >~ H,then G > T H.

91. Show that if K5 is aminor of a graph G, then G D TKsor & O TK3 3.
Check that this implies the equivalence of Theorems 17 and 18.

92. A graphis said to be cuterplanar if it can be drawn in the plane in such a way
that all vertices are on the boundary of the unbounded face {or of any face, of
course). Show that a graph is outerplanar iff it contains neither X4 nor K2 4

as a MINOT.

93. Fill in the small gap in the proof of Lemma 20: show that if cases (3) and (1)
do not apply then there are two adjacent vertices of degree 4.

94, Let T be the set of spanning trees of a connected graph of order n. Let H
be the graph with vertex set 7 in which T} € T is joined to T2 € F if
|E(TDAE(T)| = 2, 1.e., if T has precisely one edge not in T> (and so T3
has one edge not in 77). Show that H is connected and has diameter at most
n—2.

95. Let G be a graph of size (’2‘) + 1, and maximal degree at least 2. Show that
there is a set U C V(G) such that |[U/| = k 4 I and G[U] has ne isolated

vertices.

96. (Exercise 95 ctd.) Let G be a graph with 2k + 1 vertices and {*}1) — (§) - 1
edges, Show that there is a partition V(G) = U; U U; of the vertex set such
that A(G[U;]) < &k — 1 fori = 1, 2. Show also that if & has one more edge
then such a partition need not exist.

Notes

The first book on graph theory was writien by the Hungarian D. Konig: Theorie der
endlichen und unendlichen Grapher, Kombinatorische Topologie und Strecken-
komplexe, Akademische Verlagsgesellschaft, Leipzig, 1936, 258 pp.; this book
contains all the basic results. (For an English translation with commentaries, see it
Theory of Finite and Infinite Graphs, Birkhiuser, Boston, 1990, 426 pp.) Euler’s
theorem on the bridges of Kénigsberg had been published 200 years before, in St.
Petersburg: L. Euler, Solutio problematis ad geometrian situs pertinentis, Comm.
Acad. Sci. Imper Petropol. 8 (1736) 128-140. Theorem 14 is from P. Erdds,
T. Griinwald, and E. Weiszfeld, On Euler lines of infinite graphs (in Hungarian),
Mat. Fiz. Lapok 43 (1936), 129-140. In its full generality, Theorem 13 is due
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to T. van Aardenne-Ehrenfest and N.G. de Bruijn, Circuits and itrees in oriented
linear graphs, Simon Stevin 28 (1951), 203-217, but the case of degree 4 can be
found in C.A.B. Smith and W.T.Tutte, On unicursal paths in a network of degree
4, Amer, Math, Monthly 48 (1941), 233-237.

Theorem 17 is in K. Kuratowski, Sur le probléme des courbes gauches en
topologie, Fund. Math. 15 (1930) 271-283; for simpler proofs see A.G. Dirac
and S. Schuster, A thecorem of Kuratowski, indag. Math. 16 (1954) 343-348,
C. Thomassen, Kuratowski's theorem, J. Graph Theory 5 (1981) 225-241, and
H. Tverberg, A proof of Kuratowski’s theorem, in: Graph Theory in Memory of
G.A. Dirac (eds. L.D. Andersen et al), North Holland, Amsterdam, 1987,

The theorem of A.S. Amitsur and J. Levitzki (Theorem 19} is in Minimal
identities for algebras, Proc. Amer Math. Soc. 1 (1950) 449—463; the simpler
and more combinatorial proof is based on R. G. Swan, An application of graph
theory to algebra, Proc. Amer. Math. Soc. 14 (1963) 367-373 and Correction to
“An application of graph theory to algebra,” Proc. Amer Math. Soc. 21 (1969)
379-380.

Steiner triple systems, mentioned in Exercises 4143 are named after Eric
Steiner, who, in 1853, asked whether the necessary condition that n = 1 or
3 (mod 6) is also sufficient for their existence. In fact, the same problem had
been posed and answered in the affirmative by the Rev. Thomas Kirkman, On a
problem of combinations, Cambridge and Dublin Math. J. 2 (1847) 101-204. We
shall prove this in Exercises 84—86 of Chapter I11.
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Electrical Networks

This chapter is something of a diversion from the main line of the book, so at the
first reading some readers may wish to skip it. The concepts introduced in the first
half of Section 3 will be used in Section 2 of Chapter VIII, and in Chapter IX we
shall return to electrical networks, when we connect them with random walks.

It does not take long to discover that an electrical network may be viewed as a
graph, so the simplest problems about currents in networks are exactly questions
about graphs. Does our brief acquaintance with graphs help us tackle the problems?
As 1t will transpire in the first section, the answer is yes; for after a short review
of the basic ideas of electricity we make use of spanning trees to obtain solutions.
Some of these results can be reformulated in terms of tilings of rectangles and
squares, as we shall show in Section 2. The last section introduces elementary
algebraic graph theory, which is then applied to electrical networks.

It should be emphasized that in the problems we consider we use hardly more
than the terminoiogy of graph theory; virtually the only concept to be used is that
of a spanning tree.

I1.1 Graphs and Electrical Networks

A simple electrical network can be regarded as a graph in which each edge ¢;
has been assigned a real number r;, called its resistance. If there is a potential
difference p; between the endvertices of ¢;, say a; and b;, then an electrical current
w; will flow in the edge e; from a; to b; according to Ohm'’s law:



40 II. Electrical Networks

Though to start with we could restrict our attention to electrical networks cor-
responding to graphs, in the stimplifications that follow it will be essential to allow
mudltiple edges, that is, to consider multigraphs instead of graphs. Furthermore, we
orient each edge arbitrarily from one endvertex to the other so that we may use p;
to denote the potential difference in the edge e;, meaning the difference between
the potentials of the initial vertex and the endvertex. Similarly, w; s the current
in the edge ¢;, meaning the current in ¢; in the direction of the edge. (Note that
we regard a negative current —w; as a positive current w; in the other direction.)
Thus, throughout the section we consider directed multigraphs, that is, directed
graphs that may contain several edges directed from a; 10 b;. However, in this
section there is no danger of confusion if we use a;5; to denote an edge from a; to
b;; in the next section we shall be more pedantic. Thus,

Wabh == —Wps ald pgp = — Ppg.

In many practical problems, electrical currents are made to enter the network at
some points and leave it at others, and we are interested in the consequent currents
and potential differences in the edges. These are governed by the famous laws of
Kirchhoff, another renowned citizen of Kénigsberg,

Kirchholf s potential (or voltage) law siates that the potential differences round
any cycle xx3 - - - x sum to 0:

Prama+ P+ -+ Pu_in + Puy =0

Kirchhoff 's current law postulates that the total current outflow from any point
is O:

w‘lb+ch+"'+wau+wam={}-

Here ab, ac, . .., au are the edges incident with a, and w;,; denotes the amount
of current that leaves the network at a. (In keeping with our convention, Weog =
—Waao is the amount of current entering the network at a.) For vertices not
connected to external points we have

Wah + Wae + -+ -+ Way =0.

Note that if we know the resistances then the potential law can be rewritten as a
restriction on the currents in the edges. Thus we may consider that the currents are
governed by the Kirchhoff laws only; the physical characteristics of the network
{the resistances) affect only the parameters in these laws.

It is also easily seen that the potential law is equivalent to saying that one can
assign absolute potentials V;, V3, . .. 1o the vertices a, b, . . . 50 that the potential
difference between a and b is V; — Vp == pgp. If the network is connected and
the potential differences pyp are given for the edges, then we are free to choose
arbitrarily the potential of one of the vertices, say V;, but then all the other
potentials are determined. In this section we shall work with absolute potentials,
usually choosing the potential of one of the vertices to be 0, but we must keep in
mind that this is the same as the application of the voltage law.
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FIGURE IL.1. The resistances, the currents, and the potentials.

In the most fundamental probiems, current is aliowed to enter the network only
at a single vertex s, the source, and leave it only at another vertex r, the sink. (We
shall indicate later how the general problem can be reduced to these fundamental
problems.)} If the size of the current from s to ¢ is w and the potential difference
between s and ¢ is p, then by Ohm’s law r = p/w is the total resistance of the
network between s and ¢. As an example of the use of the Kirchhoff laws we
shall evaluate the total resistance between s and ¢ of the simpie network shown in
Fig I1.1.

This network has 5 resistors, of values 1, 2, 3, 4, and 5 chms, as shown in the
first picture. If we suppose that a unit current flows into the system at s and leaves
it at ¢, then the consequent edge currents must be as in the second picture, for
suitable values of e and f. Finally, the potentials V;, = 0, V,, V}, V; assigned
to the vertices must satisfy Ohm’s law, so V; = 1-e = ¢, Vp = 2(1 —¢), and
Vi = V, +5(e+ f) = 6e+5f. Ohm's law has to be satisfied in two more edges,
ab and bs, giving us

Vize=Vi+3f=2(1—¢)+3f

and
Vi=6e+5f=Vp+4(l—e— f)=2(1—e)+Hl—e— f).
Hence
e=2-2e+3f
and

6e+5f=06—6e—4f,

givinge = 4/7, f = ~2/21 and V; = 6e 4+ 5f = 62/21. In particular, the total
resistance from s to ¢ is (V; — V;)/i = 62/21.

The calculations are often simplified if we note that Kirchhoff's equations are
linear and homogeneous in all currents and potential differences. This implies
the so-called principle of superposition: any combination of solutions is again
a solution. As an application of the principle of superposition one can show
that any current resulting from muitiple sources and sinks can be obtained by
superposing flows belonging to one source and sink; that is, solutions of the
fundamental problems mentioned above can be used to solve the general problem.
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Furthermore, the principle of superpositzon implies irnmediately that there is at
maost one solution, no matter how the sources and sinks are distributed. Indeed, the
difference of two distinct solutions is a flow in which ne current enters or leaves
the network at any potnt. If in this flow there is a positive current in some edge
from a to & then by the current law a positive current must go from b to ¢, then
from c to d, etc., giving a trail abed - - - . Since the network is finite, this trail has
to return to a point previously visited. Thus we obtain a circuit in whase edges
positive currents flow in one direction. But this is impossible, since it implies that
the potential of each vertex is strictly greater than that of the next one round the
circuit.

Before proving the existence of a solution (which is obvious if we believe in the
physical interpretation}, we shall calculaie the total resistance of two networks.
Unless the networks are very small, the calculations can get very heavy, and
clectrical engineers have a number of standard tricks to make them easier.

The very simple networks of Fig. IL.2 show two resistors r| and ry connected
first in series and then in parallel. Let us put a current of size 1 through the
networks, from s to . What are the total resistances? In the first case

Vo=rn and Vi=V,4+rm=r1+r,
50 the tota] resistance is
r=r|+rnr.

In the second case, when they are connected in parallel, if a current of size e goes

through the first resistor and so a current of size 1 — ¢ through the second, then
Iz

rn+r’

Vi=rie=mr(l—¢€), so e=

and the total resistance is given by
__nn
n+r’
This indicates that reciprocals of resistances, or conductances, are just as natural
as the resistances themselves, and indeed are more convenient in our presentation.

(The conductance of an edge of resistance 1 ohm is I mho.) What we have shown
now is that for series connection the resistances add and for parallel connection

the conductances add.

or

-
-~
]
o

__‘_.._l‘]

FIGURE IL2. Resistors connected in seri¢s and in parallel.
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FIGURE IL3. Calculating the total resistance of a cube.

The use of conductances is particularly convenient when considering certain
limiting cases of Ohim’s law. If the resistance of an edge ab is 0, then we necessarily
have V; = V}, and from an electrical point of view the vertices can be regarded as
identical. In the usuat slang, a has been “shorted” (short-circuited) to b. Of course,
a may be shorted to & if there is some other reason why V, = Vj. At the other
extreme, we can introduce edges of ( conductance without affecting the currenis
and potentials. Conversely, we make an edge have ( conductance by “cutting™ it.
Of course, an edge of 0 resistance is said to have oo conductance, and an edge of
0 conductance is said to have oo resistance.

Let us see now how the acquaintance with resistors in series and in parallel and
Lhe possibility of shorting vertices can help us determine the total resistance. As
an example, let us take the network formed by the edges of a cube, in which each
edge has | ohm resistance. What is the total resistance across an edge s5t? Using
the notation of the first picture in Fig. I3, we see that by symmetry V, = V,
and V4 = VJ, 50 ¢ can be shotted to a and f to d, giving us the second picture.
From now on we can simplify resistors connected in parallel and in series, until
we find that the total resistance is 7/12. Knowing this, it is easy to recover the
entire current flow.

Another important device in practical calculations is the so-called star-triangle
(or star—delta) transformation. If a vertex v is joined to just three vertices, say a,
b, and ¢, by edges of resistances A, 8, and C, then we call v the centre of a star,
as in the first picture of Fig. IL4. If no current is allowed to enter or leave at v,
then we are allowed to replace this star by the triangle configuration shown in the
second picture of Fig. 1.4, because, as the reader should check (see Exercise 11},
if the vertices a, b, ¢ are set at potentials V,, Vy, V., ther in the two networks we
get precisely the same currents Waeg, Whoo, Weoo 1caving the network. Needless 1o
say, we may apply the transformation in reverse, replacing A’, B', and C" by A =
B'C/T,B=C'AJT,and C = A'B'/T, where T = A’ + B’ + C’. Incidentally,
the formulae become symmetrical if we use resistances in the first transformation
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¢ = S/C ¥ = §/B

b asia ¢

FIGURE I1.4. The star-triangle transformation; § = AR 4+ BC 4 CA.

3
1 i
5 5
i i
i i 1
3 i il |4 1
i i e

FIGURE 11.5, Applications of the star-iriangle transformation.

and conductances in the second: A' = B+ C+BC/Aanda = §'+y'+ 8y /o,
where o, 8, . . . are the conductances.

As an application of the star—triangle transformation, let us calculate the total
resistance of a tetrahedron across an edge, in which the resistances are as in
Fig. IL5. The pictures speak for themselves,

We shall conclude this section on a slightly more theoretical note: we shall prove
the existence of a solution. More precisely, we shall present Kirchhoff's theorem

stating that, if a current of size 1 is put through a network, then the current in
an edge can be expressed in terms of the numbers of certain spanning trees. For
simplicity we assume that the graph G of the network is connected, each edge has
unit resistance, and a current of size 1 enters at a vertex s and leaves at ¢,

Theorem 1 Given an edge ab, denote by N(s, a, b, t) the number of spanning
trees af G in which the {unigue) path from s to t contains a and b, in this order.
Define N(s, b, a,t) analogously and write N for the total number of spanning
trees. Finally, let wap = [N(s,a,b,t) — N(s, b, a,t)}/N.

Distribute currents in the edges of G by sending a current of size wyy from a to
b for every edge ab. Then there is a total current size 1 from s to t satisfying the
Kirchhoff laws.

Proof. To simplify the situation, multiply all currents by N. Also, for every
spanning tree T and edge ab € E(G), let w'") be the current of size ! along
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the unique s—t pathin 7':

1 ifThasapaths...ab...t,

w={_1 ifThasapaths.- ba- .1,

0  otherwise.

Then

N(s,a,b,0) - N(s,b,a.0) =3 uD,
T

where the surmmation is over all spanning trees T. Therefore, our task is to show

that if we send a current of size } - w ) from a to b for every edge ab, then we
obtain a total current of size N from s to t satisfying the Kirchhoff laws.

Now, each w'T? is a current of size 1 from s to ¢ satisfying Kirchhoff's current
law, and so their sum is a current of size N from 5 to ¢ satisfying Kirchhoff’s
current law,

All we have to show then is that the potential law is also satisfied, As all edges
have the same resistance, the potential law claims that the total current in a cycle
with some orientation is zero. To show this, we proceed as earlier, but first we
reformulate slightly the definition of N (s, a, b, t). Call a spanning forest F of G
a thicket if it has exactly two components, say F; and F;, such that s is in F, and
t is in F;. Then N(s,a, b, t) is the number of thickets F = F, U F; for which
ae€ Fandb e F, and N(5,b, a,t) is defined analogously. What is then the
contribution of a thicket F = F; U F; to the total current in a cycle? It is the
number of cycle edges from F; to F; minus the number of cycle edges from F; to
F;; so it is zero. G

Let us write out the second part of the proof more formally, to make it even
more evident that we use the basic and powerful combinatorial principle of douhle
counting, or reversing the order of summation. For a thicket F = F; U F; and an

edge ab € E(G), set

w's

Wep =

wlh ) if F + ab is a spanning tree,
0 otherwise.

Then
; wly = Z wly,

where the second summation is over all thickets F. Finally, the total current around
acycle x1x3--- xx of G, with xgy = xy, is

k
S, =Y el =
= =

since 35, wﬁfz 1 = 0 for every thicket F.
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More tmportantly, the proof of Theorem 1 can be rewritten to give a solution in
the case when the edges have arbitrary conductances. For a spanning tree T define
the weight w(T) of T as the product of the conductances of its edges. Let N* be
the sum of the weights of all the spanning trees, let N*(s, a, b, 1) be the sum of
the weights of all the spanning trees in which b follows a on the {unique) s—¢ path
in the tree, and let N* (s, b, a,t) = N*(¢t,a, b, 5).

Theorem 2 There is a distribution of currents satisfying Ohm's law and Kirch-
hoff s laws in which a current of size | enters at s and leaves at t. The value of the
current in an edge ab is given by (N*(s,a, b,t) — N*(s,b,a, 1)}/N"*. O

Let us note an immediate consequence of this result.

Corollary 3 If the conductances of the edges are rational and a current of size |
goes through the network then the current in each edge has rational value. O

The star—tniangle transformation tells us that no matter what the rest of the
network 1s, every ‘star’ may be replaced by a suitable ‘triangle’, and vice versa.
On an even simpler fevel, if two nctworks, N and M, sharc only two vertices, say a
and b, and nothing else, and the total resistance of M fromatobisr, then in NUM
we may replace M by an edge ab of resistance r. In fact, similar transformations
can be carried out for networks with any number of vertices of attachment, not
only two or three, as above. To be precise, if a part M of a network is attached
to the rest of the network only at a set {/ of vertices, then we may replace M by
edges of certain resistances joining the vertices of U (and introducing no other
vertices) without changing the distribution of currents outside M, We leave this
as an exercise {Exercise 13%).

In estimating the resistance of a network, it is frequently convenient to make
use of the fact that if the resistance of a wire is increased then the total resistance
does not decrease. In particular, if some wires are cut then the total resistance
does not decrease; similarly, if some vertices are shorted, 1.e., are identified, then
the total resistance does not increase. This is obvious if we appeal to physical
intuition; however, the problem is that the Kirchhoff laws, together with Ohm's
law, determine all currents, potential differences, and so on: having accepted these
three laws, we have no right to appeal to any physical intuition. In this chapter we
leave this assertion as an exercise (Exercise 147), but we shall prove it, several
times over, in Chapter IX, when we give a less superficial treatment of electrical

networks.

I1.2 Squaring the Square

This is a diversion within a diversion; we fecl bound to draw attention to a
famous problem arising from recreational mathematics that is related to the theory
of clectrical networks. Is there a perfect squared square? In other words, is
possible to subdivide a closed square into finitely many (but at least two) square
regions of distinctsizes that intersect only at their boundaries?
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FIGURE IL6. The perfect squaring of the 33 x 32 rectangle, due te Moroi.

The answer to this question is far from obvious: on the one hand, there seems
to be no reason why there should not be a perfect squared square; on the other
hand, it is not easy to find even a perfect squared rectangle, a rectangle divided
into finitely many (but at least two) squares of distinct sizes.

As it bappens, there are perfect squared rectangles: in 1925 Moron found
the perfect squating of the 33 x 32 rectangle shown in Fig. I1.6. This squared
rectangle has order 9: there are 9 squares in the subdivision; in the figure the
number associated with a square is the length of its side.

We shall use Morofi’s squared rectangle to illustrate an argument. Let us cut this
rectangle out of a sheet of nichrome {or any other matenial with low conductivity)
and let us put rods made of silver (or some other material of high conductivity) at
the top and bottom.

What happens if we ensure that the silver rod at the tep is at 32 volts while the
rod at the bottom is kept at B? Trivially, a uniform current will flow from top to
bottom. In fact, the potential at a point of the rectangle will depend only on the
height of the point: the potential at height x will be x volts. Furthermore, there will
be no current across the rectangle, only from top to bottom. Thus the current will
not change at all if (i) we place silver rods on the horizontal sides of the squares
and (ii) cut narrow slits along the vertical sides, as shown in the first picture of
Fig. IL7.

Now, since silver is a very good conductor, the points of each silver rod have
been shortened, so they can be identified. Thus as an electric conductor the whole
rectangle behaves like the plane network shown in the second picture of Fig. 117, in
which the conductance of an edge is equal to the conductance of the corresponding
+ square from top to bottom. Clearly, the conductance of a rectangle from top to
bottom is proportional to the length of a horizontal side and the resistance is
proportional to a vertical side. Consequently, all squares have the same resistance,
say unit resistance, so all edges in Fig. IL.7 have unit resistance. What is the
potential drop in an edge? It is the side length of the corresponding square. What
is the resistance of the whole system? The ratio of the vertical side of the original
big rectangle to the horizontal side, that is, 32/33.
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FIGURE I1.7. The electrical network associated with our rectangte.

Since the process above is reversible, that is, every squared rectangle can be
obtained from some network, we have an effective tool to help us in our search
for squared squares, Take a connected planar graph G and turm it into an electrical
network by giving each edge resistance 1. Calculate the total resistance from a
vertex s to a vertex £, If this is also 1, the network may correspond to a suitably
squared square, If the potential differences in the edges are all distinct, all squares
have different sizes, so0 we have a perfect squared square.

Of course, at this stage our problem is far from being solved; we do not even
know that there must exist a squared square. However, we have a chance to search
systematically for a solution. What should we look for? A plane graph containing
5 and ¢ on the outer face, lacking all symmetries, such that the total resistance
fromstotis 1.

Many squared squares have been found with the help of computers, but the
first examples were found without computers by Sprague in 1939 and by four
undergraduates at Cambridge — Brooks, Smith, Stone and Tutte — in 1940. The
smallest number of squares that can tile a square 1s 21; Fig. |11.8 shows such a
tiling, due to Duijvestijn. In fact, this is the only tiling of order 21. Several other
tilings are given among the exercises.

The connection between squaring a rectangle and electrical networks gives us
immediately a beautiful result first proved by Dehn in 1903, Corollary 3 tells
us that if each edge bas resistance [ and a current of size 1 flows through the
system then in each edge the value of the current is rational. This translates to the
foliowing result about squared rectangles.

Theorem 4 If g rectangle can be tiled with squares then the ratio of wo
neighbouring sides of the rectangle is rational. ]

C e - e s e ———— e 4 ¢ b a4
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FIGURE 11.8. A perfect squared square: a tiling of a sguare with 21 incongruent squares.

Equivalently, a rectangle can be tiled with squares iff it can be tiled with
congruent squares.

Ii is easily seen that electrical networks can be used to obtain tilings of rectangles
of prescribed shapes: an edge ¢ of resistance r corresponds to a rectangle in which
the height is r times the base (see Exercise 19).

Numerous questions remain about squared rectangles; here we mention only
two. First, which plane networks correspond to perfect squared rectangles? The
answer holds no surprises: if 5 and ¢ are on the outer face of a plane network,
with each edge having resistance I, then this network corresponds to a squared
rectangle iff the following condition is satisfied: when a non-zero current is put
through the network from s to ¢, there is a non-zero current in each edge.

Second, which rectangles have perfect squarings? This question is considerably
more difficult to answer. The result below, greatly extending Dehn’s theorem
{Theorem 4), was proved by Sprague in 1940.

Theorem 5 A rectangle has a perfect squaring if, and only if, the ratio of two
neighbouring sides is rational.

The result can be proved by putting together appropriate perfect rectangles; for
the proof we refer the reader to the oniginal paper of Sprague.

In the rest of this section, we consider tilings of rectangles by rectangles: our
aim is to prove some beautiful results that somewhat resemble the results above,
Suppose that we have a tiling of a rectangle by 1 x 8 and 8 x 1 rectangles. Then,
as the total area is a multiple of 8, either one of the sides is a multiple of 4 and the
other is even, or one of the sides is a multiple of 8. Can both possibilities arise?
There are similar questions in higher dimensions. For example, if a box is filled
with 1 x 2 x 4 bricks in any position (1 x2x 4,4 x2x 1,2 x | x 4, etc.), then
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either all sides of the box are even, or one is a multiple of 4, another is even and
the third is odd, or else one of the sides is a multiple of 8 and the two other sides
are odd. But can ail possibilities arise?

The latter problem was posed by de Bruijn in a Hungarian journal in 1959; a
decade later he proved considerable extensions of the result, including the theorems
below. There is a galaxy of beautiful proofs of the first theorem: here we give four.
Call a side of a rectangle infeger if its length is an integer.

Theorem 6 Let a rectangle T be tiled with rectangles Ty, ..., Tp. If each T; has
an integer side then so does T

Remark. In all four proofs we assume, as we may, that T < R? is in canonical
position: it has vertices (0, 0), (a, 0), (0, &) and (a, b), where a, & > 0. Then the
sides of the T; are also parallel to the axes.

First Proof. Construct a bipartite graph &, with vertex classes L and R, as follows,
Let L (for 'left’ or ‘lattice points’) be the set of integer lattice points in the tiled
rectangle: L = {(x,vy) € Z2:0<x <a, 0 <y <b) and let R (for ‘right’ or
‘rectangles’) be the set of tiling rectangles 71, ..., 7¢. Our graph G has vertex set
LUR, and {x,y) € L is joined o 7; € R if (x, y) is a vertex (*corner’) of T;.
Then, since each T; has an integer side, each T; has degree 0, 2 or 4, so ¢(C) is
even.

Also, every vertex in L, other than the comers of T, has degree 0, 2 or 4, bui
the corner (0, 0) € L has degree 1. Hence G has at least one edge incident with
another corner: in particular, at least one other comer belongs to L, and we are
done, O

Second Proof. Set F(x, v) = sin 2rx sin 2ry. Then

ff Fix,y)dxdy =10
I

{4
Fix,y)dxdy= ffF,dd:U.
ffr G ydxdy =3 [ | Fez.y)dxdy

=

for each i, so

But
b a
ff F(x,y)dxdy:f (f F(x,y)dx) dy
T 0 \Jo
a b
=f sinZJ'.rxdxf sin 2wy dy
0 fy
1 \2
(Zyr) {1 — cos2mra)(l — cos2mh).
Hence at least one of 2 and & is an integer. 0

Third Proof. Colour the 1/2 x 1/2 sguares of the square lattice %Ez in a black
and white checkerboard fashion. Then each tile T; contains an equal amount of
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biack and white, and so T itself has an equal amount of black and white. But it is
¢asily checked that in this case at least one of a and & is an integer. [

Fourth Proof Fore > 0and x € R, set

X ifxe?Z,
P (X) = )

x +¢& otherwise.
Also, forz = (x, y) € R?, define ¢:(2) = (P (x), P (¥)), and for a rectangle UV
with corners (z; )‘11 let ¢-(L/) be the (possibly degenerate) rectangle with corners
(Pe(zi))].

It is an easy exercise to show that if £ > ( is small enough, say 0 < £ < g,

then the rectangles ¢.(7;) form a tiling of ¢.(T). Writing |U/| for the area of a
rectangle U, if 0 < £ < £ then

£
ib:(T) = D _ (T
=1
Now, as T; has an integer side, |¢.(7;}| is a linear function of £ for 0 < £ < &.
On the other hand, if a, b ¢ Z then 1¢.({T)| = ab + {a + b)e + £? is a quadratic
function of &. As this is not the case, our proof is complete. 0

It is easy to generalize the result to n-dimensional boxes, rectangular
parallelepipeds.

Theorem 7 Let a box B in R” be tiled with boxes By, ..., By. If each B; has at
least k integer sides, then B itself has at least k integer sides.

Proof The fourth proof above carries over, mutatis mutandis. Defining ¢, as
before, with ¢, (Z) = ($:(z1), . - - . Pe(2n)), we find that, if £ > 0 is small enough,
each |¢.{B;}| is a polynomial of degree at most n — . Also, if B has precisely A
integer sides then [¢:(B)| has degree n — A. O

Theorem 8 Leta,, ..., ay be natural numbers with a\|az, ..., an_1|an, and let
Bbean Ay X+ X Ay box filled with a) x - - - X a, bricks standing in any position,
Then B can also be filled with these bricks positioned the same way. Equivalently,
there is a permutation w of {1, . .., n} such that a; divides Ay ).

Proof. By Theorem 6, we know that a, divides an A;: let & (n) be such that g,
divides Az (). Next, we know by Theorem 7 that g, divides at least two A;: let
s(n — 1) # m(n) be such that a,. | divides Ay (x-.(). Continuing in this way, we
get a permutation as desired. 0

For some more proofs and extensions of Theorem 6, sce Excrcises 28-35.

II.3 Vector Spaces and Matrices Associated with Graphs

The vertex space Ca{() of a graph G is the complex vector space of all functions
from V (G) into . Similarly, the edge space C1(G) is the complex vector space of
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1o

L

FIGURE I1.9. If the thick cycle L is oriented anti-clockwise, its vector in O1(G) is
zp ={—1,1,1.=-1,0,...,0)

all functions from E(G) into C. In these definitions it is sometimes convenient (o
replace the complex field by F;, the field of order 2, or by other fields. We shall take
V(G)Y = {uvy,va, ..., 0y} and E(G) = {&1,¢€2,...,8m}, so that dim Co(G) = 1
and dim C (G} = m. The elements of Co(G)} are usually written in the form
X = 3 ;—; Xiv; of X = (x;)}. The sum 3 [, x;v; is a formal sum of the vertices,
but if we think of v; as the function V(G) —» C that is § everywhere, except at
the vertex v;, where it is 1, then v;, . . ., vy is a basis of Cg(G) and the sum above
simply expresses an element in terms of the basis elements. Similarly, an element
of C1{(G) may be written as y = E:-"=1 yie; OI'y = (y,-)'i". We call (v, ..., vy
the standard basis of the vertex space Co(G) and (ey, .. ., ey the standard basis
of the edge space, We shall endow these spaces with the inner product in which
the standard bases are orthonormal: {x, y} =}, x;¥;.

In this section we shall be concerned mostly with the edge space C(G); to start
with we define two subspaces which will turn out to be orthogonal complements of
each other. Let L be a cycle in G with a given cyclic orientation L = ujuy - - - wy.
He; = ujujri and & 1s onented from u; to ujy) then we say that ¢; is oriented
as L. This oriented cycle L can be identified with an element z; of C((G):

I ife; € E(L)and ¢; is oriented as L,
zr{e)) = 1 —1 ife; € E(L)and ¢; is not oriented as L,
0 ife; ¢ E(L).
A simple example is shown in Fig. I1.9. Denote by Z(G) the subspace of C1(G}

spanned by the vectors z; as L runs over the set of cycles; Z(() Is the cycle space

of G.
Now let P be a partition ¥V = V) U V5 of the vertex set of . Consider the set

E{V|, V2) of edges from V] to V3; such a set of edges is called a cut. There is
a vectorup in C1{G) called a cut vector, or cocycle vector naturally associated
with this partition P:
1 if e; goes from V| to V3,
up(e;}) = ¢ —1 if ¢; goes from V3 to V),
0 ife; ¢ E(V), Va).
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We writc {/(G) for the subspace of the edge space C(G) spanned by all the cut
vectors up, and we call it the cat (or cocycie) space of G.

Theorem 9 The inner product space C1{G) is the orthogonal direct sum of the
cyele space Z(G) and the cut space U(G). If G has n vertices, m edges and k
components then

dmZ{G)=m—-—n+%k and dim{(G)=n-—k.

Proaf. Let us see first that Z(G) and U (G) are orthogonal. Let L be a cycle and
P apartition V = V1 U Vo, What is the product (zp, up)? It is simply the number
of edges of L going from V) to Vz in the orientation of L, minus the number of
edges of L from V; to V. Thus {z;,up) = 0 for every cycle L and partition P,
50 Z(() and U/ (G) are indeed orthogonal.

Since the dimension of C{() is the number of edges, m, both assertions will
be proved if we show thatdim Z(G) = m —n + k and dimU(C) =2 n — k. We
shall first prove this vnder the assumption that G is connected; the general case
will follow easily.

Thus let us assume that G is connected, that is, k = 1. Let T be a spanning tree
of G. We shall make use of T to exhibit m — n 4+ 1 independent vectors in Z{G)
and n — | independent vectors in U{G). We may choose the indices of the edges
in such a way that ey, e7, ..., e,_1 are the tree edges and ep,, €541, ..., em are the
remaining edges, the chords of T

We know that for every chord e; there is a {unique) oriented cycle C; such that
zc,(¢;) = | and Z¢; (¢;} = O for every other chord ¢, that is, whenever j > » and
7 # i. (For short: 2¢,{e;) = &; if j > n, where §;; is the Kronecker delta.} We
call C; the fundamental cycle belonging 10 e; (with respect to T); also, z¢, 15 a
fundamental cycle vector (see Fig. 11.10). Similarly, by deleting an edge e; of T
the remainder of the spanning tree falls info two components. Let V| be the vertex
set of the component containing the inrtial vertex of ¢; and let sz be the vertex
set of the component containing the terminal vertex of ¢;. If F; is the partition
V = V| UV then clearly up,(¢;) = 8 for 1 < j < n — 1. The cut E(V], V{)is
the fundamental cut, or fundamental cocycle, belonging to e; (with respectto T),
and u p, is the fundamental cut vector, or fundamental cocycle vector.

It is easily seen that {z¢, : n < i < m} is an independent set of cycle vectors.
Indeed, if z = 3 [_ A;zc; = O then for every j > n we have 0 = z(g;) =

m.p Aid; = Aj, and so every coefficient A; is 0. Similarly, the fondamental cut
vectorsup, 1 <i < n — 1, are also independent, Hence dim Z(G) > m —n + 1
and dim U/ (G) > n — 1, as required.

Finally, the general case £ > 1 follows immediately from the case & = 1. For
if G has components G, Gy, - .., G then O {5} is the orthogenal direct sum of
the subspaces C1{G). i = 1,2,._., k; furthermore, Z(G;) = Z{G) N C{(G;)
and U((z;) = U(G)Y N C{G;). ]

The proof above shows that n(G) = dim Z(G), called the nullity of &, and
r{G) = dim U{G), the rank of G, are independent of the field over which the
edge space is defined. The nullity is also callcd the cyclomatic number or corank
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FIGUREIL 10. The fundamental cycle vector belonging toeg is 2o, = €9—exte1--€4 €5,
the fundamental cut vector belonging to e4 is up, = e4 — 10 — €9.

of G. The use of a spanning tree in the proof is not compulsory; in some cases, for
instance in the case of a planar graph, there are other natural cycle and cut bases

(cf. Exercise 37).

There are several matrices naturally associated with a graph and its vector spaces
discussed above. The adjacency matrix A = A(G) = (a;;) of a graph G is the
n x r matrix given by

1 if vy € E(G),
aij =
/ 0 otherwise.

In order to define the incidence matrix of a graph, we again consider an orientation
of the edges, as in the definition of the cycle and cut spaces. The incidence matrix
B = B(G) = (by) of G is the n % m marix defined by

1 if i is the initial vertex of the edge ¢;,
bij = {1 —1 if v; is the terminal vertex of the edge ¢;,
0  otherwise.

There is a simple connection between the two matrices A and B. As usual, we
write M’ for the transpose of a matrix M.

Theorem 18 Let D = (D;;) be the n x n diagonal matrix with Dy; = d(v;), the
degree of v; in G. Then

BB =D - A.

Proof. What is (BB‘),'_;? It is Z?:l bubﬂ, which is d(u;) if § = j, —1 if v;9; is
an edge (if &, = v;v; is directed from v; to vy, then byby = 1(—1) = —1 and all
other products are 0}, and O if v;v; is not an edge and i # ;. |

The matrix L = D — A, the combinatorial Laplacian or Kirchhoff matrix of a
graph, is of great importance in spectral graph theory: we shall return to it at the
end of this section and in Chapter IX.

We may and will identify the matrices A and B with the linear maps A :
Co(G) = Co(G) and B : C1{G) — Co(G) that they define in the standard bases:
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(Ax); = 377 aijx; and (By); = Zf':l bij y;. If we wanted to be pedantic, we
would write the vectors in the vertex and edge spaces as column vectors, or we
would put Ax’ and By', where ¢ stands for transposition; we shall not do this since
there is no danger of confusion. If C is a ¢ycle then clearly Bz = 0 € Co(G); in
fact, it is easily shown {cf. Exercise 38) that the cycle space is exactly the kernel
of B.Thustherank of Bisr(BY=m — (m —n 4+ k) = n — k, the rank of (7, and
its nullity is the corank, or cyclomatic number, of G. Furthermore, the transpose
of B maps Co(G) into C1(G), and the image of B’ is exactly the cut space (cf.
Exercise 39).

In Chapter VIII we shall discuss in some detail the eigenvalues and eigenvectors
of the adjacency matrix; in this section we shall use the matrices to solve the
electrical network problem discussed in the first section. In fact, it was Kirchhoff
who first realized the applicability of matrix algebra to graph theory, exactly in
connection with the electrical network problem.

How can we formulate the Kirchhoff laws in terms of matrices and vectors
in the edge space? Let us assume that G’ is the graph of our elecirical network,
VIGY={v),va,....va_1}, E(G) = {e1, €3, ....emn), the network is connected
and we have a voltage generator ensuring that the potential difference between
v; and vj is g; — g volts for 1 < i < j < k. In order to express Kirchhoff's
laws in a neat form, we add a vertex v, to G, and join it to vy, va, .. ., vg; the
new graphis G. Let m = m’ + k and epy; = vywi, £ = 1,2,.. ..k, so that
V(G) = [vi,va,...,un} and E(G) = {e1,e2, ..., em].

Give the edges of G’ an arbitrary orientation and let w; be the amount of current
flowing in the edge ¢;; thus w; = —1 means a current of 1 ampere in the opposite
direction. Direct each new edge e,y y; from v, to v; and let wyyy; be the total
current entering the network at v;. Once again, wyy.; = —1 means that a current
of 1 ampere leaves the network at v;. The vectorw = (wy, wn, ..., wy) € C1(G)
is the current vector. In this notation Kirchhoff’s current law takes the form

Bw=e 0, (1)

It is just as easy to formulate Kirchhoff's potential law in matrix form. Let p;
be the potential difference in the edge ¢; and let p = (p), p2..... pm) € Ci(G)
be the potential vector. The potential law states that {2, p) = 0 for every cycle
z € C1(G). Instead of postulating this about every cycle, we collect all the
necessary information into a single matrix. As before, we choose a spanning
tree T in G and label the edges so that ), ez, ..., e, are the tree edges and
n.€n+1, ..., Em are the chords. Let € be the m x {m - n -+ 1) matrix whose
{ th column is the fundamental cycle vector z¢, _,,, belonging to the edge e, 4.
i=1,2,...,m— n+ 1. Since the fundamental cycle vectors form a basis of the
cycle space, the potential law takes the form

_ C'p=0, (2)
where C' denotes the transpose of C.

Now, in order to find the current through the edges of G’ we need one more
equation, namely the equation relating the potential to the current, the resistance
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and the voltage generator. For i < m’, let ; be the resistance of the edge ¢;, and
postulate that each new edge ¢;, j > m’ + 1, has resistance r; = 0. We may
assume that r; > 0 for every i < m', since otherwise the edge e; could have
been cut. Let R = (Rj;) be the m x m diagonal matrix with R;; = r;. Finally,
letg=(0,...,0,8(, 82 - .. &) € C1(G) be the vector of the voltage gencrator.
Then clearly,

p=Rw+g {3)

This eguation contains all the information we have about the electric current in
addition to the Kirchhoff laws.

In order o solve (1), (2) and (3) for w and p, we shall split C\ () as Er + Ep,
where Er is the subspace spanned by the tree edges and Ey is spanned by the
chords, the edges not belonging to T, Let w = (wy, wy) and p = (p7. PN) be
the corresponding splittings; furthermore, writing B for the matrix obtained from
B by omitting the last row, we have

Cr ~
= ( ) and B = (BrBy).
Cwn

As the columns of C are the fundamental cycles, Cy isthe (m—n-+ 1) x (m—n+1}
idcntity_vmauix Ia—ny (. Since the kernel of B contains all cycle vectors, BC =0
andso BC = 0, giving ByCr = —By. Now, Br is invertible, as the reader should
check (cf. Exercise 4(), so

Cr = ~By ' Bn.
After this preparation we can easily solve our equations.

Theorem 11 The electric current w satisfving p = Rw + g is given by w =
—C(C'ROY (.

Proof Equation (1) implies that Brwy + Bywy = 0,s0wr = —B?T' Bywy =
Crwy. Hence w = Cwy. Combining (2) and (3) we find that C'Rw + C'g =0
and so (C'RCywy = —C'g. As C'RC is easily shown to be invertible, the result

follows, O

Clearly, Theorem 11 s valid in a somewhat more general situation, not only
when G and g are defined as above. In fact, the following conditions are sufficient
(and more or less necessary) for the existence of a unique current: g,r; = 0 for
every i and the edges ¢; with r; = 0 form a connected subgraph.

Furthermore, the results hold for multigraphs: all the concepts (incidence matrix,
cycle and cut spaces, fundamental cycles and cuts) can be defined as before and
the proofs of the results remain unchanged.

By considering multigraphs one can set up Theorem 7 in a slightly simpler
form, without adding a new vertex to the graph G’ of the network. Thus if the
current enters G’ at a vertex a and leaves it at a vertex b, then we join a to b by a
new edge e of 0 resistance (even if a and b had been joined before) and postulate
(by choosing g = (0,0,...,0, 1), where ¢ is the last edge) that the potentizl
difference in ¢ is 1. Using this set-up one can check that the ratio of the current in
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¢; to the total current {that is, the current in ) is indeed given by Theorem 1 of
Section 1, though this checking is rather tedious and involved. On the other hand,
as we shall show now, it is very easy to express the total number of spanning trees
in a graph in terms of the combinatorial Laplacian.

In fact, let us consider the case of electrical networks with differing resistances
and weighted spanning trees, as in Theorem 2. Let then G be a graph with
V(G) = {1, ..., U} and conductance matrix C = (cij): if i = j or v;v; is not
an edge then ¢;; is oo, otherwise it is the conductance of the edge v;v;.

As in Theorem 2, given a spanning tree T, write w(T) for the product of the
conductances of the edges of T, and let N*(G) = }_r w(T), with the summation
over all spanning trees.

The combinatorial Laplacian, or Kirchhoff matrix, of our electrical network
is L = D — C, where D is the diagonal matrix whose i th diagonal entry is

 T_1Cj = =1 Cji- As in L all rows and columns sum to 0, all the first
cofactors of L are equal; denote by K*(GY) this common value. Here then is the

matrix—tree theorem for electrical networks.
Theorem 12 With the notation above, N*(G} = K*(G).

Proof. We may assume that G is connected, since otherwise N*(G) = K*(G) =
0. Also, the result is trivial for # = 1 since then N*(G) = K*(G) = 1.

Let us apply induction on the number of edges of G. As the result holds for
no edges, we turn to the proof of the induction step. Suppose then thatr > 1, G
is connected, and the assertion holds for networks with fewer edges. Assuming,
as we may, that v; and v are adjacent, let G — vivy be obtained from G by
cutting (deleting) the edge v v2, and let G/viv2 be obtained from G by fusing
(contracting) the edge vyv2. Thus in G/vv; the vertices v) and vy are replaced
by a new vertex, vi2, say, which is joined to a vertex v, { > 2, by an edge of
conductance c1; + ¢3i, provided ¢); + ¢z > 0.

The crunch of the proof is that ¥* and X'* satisfy the same cut-and-fuse relation:

N*(G) = NY(G — uiv2) + ea2N* (G /vi1m2), (4)

and

K*(G) = K*(G — vjv2} + c12K™ (G /viv2). (5
Indeed, N*(G — wivy) ‘counts’ the spanning trees not containing vjvz, and
¢12N*(G /vyv3) ‘counts’ the remaining spanning trees. To see (5}, simply consider

the cofactors belonging to v) and vya.
This is all: by the induction hypothesis, the right-hand sides of (4) and (5) are

equal. I
A special case of Theorem 12 concerns multigraphs (or even graphs): all we

have to do is to write ¢j; for the number of edges joining v; to v;.

Corollary 13 The number of spanning trees in a multigraph is precisely the

common value of the first cofactors of the combinatorial Laplacian.

A similar result holds for directed multigraphs; however, this time we have to
count spanning trees oriented towards a vertex, as in Section 1.3.

- r———— 1 R —
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Theorem 14 Let G be adirected multigraph withvertexset V(G) = v, ..., vgl-
For | < i < n, denote by t; (G} the number of spanning trees oriented towards v;.
Also, let L = (£) be the combinatorial Laplacian of G: for i # J, —&;j is the
number of edges from v; to vj, and &;; = } ;; &y. Then 4(G) is precisely the
first cofactor of L belonging to £;;.

The proof is entirely along the lines of the proof of Theorem 12: when consid-
ering 1 (), say, all we have to take care is to contract all edges from v; fo v for
somei > 1. Note that this result contains Corollary 13: given amultigraph, replace
each edge by two edges, oriented in either direction, and apply Theorem 14.

H.4 Exercises

In exercises 1-7 every graph is taken as a simple electrical network, with every
edge having resistance 1,

1.

Calculate the resistance of the network shown in Fig. I1.1 measured between
the vertices 2 and 3.

For each different pair of vertices of a cube calculate the resistance between
them.

What is the resistance between two adjacent vertices of (a) an octahedron, (b)
a dodecahedron and (¢) an icosahedron?

Suppose each edge of a connected network is in the same number of spanning
trees. Prove that the total resistance between two adjacent verticesis (n—1)/e,
where n is the order and e is the size of the network. Verify your answers to
Exercise 3.

By applying suitable star-triangle transformations, calculate the resistance of
a dodecahedron between the midpoints of two adjacent edges.

Show that the resistance across an edge of K, is 2/», and so is the resistance
between two vertices of K, . that belong to the second class (having m

vertices).

Calculate the resistance between two nonadiacent vertices of the complete
three-partite graph K, , ».

. Give a detailed proof of Theorem 2.
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9. Construct the tilings associated with the networks in Fig. I1.11,

3 Gq

{

£

Hy

b}

FIGURE II.11. Networks with edges of differing resistances.

39

10.7 Consider an electrical network on a complete graph. indicate a simple way
of measuring the resistances of the edges by setting the vertices at certain
potentials and measuring the currents leaving or entering the network at the

vertices.

11. Let M) and M be electrical networks, each containing a set {/ of vertices,
the vertices of attachment. We say that (M|, U) is equivalent to (M», U) if
whenever N is a network sharing with each M; the set I/ and nothing else, and
we set some vertices of N at certain potentials, then in N U M, and N U M2
we obtain precisely the same distribution of currents in the edges of N, For
a,bell,a#b,let wyp(M;, V) be the amount of current leaving M; at b if
the vertex g is set at potential I and all other vertices of U are set at 0. Show
that (M, U7} 1s equivalent to (M2, U) of wap(M), U) = wuap(Mo, U) for all

a,bel a##b,

Use this to verify the star—{riangle transformation,

12. (Exercise 11 contd.) Show that a network M, with attachment set {/, is
equivalent to a network with vertex set I/ (and attachment set U/} if, and only
if, wep(M,U) = wp, (M, U foralla, b e U,a#b.

13.% Show that every network M with attachment set 7 is equivalent to a network
with vertex set U/. [Hint, By the result in the previous exercise, it suffices
to show that w, (M, U) = wp, (M, U}, where a. b € U, a # b. Short all
vertices of €/, other than a and b, to a vertex ¢. Let ¥, be ihe potential of a
vertex x when we set ¢ at I, and b and ¢ at 0, and let it be V] when we set
b at 1, and @ and ¢ at 0. For a vertex x, set P, = (V,,V,) € R? and, for
each edge xy, let the point P; pull P, with a force ¢, {Px — Py). Note that
if P, = (1,0, Py = (0, 1) and P, = (0, 0} are fixed, then this system is in

equilibrium, so the torque at P, is 0.]

147 Show that if the resistance of a wire is increased (in particular, if it is cut) then
the total resistance of a network does not decrease, and if a wire is shorted (or

just some vertices are shorted) then the total resistance does not increase.

15. Given a multigraph G and an edge e, write G — e for ¢ without the edge ¢,
and G /e for the multigraph obtained by contracting the edge ¢, i.e., for the
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graph obtained from G — ¢ by identifying the endvertices of . Also, for a
connected multigraph & and an edge e, write Pg(e € T) for the probability
that a random spanning tree contains e. Thus

Pg(e € T) = N(G/e)/N(G),

where N(H} denotes the number of spanning trees of a graph H.
Show that the result in the previous exercise is equivalent to the assertion that

if e and f are distinct edges of G then
Poyrle eT) < Pgle€T) < ]PG_f(e eT).

16. The n-dimensional (hyper-)cube has vertex set {0, 1}", with two sequences
a = (a;)], b = (b;)] € {0, 1}® joined by an edge if they differ in exactly one
term (so a; # b; for precisely one suffix i), Show that the resistance across
an edge is (2" — 1)/(n2""1) = % -~ % and czlculate the resistance

! . nn=T
between two opposite vertices.
17* (Exercise 16 contd.) Show :hat the resistance between any two vertices
of the n-dimensional cube is at least (27 — 1}/(n2"" 1) ~ % and at most
(n+ 1)/ (3) ~ %

18. Let G, be the n by n gnic, with s and ¢ in the opposite corners, and let H,
be its diagonal variant, as shown in Fig. II.12. Estimate the total resistance

between s and ¢ in the two networks if every edge has resistance 1.

ks

FIGURE II.12. The networks G¢ and .

19. For k = 1, let L;, My and N; be the networks indicated in Fig. I1.13. Thus
M; has 2k + 1 edges, with resistances 1,2, ...,k k+ 1, and 1, %‘ kl

For each network, calculate the resistance from s to £, and find the associaled
tiling.
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FIGURE T1.13. The networks L. Mg and Ny the numbers indicate the resistances.

20+ Let 5 and ¢ be verticcs of the boundary of the outer face of a plane network,
in which each edge has unit resistance. Suppose that when a non-zero current
is put through the network from s to ¢ then there is a non-zero current in each
edge. Show that this network corresponds to a squared rectangle.

217+ Show that there is no perfect squared rectangle of order less than 9 (that is,
made up of at most 8 squares).

22++ Show that there are two essentially different squared rectangles of order
9; the squaring of the 33 x 32 rectangle in Fig. I1.6 and the squaring of the

69 x 61 rectangle in Fig. I1.14.

33 36

Z8 2%
i

FIGURE I1.14, A squaring of the 69 x 61 rectangle.

23, Find the perfect squared square indicated in Fig. II.15. (This was found by
A.J.W. Duijvestijn.)

[ —— P R T



62 11. Elecirical Networks

FIGURE [L.15. A perfect squaring of the 110 x 110 square: the largest squares have side
tengths 60, 50, 28, 27, 26, 24, 23, 22, 21 and 18.

24. Find the simple perfect squared square given by the network in Fig. I[.16.
(This example was found by T.H. Willcox.)

FIGURE IL16. A network giving a perfect squared square: the main square has side
length 110, and the constituent squares have side lengths 60, 50, 28, 27, 26, 24, 23, 22,
21,19,18,17,16,14,12,9,8,6,4,3,2and 1.
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251+ Show that an equilateral triangle cannot be dissected into finitely many

26.

27.
28.

29.

30.

31.

32.
33.

34.

incongruent equilateral tiangles.

Prove that if a rectangular parallelepiped can be decomposed into cubes then
the ratios of its sides are rational.

Show that a cube cannot be dissected into finitely many incongruent cubes.

Dot the i’s in the following proof of Theorem 6. For arectangle U = [x), x2] %
Eyr. y2b set y(U) = (x2 — x1) @ (32 — »1) € E£(R/Z) @ Z(R/Z). Then
v{T) =Y. ¢¥(T;) = 0, and so T has an integer side.

Fill in the details in the following proof of Theorem 6. Let M be the free
7Z-module with basis R2/Z2. For a rectangle U == [x1. Xz} X [¥1, 2] € R?,
set p(U) = T2, (=1 (i, yj) € M. Then pu(T) = 37, u(Ti) = 0, 50
T has an integer side.

Prove Theorem 6 in the following way.

(i) Let p > 2 be a prime. Check that if each 7; has enly integer sides and
one of them is divistble by p, then one of the sides of T is divisible by p.
(ii) Foraprime p > 2andx = (x1.x2) € R%, let ¢, (x) = ([px1], [px2]) €
Z2. Assume that T = [0, a] x [0, b]. Show that if p is large cnough then
¢p(T) is tiled with ¢p(T1), ..., #p(Te), where ¢p(U) is the rectangle whose
vertices are the images of the vertices of U under ¢,. Apply (i) to this tiling,
and deduce Theorem 6.

Prove the following extension of Theorem 6. Let Th, ..., 7 be rectangles
tiling the rectangle T = [0, a] x [0, #] < R?. Suppose that each T; has 0, 2
or 4 vertices (comners) in Z2, Then T has an integer side. [Hirt. First proof of
Theorem 6.]

Adapt the second proof of Theorem 6 to prove Theorem 7.

Let Ty, ..., Tt be rectangles contained in a rectangle T such that every point
of T that is not on the boundary of some 7; is contained in the same m > |
number of rectangles 7;. Show that if each 7; has an integer side then so
does T.

We know from Corolary 8 that if an a x & x ¢ box B in R? is filled with
T x 2 x 4 bricks, then it can also be filled with these bricks all standing in the
same way. Prove this as follows. First, note that 8|abc and each of ab, bc and
ca is even. Hence, we are done unless each of a, b and ¢ is even. Assume then
that we are in this case. Replace the box B by an appropriate set of lattice
points: B’ = {(x,y.z2) € Z> 1 cx <a,t £y <b,1 =2 < c}. Check that
the sum of the coordinates of the points of B’ is %abc(a + 6+ c+3)and
that the sum of the coordinates of the points in a box is of the form 8s + 16.
Deduce that at least one of 2, b and ¢ is divisible by 4. [This was de Bruijn’s
original problem he published in 2 Hungarian journal in 1959; the solution
above 15 his own: it was published in 1960.]

m | —— PR T
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36.

37.

38.

39,

40.

41,

42

43,
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Prove the result in the previous exercise in the following way. As before, we
may assume that each of &, b and ¢ is even. Divide the box B inte 2 x 2 x 2
cubes, and consider a black and white checkerboard colouring of these cubes.
Check that each 1 x 2 x 4 brick has exactly as much black as white, and so
there are as many black cubes as white ones. Deduce the result from this. [This
solution to de Bruijn’s problem, given by G. Katona and D. Szdsz in 1964, is
the origin of the ‘checkerboard’ proof of Theorem 6.}

Let 7 be the set of tilings of a simply connected domain with2 x Fand 1 x 2
dominoes. Let & be the graph with vertex set T in which a tiling 77 is joined
to a tiling > if 71 and 7> agree in all but two dominoes. Show that H 1s
connected. Show also that the assertion need not hold if the domain is not

simply connected.

Show that in a ptane graph the boundaries of the bounded faces form a cycle
basis.

Show that the cycle space is the kernel of the map C((G) — Cp{G) defined
by the incidence matrix B.

Let B be the transpose of the incidence matrix B of a graph . Show that
the cut space is the image of the map Cg(G) — C((G) defined by B‘.

Let F be aset of n — 1 edges of a graph of order » with incidence matrix B.
LetBpbean{(n — 1) x (n 1) submatrix of B whose columns correspond
to the edges of F. Prove that Br is invertible iff F is the edge set of a tree.

Deduce from Corollary 13 that there are n”~2 trees on n distinguishable
vertices.

Which squared rectangle corresponds to the network in Fig. 11.17. Rotate the
rectangle through 90° and draw the network for this rectangle.

FIGURE IL.17. A plane network.

How many essentially different squared rectangles correspond to the network
of the cube in Exercise 27

S ———— e 6 AT ———
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44. Show that a graph is planar if, and only if, its cycle space has a basis of cycles
such that every edge belongs to at most two of these cycles.

45, Given atiling of a rectangle by rectangles, write S for the number of segments:
the number of maximal segments that are unions of some sides of the rectan-
gles, T for the number of tiles, and C for the number of crosses: the number
of points in four tiles (see Fig I118). Provethat S — T +C = 3. {Hint. Let G
be the plane graph of the tiling, with n vertices, m edges and f = T + | faces.
Write n; for the number of vertices of degree / so that n; = 4 and n4 = C.
Check that 2m = 8 + 3n3 + 4C and § = n1/2 + 4. Apply Euler’s formula.]

FIGURE IL.18. A tiling of a rectangle by rectangles, with § = 15, T = 14 ané C = 2.

46. Note that in every triangulation of a convex n-gon there are at least 2n — 3
segments that occur twice among the sides of the triangles of the triangulation
and the sides of the original n-gon, Show that the same holds for every filing of
a convex n-gon with triangles, as in Fig. II,19. [Hint. Suppose that our tiling
is made up of T friangles, and there are t segments that occur twice. The
polygon and the triangles have, altogether, r + 3¢ sides, sos =n + 37 — 2¢
sides occur once (‘singly’). Suppose also that there are b boundary vertices,
i.e., vertices of the triangles that are also on a side of a triangle or of the n-gon.
Check that s < 3b so n + 3T = 2t + 5 < 2t + 3b. Counting angles, check
that T > & + n — 2, and deduce the assertion.]

FIGURE 11.19. A tiling of a square with triangles; the parameters are n = 4, T = 9,
r=5s=2land b ="
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47. (Exercise 46 contd.) Show that in a tiling of a convex n-gon with triangles
there are precisely 2n - 3 segments that occur twice among the sides of the
triangles and the n-gon if, and if only if,

{i) every vertex (of a triangle) in the interior of the n-gon is in the interior of
a side of a triangle,
(i1} if a segment is a union of sides then it is itself a side.

II.5 Notes

The origin of the fundamental results on the distribution of currents, Theorems 1
and 2, is G. Kirchhoff, Uber die Auflésung der Gleichungen, auf welche man
bei der Untersuchung der Linearen Vertheilung galvanischer Suéme gefiihrt wird,
Ann, Phys. Chem. T2 (1847} 497-508.

Theorem 4 is one of the simplest results from M. Dehn, Uber die Zerlegung
von Rechtecken in Rechiecke, Math. Ann. 57 (1903) 314-322; its extension,
Theorem 5, is from R. Sprague, Uber die Zerlegung von Rechtecken in lauter
verschiedene Quadrate, J. fiir die Reine und Angewandte Mathematik 182 (1940)
60-64.

The first perfect squared squares were published independently by R. Sprague,
Beispiel einer Zerlegung des Quadrats in lauter verschiedene Quadrate, Marh.
Zeitschrift 45 (1939) 607-608, and by R.L. Brooks, C.A.B. Smith, A H. Stone
and W. T. Tutte, The dissection of rectangles into squares, Duke, Math, J. 7 (1940)
312-340, The square shown in Fig, I1.8 was published in A.J.W, Duijvestijn,
Simple perfect square of lowest order, J. Combinatorial Theory Ser. B 25 (1978}
240-243.

Two survey articles the reader may wish to look at are W.T. Tutte, The quest
of the perfect square, Amer. Math. Monthly T2 (1965) 29-35 and N.D. Kazarinoff
and R. Weitzenkamp, Squaning rectangles and squares, Amer, Math. Monthly 80
(1973) 877--888. A recent compendium of squaring results is a privately published
volume by J.D. Skinner II, Squared Squares — Who is Who, and What is What,
Lincoln, Nebraska, 1993, 167 pp.

The origins of the results of de Bruijn at the end of Section 2 are two problems
he published in the Hungarian Matematikai Lapok in 1959 and 1961 ; the matenial
presented is from N.G. de Bruijn, Filling boxes with bricks, Amer. Marth. Monthly
76 (1969) 3740, For a rich variety of proofs and generalizations of these results,
see S. Wagon, Fourteen proofs of a result about tiling a rectangle, Amer. Math.
Monthly 94 (1987) 601-617.
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Flows, Connectivity and Matching

Given a collection of boys and girls, when can all the girls find husbands that they
know? For a subgroup H of a finite group G, are there group elements g, ..., g,

such that {g1H, ..., gaH} is the collection of left cosets and {Hgy, ..., Hgy}
is the collection of right cosets of H? Given sets Ay, ..., A, are there distinct
elementsa) € Ay, ..., 4y € Ap?

These seemingly disparate questions are, in fact, closely related. they all concern
sets of independent edges, called matchings, in bipartite graphs, and are answered
by the same basic theorem in various guises, attributed to Hall, Konig and Egervary.
This theorem, which we shall call Hall's marriage theorem, is a prime example
of several results we shall present in this chapter giving necessary and sufficient
conditions for the existence of certain objects; in each case the beauty of the
theorem is that a condition whose necessity is obvious is shown to be also sufficient.
In the natural formulation of our results we shall have two functions, say f and g,
clearly satisfying f < g, and we shall show that max f = min g. The results of
this chapter are closely interrelated, and so the order they are proved in is a matter
of taste; to emphasize this, some results will be given several proofs.

In the previous chapter we discussed flows in electrical networks: in Section 1 of
this chapter we shall study rather different aspects of flows in directed graphs. Our
main aim is to present the simple but very powerful max-flow min-cut theorem of
Ford and Fulkerson, proved in 1962, This result not only implies the central results
of the next two sections, but it also has a number of other important consequences
concerning undirected graphs.

Connectivity of graphs is our theme in the second section: the main result is
Menger's theorem, first proved in 1927, Hall’s marmiage theorem and its variants
are presented in Sectton 3.

P — = A Py 1
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In the first instance we shall deduce the theorems of both Menger and Hall from
the max-flow min-cut theorem. However, as these results are closely related, and
are of fundamental importance, we shall also give independent proofs of each.

Hall’s theorem tells us, in particular, when a bipartite graph has got a 1-factor,
a subgraph whose vertex set is that of the original graph and in which every vertex
has degree 1. The question of the existence of a 1-factor in an arbitrary graph is
considerably harder. It is answered by the theorem of Tutte we shall present in

Section 4,

The last section is about so-called stable matchings in bipartite graphs. These
are matchings which are compatible with ‘preferences’ at all the vertices: in a
well defined sense, such a matching is a local maximum for every pair of vertices,
one from each class. The fundamental result is a theorem of Gale and Shapley,
proved in 1962: this result is not only of great interest in its own right, but it also
has numerous applications. Some of these applications will be given here; another
imporiant recent application, to list colourings, will be given in Chapter V,

III.1  Flows in Directed Graphs

LetG bea (finite) directed graph with vertex set V and edge set E. We shall study
(static) flows in & from a vertex s (the source) to a vertex ¢ (the sink). A flow fisa
non-negative function defined on the edges; the value f(X¥) is the amount of flow
or current in the edge ¥3 . For notational simplicity we shall write f(x, y) instead
of f(x%) and a similar convention will be used for other functions. Also, we take

f(x. g) to be 0 whenever X3 € E. The only condition a flow from s to ¢ has to
satisfy 1s Kirchhoff’s corrent law: the total current flowing into each intermediate
vertex (that is, vertex different from s and ¢) is equal to the total current leaving
the vertex. Thus if for x € V we put

rta)={yeV: ¥y &),
I"(x)=(yeV: yk € E},

then a flow from s to ¢ satisfies the following condition:

Y flay= ) f@w

yelH{x) el {x)

foreachx € V — {5, t}. Since

0= > D fEy- ) f@x)

eV —{s.1) | yeT+(x} 2el~(x)

=3 1> faw- > funt.

wefs.g} | el () vel't{u)
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we find that
3o s Y fos= Y fn— Y fi).
yel+({s) yel~(s} yel' (1) yel't{t)

In other words, the net current leaving s equals the net current flowing into ¢. The
common value, denoted by v{ f), is called the value of f or the amount of flow
from s {0 £,

We wish to determine the maximal flow value from s 10 ¢ provided the How
satisfies certain constraints. First we shall deal with the case when the so called
capacity of an edge restricts the current through the edge. It will turn out that
several other seemingly more complicated restrictions can be reduced to this case.

Let us fix our dlractad graph G = (V, E) and two vertices in it, say 5 and r.
With each edge X y of G we associate 2 non-negative number c(x, y), called the
capaary of the edge. We shall assume that the current flowing through the edge

X y cannot be more than the capacity c(x, y).
Given two subsets X, ¥ of V, we write E(X. ¥) for the set of directed X — ¥

edges:
E(X.Y)={xyeE:xeX, ye¥}
Whenever g : E - R is a function, we put
gX, ¥y =) 2(x.».

where the summation is over E (X,Y). If §is a subset of ¥V containing 5 but
not ¢ then E(S $) is called a cut separating s from ¢t. Here § = V — § is the
complement of S. If we delete the edges of a cut then no positive-valued flow from
5 to ¢ can be defined on the remainder. Conversely, it is easily seen thatif Fisa
sct of edges after whose deletion there is no flow from 5 to # (that s, v(f) = Ofor
every flow from s to t) then F contains a cut (Exercise 1). The capacity of a cut
E(S,S) is ¢(5,5) (see Fig. 1IL1). It is easily seen (Exercise 2) that the capacity
of a cut is at least as farge as the value of any flow, so the minimum of all cut
capacities is af least as large as the maximum of all Aow values. The celebrated
max-flow min-cut theorem of Ford and Fulkerson states that this trivial inequality
is, in fact, an equality. Before stating this theorem and getting down te the proef,
let us justify the above use of the words ‘minimum’ and *maximum’. Since there
are only finitely many cuts, there is a cut whose capacity is minimal. The existence
of a flow with maximal vahue is only slightly Jess trivial. Indeed, rather crudely,

v(f) = Y clxy)

-

yek
for every flow f,sov = supu(f) < oo. Let f1, f2,... be a sequence of flows
with lim,, v( f,) = v. Then, by passing to a subsequence, we may assume that for

each f} € E the sequence ( f,{x, y)) is convergent, say to f{x, y). The function
f is a flow with value v, that is, a flow with maximal value. In a similar way one

St e s L LA -Mdn s 6 e
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E-Y
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FIGURE IILI. A cut with capacity 12. (The numbers next to the edges indicate their
capacity.)

can show that even if some of the edges have infinite capacity, there 1s a flow with
maximal value which can be either finite or infinite (Exercise 3).

Theorem 1 (Max-Flow Min-Cut Theorem.) The maximal flow value from s to t
i5s equal to the minimum of the capacities of cuts separating s from ¢,

Proof. We have remarked already that there is a flow [ with maximal value, say
v, and the capacity of every cut is at least v. Thus, in order to prove the theorem we
have to show that there is a cut with capacity v. We shall, in fact, do considerably
more than this: we shall give a very simple procedure for constructing such a cut
from a flow f with maximal value.

Define a subset § C V recursively as follows. Lets € 5. If x € S, and

clx,y) > fix,¥)

or

f(y.x) >0,

thenlet y € §.

We claim that E(S,3) is a cut separating s from ¢ with capacity v = v(f).
Let us see first why ¢ cannot belong to S. If ¢ belongs to S, we can find vertices
Xp = f, X4, ...,X¢s = I such that

&; = max{c(x;, xiy1) — f(xi, xie1), fxi, xi41)} > O

foreveryi, 0 < i <[ — 1. Put & == min,; &. Then f can be augmented to a flow
f* in the following way: if &; > f(x;, x;41) then ncrease the flow in X;Xiy by
£ otherwise, decrease the flow in X;41% by £, Clearly, f* is a flow and its value
is v( f*} = v(f) + &, contradicting the maximality of f. This shows that f ¢ § s0
E(S, §) is a cut separating 5 from ¢. B

Now, v( f) is equal 1o the value of the flow from & to § defined in the obvious

way:
Yo ofemn— Y fxy.

xES,yEE xEE,yES
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By the definition of S the first sumn is exactly
Z c(x, y)=¢(8.8),

xeS.yeE

and each summand in the second sum is zero. Hence ¢(8, §) = v(f), as required.
|

The max-flow min-cut theorem is the corerstone of the theory (¢ be presented
in this chapier. Note that the theorem remains valid (with exactly the same proof)
if some of the edges have infinite capacity but the maximal fiow value is finite,

The above proof of the theorem also provides a surprisingly efficient algorithm
for finding a flow with maximal value if the capacity function is infegral, that
is, if c(x, y} is an integer for every edge xy. We start with the identically zero
flow: fo(x, ¥) = O for every ;} ¢ E. We shall construct an increasin g sequence
of flows fo. fi. fz2, - - . that has to ierminaie in a maximal flow. Suppose we have
constructed f;. As in the proof above, we find the set § belonging to f;. Now, if
t ¢ Sthen f; is a maximal flow (and E(S, S} is a minimal cut) so we terminate
the sequence. If, on the other hand, r € S5, then f; can be augmented to a flow f;11
by increasing the flow along a path from s to ¢, precisely as in the proof. Since
each v( f;) is an integer, we have v(fi1|) = v(fi) + |, and the sequence must end
in at most y_, . c(x, y) steps.

Moreover, ify ¢ is integral then the algorithm constructs a maximal flow which
is also integral, that is, a flow whose value is an integer in every edge. Indeed,
fo is integral, and if f; is integral then so is fi4 1, since it is obtained from f; by
increasing the flow in a path by a value that is the minimur of a set of positive
intcgers. This result is ofien called the integrality theorem.

Theorem 2 [f the capacity function is integral then there is a maximal flow that
is also integral. ]

We shall rely on this simple result when we use the max-flow min-cut theorem
to find various paths in graphs. It is important to note that the results do not claim
uniqueness: the algorithm finds one of the maximal flows (usually there are many),
and Theorem 2 claims that one of the maximal flows is integral.

The existence of the algorithm proves some other intuitively obvious resuits as
well. For instance, there is a maximal acyclic flow, that is, one that does not contain
a flow around a cycle (see Exercise 4); in other words, for no cycle x(xz - - - x; do

we have
flxx) >0, f(x2,x3)>0, ..., flxe—.xg) >0, flxe,x1) > 0

Just as in the case of electrical networks, if instead of one source and one sink
we take several of each, the problem becomes only a litile more compticated. In
fact, the only difference is that we have to be careful when we define a cut. If
f(,..., g are the sourcesand ¢, .. ., # are the sinks then E(S,S)isacutifs; €S

andr; € S foreveryi, j, 1l <i <k, 1<j<l
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In order to be able to apply the max-flow min-cut theorem, ]ct us add a new

source 5 and a new smk tto G, together with all the edges 55; and rjt each having
infinite capacity. Let H be the graph obtained in this way. Consider thosc flows
from sy, ...,5¢ tofy, ..., 0 iR G in which the total current entering (leaving) a
source {sink) is not greater than the total current leaving (entering) it. These flows
can easily be extended to a flow from s to ¢ in H, and this extension establishes a
1-to- | correspondence between the two sets of flows. Furthermore, a cut separating

L . . : -
s from ¢ in & that has finite capacity cannot contain an edge of the form 537 of tit

so it corresponds to a cut of the same capacity in G, separating §i, ..., s from
t1, ..., 4. Thus Theorem 1 has the following extension.

Theorem 3 The maximum of the flow value from a set of sources to a set of sinks
is equal to the minimum of the capacities of cuts separating the sources from the

sinks. ]

Let us assume now that we have capacity restrictions on the vertices, except
for the source and the sink. Thus we are given a function ¢ : V — {5,2} —> R*
and every flow f from s to 1 has to satisfy the following inequality for every

xreV ~{sth
Y fan= D fox) <cx).

yel+{x) zel+(x}

How should we define a cut in this situation? A cut is a subset S of V — {s, ¢}
such that no positive-valued flow from s to ¢ can be defined on G — S. In order
to distinguish the two kinds of cuts, we sometimes call this a vertex-cut and the
other one an edge-cut. However, it is almost always clear which cut is in question.
Can we carry over the max-flow min-cut theorem to this case? Yes, very easily,
if we notice that a flow can be interpreted to flow in a vertex as well, namely
from the part where all the currents enter it to the part where all the currents leave
it. More precisely, we can turn each vertex of G into an edge (without changing
the nature of the directed graph) in such a way that any current entering (and
leaving) the vertex will be forced through the edge. To do this, replace each vertex
x € V — {s,t} by two vertices, say x— and x; send each incoming edge to x.
and send each outgoing edge out of x4 . Finally, for each x, add an edge from x_
to x+ with capacity c(x—, x4) = c{x) (see Fig. l11.2}.

¥ z

FIGURE IIL.2. Replacing a gragh G with restrictions on the capacity of the vertices by a
graph H with restrictions on the capacity of the edges.
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There is a simple 1-1o-1 correspondence between the flows from s to 1 in G
and the fiows in the new graph K satisfying the capacity restrictions on (some of)
the edges. Since in H only the edges ¥—% 4+ have finite capacities, an edge-cut of
finite capacity in H consists entirely of edges of the form X% 4 50 it corresponds
to a vertex-cut in G of the same capacity. Thus we have the following form of
Theorem 1.

Theorem 4 Let G be a directed graph with capaciry bounds on the vertices other
than the source s and the sink t, Then the minimum of the capacity of a vertex-cut
is equal to the maximum of the flow value from s to t. O

Theorems 1, 3 and 4 can easily be combined into a single theorem. We leave
this to the reader (Exercise 6),

III.2 Connectivity and Menger’s Theorem

Recall that a graph is connected if any two of its vertices can be joined by a path,
and otherwise it is disconnected. A maximal connected subgraph of a graph G is
a component of G.

If G is connected and, for some set W of vertices or edges, G — W is dis-
connected, then we say that W separates G. If in G — W two vertices 5 and ¢
belong to different components then W separates s from t. For k = 2, we say
that a graph G is k-connected if either G is a complete graph K or else i
has at least k& + 2 vertices and no set of £ — 1 vertices separates it. Similarly, for
k > 2, a graph G is k-edge-connected if it has at least two vertices and no set of
at most & — 1 edges separates it. A connected graph is also said to be |-connected
and t-edge-connected. The maximal value of k for which a connected graph G s
k-connected is the connectivity of GG, denoted by x (G). If ¢ is disconnected, we
put {{7) = 0. The edge-connectivity A(G) is defined analogously.

Clearly, a graph is 2-connected iff it is connected, has at least 3 vertices and
contains no cutvertex. Similarly, a graph is 2-edge-connected iff it is connected,
has at least 2 vertices and contains no bridge. It is often easy to determine the
connectivity of a given graph. Thus if 1 < I < n then «(FPe) = A(Py) = 1,
K(Cp) = MC) = 2, k(Ky) = A(Kp) = n— 1 and k(K p)} = MKep) = £
In order to correct the false impression that the vertex-connectivity is equal to
the edge-connectivity, note that if G is obtained from the disjoint unton of two
complete graphs Ky by adding a new vertex x and jomning x to every old vertex,
then x(G) = 1, since x is a cutvertex, but A(G) = £ (see also Exercise 11). This
last example shows that A(G — x} may be 0 ever when A(G) is large. However, it
is clear from the definitions that for every vertex x and edge xy we have

K(G)—~1<k(G—x) and A(G)—1 < A(G — xy) < MG).

If G is nontrivial (that is, has at least two vertices), then the parameters §(G),
AMG) and k (G) satisfy the following inequality:

k(G) < MG) = G}



74 {II. Flows, Connectivity and Matching

Indeed, if we delete all the edges incident with a vertex, the graph becomes
disconnected, so the second inequality holds. To see the other inequality, note
first that if G is complete then ¥{G) = {G) = |G| - I, and if A(G) < |
then A(G) = (). Suppose now that G is not complete, A{(G) = & = 2 and
{X1¥1,x2y2, ..., X i) is a set of edges disconnecting G. If G — {x1, x2, ..., x4}
is disconnected then «(G) < k. Otherwise, each vertex x; has degree at most
k (and so exactly k), as shown in Fig. IIL.3. Deleting the neighbours of x;, we
disconnect G. Hence &« = A{(G).

Rl

Xy

FIGURE II1.3. A 4-edge-connected graph & such that G - {x1, x2, X3, X4} is connected,

Another property immediate from the definition of vertex-connectivity is that
for k = 1, if G| and G are k-connected subgraphs of a graph G having at least
k common vertices, then () U G is also k-connected. Indeed, if W C V(G U
V (G2) has at most k — 1 vertices, then there is a vertex x in (V{(G N V(G2 )\ W.
Therefore, the connected subgraphs &) — W and (72 — W of & have at least one
vertex, namely x, in common, s0 Gy UGy — W = (G -~ W)U (G2 — W) is
connected.

Having seen in Chapter | how useful itis to partition a graph into its components,
that is, into its maximal connected subgraphs, let us attempt a simifar decompo-
sition using all maximal 2-connected subgraphs. A subgraph B of a graph G is
a block of G if either it is a bridge (together with the vertices incident with the
bridge} or else it is a maximal 2-connected subgraph of . The remarks above
show that any two blocks have at most one vertex in common, and if x, y are dis-
tinct vertices of a block B then G — E(8) contains no x—y path. Therefore, every
vertex befonging to at least two blocks is a cutveriex of G, and, conversely, every
cutvertex belongs to at least two blocks. Recalling that a cycle is 2-connected and
an cdge is a bridge iff no cycle contains it, we find that G decomposes into its
blocks B), B3, ..., B, in the following sense:

P
E@G)=|JEB), and EBINEB) =& ifi#].
1

Suppose now that {7 is a nontrivial connected graph. Let bc(G) be the graph
whose vertices are the blocks and cutvertices of G and whose edges join cutvertices
to blocks: each cutvertex is joined to the blocks containing it. Then &c((), called
the block—cutvertex graph of (G, is a tree. Each endventex of £c{(), is a block of
G, called an endblock of G. If G is 2-connected or is a K> {an “edge™) then it
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Bl B:I Bl

FIGURE 111.4. The construction of the block—cutvertex tree be(G). The subgraph By is
an endblock.

contains only one block, namely itself: otherwise there are at least two cndblocks,
and a block is an endblock iff it contains exactly one cutvertex (Fig. 111.4).

The basic result in the theory of connectivity was proved by Menger in 1927 It
is the analogue of the max-flow min-cut theorem for (undirected) graphs. Recall
that two s~ paths are independent if they have only the vertices s and ¢ in common.

Theorem 5 (i) Let s and t be distinct nonadjacent vertices of a graph . Then the
minimal number of vertices separating s from 1 is equal to the maximal number
of independent s—t paths.

(ii) Let 5 and t be distinct vertices of G. Then the minimal number of edges
separating s from t is equal to the maximal number of edge-disjoint s—1 paths.

Proof (i) Replace each edge xy of G by two directed edges, x¥ and y%, and give
cach vertex other than 5 and ¢ capacity 1. Then by Theorem 4 the maximal flow
value from £ to ¢ 1s equal to the minimum of the capacity of a cut separating s from
t. By the integrality theorem {Theorem 2) there is a maximal flow with current 1
or {0 in each edge. Therefore, the maximal flow value from s to # 1s equal to the
maximal number of independent s— paths. The minimum of the cut capacity is
clearly the minimal number of vertices separatinig 5 from 7.

(ii) Proceed as in (i), except instead of restricting the capacity of the vertices,
give each directed edge capacity [. 0

The two parts of the above theorem are called the vertex form and the edge
form of Menger’s theorem. One can easily deduce the edge form from the vertex
form (Exercise 15), but the other implication is rot s¢ easy. Since, as we have
mentioned already, the max-flow min-cut theorem can also be deduced from
Menger’s theorem, we shall give another proof of the vertex form of Menger’s
theorem from first principles.

Second Proof of the Vertex Form of Menger’s Theorem. Denote by & the mimimal
number of vertices separating s and ¢. Then clearly there are at most x independent
s—t paths and for k < | there are k independent s—¢ paths.

Suppose the theorem fails. Take the minimal & > 2 for which there is a coun-
terexample to the theorem and let G be a counterexample (for this minimal k)
with the minimal number of edges. Then there are at most £ — 1 independent s—¢
paths and no vertex x is joined to both s and ¢, otherwise, G — x would be a

counterexample for k — 1.
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Let W be a set of £k vertices separating s from :. Suppese neither 5 nor ¢
is adjacent to every vertex in W. Let &, be obtained from G by replacing the
component of G — W containing s by a single vertex 5" and joining 5" to each
vertex in W._ In G, we still need & vertices to separate s* from £, and since the
component we collapsed had at least two vertices, (; has fewer edges than G.
Now, as (5 is a counterexample of minimal size, in G, there are £ independent
s'~t paths. The segments of these & paths from r to W are such that any two of
them have nothing but the vertex ¢ in commeon. In particular, for every w € W one
of these paths 1s a 1—w path. If we carry out the analogous procedure for ¢ instead
of 5 then we get k paths from s to W. These two sets of paths can be put together
to give & independent s— paths, contradicting our assumption. Hence for any set
W of k vertices separating s from ¢ either s or t is adjacent to all vertices of W.

Let sxyxz - - - x;¢ be a shortest 5~ path. Then /! > 2 and, by the minimality of
(5, in the graph G — x;x2 we can find a set Wy of k — 1 vertices separating s from
t. Then both W) = {x1} U Wp and Wy = {x;} U W) are k-sets separating s from z.
Since ¢ is not joined o x, the vertex s is joined to every vertex in W,. Similarly,
s is not joined to x». and so ¢ is joined to every vertex in W;. This implies the
contradiction that s and ¢ have at least one common neighbour: every vertex in Wy
is a common neighbour of s and ¢, and |Wy| =k — 1 > 1. 1

Corollary 6 Fork = 2, a graph is k-connected iff it has at {east two vertices and
any two vertices can be Joined by k independent paths, Also, fork > 2, a graph is
k-edge-connected iff it has at least two vertices and any two vertices can be joined
by k edge disjoint paths. J

Another characterization of k-connectivity is given in Exercise 12.

Corresponding to the max-flow min-cut theorem for multiple sources and sinks,
one has the following version of Menger's theorem. If § and T are arbitrary
subsets of vertices of G, then the maximal number of vertex-disjoint (including
endvertices!} S—T paths is min{|W| : W C V(G), G — W has no $-T path}. To
see this, add two new vertices to G, say 5 and ¢, join s to every vertex in S and ¢ to
every vertex in T, and apply Menger’s theorem to the vertices 5 and ¢ in the new

graph.

III.3 Matching

Given a finite group G and a subgroup A of index m, can you find m ele-
ments of G, say g4, £22,....8m such that {gH, g2H, ..., gnH} is the set of
all left cosets of H and {Hg1, Hgz, ..., Hgm) 1s the set of all right cosets? A
reformulation of this problem turns out to be a special case of the following prob-
lem, which anse¢s frequently in diverse branches of mathematics. Given a family
A= {Ayq, Az, ..., Ay} of subsets of a set X, can we find m distinct elements of
X, one from each A;? A set {x), x2, ..., x|} with these properties {i.e., x; € A;,
x; # xj if i # j)is called a set of distinct representatives of the family A, The
set system A is naturally identifiable with a bipartite graph with vertex classes

L R e LA e ol i, 4
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V) = Aand V3 = X in which A; € Ais joined to every x € X contained in A;.
A system of distinct representatives is then a set of m independent edges {thus
each vertex in V| is incident with one of these edges). We also say that there is a
complete matching from V| to Va.

It is customary to formulate this problem in terms of marriage arrangements,
Given m girls and n boys, under what conditions can we marry off all the girls,
provided that we do not want to carry matchmaking so far as to mamry a girl toa
boy she does not even know?

It is clear that both the max-flow min-cut theorem and Mcnger's theorem imply
a necessary and sufficient condition for the existence of a complete matching. in
fact, because of the special features of a bipartite graph, there is a particularly
simple and pleasant necessary and sufficient condition.

If there are k girls who know at most £ — I boys altogether, then we cannot find
suitable marriages for these girls. Equivalently, if there is a complete matching
from V; to V5, then for every § C Vi there are at least |.S] vertices of V2 adjacent

to a vertex in S; that is,
T3 = [5].

The result that this necessary conditton is also sufficient is usually called Hall's
thegrem. This fundamental theorem was proved by Hall in 1935, but an equivalent
form of it had been proved by Kanig and Egervdry in 1931, but both versions follow
immediately from Menger’s theorem from 1927, We shall give three proofs. The
first is based on Menger’s theorem or the max-flow min-cut theorem, the other

two prove the result from first principles,

Theorem 7 A bipartite graph G with vertex sets Vi and V3 contains a complete
matching from V) to V iff

IF(8)| = |81 forevery § C V1.

We have already secn that the condition is necessary so we have to prove only
the sufficiency.
First Proof. Both Menger's theorem (applied to the sets V) and ¥ as at the end
of Section 2) and the max-flow min-cut theorem (applied to the directed graph
obtained from G by sending each edge from V| to V3, and giving each vertex
capacity 1} imply the following. If G does not contatn a complete matching from
V) to V3 then there are Ty C V) and Ty < V2 such that |Ty| + |T2] < |V)| and
there is no edge from V) — Ty to V2 — T2, Then (V| — 1}) C T3 50

NV~ Tl = 2| < Vi — [Nl =1VI =Tl
This shows the suffictency of the condition. 3

Second Proof In this proof, due to Halmos and Vaughn, we shall use the match-
making terminclogy. We shall apply induction on m = [V}, the number of girls,
For m = | the condition is clearly sufficient, so we assume that m > 2 and the

condition is sufficient for smaller values of m.
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Suppose first that any & girls (1 < k < m) know at least k + 1 boys. Then we
arrange one marriage arbitrarily. The remaining (sets of)} girls and boys still satisfy
the condition, so the other m — 1 girls can be mamied off by induction.

Suppose now that for some k, 1 <k < m, there are k girls who know exactly k
boys altogether. These girls can clearly be married off by induction. What about
the other girls? We can marry them off (again by induction) if they also satisfy the
condition, provided that we do not count the boys who are already married. But
the condition is satisfied, since if some £ girls to be married know fewer than £
remaining boys, then these girls together with the first & girls would know fewer

than & + £ boys. ]

Third Proof. This proof is due to Rado. Let G be a minimal graph satisfying the
condition. It suffices to show that G consists of | V1! independent edges.

If this is not so, then & contains two edges of the form ax, azx, whereay, a3 €
Vi, ay # a2, and x € V;. Since the deletion of either of these edges invalidates the
condition, there are sets Ay, Az C V) such that fori = 1, 2 we have |[["(A;)] =
{Al, and a; is the only vertex of A; adjacent to x. Then

IP(ADNT{A) = {T(A —{a B NT (A2 — {@mhi + 1
> [T{(AT N A+ 1= AN A+ L.

But this implies the following contradiction:

(A1 U A2)| = [F (A1) UT(A3z)]
= [C(AD]+ T (A)] — IT (A1) NT(A2)
<|Al+ (A2l — 1A NAz| =]
= |A; U Ayf = 1. 0

A regular bipartite graph satisfies the conditions of Hail’s thearem, so it has a
complete matching. In turn this implies that we can indeed find group elements
E1, 22, - ... &m. as required at the beginning of the section.

Let us reformulate the marriage theorem in terms of sets of distinct

representatives.

Theorem &8 A family A = (A, Al ..., Ap} of sets has a set of distinct
representatives iff

UA,- > |Flforevery F C{1,2,...,m}. 0

ieF

In the next four results we present two natural extensions of the marriage
theorem. The first iwo of the these concern deficient forms of the theorem, Suppose
that the marriage condition is not satisfied. How near can we come to marrying
off all the girls? When can we marry off all but 4 of the girls? Clearly, only if any
£ of them know at least k¥ — d boys. This obvious necessary condition is again
sufficient.
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Corollary 9 Suppose that a bipartite graph G = Ga(m, n), with vertex sets
V1. Vo, satisfies the following condition:

IT(DHI = |8t —4d
Jorevery S; C V). Then G contains m — d independent edges.

Proof. Add d vertices to V; and join them to each vertex in V. The new graph
G = satisfies the conditions for a complete matching. At least m — d of the edges
in a complete matching of G belong to G. M

Let us give another deficient form of the marriage theorem, If an edge e is
incident with a vertex x, then we say that e covers x, and x covers e. Furthermore,
a vertex 1s said to cover itself (and no other vertex).

Corollary 10 Let G = (Fa(m, n) be a bipartite graph. Write h for the maximat
number of independent edges, i for the maximal number of independent vertices,
and j for the minimal number of edges and vertices covering all the vertices, Then

i=j=m+n-—h

Proof. Let E’ U V' be a set of j edges and vertices covering all vertices, with
E'Cc Eand V' C V.Ife, f € E’' share a vertex, then in the cover E' U V' we
may replace f by its other endvertex. Hence we may assume that E’ consists of
independent edges. This shows that j =m +n — h.

Also,m+n —i > h, since if T is a set of i independent vertices (in any graph),
then every edge is incident with at least one vertex not in /.

Finally, let § C V) be such that |[I'(§)] = |§] — (m — h), as guaranteed by
Corollary 9. Then, with T == V3 —-I'(8), the set SUT isasetof S|+ n — |['(8)| =
m 4 n — h independent vertices, proving that i > m+n — h. O

The next extension concems matchmaking for boys in a polygynous country,
where the i th boy intends to marry d; girls.

Corollary 11 Let ¢ be a bipartite graph with vertex classes V| = {x1, ..., X}
and V2 = {y1. ..., va}). Then G contains a subgraph H such that dy{(x;) = d;

and 0 <dp(y;) < 1if
ISR

es
Jorevery S C V).
Proof. Replace each vertex x; by d; vertices joined to every vertex in I"(x;). Then

G has such a subgraph H iff the new graph has a matching from the new first
vertex class to V3. The result follows from Theorem 7, |

Of course, Corollary 11 also has a defect form which the reader is encouraged

to state and deduce from this,
The alert reader is probably aware of the fact that these corollaries are still

special cases of the max-flow min-cut theorem. In fact, the bipartite graph version
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of the max-{low min-cut theorem is considerably more general than the corollaries
above,

Theorem 12 Let & = Ga(m, n) be a bipartite graph with vertex classes V1 =
(x1,....axmland Va={y1....,yn}. For S C Viand | < j < ndenote by §; the
number of edges from y; to S. Letdy, ..., dm and ey, ..., ey be natural numbers
and let d > 0. Then there exists a subgraph H of G with

e(H) > 3 di—d.

I=1
dy(x;) < d;, I <i<m
and
dr(y;) < e, 1< j<n,

iff for every § C Vi we have

Y di< i‘min{sj, e} +d.
j=1

5eS

Proof. Turn G into a directed graph G by sending each edge from V| to V3. Give
each edge capacity 1, a vertex x; capacity d;, and a vertex y; capacity ¢j. Then
there is a subgraph H with the required properties iff in G there is a flow from V]
to V2 with value at least 3 | d; — d, and by the max-flow min-cut theorem, this
happens iff every cut has capacity at least 3y &i — d. Now, minimal cuts are of
theform TUU UE(WV) =T, Va—U),where T C V) and U C V7. Given a set
T, the capacity of such a cut will be minimal if a vertex y; belongs to U/ iff its
capacity is smaller than the number of edges from § = Vi — T to y;. With this
choice of U the capacity of the cut is exactly

Z d; + imin[.ﬁ}-, e;}.

el 1

The condition that this is at least Y | d; —d is clearly the condition in the theorem.
1

The reader is invited to check that the second proof of Theorem 7 can be
rewritten word for word to give a proof of the exact form of this result (that 1s,
with d = 0) and the defect form (the case d > 0) can be deduced from it as
Corollary 10 was deduced from Theorem 7 (Exercise 33).

To conclude this section we prove another extension of the marriage theorem.
This is Dilworth's theorem concerning partially ordered sets. A partial order <
on a set is a transitive and irreflexive relation defined on some ordered pairs of
elements. Thus if x < yand y < zthenx < z,but x < y and y < x cannot
both hold. A set with a partial crder on it is a partialfy ordered set. The relation
x = y expresses the fact that either x = y orelse x < y. A subset C of a partially
ordered set P is a chain (or tower) if forx, y € Ceitherx < yory < x. A set
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FIGURE II.5. A partially ordered set and a maximal antichain. {An edge indicates that
its upper endvertex is greater than its lower endvertex.)

A C P is an antichain if x < y implies that {x, ¥} ¢ A. Sec Fig. [IL.5 for an

exampie.
What is the smallest number of chains into which we can decompose a partially

ordered set? Since ne two elements of an antichain can belong to the same chain,
we need at least as many chains as the maximal size of an antichain. Once again,
the trivial necessary condition is, in fact, sufficient.

Theorem 13 [f every antichain in a (finite) partially ordered set P has at most
m elements, then P is the union of m chains.

Proof. Let us apply induction on |P|. If P = @, there is nothing to prove, so we
suppose that | £| > 0 and the theorem holds for sets with fewer elements.

Let C be a maximal chain in P. (Thus if x ¢ C, then C U {x} is no longer a
chain,) If no antichain of P —  has m elements, then we are home by induetion,
Therefore, we may assume that £ — C contains an antichain A = {a). a2, ..., a@m}.

Define the lower shadow of A as

S ={xe P . x <qg;forsomeil},

and define the upper shadow S of A analogously. Then P is the union of the two
shadows, since otherwise A could be extended to an antichain with m + | elements,
Furthermore, neither shadow is the whole of P, since the maximal element of C
does not belong to $~ and the minimal element of C' does not belong to S*. By
the induction hypothesis both shadows can be decomposed into m chains, say

m m

S“=[:Jc,.‘ and S*=| JC

Since different a; belong to different chains, we may assume that @; ¢ C; and
-+
aj e C;.
The proof will be completed if we show that a; is the maximal clement of C”
and the minimal element of C;", since in that case the chains C; and C;" can be
strung together to give a single chain C;, and then P = | T C;.
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Suppose then that, say, g; is not the maximal element of C;” : a; < x for some
x € C; . Since x is in the lower shadow of A, there is an @; € A with x < a;.
However, this implies the contradiction a; < a;. O

In fact, Dilworth’s theorem holds for all partially ordered sets: we leave this to
the reader (Exercise 53).

IIT.4 Tutte’s 1-Factor Theorem

A factor of a graph is a spanning subgraph: a subgraph whose vertex set is that of
the whole graph. If every vertex of a factor has degree r, then we call it an r-fuctor.
How can we characterize graphs with a 1-factor? If G has a 1-factor H and we
delete a set S of vertices of G, then in a component C of G — § an even number of
vertices are on edges of A contained in €, and the other vertices of £ are on edges
of H joining a vertex of C to a vertex of 3, In particular, for every odd component
C of G ~ § (that is, a component with an odd number of vertices) there is an edge
of H joining a vertex of (' to a vertex of S. Now, the edges of H are independent,
so this implies that the graph G — S has at most |S| odd components, one for each
vertex in S (see Fig. 111.6).

FIGURE HL6. A graph G with a |-factor: |5} = 4 and G - § has 2 odd components.

The necessity of the condition we have just found is rather triviai, but it is not
clear at all that the condition is also sufficient. This surprising and deep result was
first proved by Tutte in 1947. It will be convenient to denote by g(H) the number
of odd components of a graph H, that is, the number of components of odd order.

Theorem 14 A graph G has a 1-factor iff
g(G—8) <[] (1)
forevery § C V(G).

Proof. We know that the condition is necessary. We shall prove the sufficiency by
induction on the order of G. For {(¢| = 0 there is nothing to prove. Now let & be
a graph of order at least one sausfying (1) and suppose that the theorem holds for
graphs of smaller order.
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Suppose that §p C V() 1s a non-empty set for which equality holds in (I).
Denote by C|, Ca, ..., Cp, m = |5p| > 1, the odd components of G — 5y and
let Dy, Dq, ..., Dy be the even components of G — Sp. If the theorem is true
and G does contain a 1-factor F, then for each C; there is at least one edge of F
that joins a vertex of € to a vertex in Sp. Since m = |Sy/, for each C; there 1s
exactly one such edge, say ¢;s;, c; € C;, 5; € Sn. Each C; — ¢; contains a 1-factor
{a subgraph of F), and each D); contains a |-factor (a subgraph of F). Finally,
the edges sy, $2¢2, .. ., SmCm form a complete matching from Sp into the set
{C1,Ca,...,Cxl).

The proof is based on the fact that one can find an Sp that has all the properties
descnibed above. How shall we find such a set $o? Let Sp be a maximal non-empty
subset of V(G) for which equality holds in (1). Of course, a priori it is not even
clear that there is such a set Sp. With § = @ the condition (I) implies that G has
even order, If 5 is any vertex of G, then G — {s} has odd order, s¢ it has a least one
odd component. Since (1) holds, G — {s} has exactly one odd component. Hence
for every § = {5} we have equality in 1. This establishes the existence of Sg.

As before, let C|, Ca, . .., Cpm, m = |Sp] be the odd components of G — Sy and
D, Da, ..., Dy the even components.

(i) Each D; has a 1-factor. Indeed, if § C V(D) then

(G — S¢) + q(Dj — 5) = q(G — Sp U S) = [Sp U St = |5p 4|5},
S50
g(Dy — 5) < |S].

Hence by the induction hypothesis D, has a 1-factor.
(ii} If ¢ € C}, then C; — ¢ has a | -factor. Assume that this is false. Then by the

induction hypothesis there is a subset § of V(C;} — {c} such that
q(Ci — {c}U 5) > |S].

Since
(G —{c}US) + SV el =|Ci) =1 (mod 2},

this implies that

g(C; — {c}U8) = [S]+ 2.
Consequently,

|So U {c}U S| = |Sol + 1 + [S| = g(G — Sp U {c}U 5)

=g(G ~ Sp) — 1 +4(C; — {c}VI)

> [Sol + 1+ 1S],
so in (1) we have equality for the set Sg U {c} U § as well. This contradicts the
maximality of Sp.

(iti) G contains m independent edges of the form s;c;, s; € Sp and ¢; € C;,
i=1,2,..., m. To show this, let us consider the bipartite graph H = Ga(m, m)
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with vertex classes V) = [C], Ca, ..., Cr} and V2 = Sp, in which C; is joined to
a vertex 5 € Sg if and only if G contains an edge from s to C;. The assertion above
is true iff H has a [-factor, that 15, a maiching from V) to V7. Fortunately, we have
the weapon to check this: Hall’s theorem. Given A C Vi, put B =T'g{d) C V3
(see Fig. I11.7). Then (1) implies that

|Al < ¢(G — B) < |B].

Hence the graph H satisfies Hall’s condition, so it has a I-factor.

We are almost done. To complete the proof we just put together the information
from (1), (i1), and (iii). We start with the m independentedges sic,, 5: € So.¢, € Ci.
Adding to this set of edges a I-factorof each C, —¢;, | <¢ < m, and a 1-factor

of each D;, 1 < j < k, we arrive al a 1-factor of . [
&
C, il
<
C,
CZ JB C; B
C.
€s ¢
Ce

FIGURE II1.7. The construction of H from G. The set A = {C3, (3] determines B C Sp
by the rule B = I'yg (A}

It is once again very easy to obtain a defect form of thc above result.

Corollary 15 A graph G contains a set of independent edges covering afl but at
most d of the vertices iff

g(G—-85) = |Sl+d

forevery § C V(G).

Proof Since the number of vertices not covered by a set of independent edges is
congruent to |G| modulo 2, we may assume that

d = G| (mod 2).

Put H = G + Ky4; that is, let H be obtained from G by adding to it a set W of d
vertices, and joining every new vertex to every other veniex, old and new. Then &
contains a set of independent edges covering all but d of the vertices iff H has a
1-factor. When does (1) hold for H71f@ 5 §' € V(H)and W — 5 3 @, then
H — &' is connected, so g(iH — §) < 1, and then (1) does hold; if W 8’ then,
setiing S = 8" — W, we have g(H — §) = g(G — {§'\ W)) = ¢(G — S§), s0 (1)
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is equivalent to
g(G -5 =S =151+4d. O

Tutte’s theorem has numerous beautiful consequences: for example, it implies
that every 2-edge-connected cubic graph has a 1-factor (Exercise 32).

II.5 Stable Matchings

Let us return (o the problem of finding matchings in bipartite graphs. This time
we shall study so-called stable matchings, that is, matchings satisfying certain
conditions. These matchings were first studied by Gale and Shapley in 1961, and
our maln aim s to prove their fundamental result. Before we turn to the complete
graphs studied by Gale and Shapley, we consider general bipartite graphs.

As in the case of Hall's theorem, it is customary to formuiate the conditions and
results in terms of marriage arrangements between n boys and m girls. Suppose
then that we have an n by m bipartite graph G = G3(n, m) with bipartition
(Vi, V2), where Vi = {a. b, ...) is the set of boys and V> = {4, B, .. .} is the set
of girls. For the moment we do not assume that # = m, i.e., that we have the same
number of girls and boys. As before, an edge a A means that the boy a knows the
girl A. Suppose that each boy has an order of preferences on the set of girls he
knows, and each girl has an order of preferences on the set of boys she knows, We
assume that these orders are linear orders but place no other restriction on them.
Given the preferences, a stable matching in G is a set M of independent cdges of
G such that if aB € E(G) — M, then either aA € M for some girl A preferred to
B by a, or BB € M for some boy & preferred to @ by B. Thus if # 1s not married
tc B, then either ¢ is married 1o a git] he prefers to B, or else B 1s mamied to a boy
she prefers 10 a. Otherwise, ¢ and B could (and eventually would) get married,
perhaps divorcing their present spouses, to the benefit of borh. This makes the
(somewhat unrealistic) assumption that it is always better to be married (10 an
acquaintance) than o stay single.

Note that a stable matching is not assumed to be complete. However, it is clear
that every stable matching is a maximal matching in G, that s, it cannot be enlarged
to a strictly larger matching. Indeed, suppose M U {aB} is a matching in G for
some edge aB € E(G) — M. Then under the mammage arrangement M, the boy a
is a bacbelor, so he is certainly not married to a girl he prefers to B8, and the girl
B is a spinster, so she is not matried to a boy she prefers to a. This contradicts the
fact that M is stable.

Although every stable matching is maximal, tt need not be a maximum matching;
thatis, it need not have maximal cardinality. A trivial example is shown in Fig. ITL8.
However, as we shall see later, all stable matchings have the same cardinality.

The stability condition for a matching is fairly complex, so a priori it is not
clear that there is always a stable matching. In fact, we shall show that not oaly 18
there always a stable matching, but there is also a stable matching that is optimal
for each boy. The existence of an optimal stable matching follows free of charge
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day 1 *h

2
Ad B

FIGURE HII.8. If a prefers B to A, and 8 prefers a to b, then M = {a B} is the only stable
maiching.

from the algorithm used to construct a stable matching, so to start with we shall
not bother with optimality. It is rather quaint that this fundamental algorithm is
simply the codification of the rules of old-fashioncd ctiquette: every boy proposes
to his highest preference and every girl refuses all but her best proposer. This
goes on until no changes occur; then every boy marries the girl to whom he last
proposed, and every gitl marries her only proposer she has not yet refused.

Note that the algorithm is such that once a girl gets a proposal, at the end of
the process she does end up with a husband, for she will refuse a suitor only for
somebody she finds more desirable. Also, every boy gets married unless in the
algorithm he is refused by every gitl. Finally, as the algorithm progresses, every
girl gets better and better svitors, and every boy has to be resigned to marrying
less and less desirable girls. With this we have come close to proving the stable
matching theorem of Gale and Shapley.

Theorem 16 For every assignment of preferences in a bipartite graph, there is a
stable matching.

Proof. Let us describe a variant of the fundamental algorithm we have just men-
tioned, in which all boys and all girls act simultaneously, in rounds. In every odd
round (1st, 3rd, ...), each boy proposes to his highest preference among those
girls whom he knows and who have not yet refused him, and in every even round
(2nd, 41h, ...), each of the m girls refuses all but her highest suitor. The process
ends when no girl refuses a suitor: then every girl marries her (only} suitor, if she
has one.

The algorithm terminates after at most 2nm rounds, since at most m(n — 1)
proposals are refused.

We claim that this fundamental algorithm produces a stable matching. It clearly
produces a {partial) matching M, since at every stage each boy proposes to at most
one girl, and each girl rejects all but at most one boy. To see that M is stable, let
aB € E(G) — M. Then either a never proposed to B, or a was refused by B
during the algorithm. In the former case a marries a girl he prefers to 8, as he
never goes as low as B, and in the latter case B refused a for a boy she prefers to
a. so eventually ends up with a husband she prefers to her suitor a. O

The fundamental algorithm we have just described can be run at various speeds:
we do not have to have uniform action, in rounds. Every boy and every girl may
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act individually: each boy keeps proposing to the best girl (in Ais estimation} who
has not yet refused him, and each girl maximizes her satisfaction by being willing
to accept only the very best boy (in her estimation) who has ever proposed to
her. When the dust settles, we have a stable matching independent of (he speed at
which we have run the algorithm (see Exercise 42).

What can we say about the collection of stable matchings? Somewhat surpris-
ingly, all stable matchings are incident with the same set of vertices; that is, every
vertex is either matched in every stable matching or remains unmatched in every
stable matching. This will follow easily from the lemma below.

Call a cycle preference-oriented if it can be written in the form aAbB ---2Z
such that A prefers bto a, b prefers Bto A, ..., and Z prefers a to z.

Lemma 17 Let M and M’ be two stable matchings in a bipartite graph with
certain preferences, and let C be a component of the subgraph H formed by the
edges of M U M'_ If C has at least three vertices, then it is a preference-oriented
cyele. In particular, ifaA, bB € M and aB € M', then a prefers A to B iff B

prefersatob.

Proof. In this proof it is best not to distinguish between boys and giris: we shall
wrile X1, X3, . . . for either of them. We know that C is either & path of length at
least two or a cycle of length at least four.

Suppose that C contains a path x; x2x3x4, Withxz preferring x3 to x1. Assuming,
as we may, that xox3 ¢ M, we see that x3 prefers x4 to x3, since M is stable.

This simple observation implies thatif Cisa cycle, then itis preference-oricnted.
Indeed, if x(x3x3 - - - x¢ is a cycle and xp prefers x3 to x1, then looking at the path
x| X2x3x4 we see that x3 prefers x4 o x7. Next, looking at the path x2x3x4x5 we
see that x4 prefers x5 to x3. Continuing in this way, we find that x; prefers xj to
xp_) and x| prefers x to xg.

Also, if C is a path x1x3---xg with{ > 3 and x,x2 ¢ M, say, then xy prefers
x3 to x|, since M is stable and x1x2 ¢ M, Similarly, x;_| prefers xg_2 to xq.
However, this is impossible, since, arguing as above, x7 prefers x3 to x|, x3 prefers
x4 t0 x2, x4 prefers xs to x3, and so on, xg-1 prefers xe to xz—2.

The second assertion is immediate from the fact that the component of H
containing the path Aa Bb is a preference-oriented cycle. 0

Theorem 18 For every assignment of preferences in a bipartite graph with
bipartition (Vy, V2), there are subsets Uy C Vi and Uy C V2 such that every
stable matching is a complete matching from Uy to Uy, In particular, all stable
matchings have the same cardinality.

Proof, Suppose that the assertion fails. Then we may assume that some edgeaA
of M is such that a is not incident with any edge of M'. As M’ is a maximal
matching, #A € M’ for some b € V|, b # a. But then the component of @ in the
subgraph formed by the edges of M U M’ contains a, A, and &, and is not a cyele,
contradicting Lemma 17. ]
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It is tempting to expect that every stable matching of the subgraph spanned
by Uy U U3 is a stable matching in the entire graph, but this is not the case (see

Exercise 52},
Let us state an immediate consequence of Theorem 18 and Lemma 17.

Corollary 19 Let M and M’ be stable matchings in a bipartite graph, with some
assignment of preferences. Suppose aB € M and aB ¢ M’'. Then in M’ both a
and B have mates; also, one of a and B is better off in M’ than in M, and the

other is worse off. O

The matching constructed by the fundamental algorithm in the proof of Theo-
rem 1€ is not only a stable matching, but it is also ‘best’ for the boys: every boy
ends up with his highest preference among all stable matchings.

To make this definition more formal, let G be a bipartite graph with bipartition
{V1, ¥2), with a certain assignment of preferences. A stable matching M is said to
be Vi-oprimal (or optimal for the boys) if for every stable matching M’ and every
vertexa € V|, if aB € M, thenaA € M for some girl A, and either A = B or
else a prefers A 1o B. In other words, M is a Vj-optimal stable matching if in M
every boy is at least as well off as in any other stable matching, once again with
the assumption that it is better to be married than siay single. It is not clear that
there is a V)-optimal stable matching, but 1t 1s obvious that if there is one, then it

IS unigie.

Theorem 20 For every assignment of preferences in an n by n complete hipartite
graph with bipartition (Vy, V2), there is a Vy-optimal stable matching.

Proof. Let us denote by S(a) the set of girls a boy g could marmry in some stable
matching: this is the set of possible girls for a. We claim that in the fundamental
algorithm no girl in S{a) refuses a, so every boy marries his favourite possible
girl, and thus the stable matching 1s optimal for the boys.

Suppose that this is not the case. Let us stop the algorithm when it happens for
the very first time that a boy, say a, is refused by one of his possible girls, say A.
By definition, this happens because A prefers another of her suitors at the time,
say b. At that time b prefers A to all others that have not yet refused him, Hence,
a fortiori, b prefers A to all others that are possible for him. As A is possible for
a, there is a stable matching M in which a marmies A and b mames a girl B. But
this is impossible, since b prefers A to B, and A prefers 4 to q. This contradiction

completes the proof. I

By definition, the V|-optimal stable maiching is ‘best’ for every boy (element of
V1). How ‘goed’ is it for the girls? Recalling Corollary 19, we see that, somewhat
surprisingly, it i1s the werst for every girl, independently of the assignment of
preferences. To be a little more precise, call a stable matching M V2-pessimal if in
M no girl is better off than in any other stable matching. Once again, a priori it is
not clear that there 1s a V,-pessimal stable matching, but the definition implies that
if there is a V,-pessimal stable matching, then it is unique. Corollary 19 impites
that the V;-optimal stable matching is precisely the V;-pessimal stable matching.

N e —— = = ek VR———— =
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There are a good many extensions and variants of the results above; here we shall
consider only stable complete matchings in (not necessarily complete) bipartite
graphs with equal colour classes and stable matchings in a polygynous society.

Let us set the scene again, in a slightly different way. This rather heavy-handed
definition of a stable matching will be frequently useful in applications. Suppose
that we have a set V| of n boys and a set V, of n girls. Every boy and every
girl has a possibly incomplete set of preferences. Thus for every girl A there is a
list L{AY = {ay, a2, ..., ar}, signifying that A is willing fo marry only the boys
ai.as, ..., ak, and this is exactly her order of preferences. Similarly, every boy
a has a possibly incomplete list L(@). We call (V, V2, L) an incomplete system
of preferences. This setup clearly corresponds to the bipartite graph (V; U V3, E),
where £ = {aA : a € L{A) and A € L(a}}, with the preferences given by the
lists. In this formulation a matching M from V) to V; is stable if any two matched
vertices appear on each other’s lists, and if a € L(B), B € L(a) butaB ¢ M
then either a4 € M for some A € L{a) that a prefersic B, or 8B € M for some
b € L{B) that B prefersto 4.

How can we decide whether an incomplete system has a stable compleie
maiching? Resembling our trick in the proof of Corollary 9, we can enlarge the
incomplete system to a complete system in such a way that the stable matchings
in the original incompleie systcm correspond to easily identifiable stable match-
ings in the enlarged complete system. To be precise, let us add a ficutious boy w
and a fictitious girl W to the system: w is the widower and W is the widow. Set
V/ = V| U{w} and Vj = V, U {W}. Let us define a complete set of preferences
for (V| V;) as follows: each persen slots in the widow (widower) after her (his)
genuine preferences, and follows it with an arbitrary enumeration of the boys
{girls) she (he) is unwilling to marry at all. Finally, the widow puts the widower at
the end of her list, and the widower puts the widow at the end of his preferences.
We say that this now complete system (V{, V3, L) is associated to the original

system.

Theorem 21 An incomplete system (V), Va, L) with |V|| = [Va] has a stable
complete matching iff the associated complete system (V|, V), L'} has a stable
matching in which the widow marries the widower.

Proof Let M be a complete matching from V| to V;, and let M’ be the complete
matching from V| to V] obtained from M by adding to it the edge wW. To
prove the theorem, we shall show that M is a stable matching in the incomplete
system (V}, V3, L) iff M” is a stable matching in the associated complete system
(v, vy, L.

Suppose M is a stable matching in (V1, V2, L). Then M’ is stable, since if
aA € M then A prefers a to w and a prefers Ato W,

Also, if M’ is a stable matching in (V], V;, L), then M is a stable maiching in
(Vy, ¥, L). Indeed, ifa A € M, then A € L{a), since otherwise a prefers W 10 A,
and W prefers a to w. Similarly, a € L(A), since otherwise A prefers w to a and
w prefers A to W. Hence every edge aA of M satisfies A € L(a) and a € L(A),
so M is a stable matching in {V, V2, L). O
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Since the V| -optimal stablc matching in (Vi, V5, L") is precisely the V,-pessimal
stable matching, if some stable matching in (V|, V;, L'} contains wW, then every
stable matching contatns wW. This gives us the following slightly stronger form
of Theorem 21,

Theorem 21'. Let (V1, Va, L) be an incomplete system, with associated complete
system (V|, ¥,. L"), and let M’ be a stable matching for (V/, V,, L"). Then there
is a stable complete matching for (Vi, Va, L) iff M’ contains wW. O

For the last variant of the stable matching theorem, it is convenient to use
politically comrect terms. In the college admissions problem we are given n ap-
plicants, &y, ..., @, wishing to enter m colleges, A1, ..., An. with college A;
willing to admit #; undergraduates, such that 3 ' | #; = n. Each applicant orders
the colleges according to his preferences and each college orders the applicants
according to his or her preferences. Once again, an asstgnment of the applicants
to the colleges, with #; students assigned to college A;, is said to be a stable
admissions scheme if whenever a student a; 1s admitted by a college Ay and a
student a; by a college A, then either a; prefers Ay to Ajs, or Ajr prefers ¢; o
a;. A stable admissions scheme ts said to be optimal (for the applicants) if every
applicant gets as good a college as possible under any stable admissions scheme,

Theorem 22 No matier what the orders of preferences are, there is always an
optimal stable admissions scheme,

Pmof. For the sake of argument, call the students boys, and replace each college
A; by n; girls, say Af”. Aflj. vens Af""}, with each A:r” having the same order
of preferences among the boys ay, ..., a, as A;. Also, each boy orders the girls
by taking the girls corresponding to the highest-rated college first (in any order)
followed by the girls comresponding to the second college (in any order), and so on.
In the bipartite graph we have just defined, lake a stable maiching that is optimal
for {ay., ..., ax}: the admissions scheme this induces is clearly optimal (for the
applicants). O

There are many ways of relaxing the conditions in the college admissions
problem. The condition Ele n; = n need not by kept, an applicant may not wish
to go to a certain college at alk, and a coliege may not be willing to accept a student
under any circurnstances. For the sake of convenience, we can discard the last
possibility by declaring that a student will not apply to a college if the college 1s
unwilling to accept him under any circumstances. In this more general setup the
analogue of the fundamental algorithm goes as follows. All students apply to their
highest-rated colleges. A college of size n; puts on its waiting list the n; applicants
it rates highest, or ail of them if it gets no more than n; applications, and rejects
the others. The rejected students apply to their second choices, and again a college
with quota n; rejects all but its n; highest applicants, and so on. The process siops
when in a round no student gets rejected by a college, and then every college
admits all the students on its waiting list. It is easy to show (see Exercise 51) that
the admissions scheme obtained is such that (i} every college admits at most n; of
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the students who applied to it, (ii) if a college does not admit its full quota then
no student left on the shelf has applied to that college, and (iii) the assignment is
stable in the sense that if a student a 1s admitted by a college A, and a student b
by a college B, then either a is unwilling to goto B, or a prefers Ato Bor B
prefers b to a. Furthermore, every student goes to as good a college as under any
other admissions scherme sausfying these conditions.

1.6 Exercises

1. Suppose F is a set of edges after whose deletion there is no flow from s 1o ¢
with positive value. Prove that F contains a cut separating s from ¢,

2, By summing an appropriate set of equations show that the capacity of a cut is
at least as large as the value of a flow,

3. Let 6: (V, E) be a directed graph and let ¢ be an extended-real-valued
capacity function on E. (Thus c(x, ¥} is a non-negative real or +00.) Let 5
and ¢t be two vertices. Prove that either there is a flow from s to r with infinite
value or else there is a low with maximal finie value.

4, By successively reducing the number of circular flows in 7, prove that there
is a maximal flow without circular flows in which no current enters the source

and no current leaves the sink.

5. Use the method of Exercise 4 io show that if the capacity function is integral,
then there is a maximal flow that is, also integral.

6, Formulate and prove the max-flow min-cut theorer of Ford and Fulkerson
for multiple sources and sinks with bounds on the capacities of the edges and

vertices.

7. (Circulation theorem.) A circulation in a directed graph G is a flow without
a source and a sink. Given a lower capacity {(x, y) and an upper capacity
c{x, y) for each edge ﬁ with 0 < I(x, ¥) < c(x, ¥), we call a circulation g
Jeasible if

f(x,y) < glx,y) <clx,y)
for every edge f} Prove that there exists a feasible circulation iff
1(S,8) < ¢S, 8) forevery S C V.

[Note that the necessity of the condition is trivial, since in a feasible circulation
the function ! forces at least (S, S} current from S to § and the function ¢
allows at most (S, ) current from S back to S. To prove the sufficiency,
adjoin a sink s and a source ! to G, send an edge from s to each vertex of G
and send an edge from each vertex of G to ¢, Define a capacity function ¢*
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on the edges of the new graph G* by putting c*(x, y} = c{x, ¥y} — {(x, y),
c*(s, x) =I(V, x), and ¢™(x, 1) = I{x, V). Then the relation

Fx.y)y=glx,y)—lx,y)
sets up a 1-to-1 correspondence between the feasible circulations g in G and
—

flows f in G* from s to ¢ with value {(V, V). Rewrite the condition given in
the max-flow min-cut theorem in the form required in this result.]

8.f Let A be a bipartite multigraph without loops, with vertex classes V) and

V3. (Thus H may contain multiple edges; that 1s, two vertices belonging to
different classes may be jotned by several edges, which are said to be parallel.}
As usual, given a vertex x, denote by I'(x) the set of edges incideat with x
and by d(x) = {['(x)] the degree of x. Prove that, given any natural number
k, the set E of edges can be partitioned into sets E;, Ez, . .., Ey such that for
every vertex x and every set E; we have

[MJ < PN E| < [d—("l]
k x

where, as in the rest of the book, [z] is the least integer not less than 7 and
lz} = —[-z].

Thus if we think of the partition U’f E; as a colouring of the edges with k
colours, then the colouring is eguitable in the sense that in each vertex the
distribution of colours is as equal as possible. [Hint. Construct a directed
graph H = (V; U V;, E) from / by sending an edge from x to y iff x € V1,
y € Vz and H contains at least one xy edge. Let & be obtained from H by
adding a vertex u and all the edges c;c, ﬁc, forx € Vi and y € V3, as shown
in Fig, II1.9. Define an appropriate upper and lower capacity for each edge of
G and prove that there is a feasible integral circulation. Use this circulation
to define one of the colour classes. ]

= x &

FIGURE I1L.9, The graphs H, H, and G.

(Exercise 8 contd.) Show that we may require that, in addition to the property
above, the colour classes be as equal as possible, say |Ej] < |Ey| <+ &
|Ex] < {Eyi 4 1, and that in each set of parallel edges the distribution of

colours is as equal as possible.

- = T
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1t Letd) < dz < --- < d, be the degree sequence of a graph G. Suppose that

i1.

12,
13.

14.

15.

I6.

17.

18.

19

dj >j+k—1forj=1.2,...,n~1~dp_rp.
Prove that (7 is k-connected.

Let k and { be integers with | < & < I. Construct graphs G, G3, and G3 such
that

B x(G) =kand A(Gy) =1,

(11} k{G2) = k and x{Gy — x) == { for some vertex x,

(iii) A(G3 — x) = k and A(Gz — xy) = I for some edge xy.

Let G be a regular bipartite graph of degree at least 2. Show that ¥ (G) # 1,

Given U ¢ V{Gandavertexx € V(G)--U,anx—U fanisaset of jU] paths
from x to I/ any two of which have exactly the vertex x in common. Prove
that a graph G is k-connected iff |G| > k 4+ 1 and for any k-set I/ C V((7)
and vertex x not in &/, there is an x — U/ fan in G. [Hint. Given a pair (x, U/),
add a vertex u to G and join it to each vertex in U/, Check that the new graph
is k-connected if G is. Apply Menger's theorem for x and «.)

Prove thatif G is k-connected (¢ > 2), then every set of k vertices is contained
in a cycle, Is the converse true?

The line graph L{G) of a graph G = (V, E) has vertex set E and two vertices
e, f € E are adjacent iff they have exactly one vertex of G in common. By
applying the vertex form of Menger’s theorem to the line graph L(G), prove
that the vertex form of Menger’s thecrem implies the edge form.

Show that if A(G) = k = 2, then the deletion of k edges from G results
in a graph with at most 2 components. Is there a sirmifar result for vertex-

connectivity?

Let G be a connected graph with minimum degree (G} = k = 1. Prove that
G contains a path x1x7 - - - x such that G ~ {x1, x2, ..., xg} is also connected.
[Hint, Let xx3 - - - x¢ be a longest path. Note that £ > & 4+ 1. Suppose that
G — {xy,x2, ..., xx} is disconnected, and let yoy; - - ¥ be a longest path
in & component £ not containing x;41. Then dc(yp) < m, but yp cannot be
joined to & — m of the vertices xy, ..., xx.]

Let G = (Ga(m, n) be a bipartite graph with vertex classes ¥ and V3
containing a complete matching from V) to V3.

(i) Prove that there is a vertex x € Vj such that for every edge xy there is a
matching from V; to V; that contains xy.

(ii) Deduce that if d(x) = d for every x € V|, then G contains at least 4!
complete matchings if d < m and at leastd(d — 1)--- (d — m + 1) complete

matchings if & > m.

Let A = {a;;)}{ be an n x n doubly stochastic matrix; that is, let a;; = 0
and Y7, a5 = 3 . ;a; = 1foralli, j. Show that A is in the convex
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21.

22.

23.

24,

25.

26.

27.

28.
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hull of the n x n permutation matrices, 1.e., there are A; > (), ET Aj o=
1, and permutation matrices Py, P2, ..., Py such that A = 37 A, Pi. [Let
a,-j- = [a;], A* = (a;)], and let G = Ga(n, n) be the bipartite graph
naturally associated with A*. Show that G has a complete matching and
deduce that there are a permutation matrix £ and areal A, 0 < A < 1, such
that A — AP =B = (b,‘j)'; satisfies b;; = 0, Z?:l bij = Z;:l by =1-—A
for all {, j, and B has at least one more () entry than A.]

Prove the following form of the Schrider—Bernstein theorem. Let & be a
bipartite graph with vertex classes X and ¥ having arbitrary cardinalities. Let
A C X and B C Y. Suppose there are complete matchings from A into ¥
and from B inio X. Prove that  contains a set of independent edges covering
all the vertices of A U B. [Hint. Consider the components of the union of the
matchings.]

Let G be a hipartite graph with vertex sets V7, V2. Let A be the set of vertices
of maximal degree. Show that there is a complete matching from A N V; into
Va.

Deducc from the previous exercise that every bipartite graph contains a set of
independent edges such that each vertex of maximal degree (that is, degree
A(G)) is incident with one of the edges. Deduce that a non-empty regular
bipartite graph has a 1-factor.

We say that G is an (r, r — k)-regular graph if r — &k < 8(G) < A(G) < r.
Prove that for | < k < 5 < r every (r,r — k)-regular graph contains an
(s, 5§ — k)-regular factor. [Hinr. Assume s = r — 1. Take a minimal (r, r -- k)-
regular factor. Note that in this factor no two vertices of degree r are adjacent.
Remove a set of independent edges covering the vertices of degree r.]

Let & be a graph with x((G} = &k > I and let V; U W U Vu be a partition
of V(Gywith [W| =k, V; #8,i = 1,2, and & containing nc V) — V3
edges. Show that, for each {, G contains ¢ither a matching fromm W into V; or
a matching from V; into W.

Let G be a connected graph of order at least four such that every edge belongs
to a |-factor of G, Show that G is 2-connected. Show also that if |G] = 2%
and every set of k — 1 independent edges in contained in a 1-factor, then G is
k-connected.

Show that if a graph G has a 1-factor, |G| = 2k + 2, and every set of &
independent edges is contained in a 1 -factor, then every set of k—1 independent
edges is contained 1n a 1-factor.

Let G be a connected graph of order at least 4, and let F = {fi,...., fin} be
a I-factor of G. Show that F contains two edges, f; = a;b; and f; = a;b;,
say, such that G — {a;, b;} and G — {a;, b;} are both connected.

Anr x s Latin rectangle based on 1,2, ..., nis an r x 5 matrix A = (a;)
such that each entry is one of the integers 1, 2, ..., » and each integer occurs



29.

30.
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in each row and column at most once. Prove that every r x n Latin rectangle
A can be extended to an n x n Latin square. [Hint. Assume that r < n and
extend A to an (r 4 1) x »n Latin rectangle. Let A; be the set of possible values
of ari1,4; that is, Jet A; = {k : 1 < k < nr, k # aj;}. Check that the system
lAj 1 1 < j < n} has a set of distinct representatives. ]

Prove that there are at least al(n — 1) ... (# — r + 1)! distinct ¥ % »n Latin
rectangles based on 1, 2, .., n. [Hint. Apply Exercise 18(i1).]

Let A be an r x 5 Latin rectangle and denote by A(f'} the number of times the
symbol i occurs in A, Show that A can be extended to an n x n Latin square

iff A@y>r4+s—nforeveryi=1,2,...,n

The fundamental theorem of Tychonov's from general topology states that the
product of a family of compact topological spaces is compact in the product
topology. In combinatorics this result is frequently needed in the following
simple form: the product of a family of finite sets 1s compact. Prove this in
the following formulation.

Let T be an index set and I'(<*) the collection of finite subsets of I'. For
cach ¥ & I', let 8, be a finite set and, for & C T, define $o = | ), .5 Sy

For every [ € (<9 et 7 be a non-empty set of functions f : [ -» Sy,
with f(y) € S, for every y € /. Suppose that, for all I’ ¢ I & I'<®) and
f € Fi, the restriction f{I" of f to I’ belongs to Fy-. Show that there is a
function F : [ — Sp such that F|I € F; for every I € "< [Hint For
I ¢ <2 define G = {g € Fi: for every J € I''=®, 7 5 [, there is
an f € Fy with f{I = g}. Note that G; # @ for every I € I''*)_ Find a
function F : A — Sa, with A ¢ I maximal, such that F|J € &, for every

[ e af<e ]

317+ Deduce from Tychonov's theorem in the previous exercise the following

32

33,

34

extension of Hall’s theorem.
Let G be an infinite bipartite graph with vertex classes X and ¥, such that

each vertex in X 15 incident with finitely many edges. Then there is a complete
matching from X into ¥ iff |T(A)| = | A| for every finite subset A of X.
Show that the finiteness condition cannot be omitted.

Prave that a 2-edge.connected cubic graph has a l-factor. [This result is
called Petersen’s theorem. In order to prove it, check that the condrtion of
Tutte's theorem is satisfied. If @ £ § C V(&) and C is an odd component of
G — §, then there are at least two § — C edges, since G is 2-edge connected.
Furthermore, since & is cubic, there are at least three § — C edges. Deduce
that g(G — ) < |S|.]

Show also that a cubic graph need not have a I-factor.

Imitate the second ptoof of Theorem 7 to give a direct proof of the case d = 0
of Theorem 12 and then deduce from it the general case d = 0.

Let G be a graph of order n with at most r > 2 independent vertices. Prove
that if G is any orientation of G that does not contain a directed cycle (acyclic
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orientation), then G contains a directed path of length at Ieast [n/r] — 1.
[Hint. Apply Dilworth’s theorem, Theorem 13.]

Let {1, f5, ..., {541 be intervals in B, with r, s > 1, Show that either some
r -+ 1 of these intervals have a non-empty intersection or some s + I of them
are pairwise disjoint.

Let Ry, Ra, ..., Ry be rectangular parallelepipeds in canonical position in
R, sothat R; = :-‘=][a,-, b;]. Show that if m > rs" 4+ | then either some
r + 1 of these parallelepipeds have a non-empty intersection, or some s + 1
of them are pairwise disjoint.

Deduce from Exercise 34 the foliowing result. Given a set of rk + 1 distinct
natural numbers, either there exists a set of ¥ + 1 numbers, none of which
divides any of the other r numbers, or else there exists a sequence 4y < a] <
o+ < ag such thatif 0 < § < j <k, then aq; divides a;.

Describe all maximal graphs of order n = 2/ that do not contain a |-factor,
[Hint. Read it out of Tutte's theoremn (Theorem 14).]

Make use of Exercise 38 and the convexity of the hinomial coefficient (;).
x > 2, to prove that if n# > 2k + 1 then the maximal size of a graph of order
n with at most £ independent edges is

2k + 1 k
max ( 5 ),(2)+k(n—k}}.
Show also that the extremal graphs (that is, the graphs for which equality

holds) are one or both of the graphs Kopy 1 U Ep_2x— and Kp + Ep 4 (see
Fig. TIL. 10).

K’ o £t

FIGURE IIL10. For k = 3, n = 9 there are two extremal graphs: K7 U E3 and K3 + Es.

40. Call a sequence 4, da. . . . , &y of integers graphic if there is a graph G with

vertex set V(G) = {x1,x3,...,xs} such that (x;) = d;, 1 < i < n, {(The
graph G is said to realize (d;}}.) Show thatd; > dy > - - > dp is graphic iff
s0 18 the sequence

dy—1,dz—1,....da+1 — L dy2.dayy3. .-, dy.
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Use the algorithm given in Exercise 40 to decide which of the follow-
ing sequences are graphic: 5,4,3,2,2,2; 5,4,4,2,2,1; 4,4,3,3,2,2,2;
and 5, 5, 5,4, 2,1, 1, 1. Draw the graphs realizing the appropriate sequences
constructed by the algorithm.

The general form of the fundamental algorithin for stable matching goes
as follows, In each step of the algorithm either a boy with no outstanding
proposal proposes to the next girl on s list or a girl with at least two
outstanding proposals refuses ail but her best suitor. These steps can be taken
in any order. Show that the algorithm always constructs the same matching,
namely the unique stable matching optimal for the boys.

Define a stable matching in a bipartite multigraph by defining, for each vettex,
an order of preference on the set of edges incident with the vertex. Show that
every bipartite multigraph has a stable matching.

Show that, for every n = 1, there is an assignment of preferences in an n by
n bipartite graph such that there is precisely one stable matching (and so an
optimal stable matching is also pessimal).

Show that in the stable matching optimal for the boys at most one boy ends
up with his worst choice.

Suppose that in a set of n boys and n girls all boys have the same order
of preferences, How many proposals are made in the fundamental stable
matching atgorithm?

What is the maximal number of proposals made in the fundamental stable
matching algorithm when applied to » boys and n girls?

Let m(n) be the maximal number of stable matchings in a set of n hoys and
n girls. Show that m(n| + n2) = m{n()m(n2), and deduce that m(n) > 2n/2

forn > 2. (Whatis m(3)7)

Show that il a stable matching contains an edge aA, with A being the worst
for a and a being the worst for A, then every siable macching contains aA.

Let us say that a stable matching M is less than a stable matching M’ (in
notation, M < M’), if for all a4 € M and aA’ € M’, cither A = A" ora
prefers A’ to A. Show that the set M of all stable matchings, endowed with
the partial order <, is a distributive lattice. (All one needs is that if a, A, and
A’ are as above and A” is the ‘better’” of A and A’ for a, then the edges aA”
form a suitable matching, and so do the edges aA”, where A" is the ‘worse’
of A and A’ for a.) Deduce from this that if there are stable matchings, then
there is a stable matching optimal for the boys.

Show that the admissions scheme produced by the analogue of the fundamen-
tal algorithm, described at the end of SeCtion 5, has the claimed properties,
and is optimal for the students.
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52. Construct a bipartite graph G with preferences such that some stable matching

of the subgraph spanned by U; U Us is not a stable matching in G, where U
and U3 are as in Theorem 8.

53. Let P = (X, <) be a partially ordered set containing no antichain on m + 1

elements. Show that P is the union of m chains. [Hint. Give the space [m]¥
of all functions f : X — [m] = {1,2,..., m} the product topology. By
‘Tychonov's theorem, this space is compact. For two incomparable elements,
x and y, set

Viy = {£ € lmI® - fx) # 1)

Note that each Vy, is closed and any finitely many of them have a non-empty
intersection. ]

54, Deduce from Dilworth's theorem the following result of Erd6s and Szekeres.

Every sequence (x;)] of real numbers with more than ££ terms contains either
an increasing subsequence with & + 1 terms or a decreasing subsequence with
£ + I terms. (A subsequence (.t,-.,.)g’ is increasing if x;, < x;, <--- < x 1t
is decreasing if x,, = x,, > --- = x;,_.) Show that a sequencc of length £
need not contain either.

55. Show that an incomplete regular graph on n vertices does not contain a

complete graph on more than n /2 vertices.

56. Show that every connected regular bipartite graph with more than 2 vertices

1§ 2-connected.

57. Let G be a bipartite graph with bipartition ({/, W), (/| = [W| = »n, and

minimal degree at least n/2. Show that G has a complete matching.

58. Let G be an r-regular bipartite graph, and let £y be a set of r — 1 edges. Show

that G — Ep has a complete matching.

59. Let M be the set of complete matchings of an n by n bipartite graph. Let

be the graph with vertex set A1 in which M| € A4 is joined to M2 € A if
M| and M, agree in all but two edges. Is H necessarily connected?

60.” Let G be a connected graph that is not complete such that for any two distinct

nonadjacent vertices there are k independent paths joining them. Show that
x(G) > k.

61. Let & be an r-regular graph of order 2r —2 and vertex-connectivity « () = k.

Show that k> — k + 12 > 4r, Show also that equality holds if and only if
k=0or ]l (imodd)and V(G) = ViUV U3, Vil =r+ 11—k, V2| =k,
[Va} = r — 3, with G[V] and G[V3] complete, each x| € V] joined to all
vertices in V3, each x3 € V5 joined to all vertices in V) and to k — 1 vertices
in V3, and each x3 € V3 joined to four vertices in V3. Note, in particular, that
¥ = x(G) > 4, and there is a unique r-regular graph of order 2r — 2 and
connectivity 4, namely a certain graph of order 10.
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An n by r matrix § = (s;) is said to be doubly substochastic if 3 ;_ sij < |
forevery jand Z}':] sij < 1forevery i. Show thai every doubly substochastic
matrix is element-wise dominated by some doubly stochastic matrix; that is,
if § = (s; ) is doubly substochastic, then s;; < d;; for some doubly stochastic
matrix D = (d,'j).

{Exercise I9 contd.) Let A, > 0 be the maximal real number such that for
every n x n doubly stochastic matrix A = (a;;)] there is a permutation
matrix P for which all entries of A — A, P are non-negative, Show that
Ao = 1/ (r+ 1)2/4).

Let n = 1. Show that every n x n doubly stochastic matrix is the convex
linear combination of (n — 1)? 4+ 1 permutation matrices but it need not be
expressible as a convex linear combination of (n — 1)? permutation matrices.

Let S: be the set of sequences x = (x),..., x,) such that x; = O for all ¢
and 3" x; = 1. The decreasing rearrangement of a sequence x € S} is the
sequence x* = {xp;)) where x[;] is the { thlargestterm of x. Letus write x < y

to denote the fact that "% xp;; < % y[i] for every k. Show that if x, y € S,
then x < y if and only if x = Dy for some doubly stochastic matrix D.

Show that for y € S5,F the set {x € S;F : x < y} is the convex hull of the points
obtained by permuting the clements of y.

Let G be a 3-edge-connected cubic graph without a cutvertex. Show that G
ts also 3-connected. (Thus if A{(G) = 3 and « (G) = 2 then x(G) = 3.) Show
also that there are cubic graphs G of arbitrarily large order with A(G) == 3

and x(G) = 1.

Let G be a bipartite graph with bipartition (V), V2),andlet A; C Vi = 1,2,
Let I; be a set of independent edges covering A;, i = 1,2. (Thus f; 1sa
complete matching from A into V,, and /> is a complete matching from
Aj into V).) Show that [; U [> contains a set of independent edges covering
Ay U Ag,

Let & be a connected bipartite graph with 2k 4 3 vertices in each class and
each vertex having degree k or & + 1. Show that G has a complete matching
unless it is a certain graph, to be determined. [Hins. The exceptional graph
consists of two not quite full copies of Ky42 t+1, Joined by an cdge. ]

Let & = (V), Vz; E) be abipartite graph soch that |[I'{A)] = |A{+d forevery
A C Vi, A £ 8. Show that G has a subgraph H such thatdg(x) =d + | for
every x € Vyand [Cg(A)| > (Al +dforevery AC V), A £ 1.

Let | <dy <dy <.+ < dy. Show that {d;)] is the degree sequence of some
graph if and only if } | i is even and

n r—k

Z di < k(k~ 1)+ Y min{d;, k}.

f=n-k+1 F=l
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72.

1II. Flows, Connectivity and Matching

Let G and H be graphs with vertex set V such that dg(x) = dg(x) + 1 for
every x € V. Show thatthere is a graph G = (V, E) such thatd;(x) = dg(x)
for every x € V and G contains a 1-factor (i.e., a set of [V|/2 independent
edges).

73.” Let G be a graph with vertex set V(G) = {x1,x2,..., xx} such that every

vertex x; is joined to at most £ — 1 of the vertices x1, x7, - . ., x;—1. Show that
G is k-partite (i.e., V(G) = Uf=| V;, with no edge joining vertices in the same
class V;).

74.” Show that for all 1 < k¥ < £ there is a graph G with vertex-connectivity

x (G} = k and edge-connectivity A{G) = £,

75.” Deduce from Hall’s theorem the following theorem of Kénig and Egerviry.

76.

77.

78.

79.

80.

81.

B2.

Let A be an m x n matrix of Os and s, and call a column or row of A a line.
Then the minimal number of lines containing all the s of A is precisely the
maximal number of 1s with no two in the same line.

Let x and y be vertices of G at distance 4. Suppose that after the deletion of
any k — 1 of the vertices the distance between x and y is still 4. Show that &
contains k independent x — y paths, each of length d.

Let x and y be adjacent vertices of degree at least k in a graph G. Show that
if G/xy is k-connecied then, so is G. [The graph G/xy is obtained from G
by contracting the edge xy, i.e., by identifying x and y, and joining the new
veriex to all other vertices of G that are joined in G to at least one of x and
y.]

Let G be a graph of minimal degree 3 without two edge-disjoint cycles. Show
that G is either K4 or K33 (i.e., it is either a complete graph on 4 vertices or
a complete bipartite graph with 3 vertices in each class).

Determine all multigraphs (graphs with loops and multiple edges) of minimal
degree 3 without two edge-disjoint cycles. [ In a multigraph, a loop at x adds
2 to the degree of x; a loop forms a cycle of length 1, and two edges joining
the same two vertices form a cycle of length 2.]

Deduce from the result of the previous exercise that every graph of order »
and size n -+ 4 contains two edge-disjoint cycles.

Show that a graph with n vertices and m edges has an independent set of at
least 2n/3 — m /3 vertices. For what graphs is equality attained? (What are
the extremal graphs?)

The transversal number t{G) of a graph G is the minimal number of vertices
meeting every edge. Show that the transversal number of a graph with »
vertices and m edges is at most (# + m}/3. What are the extremal graphs?

For n > 2 even, let F, be the number of 1-factors of K,. Show that F, =
(n—D"=(n—1)n—3Nn—75)---=nt/{{n/2)1202
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83. Letn > 6 be even, and let ¢, ..., e,— be edges of K,;. Show that X, —
le, ..., en—1} has a 1-factor unless each ¢; is incident with the same vertex.

84. Let A be a Steiner triple system on [f#] = {I,..., n}, as defined in Exer-
cise L4l andlet U = {x1,..., X} U {yi, ..., yn} U {z} be aset of 2n + 1
elements. Show that

B={xyz: 1<i<nlUlxixjxg: ijke AyU [x;y;n € A)
is a Steiner triple system on /.

85. (Exercise 85 contd.) Show that .A contains a set Ag of n triples such that each
i € [n] is in precisely three triples that belong to .Ap. Let

U=XUYUZ={(x1,..., 5} U¥t, ... ¥n} Ulzo, ... 26)

be a set of 2n + 7 elements, and let H be the bipartite graph with bipartition
X UY and edge set {x;y; : ijk € A}. Show that E{H} is the union of six
I-factors, Fy, ..., Fg),and set Fyp = {x;y; : | <i < n}. Finally, set

Cr = {xixyxp @ ijk € Al,
Cr={xiyjzi - xiyj € Fi, 0 <k < 6),
(3 = {xiyjyx ¢ ijk € A\ Ao,

Ca = {yiyjyr : ijk € Ap},
C=CiU...UCs,

where Cs is a Steiner triple system on the 7-element set Z. Show that C is a
Steiner triple system on U.

86. (Exercise 85 contd.) Deduce Kirkman’s theorem that if » is of the form 6% + 1
or 6k + 3 then there is a Steiner triple system of order n.

[II.7 Notes

The basic book on flows is L.R. Ford Jr. and D.R. Fulkerson, Flows in Networks,
Princeton University Press, Princeton, 1962. It not only contains all the resuits
mentioned in the chapter concerning flows and circulations, but also a number of
applications to standard optinmzation problems.

The fundamental theorems of Menger, Hall, and Tutte are in K. Menger, Zur
allgemeinen Kurventheorie, Fund. Marh. 10 (1927} 96-115, P. Hall, On repre-
sentatives of subsets, J. Lordon Math. Soc. 10 (1935) 26-30, and W.T. Tutte, A
factorization of linear graphs, J. London Math. Soc. 22(1947) 107-111. The proof
of Tutte’s theorem we give is due to T. Gallai, Neuer Beweis eines Tutte'schen
Satzes, Magyar Tud. Akad. Kozl 8 (1963) 135-139, and was rediscovered inde-
pendently by 1. Anderson, Perfect matchings in a graph, J. Combinatorial Theory
Ser. B 10 (1971) 183-186 and W. Mader, Grad und lokaler Zusammenhang in
endlichen Graphen, Math. Ann. 205 (1973) 9-11.
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The stable matching theorem of Gale and Shapley and its variant concerning
college admissions are from D. Gale and L.S. Shapley, College admissions and
the stability of marnage, American Mathematical Monthly 69 (1962), 9-15.

The results in Exercises 8 and 9 are due 1o D. de Werra, Multigraphs with
quasi-weak odd cycles, J. Combinatorial Theory Ser. B 23 (1977), 75-82.

A slightly simpler formt of the result in Exercise 23 ts due to W.T. Tutte; the
proof indicated in the hint was found by C. Thomassen. An extensive survey of
resulls concerning connectivity and matching can be found in Chapters [ and I
of B, Bollobds, Extremal Graph Theory, Academic Press, London and New York,
1978.

Stable matchings are discussed in D.E. Knuth, Mariages Stables et Leur Re-
lations avec d’Autres Problémes Combinatoires, Les Presses de I'Université de
Montréal, Montréal, 1976, 106 pp., and in its slightly updated translation, Stable
Marriage and Its Relation to Other Combinatorial Problems — An Introduction to
the Mathematical Analysis of Algorithms, Amer. Math, Soc. 1997, xiit + 74 pp.
For an account of the relationship among stable matchings, non-expansive net-
works and optimization, see Tomas Feder, Stable Networks and Product Graphs,
Memoirs Amer. Math. Soc., Vol. 116, 1995, x + 223 pp.



IV

Extremal Problems

Extremal problems are at the very heart of graph theory. Interpreting it broadly,
extremal graph theory encompasses most of graph theory; in its nammow sense, it
contains many of the deepest and most beautiful resulis of graph theory.

Of necessity, in this chapter we cannot take the broad view, so we shall concen-
trate on variants of the quintessential extremal problem, the forbidden subgraph
problem : given a graph F, determine ex(n; F), the maximal number of edges in
a graph of order n not containing F. Equivalently, how many edges guarantee that
our graph contains F7 For example, how many edges in a graph of order n force
it to contain a path of length £? A cycle of length at least £? A cycle of length at
most £7 A complete graph X, ?

More generally, an extremal question asks for the exireme values of cerfain
graph parameters in various classes of graphs. For example, what is the maximal
value of r for which there is a 2-connected r-regular graph of order n that is
not Hamiltonian? Equivalently, how smali a value of r guarantees that every 2-
connected r-regular graph of order # is Hamiltonian? We shall not say much about
these more general extremal questions, although occasionally we shall demand
that our graphs be k-connected for some k or that their minimal degrees not be too
small,

Before going into the detaiis, it is appropriate to say a few words about termi-
nalogy. If, for a given class of graphs, a certain graph parameter, say the number of
edges or the minimal degree, is at most some number f, then the graphs for which
equality holds are the extremal graphs of the inequality. As a trivial example, note
that an acyclic graph of order n has at most n — 1 edges, and the extremal graphs
are the trees of order 7.

When we talk of extremal graphs, uniqueness is always understood up to iso-
morphism. Thus, a disconnected graph of order at least n > 2d + 2 and minimal
degree at least d > O has at most (dlgi) + ("";"') edges, and Ky U Kpg— I8
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the unigue extremal graph (see Exercise 27 ). Also, a graph of order n without odd
cycles has at most [n2/4] edges, and K |;;2),1n727 18 the only extremal graph.

In the forbidden subgraph problem a graph is extremal if it does not contain
F and has ex(rm; F) edges; the set of extremal graphs is EX{(n; F). Thus we
know from Mantel’s theorem {Theorem 1.2) that ex(n; K3) = [n2/4] and, in fact,
EX(n; K1) = {K|a;2).1n/21}). Also, in the previous chapter, Tutte’s factor theorem
cnabled us to solve a beautiful extremal problem: how many edges guarantee
k + 1 independent edges? In this case F consists of & - | independent edges;
that is, F = (k + 1)}K>3, and for n > 2k + 1 the extremal graphs of ex(n; F) are
Kapy1 U Kp_9p—1 andfor K + K ._x {see Exercises IT1.38-39).

The material in this chapter falls conveniently into two parts: the odd sections
concern paths and eyeies, while the even ones are about complete subgraphs. We
have chosen to alternate the topics in order to have the stmpler results first, as in
most other chapters.

The first section i1s about paths and cycles (short and long) in graphs of large
size. Among other results, we shall give a good bound on ex(n: P), the maximal
number of edges in a graph of order 2 without a path of length £. We shall also
present some fundamental results about Hamilton cycles.

Extremal graph theory really started in 1941, when Turdn, considerably ex-
tending Mantel’s theorem, determined both the function ex{n; K,) and the set
EX(n; K,). The second section is devoted to this fundamental theorem together
with some related results.

When discussing ex(n; Py) and ex(n; K, ), we mostly care about the case when
n is large compared to £ and r. We get rather different problems if £ and G have
the same order. A prime example of these problems will be discussed in the third
section, the problem of Hamilton cycles. Over the years considerable effort has
gone into the solution of this problem, and in a certain rather narrow sense the
present answers arc satisfactory,

The fourth section is devoted to a deep and surpristng theorem of Erdés and
Stone, proved in 1946. The theorem, occasionally called the fundamental theorem
of extrernal graph theory, concerns ex(y; F), where F is acomplete r-partite graph
with t vertices in each class, but as an immediate corollary of this result one can
determine lim, .00 €x{(n; F)/n® for every graph F.

The last two sections are about considerable new developments: Szemerédi's
regulatity lemma and its applications. In 1975, while proving his celebrated the-
orem on arithmetical progressions (see Section VIL.4), Szemerédi discovered a
beautiful result concerning the coarse structure of every graph. This theorem, Sze-
merédi’s regularity lemma, is a vital tool in attacking numerous extremal problems.
Once again, we do hardly more than point the way.

IV.1 Paths and Cycles

When looking for cycles in a graph, the most natural questions concern short
cycles and long cycles. At most how large 15 the girth, the minimal length of a
cycle? At least how large is the circumference, the maximal length of a cycle?
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Let us see first what we can say about graphs with only a few more edges than
vertices. A graph G = G(n,n + 1), that is, a graph with n vertices and n + 1
edges, has girth g(G) < |2(n + 1)/3). Indeed, G has at least two cycles, as its
cyclomatic number is at least two. Now, if there are two edge-disjoint cycles, then
g(G) < L, otherwise, there are two vertices joined by three independent paths.
Writing #;, n2 and nr3 for the lengths of these paths, we have n; +nz +n3 = n+1,
and the three cycles formed by these three paths have lengths r) + na, nz + n3,
and n; + n3. The sum of these three lengths is 2(n; + n2 + n3) < 2(n + 1), s0
G has at least one cycle of length at most 2{n + 1)/3. It is also easily seen that &
need not contain a cycle of length less than [2(n + 1)/3].

Simitarly, every graph G(n, n + 2} has girth at most (n + 2}/2, and every
G(n, n + 3) has girth at most 4{n + 3)/9 (see Exercises 12-14, Although this
sequence can be continued for a few more values, the results become more and
more complicated.

In looking for short cycles, it is more convenient to postulaie that the minimal
degree is large, rather than that the graph has many edges, 50 this is what we shall
do now. In its natural formulation our first theorem gives a lower bound on the
order of a graph in terms of the minimal degree and the girth, the length of a
shortest cycle, Equivalently, the result gives an upper bound on the girth in terms
ot the order and minimal degree.

Theorem 1 Fforg > 3and s = 3 put

5
I+ — 6 - B2 1) ifgisodd

"0(315) = 9

d—2
Then a graph G with minimal degree 5 and girth g has at least ny(g, 8} vertices.

(5 — D&% 1) if g is even.

Proof. Suppose first that g is odd, say g = 2d+1,d > 1. Pick a vertex x. There is
no vertex z for which g contains two distinct z—x paths of length at most d, since
otherwise G has a cycle of length at most 2d. Consequently, there are at least &
vertices at distance 1 from x, at least (8 — 1) vertices at distance 2, and so on,
and at least 5(& — l}“f‘l vertices at distance 4 from x (Fig. IV.1).

FIGUREIV.]. Thecases 3 =g =5andd =4,g =06,

Thus
> 148+86 -+ - +8(6-19,

as claimed.
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Suppose now that g is even, say g = 2d. Pick two adjacent vertices, say x and
y. Then there are 2(§ — 1) vertices at distance | from {x, v}, 2(6 — 1)? vertices
at distance 2, and so on, and 2(§ — l)d‘[ vertices at distance d — 1 from {x, y},

implying the required inequality. O

Let Gg be an extremal graph of Theorem 1, that is, a graph with parameters
& and g, for which equality holds. The proof above implies that G 1s regular
of degree &, if g = 2d + 1, then Gy has diameter d, and if g = 2d, then every
vertex is within distance d — 1 of each pair of adjacent vertices. It is easily seen
that np{g, &) is also the maximal number for which there is a graph with maximal
degree § having the latter property (Exercise 4). We call Gg a Moore graph of
degree & and pirth g or, f g = 2d + 1, a Moore graph of degree § and diameter
d. In Chapter VIII we shall use algebraic methods o investigate Moare graphs.
Here let us note only that the Heawood graph, the incidence graph of the Fano
plane, shown in Fig. 1.7, is a bipartite cubic graph of order 14 and girth 6, so it
is a Moore graph of degree 3 and girth 6. Similarly, the Petersen graph, shown in
Fig. V.11, 1s a Moore graph of degree 3 and diameter 2 (or girth 5),

Let us see now what we can say about long cycles and paths in a graph. Our first
result in this direction is a theorern of Pésa, extending a fundamental theorem of
Dirac from 1952.If a graph of order n is Hamiltonian, then its circumference is
n, while the length of a longest path is n — 1. However, every non-Hamijltonian
connected graph contains at least as long paths as the circurnference of the graph.
Indeed, if C = x(x2--- x¢ is a longest cycle and £ < n then there is a vertex y not
on ( that is adjacent to a vertex of C, say x;. But then yx;xz--. x; is a path of

length .

Theorem 2 Let G be a connected graph of order n > 3 such that for any o
non-adjacent vertices x and y we have

d(x) +d(y) = k.

Ifk = n then G is Hamiltonian, and if k < n then G contains a path of length k
and a cycle of length at least (k + 2)/2.

Progf Assume that G is not Hamiltonian and et P = xjxz - x; be a longest
path in G. The maximality of P implies that the neighbours of x; and x; are
vertices of P, As G does not contain a cycle of length £, x| is not adjacent to x;.
Even more, the path £ cannot contain vertices x,; and xj; | such that x; is adjacent
to x;41 and x; is adjacent to x;, since otherwise x1x3-- - XiXgX¢—t - - Xjp] IS @
cycle of length £ (Fig. IV.2).

Consequently, the sets

i) = {x;:x1x; € E(G)} and T'H(xy) = {xi41 2 xixe € E(G)]
are disjoint subsets of {x2, x3, ..., x¢]}, and so

k<dx)+dg) =T+ M xd<e-1<n—1

S = e———— et e
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FIGURE TV.2. The construction of a cycle of length £.

Now, if & = n then this is a contradiction, 0 G is Hamiltonian. Also, it & < n,
then this relation implies that G has a path of len gth ¢ — | > k. This proves the
first two assertions of the theorem.

Finally, the assertion about cycles is even simpler. Assume that d(x1) > d{xg),
so d(x1} > {kf2]. Putt = max{i : x;x; € E{(G}}- Then ¢t = d(x1)+1 =
[k/2] + 1, and G contains the cycle x;x2 - - - x, of length 1, O

Theorem 2 contains Dirac’s theorem: every graph of order n > 3 and minimal

degree at least n/2 is Hamiltonian.
In Section 3 we shall make use of the proof of Theorem 2 to obtain detailed

information about graphs without long cycles and paths. For the moment we
confine ourselves to noting two of its consequences.

Theorem 3 Let G be a graph of order n without a path of length k(= V). Then

2

A graph is an extremal graph { that is, equality holds for it) iff all its componenis
are complete graphs of order k.

e(G) =

n.

Proof We fix k and apply induction on 2. The assertion is clearly true if n < &.
Assume now that z# > & and the assertion holds for smalier values of n.
If G is disconnected, then the induction hypothesis implies the result. Now, if
G is connected, then it contains no K and, by Theorem 2, it has a vertex x of
degree at most (k — 1)/2. Since G — x is not an extremal graph,
k-1 k-1 k—1

e(G) < d(x) +e(G—x) < + in—1=

2 2 7 =

Theorem 4 Let k > 2 and let G be a graph of order n in which every cycle has
length at most k. Then

e(G) = g(n - 1)

A graph is extremal iff it is connected and all its blocks are complete graphs of
order k. O

The proof of this result is somewhat more involved than that of Theorem 3.
Since a convenient way of presenting it uses “simple transforms” to be introduced
in Section 3, the proof is left as an exercise (Exercise 37), with a detailed hint.
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IV.2  Complete Subgraphs

What is ex(n; Kr41), the maximal number of edges in a graph of erder n not
containing a K, 41, a complete graph of order ¥ + 1? If G is r-partite, then it does
not contain a X,4, since every vertex class of G contains at most one vertex
of a complete subgraph. Thus ex(n; K,41) is at least as large as the maximal
size of an r-partite graph of order n. In fact, there is a unique r-partite graph
of order n that has maximal size. This graph is the Turdn graph T.(n), the
complete r-partite graph with n vertices and as equal classes as possible (see
Fig. IV.3), so that if we order the classes by size and there are ng vertices in the
kth class, then ny < n3 £ --- < n, < np + L. To see that this is the case, let
G be an r-partite graph of order n and maximal size. Clearly, G is a complete
r-partite graph. Suppose the classes are not as equal as possible; say there are
m) vertices in the one class and my > m + 2 in another. Then, by transferring
one vertex from the second class to the first, we would increase the number of
edges by (m1 + 1)(ma — 1) —mymz2 = my —my — 1 == 1. Noie that the relations
ny <ny <. <np and ¥ ;7 = n uniguely determine the #;, and so Th(n) is
unique, Infact, n; = {((n+i - 1)/r]fori=1,...,r.

FIGURE 1V.3. The Turan graph T3(7).

The number of edges in the Turdn graph 7, (n) is usually denoted by ¢, (n}; thus,
for example, f2(n) = |n?/4]. Simple calculations show that

e 1 n |
l‘r(ﬂ)_( —;) (2) (1)

Infact, if r > 1 is fixed and n — oo, then

1 n
(n)= (1 - -+ 0(1))( )
r 2z

Here and elsewhere, we use Landau’s notation: g = O(f) if g/f is bounded as
n—oo,and g = o(f)if g/f = 0asn — oo In particular, o(1) denotes a
function tending to 0 as n — 0o.

A fundamental theorem of Turdn states that the trivial inequality ex{(n; K,41) =
1r(r) is, in fact, an equality for every n and r. In proving this, somewhat as in
the case of Hall's theorem, we have an embarrassment of riches: there are many
beautiful ways of proving the theorem, since the Turdn graph T, (n) is ideal for all
kinds of induction arguments. Before getting down to some proofs, we observe
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some simple properties of 7, (n) and, in general, of graphs of order n and size
t,(n); indeed, after these observations, several proofs of Turdn's theorem will be
almost immediate.

Clearly, 8(T,(n)) = n — [n/r] and A(T;(n)) = n — {n/r}, so the minimal
degree of a Turan graph is at most one smaller than its maximal degree. In other
words, given that T.(r) has n vertices and t, (n} edges, its degrees are as equal as
possible: if G = G(n, t,(n)}, then 8(G) < (T (n}) and A(G) = A(T; (n)). Also,
if x € T,(n) is a vertex of minimal degree, then 7, () — x is precisely T, (n — 1).
If H is an {r — 1)-partite graph of order n — k and H + K = T.(n), then, £ is
lre/r|or fnfr] and H = T,_1{n — k). As a slight variant of this, we see that if
H=Gln—k tr_(n —k))and e(H + K} = t,(n), then k is [n/r| or [n/r].
Equivalently, #,(r) — k(n — k) > t,_1(rn — k) unless k is |n/r] or [n/r].

We dignify the final observation by caliing it a theorem.

Theorem 5 Let G be a graph with n vertices and at least t,(n) edges, and let
x be a vertex of maximal degree, say, d{x) = n — k = A(G). Set W = I'(x),
U =V(G)Y\ W and H = GIW). Ther e(H) = &, (n — k), and the inequality
is strict unless k = [n/r} and U is an independent set of vertices, each of degree
n—k

Proof. As we noted above, k < [n/r]. Assume that e(H) <t,_(n— k). Then

t,(n) <e(G)=e(H}+ %uezud(u) + %e(U. W)
<e(HY+kin -k} <t_y(n—k)+k(n — k).

Consequently, k = (n/s], e(U, W) = k(n —k),and so G = H + K, as claimed.
-

From here it is but a short step to connect T, (#} with complete suhgraphs and
thereby deduce the following extension of Turdn’s theorem.

Theorem 6 Ler G be a graph with n vertices and at least t,(n) edges. Consider
the following simple algorithm for finding a complete subgraph of order r + 1.
Pick a vertex x| of maximal degree in G| = G, then a vertex x; of maximal degree
in the subgraph Gy of G| spanned by the neighbours of x|, then a vertex x3 of
maximal degree in the subgraph G of Gz spanned by the neighbours of x3 (in
G»), and 5o on, stopping with xg if it has no neighbours in Gg. Then either G is a
Turdn graph Tr(n), or else the pracedure above constructs at least v + 1 vertices,
X1,X3, ..., Xr4], which then span a complete subgraph.
In particular, ex(n; Kry1) = t,(n), and T,(n) is the unigue extremal graph.

Proof 'We apply induction on , noting that for r = 1 there is nothing to prove. Set
n—k = d(x)) = AG). If e(G3) > t,_(n—k), then we are done by the induction
hypothesis, since G cannot be isomorphic to 7,1 {n —&), and x1, followed by the
vertices X2, X3, . . . , Xr+1 we find in G2, gives the sequence as claimed. Otherwise,
by Theorem 5, k = [n/r), e(G2) = tr_1(n —k),and G = G» + K;. Hence,
by another application of the induction hypothesis to G, we see that either our
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procedure constructs xz, . . ., xrpn,0relse Go = T o —k)and Gy = T (n),
as clarmed. »

In 1970 Exdos proved a beautiful resuit about alf graphs contarning no K4 .
regardless of their number of edges, namely that the degree sequence of a graph
without a K4 is dominated by the degree sequence of an r-partite graph. This
result again implies Turdn’s theorem.

Theorem 7 Ler G be a graph with vertex set V that does not contain K., a
complete graph of order r. Then there is an r-partite graph H with vertex set V
such that for every vertex 7 € V we have

dc(2) < dn(2).

If G is not a complete r-partite graph, then there is at least one vertex z for which
the inequality above is strict.

Proof. We shall apply induction on r. For r = 1 there is nothing to prove, since
G is the empty graph K,. which is l-partite. Assume now that r > 2 and the
assertion holds for smaller values of r.

Pick a vertex x € V for which dg{x) is maximal and denote by W the set
of vertices of G that are joined to x. Then Gp = G[W] does not contain a K,
for otherwise with x it would form a K, ;. By the induction hypothesis we can
replace Gp by an (r — 1)-partite graph Hy with vertex set W in such a way that
dg, (¥} < dg,(y) for every y € W and strict inequality holds for at least one y
unless Go is a complete {r — I)-partite graph. Add to Hp the verticesin V — W
and join each vertex in ¥V — W to each vertex in W. To complete the proof let us
check that the r-partite graph A obtained in this way has the required properties.

Ifze V=V ~W,thendy(z) =dp(x) =dg(x) = dg(z),and if z € W, then
dyiz) = dp(z) + n — |Wi > dgy(2) + n ~ W] > dg(2). Thus dg(2) < dp(2)
holds foreveryz € V.

What can we say about G if e(H)} = ¢(G)? Then e{Hp} = e(Go), so Gp 15 a
complete (r — 1)-partite graph. Also, by counting the edges outside Gp = Hp, we
sec that

0 =e(G) —e(Go) = ) _ dg(u) — e(GLUD — W IIW

uci’

< [WUNW| — e(GIUT) ~ [UIIW| = —~e(GLU]),
implying that G is a complete r-partite graph. J
In order to emphasize the importance of Turdn's theorem, we state it once more,

this time in its original form, as it was stated in 1940,

Theorem 8 Forr.n > 2 we have ex(n; Ky y1) = t(n) and EX{n; K, ;) =
[T (n)}, In words, every graph of order n with more than t,.(n) edges contains
a K,y1. Also, T.(n) is the unigue graph of order n and size 1.(n) that does not

containa Kry).
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Proof The theorem ts contained in Theorem 6, and it is also an immediate con-
sequence of Theorem 7, since T, (n) is the unique r-pariite graph of order n and

maximal size.
Nevertheless, let us give two more proofs of the theorem itself, based again on

the properties of 7, (n}.

3 rd Proaf. For r = 1 there is rothing to prove, so fix » > 2 and apply induction
on #. For n < r + 1 the assertion is trivial, so suppose that n > r + 1 and the

theorem holds for smalier vaiues of n.

Suppose G has n vertices, ¢, (n) edges, and it contains no K, 4 ;. As Ty (n) is a
maximal graph without a K, ;) (thatis, no edge can be added to it without creating
a K,41), the induction step will follow if we show that & is exactly a T,(n). Since
the degrees in T, (n) differ by at most I, we have

8(G) < 8(T;(n)) = A(T,(n}) = A(G).
Let x be a vertex of & with degree d(x) = 8(G) < 8(T(n)). Then
e(G —x)=¢(G) —d(x} = e(T;(n - 1)),

50 by the induction hypothesis Gy = G ~ x isexaclya T. (n — 1).
A smallest vertex class of G, contains |{n — 1}/r] vertices, and the vertex x 1s

joined to all but
1= (-2 = [

vertices of G. Since x cannot be joined to a vertex in each class of Gy, it has
to be joined to all vertices of G, save the vertices in a smallest vertex ¢lass. This

shows that G = T, (n), as required. ]

4 th Proof. This time we apply induction on n + r. Assume that 2 < r < n and
the assertion holds for smaller values of r + n. Fix a graph G = G(n, t-{(n))
without a K, : as before, it suffices to prove that we must have & = T, (n). Since
¢, (7) = t,_;{n), by the induction hypothesis G contains a X, say, with vertex set
W = {x1,x2,.... %} Set U = V(G)Y\ W and H = GIU]. Clearly, no vertex
x € U sends r edgesto W, so

e(H) = e(G) — (r) — e(t, W)

2
> te_(n) — (;) —m—=r)r—1)=t(n—r)

The second equality above follows from the fact that if we remove (the vertex set
of) a K, from T, (n) then we remove precisely (1} + (# — r)(r — 1) edges, and we
are left with a 7, (n — r). Now, as H contains no K4, by the induction hypothesis
the inequality above implies that H = T, (n — r), and every vertex of f is joined
to precisely r — 1 vertices of W. 1t is easily checked that this forces G = T.(n),
as in the previous proof. L]
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The proofs above can easily be adapted to give a number of related results (cf.
Exercises 18-23). Yet another proof of Turan’s theorem will be given in Chapter
VIII.

In a slightly different formulation, Turdn’s theorem gives a lower bound on the
cligue number of a graph with given order and size. A maximal complete subgraph
of a graph is a cligue, and the cligue number w(G) of a graph & is the mraximal
order of a cliquc in G. Simply, w(G) is the maximal order of a complete subgraph
of G.Now, Turin's theorem states thatif a graph G has n verticesand m > t._| (1)
edgesthen w(G) > r,unlessm =t,_|(n}and G = T, (n).

Now let us turn ta the problem of Zarankiewicz, which is the analogue of Turdn’s
problem in bipartite graphs. Write (72(rm, n) for a bipartite graph with m verticesin
the first class and # in the second. What is the maximal size of a Ga(m, n) if it does
not contain a complete bipartite graph with s vertices in the first class and ¢ in the
second? This maximum is usually denoted by z{m, n; s, t}. The following simple
lemma seems to imply a very good upper bound for the function z{m, n; s, t).

Lemma 9 Letm,n, s, tk,r be non-negative integers, 2 < s <m, 2 <1 <n,
0 < r < m and let G = Ga(m,n) be an m by n bipartite graph of size
z = my = km+r without a K; ; subgraph having s vertices in the first class and
t in the second. Then

k K+ 1 n
m(::) E(m—r)(‘)+r( T )s(s—lj(r). (2)

Proof. Denote by V| and V5 the vertex classes of . We shall say that a z-set (i.e.,
a set with ¢ elements} T of Vs is covered by a vertex x € Vi if x 15 joined to
every vertex in T. The number of 1-sets covered by a vertex x € V| is (‘“f)). Since
the assumption on G is exactly that each #-set in V3 is covered by at most 5 — 1

vertices of ¥y, we find that
dix) +in
= (49) o ()

xeV|

As erV. dixy=z=my=km+r, 0<r <m, and f{u) = (‘:) is a convex
function of u for u > r, inequality (3) implies (2). |

The proof of Lemma 9 is the simple but powerful double counting argument;
as this is perhaps the most basic combinatorial argument, let us spell it out again,
this time in terms of the edges of a bipartite graph H . Onc of the vertex classes of

H is just Vy, but the other is Vzm , the set of all 7-subsets of V3. In our new graph
H,jomx € Vito A € Vzu} if in G the vertex x is joined to all ¢ vertices of A.
Now, counting from Vi, we see that

d
e(H)=Y ( (rx))'

xe¥)
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On the other hand, as & contains no K ;, in A every vertex A € Vz(” has at most

s — 1 neighbours. Thus
e(H) < (s — 1)(’:),

Theorem 10 For all natural numbers m, n, s and t we have

and the rest is simple algebra.

zmm s ) < =DV —t 4+ Dm0 — D,

Proof. Let & = Ga(m, n) be an extremal graph for the function z{m, n; 5, t) =
my without a K (s, ¢) subgraph. As y > n, inequality (2} implies

b—@—-DY <(@—=Dn—-(—D)Ym L. 0O

The only advantage of Theorem 10 is that it is fairly transparent: for any
particular choice of the parameters we are better off dealing with inequality (2).
Thus, for example,

2n.ns,2) < %(1 (4 — D@n -1+ D2, 4)

Indeed, with the notation of Lemma 9 we have n(3) < (s - 1)(3}. Hence
Y -y—(-Dr—-1=0,

implying that ny is at most the right-hand sidc of (4).
The method of proof of Lemma 9 also gives an upper bound for ex(n; K,(¢)),
the maximal number of edges in a graph of order # without a complete ¢ by ¢

bipartite subgraph.

Theorem 11 Lern,s,t, k and r be non-negative integers, and let G be a graph
oforderz =ny/2 = %(kn + r), containing no K; ;. Then

) sn-n(l) (1) =000

ex(n, K; ;) < %(s — gl g -;-(: ~ 1)n.

Furthermore,

Proof. AsinLemma9, let us say that a z-set of the vertices is covered by a vertex
x if x is joined to every vertex of the t-set. Since ¢ does not contain a X, ,, every
t-set is covered by at most s — 1 vertices. Therefore, if G has degree sequence

(d;)} then
=, /d; n
£()=0-()

and the rest is as in Lemma 9 and Theorem 10. ]
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In fact, there is no need to repeat the proof of Lemma 9 to prove Theorem 11: a
simple, and general, “duplication” argument will do the job. Given a graph G with

vertex set V() = {x1, ..., x5}, consiruct a bipartite graph # = D(G) as follows.
Take two disjoint copies of V(G), say V| = {x}....,x }and Vo = {x], ... x]}.

The graph H has bipartition (V|, V»), and .rfx}’ € E(H)iff x,x; € E(G). Clearly,
e(H) = 2e(G); in fact, dg(x;) = dy{x]) = dy(x]') for every i, It is easily secn
thatif X;; ¢ G, then K;; ¢ H,and so z{n, n; s, 1) = 2ex{n, K; ;).

What about the order of z{n, r; ¢, 1)? We see from Theorem 10 that if t > 2 is
fixed, then

dmr )<= D" 4 0~ Da, (5)
Also, by Theorem 11,

1 1
ex(n, Kp.) < ot — nip2-t 4 S = Dn. (6)

Itis very likely that (5) and (6) give the correct orders of the functions z(n, n; ¢, ¢}
and ex(n, K, ), but this has been proved only for ¢t = 2 and 3. In fact, it is rather
hard to find nontrivial lowcr bounds for z{(m, n; 5, ¢). In Chapter VIl we shall
use the probabilistic method to obtain a lower bound. Here we present an elegant
result for t = 2, proved by Reiman in 1958, that indicates the connection between
the problem of Zarankiewicz and designs, in particular projective spaces, and we
shall conclude the section with some recent results forr > 3.

Theorem 12 Forn > 1, we have
z(n,m;2,2) < %n{l + (4n = 372,
and equality holds for infinitely many values of n. Furthermore,
ex(n, C4) < 2(1 + /30— 3),

Proof. Since 2Zex(n, K; ) < z{(n, n; 5, 1), the second inequality is immediate from
the first. Moreover, the first inequality is just the case s = 2 of (4). In fact, the
proof of Lemma 9 tells us a considerable amount about the graphs & for which
equality 1s aftained. We musthave d| = dy = --- = d, = d, and any two vertices
in the second vertex class V; have degree ¢ and any two vertices in V1 have exactly
one commaon neighbour. Also, precisely the same assertions hold with V| and V;
interchanged.

Call the vertices in V> points and the sets ['(x}, x € V, lines. By the remarks
above there are n points and 1 lines, each point is on d lines; and each line contains
d points, there is exactly one line through any twe points and any two [ines meet
in exactly one point. Thus we have arrived at the projective plane of orderd — 1.
Since the steps are easy to trace back, we see that equality holds for every a for
which there is a projective plane with # points. In particular, equality holds for
every n = g2 + ¢ + | where ¢ is a prime power.

In conclusion, let us see the actual construction of & for the above values of n.
Let g be a prime power and let PG (2, g) be the projective plane over the field of

A B e R
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order g. Let V| be the set of points and V; the set of lines. Then
Vil=1Val =q" +q+1=n.

Let G be the bipartite graph G2(n, n) with vertex classes V| and ¥, in which we
join a point P € Vy to aline £ € V3 by an edge iff the point P is on the line
£. (For ¢ = 2 this gives us the Heawood graph, shown in Fig. .7.) Then G has
n(g + 1) = Jn{l + (4n — 3)}/2} edges, and it does not contain a quadrilateral.
O

A variant of the construction above can be used 1o show that the bound for
ex (n; K2 2) = ex(n; C3) given in Theorem 11 is also essentially best possible.

The resuits for K3 3 are almost as satisfactory as the results above for K5 3 = Cy.
We see from (5) and (6) that z{n, n; 3, 3) < (2'2 + 0(1))n>/? and ex(n, Kis) <
1(2!/3+0(1))n/3. By using an ingenious construction based on finite geometries,
Brown showed in 1966 that z{#,n;3, 3} > (1 + o(l})nsf3 and so ex(n, K33} >
(% + o(1))n3/3. Thus (5) and (6) do give the correct orders for K3 3. However, 30
years passed before it was proved that the constants (1 and 1/2) in the lower bounds
of Brown are best possible. In 1996, Fiired: gave the first substantial improvement
on the simple upper bound in Theorem 10 when he provedthatforl < <s <m
we have

dmns, )< (s~t+ DYam' =V oy 4 em? 21 (7

Combining (7) with the lower bound given by Brown, we see that z{n, n; 3,3) =
(1 + o(1)n*3 and ex(n, K3 3) = (§ + o(1))n’.

In spite of all these results, much remains to be done. It is very likely that (5)
and (6) not only give the correct orders but z(n, n; 1, 1) = (c; + o(1))n? /8 and
ex(n, K; ;) = %(c; +o(1Hr?1/9) Even more, perhaps Firedi’s inequality (7) is
essentially best possible and ¢, = 1.

IV.3 Hamilton Paths and Cycles

A class of graphs is said to be monotone if wbenever a graph L belongs to the
class and M is obtained from L by adding to it an edge (but no veriex) then M also
belongs to the class. Most theorems in graph theory can be expressed by saying
that a monotone class M 1s contained in a monotone class P. Of course, these
classes are usually described in terms of graph invariants or subgraphs contained
by them. For example, the simplest case of Turan’s theorem, discussed in the
previous section, states that the class M = {G{n,m) . m > n?/4} is contained in
P = {G : G contains a triangle}. It is worth noting that a class P of graphs is said
to be a propertyof graphs iff L € Pand L = M imply M € P.

How should we go about deciding whether A is contained in P? Bondy and
Chvatal showed in 1976 that in some cases there 1s a simple and beautiful way of
tackling this problem. Suppose we have a class T of triples (G, x, v), where G is
a graph and x and y are non-adjacent vertices of G, such that if (G, x, ¥) € T and
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G € M, then G belongs o P iflf G = G + xy does. This holds, for example, if
P is the property of containinga K and T = {(G, x, y) : {[Tx)N(y) < r—2}.
In this case G can be replaced by G¥. If G also contains two non-adjacent
vertices, say # and v, such that (G*, u, v} € 7, then we can repeat the operation:
we can replace G by G*1 = G™ + uv. Continuing in this way we amive at a
graph G* O G that belongs to P if G does and that is a closure of G with respect
te T; that is, it has the additional property that for no vertices a, b € G* does
(G*,a,b) € T hold. Thus it is sufficient to decide about these graphs &* € A
whether or not they belong to 7.

Of course, the method above is feasible only if (i} the class T is simple enough,
(ii) it is easy to show that G belongs to P iff G does, and (iii) if we start with
a graph G € M, then a graph G* € M is easily shown to belong to 7. In this
section we give two examples due to Bondy and Chvétal that satisfy all these
requirements: we shall give sufficient conditions for a graph to contain a Hamilton
cycle or a Hamilton path. Because of the special features of these examples it will
be convenient to use slightly different notation and terminology.

Let » and & be natural numbers and let 7 be a class of graphs of order n. We
say that P is k-stable if whenever G is an arbitrary graph of order n, and x and y
are non-adjacent vertices of & with d(x) -+ d(y) > &, then G has property P iff
GT = G + xy has it also. It is easily seen that for every graph G of order n there
15 2 unigque minimal graph G* = Cx(G) containing G such that

dgr(x) +dg(y) <k —1forxy ¢ E(G").
In the notauon of the previous paragraph, we shall take
T={G.x,y): |G| =n, xy ¢ E(G), d(x}+d(y) = k],

which is certainly simple enough, so (i) will be satisfied. It is also encouraging
that G* = C;(G) is unique. Almost by definition we have the following principle
of stability: if P is a k-stable property of graphs of order n, then G has property
P iff Ci(G) has it also. We call Ci(G) the k-closure of G.

Requirement (ii) is also satisfied, since the gist of the proof of Theorem 2 is
that the property of containing a Hamilton cycle is n-stable and the property of
containing a Hamilton path is (n — 1)-stable. Indeed, if d(x) -+ d{y) > n - 1
whenever x and y are nonadjacent distinct vertices, then the graph is connected,
so the proof of Theorem 2 can be applied. (In fact, this is exactly what motivated
the notion of a k-closure.} By the stability principle we obtain the following
reformulation of Theorem 2 inthe case k =norn ~ 1.

Lemma 13 A graph G is Hamiltonian iff C.(G) is, and G has a Hamilton path
iff Cn—1(G) does. O

Depending on the amount of work we are able and willing to put in at this
stage (cf. requirement (ii1)), we obtain various sufficient conditions for a graph
to be Hamiltonian. Of course, the case k = n of Theorem 2 is obtained without
any work, and so 1s the case £ = n — 1, since the conditions imply immediately
that C,(G)} = K, in the first case and C,_;{G) = K, in the second, and X, is
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Hamiltonian if # > 3. In order to make better use of Lemma 13, we shall prove
the following ungainly technical lemma.

Lemma 14 Let G be a graph with vertex set V(G) = {x(,x3,...,x,}, whose
k-closure Cp(G) contains at most t < n — 2 vertices of degree n — 1. Then there
are indices i, j, 1 <¢ < j < n, such that x;x; € E{G) and each of the following
Jour inequalities holds:

jzmax{ln -k —i,n~—1}
dix;) <i+k-—n, dix;) = j+k—-n~—1, (8)
d(x) +d{x;) <k —1.

Remark. 1t is not assumed that the degree sequence d(x;), d{x3), ..., d{(x,) of &
is ordered in any way.

Proof. The graph H = Cy(G) is not comaplete so, we can define two indices § and
7 as follows:

j=max{f :dy(xg) #n -1},
i = max{f : xex; & E(H)}).
Then x;x; ¢ E(H), so
dr(xi) +du(xj) <k—1,
which implies the fourth inequality in (8). Each of the vertices
Xjt+1s Xjt2s « - -2 Xn
has degreen — 1 in H, so
n—j=<t
and
n—j <5(H) <dg{x)

The vertex x; is joined to the n — j vertices following it and to the j — i — 1
vertices preceding it, 50

dy(x)z -+ G—i-D=n—i-1.

These inequalities enable us to show that the indices ¢, j, 1 <i < j < n, satisfy
the remaining three inequalities in (8). Indeed,

do(x) <du(r) <k—1—dp(xp) k-1~ —i—1)=i+k—n,

do(xj) sdy(xj) <k —1—dglx)) <k-1-(n—jy=j+k-n~1,
and

i+jzm—~dyp(x))—-D+n—dyxi))22n—~1~k-1)=2n—k,
completing the proof. 0
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Combining Lemma 13 and Lemma 14 (witht =n —2andk =norn — [) we
obtain the following theorem of Bondy and Chvatal, giving rather complicated
but useful conditions for the existence of a Hamnilton path or cycle.

Theorem 15 Let G be a graph with vertex set V{G) = {xp,x2, ..., %}, n = 3.
Let € = 0 or | and suppose there are no indices i, j, 1 <1 < J < n, such thut
x;xj ¢ E(G) and

J=n—i+te,
d(x;)fi'—f, d(xj)*_:j—].“—f.',
dx;}+d(x;) <n—1-¢

If e = 0 then G has a Hamilton cycle, and if £ = 1 then G has a Hamilton path,
O

An immediate consequence of this result is the following theorem of Chvital.

Corollary 16 Let G be a graph with degree sequence d| < dy < ... < d,,
n > 3, and let ¢ = Q or 1. Suppose

1
dy_tie > n—k wheneverd, <k —¢g < i(n —£).

If £ = O then G has a Hamilton cycle, and if € = | then G has a Hamilton path.
Ol

We draw the attention of the reader to Exercises 32— 33 which show that the
assertions in the corollary above are in some sense best possible. In particular, if
dy < dz < ... < dy is a graphic seguence such that

d;,‘_:k{;—t and dnp—y < n—k,

then there is a graph G with vertex set {xj, x2, ..., x,} such that d(x;) > dj,
1 <i < n, and G does not have a Hamilton cycle.

There is another customary way of showing that a graph has a Hamilton cycle
or path. Let S be a longest xp-path in G, that 15, a longest path beginning at
xp : & = xpx1 - -xp. Then O (xg) C {xg, x1, ..., xg—1} since otherwise § could
be continued to a longer path. If xx 15 adjacent to x;, 0 < j < &k — 1, then
8" = xox1 - X;XpXp—1 - -- Xj41 15 another longest xp-path, We call 5" a simple
transform of §. It is obtained from S by erasing the edge x;x;41 and adding to
it the edge xix;. Note that if 8’ is a simple transform of §, then 5 is 2 simple
transform of §' and § has exactly d(xx) — 1 simple transforms. The result of a
sequence of simple ransforms is called a transform (see Fig. [V.4}),

The theorem below is usually called Pdsa's lemma: as we shall see in Chap-
ter VII, it can be used to prove the existence of Hamilton cycles in random graphs.
To present it, let L be the set of endvertices (different from xp) of transforms of
Sandput N ={x; € S:x; (€Llorxjpelland R=V\NUL Thus L
is the collection of the last vertices of the transforms, N is the collection of their
neighbours on § and R is the rest of the vertices.
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FIGURE IV.4. An x-path and a simple transform of it

Theorem 17 The graph G has no L-R edges.

Proof Recall that there is no edge between L and V{(G) \ V(5), since Sisa
tongest xp-path, 50 in particular V (S} = V(P) for every transtorm £ of 5.
Suppose x;x; € E(G), where x; € L and x; € R, Let S; be a transform of §
ending in x;. Since ai least one neighbour of x; on S; is the endvertex of a simple
transform of Sy, x; cannot have the same neighbours on S and §;, since otherwise
x; would belong to N. However, when the edge x;:x;, j =j—lorj+1,iserased
during a sequence S — 8 — §” — .. — §; of simple transformations, one of
the vertices xj, x; is putinto L and the otherinto N. Thus x; € LUN = V(G)\R,

contradicting our assumption. O

The theorems of this section are also obtained with the use of simple transforms:
they are due to Thomason, who extended earlier results of Smith.

Theorem 18 Let W be the set of vertices of even degree in a graph G and let xo
be a vertex of G. Then there is an even number of longest xg-paths ending in W.

Proof Let H be the graph whose vertex set is the set T of longest xo-paths inG,
in which P, € T is joined to P, € & if P, is a simple transform of Py. Since the
degree of P = xpx;---xx € L in A isd{x) — 1, the set of longest paths ending
in W is exactly the set of vertices of odd degree in 4. The number of vertices of
odd degree is even in any graph, so the proof is complete. =

Theorem 19 Let G be a graph in which every vertex has odd degree. Then every
edge of G is contained in an even number of Hamilton cycles.

Proof. Let xgy € E(G). Then in G’ = G — xgy only xo and y have even degree,
s0 in G’ there is an even number of longest xg-paths that end in y. Thus either
G has no Hamilton cycle that contains xoy of it has a positive even number of

them. ]

The most striking case of Theorem 19 is that in a cubic graph every edge is
contained in an even number of Hamilton cycles; in particular, for every edge of
a Hamilton cycle there is another Hamilton cycle containing the edge.
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IV4 The Structure of Graphs

The Turdn graph T.(n) does not contain a complete graph of order r + 1, and
by (1} it has at least (I — 1}(}) edges. Therefore, a graph of order n and size at
least (1 — }){;) need not contain a X, ;. The main aim of this section is to prove
a deep result of Erdds and Stone, published in 1946, that if £ > 0 is fixed then
en® more edges ensure notonly a K, ), buta K, (¢}, acomplete (r + 1)-partite
graph with ¢ vertices in each class, with ¢t — o0 as n — 00, The Erd$s-Stone
theorem is rightly called the fundamental theorem of extremal graph theory.

A considerably sharper result, giving the correct speed logn for t — oo, was
published by Bollobas and Erdds in 1976; this is the theorem we shall prove. To
be precise, in order to make the calculations more pleasant, we shall present only
a weaker form of this result.

For r = 1 the problem is precisely the Zarankiewicz problem discussed in
Section 2, but this time for rather dense graphs, with £ — occ. What we want can
be read out of (6), but as we shall be satisfied with an even simpler result, we run
through the argument. We claim that if £ > 0 is fixed and » is large enough, then
every graph & of order » and minimal degree at least en contains a Ko(7) with
t > glogn.

To prove this, suppose G does not contain a K1(2). As before, we say that a set
of t vertices is covered by a vertex x if x is joined to every vertex in the set. Every
vertex of G covers at least (°') sets of 7 vertices, and no set of 7 vertices is covered

by t vertices, Therefore,
(En) (H)
n <t .
t t

This inequality is false for t = [£logn] and n large, since then

rn &n L P E—:
r(I)/M(r)"{:41'1'9 ( e':n) -::"s

Eeluglﬁlfelslogn < _z_inl,ls <1
En T oen

What we have just proved is the case r = | of the theorem below; this result
is only slightly weaker than the form of the Erdds—Stone theorem to be given as
Theorem 22.

Theorem 20 Let r > 1 be an integer and let ¢ > 0. Then there is an integer
ng = ng(r1€) such that if |G| == n > ngy and

-

G) = (l - é-i-s)n,

then G D K,41(1), where
. elogn .
=27 — 1)
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Proof We apply induction on r. As the case r = 1 was proved above, we proceed
to the induction step. Let then r > 2 and let & be a graph with n vertices and
minimal degree at least (1 — % + £)n. Note that 0 < £ < 1/r. Sincc

1 1
3{G) > (1 - ;-}- v 1)):1,

by the induction hypothesis G contains a X, (T) = K, say, with |T| = [d; logr]
vertices in one class, where d, = 227 /r!. Let {J be the set of vertices in G — K
joined to at least (1 — % + §)1K| vertices of K. We claim that

|E/]| = en.

To see this, note that the number f of edges between K and G — X satisfies
1 1 ¢
IKI{(I—;+8)H-IKI}E f= IUIIKI+(H*IUI)(1—;+E}IKJ,

that 15,

ren re
~_*_:|U|(1—?)+r|K|.

This implies that |I7| > ren/2 > en if n is large enough, so our claim s justified.
Sett = [logn/2'~(r — 1}!]. Thent < [(r&/2)T1, so

e ; + %nxn =[(r=DT +(er/DT1 2 r — DT +1.

Calling a subgraph H of G covered by a vertex x if x is joined to every vertex of
H , this inequality shows that every vertex of U covers at least one K, (1) subgraph
of K. In K there are only (T)r such subgraphs, so there is a set W C U/,

T r
Wi = fUU(I) :

such that every vertex of W covers the same K, (r) subgraph of X . To complete the
proof, all we have to check is that |W| > z. Now, t/eT > £/3, and by Stirling’s
formula, £ > (1/¢), s0

¢ tr
|W| = en (_'F) > en(e/3)"
€
> en(e/3)Y expllog(e/Irelog n/2r e — 1)
Since r < 2'~1(r — D! and log(e/3)e > log(1/6)/2 > —1, we have |[W] > 1,

and we are done. |

The following cbservation enables us to weaken the condition above on the
minimal degree to a condition on the size of a graph.
Lemma 21 Letc, & > O. If n is sufficiently large, say n > 3/&, then every graph
of order n and size at least (¢ + s)(;) contains a subgraph H with 8(H) = c¢|H|
and |H| = g'/2n.
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Proof. Let G be a graph of order n > 3/¢ and size e(G) > (¢ + S)G)* Note that
in this case 0 < £ < £ + ¢ < 1. If the assertion fails then there is a sequence of
graphs G, = G 2 Gn_1 D -+ D Gy, & = |£'72n), such that |G;} = j and for
n = j > £ the only vertex of G; netin G;_; has degree less than ¢j in G;. Then

ooy £ amees()-[(1)-(7)

F=t+]

£ i +c e+l cn > & 7 > ¢

- - '

2 2 2 2

since 0 < ¢ < 1 and n = 3/n. This contradiction completes the proof. O

Putting together Theorem 20 and Lemma 21, we obtain a strengthening of the
Erdds—Stone theorem of 1946, published by Bollobas and Erdds in 1973,

Theorem 22 Lzt r = 1| be an integer and let ¢ > (. Then there is an integer
ny = no(r, £) such that if |G| = n > np and

e(G) > (1 —--‘-+s)("),
r 2

then G O Koy () for somet = glogn/(27H(r — D).

Proof Wn > 3/ethen, by Lemma 21, G has a subgraph H with [H|=h > e’n

and 6(H) = (1 — } + £/2}h. Hence if n is suffictently large then H contains a

K, 1(2) withr = §logh/ (2"~ (r — 1)) = elogn/(27+!(r — 1)1, as claimed.
O

The function ng(r, &) appearing in Theorem 22 is not that Jarge: one can check
that ng(r, £) = max{[3/g], 100} will do (see Exercise 58).

In a certain sense Theorem 22 is best possible: for every ¢ and r there is a
constant d; tending to 0 with £ such that the graph described in the theorem need
not contain a K, (¢) with t = |d}logn]. In fact, we shall see in Theorem VI1.3
that if 0 < & < % and d3 > —2/log(2¢), then for every sufficiently large n there
is a graph (G(n, m) not containing a X>(z), where m = lzn?| and ¢t = |45 logn].
This result will imply immediately (cf. Exercise VIL.13)thatif r > 2and 0 < £ <
%(r — 1)~ then any value greater than —2/ log(2(r — 1)%¢) will do for .

The fact that this example gives the correct speed for d{e, r) is a much deeper
result: this was proved by Chvital and Szemerédi in 1981, by making use of a very
powerful tool, Szemerédi's regularity lemma, to be presented in the next section.

Since dlogn — o0 as n — o0, Theorem 22 has the following immediate
corollaries. The first is a slightly weaker form of the onginal Erd&s-Stone theorem.

Corollary 23 Let F = K. (t), wherer = 1 and t = 1. Then the maximal size
of a graph of order n withouta K, ((¢) is

ex(n: F) = (1 — 1}(") + o(n?). =
ro\2
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Corollary 24 Let F|, B, ..., Fy be non-empty graphs. Denote by r + 1 the
minimum of the chromatic numbers of the F;, that is, let r + 1 be the minimal
number for which at least one of the F; is contained inan F = K, (1) for some
t. Then the maximal size of a graph of order n not containing any of the F, is

ex(n: Fi. Fa, ..., Fey=(1 — ;)(;) +a(n2}.
Proaf. The Turdn graphb T, (n) does not contain any of the F; so, by (1),
ex(m; 1. Fp, ..., F) 2z e(T1(n)) =taim) £ (1 - ;)(;)
Conversely, since, say F; C F = K.+ {¢) forsome j and ¢,
ex(n; Fy, F,..., Fp) <ex(n; Fj) <ex(n, F) = (1 - %)(;) +o(n?). O

Theorem 22 is the basis of a rather detailed study of the structure of extremal
graphs, initiated by ErdGs and Simonovits, giving us considerably more accurate
results than Corollary 24. This theory is, however, outside the scope of our book,

The density of a graph G of order n is defined to be ¢(G)/ G) The upper density
of an infinite graph G 1s the supremum of the densities of arbitrarily large finite
subgraphs of G. It is surprising and fascinating that not every value between 0
and 1 is the upper density of some infinite graph; in fact, the range of the upper
density is a countable set.

Corollary 25 The upper density of an infinite graph G is 1, %_ % ;3{ e, or(Q.
Each of these values is the upper density of some infinite graph.

Proof. Let G, be the complete r-partite graph with infinitely many vertices in
each class, Since the density of K, {¢) tendsto I — ;} as ¢ tends to 00, the upper
density of G, 1s | — % , proving the second assertion.

Now, let @ be the upper density of G and suppose that

1

oa>]l—-——,
r—1

where r = 2. Then there is an £ > O such that G contains graphs Hy of order n;
with ny — o0 satisfying

1 1
Hy>-l1-— 2
e( ;,)_2( r_l+s)nk

By Theorem 20 each Hj contains a subgraph K, (1;) with & —> ©0; the subgraphs
K, (1) show thato > L. O

The results above give fairly satisfactory answers to the forbidden subgraph
problem, provided that no forbidden subgraph is bipartite, and Erdés and Si-
maonovits have proved several considerably stronger results. However, for a general
bipartite graph F, the result ex(n; ¥) = o(n?) is rather feeble, and for most
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bipartite graphs F we cannot even determine the exponent oz of n for which
0 < lim ex(n; F)/n% < oo.
H—>00

Also, we have only rudimentary results for hypergraphs, so much remains to be
done.

IV.5 Szemerédi’s Regularity Lemma

In 1975 Szemerédi proved one of the most beautiful results in combinatorics:
every set of natural pumbers with positive upper density contains arbitrarily loag
arithmetic progressions (see Section V1.4). A crucial step in the proof was an inno-
cent looking lemma, which has turned out to be of vital importance in attacking a
great variety of extremal problems. This lemma has come to be called Szemerédi’s
regularity lemma, although ‘uniformity’ rather than ‘regularity’ would be much
closer to the mark. Roughly speaking, the lemma claims that the vertex set of
every graph can be partitioned into boundedly many almost equal classes such
that most pairs of classes are ‘regular’, in the sense that the number of edges
between two subsets of the classes is about proportional to the possible number
of edges between the subsets, provided that the subsets are not too small. Thus
for a ‘regular’ pair of classes it does not happen that some two k-subsets span
many edges while some others span few edges. In order to formulate the lemma
precisely, we need some definitions and notation.

Given a graph G = (V, E) and a pair (X, ¥) of disjoint non-empty subsets
of V, denote by e(X,¥) = eg(X,¥) the number of X-¥ edges of G, and
write d(X, ¥) = dg(X, ¥) = e{X, ¥Y)/(|X||¥ !} for the density of the X-Y edges
of 7, Call (X, ¥) an &-uniform pair if

(X", ¥ ~d(X,¥) <&

whenever X* C Xand Y* C Y aresuchthat | X*| > g|X| > Oand |¥*| > &|¥]| >
0. A partition P = (C;)¥_g of the vertex set V is said to be an eguitable partition
with exceptional class Cy if |C|| = {Ca| = -+ = [Cil- Finally, an s-uniform
partition 1s an equitable partition (C; )LD such that the exceptional class Cyp has a¢
most gn vertices and, with the exception of at most £k pairs, the pairs (C;, Cj),
1 <i¢ < j <k, are e-uniform.

Szemerédi's lemma (Theorem 29) states that every graph has an e-uniform parti-
tion with a bounded number of classes. We begin the proof with two easy lemmas:
the first concerns the densities (X, ¥) and the second is a simple inequality.
Readers are encouraged to skip the proofs.

Lemma 26 Suppose that X and ¥ are disjoint sets of vertices of a graph G.
and X* C X and ¥Y* C Y are such that |X*| = {1 - y}|X| > 0 and |Y*| >
(1 =8)|Y| > 0. Then

ld(X*, Y}~ d(X, ¥} <y +4 (%)
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arnd
ld2(X*, ¥Y™) - d*(X, ¥)} < 2y +8). {10)
Proof. Note that, rather crudely,
D<e(X,Yy—eX*. YN < (y +8—yAX||Y] < (y + 8] X|)Y],

SO
e(X.Y)—e(X*, Y™

d(X,Y)—d(X*, ¥*
(X, Y) — d( )= XNy

<y +4.

If G is replaced by its complement G, then each density d changes to 1 — 4, 50

do(X*, Yy —dg(X, Y} = ds(X, V) - dE(X*, Y'Y < y+34,

completing the proof of (9).
Inequality (10) is an immediate consequence of (9):
|d2(X*, ¥*) - d*(X, 1)
= [d(X* Y)+d(X, NHdX* Y -d(X,. V)| <2(y+ 8. O

Lemma27 Let(diY_, CR 1<t <s, D=1%i_d,andd =151 d.
Then

4
b
:1.2 d? > D+ s_:(D_djz > D? + i(D - dy%.
i=1 -

In particular, ift = ysand |D —d| = § > 0, then

I 5
; Zd? > D2+ yﬁz.

i=]
FProof. With
2 sD —td

I
g = — di=
LA s~1

the convexity of the function x2 implies that

Zg:d!?= idﬁ + i d? > td* + (s — nye*
i=l

i=] i=r+1
2p? _25td ) + 12d?
s—1

H
=sD*+ 2 _(p—a). 0
55—t

b
= td* +
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Given an equitable partition P = (C;)X_, with exceptional class Cy, let us
define the sguare mean of P as

1
9P =1}, 4C.C).

i<i<j=k

As d?(C;, C;) < 1 for all i and j and the sum above has (g) terms, we have 0 <
g(P) < 1.

The final lemma, which 15 the cornerstone of the proof of the regularity lemma,
claims that If P is not g-uniform although Cg is small enough, then there is a
partition P’ == (C))_,, with £ a given function of k, such that g (P’) is appreciably
larger than q(P) and |Cy| is only a little larger than {Cp]. To find an £-uniform
partition, all we need then is to repeatedly replace an appropriate starting partition
by a partition appreciably increasing the square mean. The process ends after
boundedly many steps in an g-uniform partition.

Lemma 28 Let G be a graph of order n with an equitable partition V = Uf:t} o
of the vertex set with exceptional class Cp and

[Cl=Cof =+ = |Ch| = ¢ = 2],

ra| -

Suppose that the partition P = (C;))¥_, is not e-uniform, where 0 < & <
and 2-% < §%/8. Then there is an equitable partition P' = (C!f)f=0 with £ =
k(4% — 2%y and exceptional class Cy O Co such that

IChl < Ir:nt+-2"’T

and

85

2

Proof. Forapair (C;, C;) that is, not e-uniform, let C;; < C; and Cj; C C;j be sets
showing that {Cj, C;) is not e-uniform: [Cy; 1 > &Gy = ec, [Cjil = £1C)| = ec,
and

g{P’) = g(P) +

|d{(Cij. Cji} — d(Ci, Cj) > . (1)

Furthermore, for an g-uniform pair (C,, C;), set C;; = C;; = 8.

Ideally, we would like to partition each C; into a few (according to the statement
of the lemma, into 4% — 2%~ 1} sets C, of size d, say, such that each C;; is the
exact union of some of these sets C; . In this way, a large difference |d(C;;, Cii) —
d(C:, C;)| would guarantee, by Lemma 27, that the part of g(P') arising from
d*(C;, Cy), namely

d2 t * ; r
- [di(cg, Ch): Ch < Cy,ChCCji
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15 appreciably larger than d%(C;, C ;). In turn, this would imply that g(P’) is
considerably larger than g(P).

Although we cannot construct sets Cy, such that each Cy; is the exact union of
some of these sets, we can come fairly close to it: we can achieve that each C;; is
almost the unjon of the sets C,, it contains. We do this by considering, for each C;,
all the sets C;; at once, and choosing the future C; sets (to be denoted by D;z)
such that they do not cut across any C;;. The price we have to pay is simply that
we cannot quite partition C; into the sets C}, so we have to add the remainder to
the “rubbish bin™ Co to obtain a slightly larger exceptional set Cj.

In order to carry out our plan, foreach i, 1 <i{ < k, consider the atoms of the
algebra on C; induced by the sets C;;, 1 < j < k, j # i. These atoms are the
equivalence classes of the equivalence relation ~ on ; in which x ~ y means
that x € C;; iff y € Cy;. Note that C; has at most 28~ atoms.

Set d = |¢/4%), sothat d = 2%t and 4%d < ¢ < 4% + 1) — 1, and
put H = 45 — 28! Let Dy, | < h < H, be pairwise disjoint d-subsets of C;
such that each );; is contained in some atom of C;. It is possible 1o choose such
sets D;y since all but at most & — I elements of each atom can be partitioned into

d-subsets, and

Hd+28"d—1y=4q -2 < 4*g < ¢.
Fori,j=1,....ki# jsetC; =i Dix and Cij = N Dia: Din C Cyj} =
UD;;.-::C;; Diy. Our first aim is to show that d(C;, C;) and d(C;, C;) are close, and
so are d(C;;, Cji) and d(Cyj, Cji) if (Ci, C;) is not s-uniform, so that (C;, C;)
and d(Cy;, C;;) are almost as far from each other as d{(C;, C;) and d(C;j, Cji).

Now,

ICATil _ 4@+ - (@ -2 #4214

T 45(d + 1) T oakd 4+ 1)
| &
<gtmEm s sy (12)

Consequently, by Lemma 26,
5

e — £
|d(Ci, Cj3 — di(Ci, )| = 7 (13)
and
5
_— — [
1d%(C;, C;) — d%(Ci, Cp)| < 7 (14)
Hence
1 P i 2 &
® Y dCinCp= = Y 4L CH - T (15)

I<i<f=k l<i<j<k




128 [¥. Extremal Problems

Suppose (C;, C;) is not e-uniform. Then, by (12),

|Cij\Ci;f {C; \ G E_ (16)

1Cy1 — 1yl — 8

and
(Cii| = |Cii| = [Ci\Ti) = (e — £ 8)IC| = (1 — 27 )& |Gy
> (1 =27 el (17)
Lemma 26 and inequality (16) imply that

4

1d(Cj, Cji) — d(Cij, Cji)| < T (18)

and so, by (11), (13) and (18), rather crudely,
|d(E,'j, Eﬁ} - d(E;‘.Ej)l > d(Cyj. Cji) — d(C;, Cj)|
— |d(Cij, €;i) — d(Cyj, Ci)| — 1d(C;, Cj) — d(Cy, C))
»>E—— — — > —g, (19)

Hence, if (C;, C;} is not s-uniform then, by Lemma 27,
1 L& . ICHIIChl f15
— d*(Djy, D) 2 d2(Ci, Cp) + =I5 . )
3 2, 2.4 WDin Dind 2 8 Cp+ S22 1
> &1, Tp) + ((1 - 27 )? (;z)
— = 3
>d¥(C;, ;) + ik (20)

since, by inequality (17), [C11Cj:l = {(1 — 2-7)5)2;E;||Ef-|.
Also, for every pair (C;, C;) we have

Hz szz(pms D_;u) > { ) ZZJ(D”; Djv)]

u=1 v=| u=I v=1
= d? (C;,Cj). (21)
All that remains is to rename the sets Dy as C_;, 1 < j < £, and check that the
obtained partition has the required properties. Thus, let {C}, ..., C;} = {D: 1 =
i <k 1<h=Hland C=V\|Ji_, C.. Then Cj > Co, with
k

ICy\ Col =Y IC:\Ti| =

i=1

';ila

with the inequality following from (12). Finally, and most importantly, (20), {15),
and the fact that there are at least £k2 pairs (C;, € ') that are not g-uniform imply
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that
] I - Y <
qPY = Y, 4GPz 3, BT+t g
l<i<j<t I<i<jzk
! 5 & 3
> — d*(C., Cy — — + =&
7] f]
k 15,-;«_:k 44
> g(P)+ &
zq 5
as claimed. 8

From l.emma 28 it is a short step to Szemerédi's regularity lemma. Due 1o its
importance we call it a theorem.

Theorem 29 Form € Nand0 < ¢ « % there is an integer M = M{g, m)
such that every graph of order at least m has an g-uniform partition (C}-)f:[,
withm <k <M.

Proof. Set t = ¢ and define ko, k1, ..., k41 by letting ko be the minimal
integer satisfying kp > m and 279 < £5/8 and setting k;, = k;(4% — 28—y,
We claim that M = k,2%+2 will do.

Let G be a graph of order # > m. Partitioning the vertex set of (¢ into 2 singletons
and the empty set as the exceptional set, we obtain a 0-uniform partition (C;)7_,.
Hence in proving our claim, we may assume that n > M,

Let Py = (C[?)", be an equitable partition of the vertex set of G with
exceptional class C[gm such that |C§m| = .= |C£3:'1 = |n/ko| and 0 < ICéﬂ]! <
n —ko|n/kol < ko < §n. If Py is e-uniform, we are done. Otherwise, let Py =
(C{)EL, be the partition guaranteed by Lemma 28, with [C{”| < |C5”|+n/2% <
en. Once again, if P is £-uniform, we are done; otherwise, let P2 = (C?) 2 be
the partition guaranteed by Lemma 28,with1C52)| < |Céﬁ)[+n(2_*“+2_"") < ERN.
Continuing in this way, we obtain an g-uniform partition P; = (C fj ) )ff: o for
some J with0 < j < 1. .

Indeed, if P; is not e-uniform and 0 < j < f then ICI-(JJI > nf2k; = 2Pk
and 2% < £%/8, so Lemma 28 guarantees a partition P41 = (CY +”)fi ') with
exceptional set lC&“”I = ICém! +a2 % 270 o 27Ky < en. However,
P, +1 cannot exist since if it did exist then we would have

1 1 1

5> 4P == 3 D Tz e ) - 5
4+ [=i<j=r

This contradiction completes the proof. O

The regularity lemma has numerous reformulations: here we give two, leaving
the easy proofs (o the reader (sec Exercise 60).
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Theorem 29 For every ¢ > 0 and m € N there is a natural number M’ =
M'(g, m) such that for every graph G = (V, E) there is a partition V = { );_, C;
such thatm < k < M, |C] < |Cy] < --- < |Cil < jC1| + 1 and, with the
exception of at most ek? pairs, the pairs (C;, C;), 1 <i < j <k, are e-uniform.

OJ

Theorem 29" For every € > G and m € N there is a natural number M" =
M" (e, m) such that for every graph G = (V, E) there is a partition V = Uf—‘:“ C;
such thatm <k < M”", |Cyl <k -1, |C1] = |C2|l = ... = |Cxl, and alf but at
most € propoertion of the pairs (C;, C;), | <i < j <k, are g-uniform. ]

The bound on M (e, m) given in the proof of Theorem 29 is enormous: unlcss
2

mis immense compared to 1/£, it js about 22, where the height of the tower
is about £75. Al first sight this seems to be extreme]y bad and far from the truth.
However, in 1997 Gowers proved that M (¢, 2) grows at least as a tower of 2s of
height about £~/ : the argument is a tour de force.

In fact, it woutd be a significant achievement to give reasonable cstimates for
a much hner function than Mg, m) or M (e, 2). Given a graph G, call a partition
V(G) = U;—u Vi of the vertex set (8, v, 8, e)-uniformif |Vg| < BIV(G), V| <
V2] < --- < |W| < |Vi]+ 1, and all but ek? of the pairs (V}, Vil =i<j=<k,
are such that if W; C Vi, W; C V. [Wi| > yiVil, and {W;| = y{V;i, then

|d(W;, W) —d(Vi, V)l < 8.

Let M{(B,y, 4, ¢) be the minimal integer such that for every graph G there is
a (8, y, 8, g)-uniform partition V (G) = U,_ﬂ V; with2 <k < M{8,y, s, 6).
Determine the approximate order of M (8, v, &, &) as the four variablcs tend to
0. This is very likely to be a tall order; as a consolation prize, one could iry to
determine the order of M{8, y, 6, £} as some variables are kept constant and the
others tend to (. For example, given some small values 8y and g9, what can one
say about M (8o, ¥, 8, £0), as y and & tend to (7

IV.6  Simple Applications of Szemerédi’s Lemma

The main use of a Szemerédi-type partition is that it guarantees the existence of
veriain subgraphs, even in graphs with not too many edges. Here 15 one of the
standard ways of finding all small r-partite subgraphs.

Theorem 30 let f > 2. r > 2,0 < 8§ < lfrandlet V{,Va2,..., V, be
disjoint subsets of vertices of a graph G. Suppose |Vi| > 8=7 for every i, and
fl<i<js<randW CV,W CV, satsfy |W;| > 8/|V;| and |W;| >
Sf!l{,-l, then d(W;, W;) = 4. Then for all non-negative integers f\, ..., fr with
Py fi= ftherearesets Uy C V..., UL, CVowith|Uj|= fiforl <i <r,
such that for | < i < j < r every vertex of U; is joined 1o every vertex of U;. In
particutar, G contains every r-partite graph on { vertices.
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Proof. Letus apply induction on f. For f = 2 the assertion is trivial, so suppose
that ¥ > 3 and the assertion holds for smaller values of f. We may assuine

that fi = 1.
For 2 < { < r, let R; be the set of vertices in V| joined 1o fewer than §]V;|

vertices of V;. Then |R,;| < 57| Vi], so ]U;-F:z R;l < {r — &7 V1| < |V}]. Hence
there is a vertex x € Vi \ Ji_; Risset V] = Vi \ {x} and V! = V; N ['(x) for
i=2,....r.Then|V{| =8 —1 =6/ and V]l = 1 —8)Vi| = &1Vi[;
furthermore, }V/| > 81Vl = 8~ /* for2 =i <r. Also, if W, C V/ and W; C
V/,1 <& <« j < r, are such that |W;] = 3/=1V!| and |W;} > af—‘r'.{,q,
then |W;| > JflV,-l and |W;| = ch]le, SO Vl’ V! satisfy the conditions
for 0 < & < ljr and f — 1. Hence, by the induction hypothesis, there are
sets U C V..., 00 cV/withlU]|=fi—land {U]| = fifor2 <i <r
such that for 1 <i < j < r, every vertex of U/ is joined to cvery vertex of U;.
Clearly, the sets Uy = Uy U {x}, Uy = U,, ..., U, = U] have the required
properties. )

The proof above is very crude indeed, and even as it stands it shows that the
restrictions on & and V; are unnecessarily severe and can be relaxedto 0 < § <
r— 1D VY2,0<8 < 1/2,and V| = 817,

More olten than not, Theorem 30 is used in conjunction with a Szemerédi-type
partition, as in the following immediate consequence of it.

Theorem 3l Let f > 2, r>2 0 <8 < 1fr,andletVy, ..., V, be disjoint sub-
sets of vertices of a graph G. Suppose |V;| = 1 foreveryi, and ali pairs (V,, Vi)
are 8/ -regular; with density at least § + 87 . Then G contains every r-partite graph
of order f. O

As an application of Theorem 31, let us show that if F is a fixed subgraph with
chromatic number y{F) = r > 2 and r 1s sufficiently large, then every graph of
order n not containing £ as a subgraph is close to a graph that does not contain
K,

We set the scene in a little more generality than needed for the immediate
application. Let m > 2, ¢ > 0, and é > 0 be given, and let M = M"(¢, m) be
as in Theorem 29", For a graph G of order n > M, let V{(G) = Uf=u Ci be the
vertex partition guaranteed by Theotem 29”; thus m < k < M, [Cp] < k — 1,
[C1] = |C2| =+ -+ = [Ckl, and all but £{) of the pairs (C;, Cj), | < i < j <n,
are g-uniform, Let G[k; &, d > 4] be the union of the bipartite subgraphs of
G spanned by (C;, C;) for the e-regular pairs of density greater than §. We call
Glk; &, d > 8Yan (m: &, d > 8)-piece of G. For simplicity, we take the
vertex sct to be Uf=] Ci, so that Gl&; &; 4 > 8] is a k-partite graph with vertex-
classes [{Ci| = --- = |Cx| = 1, such that n — & + 1 < kI < n. Furthermore, let
S{k; &; d > 6] he the graph on (k] in which i is an edge if and only if (C;, C;)
is g-uniform, with density more than §, We call S[k; &; d > §] the skeleton of
Glk; £, d > &),

Note that Gik; £; 4 > &) 1s not unique; we just pick one of the possible graphs
and lor Sfk; £; d > §] take the skeleton it determines. Furthermore, these graphs

e A b s s e——T T |
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need not be defined for every &: all we know 1s that they are defined for some & in

therangem < k < M.
We define Gk; &; &) < d < &;] and S[k; &; &) < d < &3] analogously.

Theorem 32 Letr0 < ¢ < land 0 < & < | be real numbers, let m > 2
be an integer, and let M = M"(¢, m) be as in Theorem 29”7 of the previous
section. Let G be a graph of ordern = M, and let H = G[k; ¢; d > 8] be an
(m; £; d > 8)-piece of G. Then

e(G) — e(H) < (£+6+l+gg)nz,’2.
m n

Inparticular, if 0 < ¢ £ 8/2. m = 4/8andn = 8M /35 then
e(G) — e(H) < én* .

Proof Let V(G) = f=n C; be the partition guaranteed by Theorem 29" so that
[(Col <k~ 1, 1C) = --=|Cil.m <k < M, and H is the appropriate k-partite
graph with classes C), ..., Ci. Clearly, E{(G) — E(H) consists of four types of
edges: the edges incident with Cp, the edges jotning vertices in the same class C;,
I <i <k, the C;-C; edges with (C;, C;) not g-uniform, 1 <J < j < k and
the C;-C; edges with ((;, C;) e-uniformn with density atmost 3, | <i < j <k,

Hence
n/k kY rnn? n
|E(G) — E(H)| <kn+k( ; )+£(2) (i{) +a(2)

k+n2+an2+6n2
<kn+ — + — + —
2k 2 2

n? en?  Sn?

< M _ — -
_n+2m+2+2

2M 1\ n?
E 8+3+_""'+"“‘ 3
n m}] 2

as claimed. O

Theorem 33 For every £ = 0 and graph F, there is a constant ny = ny(e, F)
with the following property. Let G be a graph of order n > ny that does not
contain F as a subgraph. Then G contains a set E' of less than en? edges such
that the subgraph H = G — E' has no K., where r = x(F).

Proof We may assumethatr > 2,0 <e < 1/r,and f = |F| > 3. Letd = ¢/2
andm > B/ = 4/3.

Let M = M”(87, m) be given by Szemerédi’s lemma, as in Theorem 29", We
claim that ng = [8M&~71 will do.

Indeed, let H = Glk; §7: d > 5+87|bean(m; &f; d » 3+5f)—pieceof
G, with skeleton § = S[k; 8; d > 8 + 8/). Then, by Theorem 32,

e(G) — e(H) < (6 + 6 In? < en’.

Furthermore, by Theorem 30, § contains no X, ; therefore, neither does H. |
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Note that Theerern 33 is a considerable extension of Corollary 23, which is
essentially the onginal form of the Erdds—Stone theorem. Indeed, let ¢ > (0 and
t > | be fixed, and let n = ng (£, K, (1)). Then every graph G of order n and size
at least ¢,_; (n) + £n? edges contains a K, (?), since otherwise, by Theorem 33, by
deleting fewer than £n? edges of G, we would get a graph H without a K. But as
e(H) = t,_1(n), Turan’s theorem implics that / does contain a K,. Neediess to
say, as a proof of the Erdds—Stone theorern, this 1s far too heavy-handed.

QOur final application of Szemerédi’s lemma concerns a beautiful ‘mixed’ case
of the quintessential extremal probiem, that of determining ex(n; Fi, ..., F;). We
have studied ex(n; X, ), solved by Turdin’s theorem, and ex(n; K, ;), the problem
of Zarankiewicz. What happens if we forbid both X, and K, ,? How large is
ex(n; K,, Ky ;)?In the case when r and s are fixed and ¢t = | cn] for some positive
constant ¢, in 1988 Frankl and Pach gave an upper bound for this function. First
we need a result of independent interest.

Theorem M Let H be a k-partite graph with classes Cy, - --, Cp where |C)]| =
... = |Ci| = £ Supposethereare g pairs (i, J), 1 i « j <k, with E(C;, C;) #
@ Suppose also that 2 < 5 < t, and G contains no K; , with all s vertices in the
same cluss C;. Then

2e(H) < 2@y ~Vegi= g _ sl s oy 2g¢s.

Proof. Except for the minor variation that not all pairs (C;, Cj), | =i < j < k,are
joined by edges, we proceed much as in the standard estimate of the Zarankiewicz
function z(s, ). Write d = 2¢(G)/k(£€) for the average degrec of H. We may
assume that kd > 2g(s — 1), since otherwise there is nothing to prove. For
x € V(H)and 1 =i =k, let di(x)} be the number of netghbours of x in C;; also,
let P={(x,i): x e V(H),1 =i =k, di{x) = 1}. Then, trivially,

[P| < 2q¢.

Let us define a claw (or s-claw) of H as a star K| ; whose base, the set of 5
vertices in the second class, is contained in some class C;. (In the usual estimate
of the Zarankiewicz function, the base is allowed to be anywhere.} The vertex

constituting the first class of a claw is the centre of the claw.
Since H contains no K ;, for every s-subset § of C; there are a1t most 7 — |
claws with base S. Hence, writing N for the total number of claws in H,

k .
N<(— :)Z('f") = (t 1}k(f) .
i=l

On the other hand, for each vertex x and class C;, there are (d'f )) claws with
centre x and base in C}, so

- B2 ()

r€VH) i=] (x,DeP
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Z (d‘m) < (f — 1)&(5) . (22)
wnep v 5 ¥

In order to give a lower bound for the left-hand side of {22), set

Therefore,

folu) = {u{u- - (u—s+1)/st ifuzs—1,

ifu<s-1.

Then f; : R — R is a convex function. As Z(x,:')EP di(x) = 2e(H) = k&d, and
| P} = 2g£, the convexity of f; implhcs that

kd di(x)
24tts (53) E{I%:’;P( s )

Since % > 5 — |, we have f;(%—ﬁ-) = (*4/24); recalling inequality (3) we find that

qu(kdf ‘Zq) <@- 1)k(£) .
5 5

But then, rather crudely,

kd ’ ]
ZqE(E—(s-l)) < (t — ke,

and so
2e(G) = kéd < (2g) 712 Vs — 1YVSEAS 20865 — 1),
as claimed. 3
We are ready to present the theorem of Frank! and Pach that we promised.

Theorem 35 fetr > 3 and s > 2 be fixed integers, and ¢ and y positive
consiants. Then if n is sufficiently large and G is a graph of order n that contains
neither K. nor K, ,, wheret = [cn], then

_ I—Lt/r 2
e(G) < elfs (L_E) n + yn?.
r—1 2
Proof. We may assume that 0 < y < 1/2and ¢ < (¥ — 2}/(r — 1), since we do
know that e(G) < t,_i(r) < 1{':_‘—_2”112.

Let § = y/2, m > 4/8, and suppose that » > 4Ms/8 > 8M/5, where
M = M”(&; m). Let G be a graph of order » containing neither K, nor K ;. Let
H=Gk; §;d>8+6bean(m; §; d > §+5")-piece of G with skeleton §.
Then, by Theorem 32, ¢(G)—e(H) = (é‘+8’}n2 - Zynz,fS, and by Theorem 31, .8
does not contain a K, . Hence, by Turdn’s theorem, g = ¢{S) < (r—20k2/2(r—1).

[ —— —mmkir o
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As H contains no K ¢, by Theorem 34 we have, with £ = [n/k],

1-1/s
2e(H) < (L—I) ey — VT 4 ks

I-1/s
-2
-r::c”"(r ) n® + Msn

- r—1
1-1/s 2
— 2 n
P V' 2 J’__
=€ (r — 1) m 8
Therefore,
e(G) < e(H)+ yn’ 2+ < e(H) + yn?,
as claimed. 0

In fact, the upper bound in Theorem 35 is essentially best possible: if 7 > 3 and
s > 2 are fixed integers and } < ¢ < (r — 2}/(r — 1), then

- oy 1=1/s
lim ex(n:; K,, K“)(;) = /s (r 2) ,

H00 r—1

where t = |cn].

There are a great number of substantial applications of Szemerédi’s regular-
ity lemma. For example, in 1993 Komlés, Sarkdzy, and Szemerédi proved the
following theorem, conjectured by Bollobds in 1978.

Theorem 36 Foreverye > Qand A = | there is an ng = no(e, A) such thar
every graph of order n and minimal degree at least (1 + £)n/2 contains every tree
of order n and maximal degree at most A.

In fact, more is true: given £ > 0, if ¢ > 0 is small enough, and = is large
enough then every graph of order # and minimal degree at least (1 + £)n/2
contains every tree of order n and maximal degree at most cn. There are numerous
related conjectures, the best known of which is the conjecture of Erds and Sds
from 1963: every graph of order n and size | (¥ — 1)n /2] + | contains every tree
with & edges.

IV.7 Exercises

17 Show that every graph with » vertices and minimal degree at least [n/2] is
connected, but for every n > 2 there are disconnected graphs with minimal

degree [n/2] — 1.

27 Let & be a graph of order n > & + 1 > 2 and size at least (’2’) - n+k
Show that G is k-connected unless it has a vertex x of degree ¥ — 1 such that
G - X ; Kn_] .
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3.

10.
11.

12.

13.

14.

15.

16.

V. Extremal Problems

Let 0 < & < n. Show that an n by » bipartite graph without £ + 1 independent
edges has size at most kn. Determine the unique extremal graph.

(i) Let G be a graph of order n, maximal degree A = 3, and diameter 4. Let
ng(g. 8) be as in Theorem 1. Prove that n < ne(2d + 1, A), with equality iff
G is A-regular and has girth 24 + 1.

(i1} Let G be a graph of order n, maximal degree A > 3, and suppose every
vertex is within distance 4 — 1 of each pair of adjacent vertices. Prove that

n < ng(2d, A), with equality iff G is A-regular and has girth 24.
Prove Theorem 4 for k = 3 and 4.

Show that a graph with n vertices and m > 3(n — 1}/2 edges contains (wo
vertices joined by three independent paths.

Prove that the maximal number of edges in a graph of order n without an even
cycle is L%(n — 1}]. Compare this with the maximal size of a graph without
an odd cycle.

Show that a tree with 2% endvertices contains £ edge-disjoint paths joining
distinct endvertices.

Suppose x is not a cutvertex and has degree 2k. Prove that there are k edge-
disjoint cycles containing x. [Cf. Exercise 8.]

Show thatif x(G) > 3,then G O T K. Show that the same holds if 3(G) > 3.

Deduce from the assertion in Exercise 10 that if ¢(G) > 2|G| — 2 then G
contains a subdivision of Kj.

Recall that a graph of order n and size » 4+ 1 has girth at most [%(n + 1].
Show that a graph of order n and size # + 2 has girth at most {(n + 2)/2].
Show also that both bounds are best possible. [ Hint. Assuming that §(G) > 3,
study the multigraph H with §(H) = 3 whose subdivision G is.]

Prove that for £ > 1 the maximal girth of a graph of order n = 9% — 3 and
size 9k is 4k. What is the maximal girth of a graph of order n and size n -+ 37

Show that for every & = 1 there is a graph of order 16k — 4, size 164 and girth
6k. [Hint. Consider an octagon with the opposiie vertices joined.]

Letr > 1. We say that the cycles Cy,...,C, are nested if V(G)) C --- C
V(G,). Determine

mm[n ;: K, contains r nested cycles}).
The domination number of a graph G is
minf|W|: W C V(G), WUT(W) = V(G)}.

Show that if G has n vertices, then its domination number is at least [+/4n] —
1 — A(G), and this inequality is best possible for every n > 1.
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17. Show that the domination number of a graph of order r» and minimal degree
2 is at most |n/2]. Note that equality can be attained for every n. [Hint.
Assuming, as we may, that every edge of our graph is incident with a vertex
of degree 2, let U = {u € V(G) : d(u) = 3}, and consider the partition
VIG)=UUWUZ, where W =T'(U).]

18~ Show that a graph with n vertices and minimal degree {(r —2)n/(r — 1)] + 1
contains a X,.

19. Let G have n > r + 1 vertices and ¢,—| (r) + 1 edges.
(i) Prove that for every p, r < p < r, G has a subgraph with p vertices and

at least #,.. . (p) + 1 edges.
(i1} Show that (¢ contains two K, subgraphs with » — 1 vertices in common.

20F Prove that for n > 5 every graph of order n with |n2/4] + 2 edges contains
two triangles with exactly one veriex in common.

217 Prove that if a graph with n vertices and |2 /4} — £ edges contains a triangle,
then it contains at least [#/2| — £ — 1 triangles. [Hinr. Let x;x3x3 be a
triangle and denote by m the number of edges joining {x), x2, x3} to V(G) —
{x1, x2, x3}. Estimate the number of triangles in ¢ — {x(, x2, x3} and the
number of triangles sharing a side with x| x2x3.]

227 (i) Show that the edges of a graph of order n can be covered with not more
than {n2/4] edges and triangles.
(i1) Let G be a graph with vertices x|, ..., x,, n > 4. Prove that there is a
set S, 15| < |_n2f‘4j. containing non-empty subsets X3, X5, ..., X, such that
xix;jisanedge of G il X; N X; # .

237 Let 1 < k < n. Show that every graph of order » and size (k — 1)n — (g) +1
contains a subgraph with minimal degree k, but there is a graph of order n
and size (k — 1)n — (%) in which every subgraph has minimal degree at most
k — 1. [Hint. Imitate the proof of Lemma 20.]

24" Show that a graph of order n and size (k — 1)n — (g) + 1 contains every tree
of order k + 1.

25. Let (¢ be a graph of order n that does not contain a cycle with at least one of
its diagonals. Prove that if n > 4, then G has at most 2n — 4 edges.
Show thatif n = 6 and G has 2n — 4, edges then (7 is the complete bipartite
graph K (2, n — 2). [Hint. Consider a longest path in G.]

267 Letk = 1 and let G be a graph of order n without an odd cycle of length less
than 2% + 1 = 5. Prove that 6((G) < |n/2] and T,(n) is the only extremal
graph, unless n = 2k + 1 == 5, in which case there is another extremal graph,
Cs.

27 Let G he a graph of order # without an odd cycle of length less than 2k+ 1 > 5.
Prove that if & does not contain {n/2] independent vertices then §(G) <
2n/(2k + 1). Show that equality holds only for n = (2k + 1)/r and the
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extremal graphs are obtained from a cycle Caz4 by replacing each vertex by
t vertices, as in Fig. IV.5.

FIGURE 1V.5. The graph Cs(2).

Let xq, x3, ..., Xxn be vectors of norm at least 1 in a Euclidean space. Prove
that there are at most [n2/4] unordered pairs i, § such that [x; + xj] < L.
[Hinz. Show that if |x;| = |xz| = |x3] = ! then lx; + x;| = 1 for some {, j,
1<i<j=<3l]

29F Let X and ¥ be independent identically distributed random variables taking

30.

31

32.

values in a Euclidean space. Prove that P(|X -+ Y| > x) > 3P| X} > x)* for
every x = 0,

Let x1, x2. ..., Xip € R2? be such that |x; — x;| < 1. Prove that at most 3p2
of the distances |x; — x;| are greater than v'2/2. [Hint. Show that among any
four of the points there are two within the distance ﬁ/Z of each other.]

Recall that a maximal complete subgraph of a grapb is a cligue of the graph,
and the cligue number w{G) of a graph G is the maximal order of a clique of
G. Thus (x, y} is the vertex set of a clique of G if xy € E(G) and no vertex
of G is joined to both x and y. Show that, for every n > 1, there is a graph of
order n with [n/2] cligues of different orders.

Show also that if G is a regular graph of order n then either w(G) = norelse
w(G) < nf2. Show alsothatif# > 1and 1 < p < r/2 then there 1s aregular
graph G of order n with o(G) = p.

33F We say that a set W C V(G) covers the edges of a graph G if cvery edge

34.

of G is incident with at least one vertex in W. Denote by ag{(G)} the minimal
number of vertices covering the edges of . Prove that if G has n vertices and
m edges, then ao(G) < 2mn/(2m + n), with equality iff G = pK, for some
p and r, that is, iff each component of ¢ is K, far some r. [Hint. Note that
80(G) = n— w(G), and if @(G) = p, then by Turdn’s theorem ¢(G) < 1, (n),
som = (3) — tp(n).]

The edge clique-cover number 8.{G) of a graph G is the minimal number of
cliques of G whose union is GG, Call two vertices x, y equivalent if xy € E(G)
and every z € V(G) \ {x, v} is joined to x iff it is joined to y. Check that if
x and y are equivalent vertices then 0,.¢(G) = 6,(G’), where G' = G\[y}.
Prove that if G contains neither isolated vertices, nor equivalent vertices, then
8.(G) = logy(n + 1), where » is the order of G. [Hint. Let K;, ..., Ky,
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be cliques of G with G = | J7, K;. Forx € V(G), let I(x) = {i : K,
contains an edge incident with x }. Check thatif x, y € V(&) and x # y, then

1(x) % I(»).)

35 (Cf. Corollary 16.) Let d; = dy < .- < d, be a graphic sequence such that
for some k,

dgﬁk-c:;—l and dp_y =n—k—1.

Show that there is a non-Hamiltenian graph G with vertex set {xy, x2, ..., x5}
such that d(x;) > d;, 1 <i < n{(cf. Fig. IV.6).

fr—

FIGURE 1V.6. The graph (K2 U E3) + K3 has no Hamilton cycie and (K7 U E3) + K
has no Hamilton path.

361 (Cf. Corollary 16.) Let d{ < d» < --- < d,, be a graphic sequence such that
for some &,

1
d <k—1« E(n—]) and dpyjx <n-—£k.

Prove that there is a graph & with vertex set {xy, x2, ..., Xn) such thatd(x;) =
di, 1 =i < n, and G does not contain a Hamiiton path (cf. Fag. IV.6).

37. Prove that a2 non-Hamiltonian graph of order # > 3 has at most (g) —{n—2)
edges and there is a unique extremal graph.
Prove that a graph of order n > 2 without a Hamilton path has at most
(4) — (n — 3) edges and K,_) U K is the unique extremal graph.

38. Givend < n/2, determtine the maximal number of edges in a graph G of order
r without a Hamilton cycle (path), provided that §{G) = 4.

391 Prove Theorem 4 by making use of simple transforms of a longest xg-path
P = xpxy---x. [Hint. Apply induction on n. If 8(G) < k/2, the result
follows by induction; otherwise, consider the set L of endvertices of simple
transforms of . Put € = |L|, r = max, <y d{x}, and note that £ > r and the
neighbours of each x € L are contained in {x¢, x;1. ..., xr—g41}. Deduce
that e(G) —e(G — L) < £(k — &) + &{r -+ £ - k) < k€/2 and complete the
proof by applying the induction hypothesisto G — L.]

40, Let I < a) < a3 < -+ < ay < x be natural numbers, Suppose no a;
divides the product of any two others, Prove that & < m(x) + x%/3, where,
as usual, 7 (x) denotes the number of prites not exceeding x. [Hinz. Put
Vi=1{1.2,..., [x*3}}and V5 = {x : x¥? < b < x and b is a prime}, Show
first that @; = bjc;, where by, ¢; € V = V; U V5. Let G be the graph (with
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loops) with vertex set V whose edges (loops) are b;¢;. Note that G does not
contain a path of length 3.]

41%T Leti < ap < gz < --- < ag < x be natural numbers. Suppose a;a; # apde
unless {i, j} = {h, £}. Prove that &k < mr{x} + cx3/* for some constant ¢ > 0.
[Hint. The graph G in the previous exercise contains no quadrilaterals; apply
Theorem 8 to the bipartite subgraph of G with vertex classes Vj and V3, Recall
the prime aumber theorem, namely that (7w (x}logx)/x — 1 as x — 00.]

427 Denote by Dy{n) the maximal number of occurrences of the same positive
distance among # points in R*. Prove that if k > 2 then

lim Dy(n)/n* = o
A—+00 2 20k/2)

(Hint. (i} Note thatifx € (z € R¥; z} +z2 = landz; = Gif i > 2} and
yel{zeRY 22 +z2=1landz =0if i #4ord), thenx —y| = V2.
(ii} Deduce from Theorem 20 that Dy (n) is at least as large as claimed.]

43, Show that a graph of order n > k(d + 1) with at least & > 2 components and
minimal degree at least  has at most

d+1 n—(k—D(d+ 1D
w-o(*3)+ ()

edges, What is the unique extremal graph?

44, By checking the details of the ‘duplication’ argument, show thatex(n. Ky ) <
3z(n, s, 0).

45 Show that if any & + 1 vertices of a k-connected graph with at least 3 vertices
span at least one edge, then the graph is Hamiitonian,

46. Let k and n be natural numbers. Show that every graph of order n and size
greater than k(n — (k + 1)/2) contains a subgraph of minimal degree & + 1.
Show also that for every m < k(n — (k+ 1)/2) there is a graph of order n and
size m that has no subgraph of minimal degree atleast X + 1.

47. Let X ¢ R? with [X} = » > 3 and max{d{(x, y} : (x,y) € X@} = 1. Show
that there are at most n pairs (x, y) € X'¥ with d(x, y) = 1, and this bound
can be attained for every n = 3.
[Hint, Apply induction on n. For the proof of the induction hypothesis, set
E={(x,y) € X :d(x,y) = 1} and let G be the graph (X, E). Assuming
that | E| > n + 1, show that there is a subgraph H C G with é(H) = 2 and
A(H) > 3, and make use of a vertex of degree at least 3 in i to ammive al a

contradiction.]

48. Let X = {x1, ..., x4} be a sct of n points in the plane, with no three collinear,
and let G = (X, E) be a graph with n + 1 edges. Show that there are edges
x1¥1, x2y2 € E such that the siraight linc segments [x1, y2] and [x2, y2] are
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disjoint. Show also that the bound n-+ 1 is best possible for every n > 3.
[Hint. Imitate the proof of Exercise 47.]

49 Show that an r-regular graph of order 2r + 1 is Hamiltonian. Show also that

if r > 2, then our graph contains a triangle.

507 (i) Prove that the maximal number of edges of a non-Hamiltonian graph of

51
52.

53.

order 2n and minimal degree n — 1 is 3n{n — 1}/2.
(i1} Determine exi(n; Cy).

Determine ex(n; Py) for every n and k, where £ is a path of length &.

Note that if & is a graph of order », then n — (G} is the minimal number
of vertices representing all edges of G; i.e., n — ¢(G) = min{|R| : R ¢
V(G), G — R has no edges}. Here a(G) is the independence number, the
maximal number of independent vertices, so that @(G) = w(G). Show that if
G has no triangles then e(G} < a(G)(n — a(G)) < n?/4.

Recall that the maximal number of edges in a graph of order # containing only
even cycles is precisely in?/4]. What is the maximum if every cycie-length
is a multiple of 37 And if every cycle-length is a multiple of 4?

54+ Describe all 2-connected graphs that do not contain an odd cycle of length at

55.

least five.

Let G be a triangle-free graph of order n. Show that 3™, .y d(x)? < n?/4,
with equality if and only if # is even and G is To(n). [Hinr. Recall the proof
of Mantel’s theorem from Chapter 1.]

56.~ For each r > 3, construct a graph of order r + 2 that contains no X, but is

not (r — 1)-partite.

57.7 Lei G be a graph of order n such that no set of n — & vertices is independent

58.

59.

60.

61.

{i.e., every set of n — k vertices spans at least one edge) and no setof £ + 1
edges is independent (i.e., among any k + | edges, there are two that share a
vertex). Show that e(G) > &k + 2.

Show that for n > 5, the maximal number of edges of a triangle-free non-
bipartite graph of order n is | (n — 12/4] + 1. [Hint. Delete the vertex set of
a shortest odd cycle.]

Let G be a triangle-free graph of order n and size (n?/4] — m. Show that G
contains an induced bipartite subgraph of order at least n — 8m/n (1.c., there
is a set W C V(G) such that | W! > rn — 8m/n and G[ W) is bipartite).

Given r > 3, determine the minimal order of a graph that is not {r — [}-partite
and contains no K, .

Let G be a graph of average degree d > 0, and let r = {d/4]. Show that for
some k > r, G contains a £ by & bipartite graph with a l-factor, in which
every vertex in the first class has degree r.
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62. Let0 < c <c+& < landn > (s/(1 — )72, Show that if » is sufficiently
large, then there is a graph of order » and size at least (¢ + £) (;) such that
every subgraph £ with |#| = nn has minimal degree less than c||.

631 Check the estimates in the proofs of Theorems 20 and 22 to show that in
Theorem 22 we may take ng(r, £) = max{[3/£], 100}

64F Show that for all &) > & > 0 there is an n > 0 such that if Xy C X,
Yoo Vi, Xin¥ =0, 1X 1] = (1 + )| Xal. 1¥1] = {1 +n)|Yol, and (Xgq, Yo}
is eg-regular, then (X1, ¥)) is g;-regular,

65. Deduce Theorems 29” and 29” from Theorem 29.

66+ Let P|, Pa, ..., Py be poinis in the unit square. Show that there are at least
(Tn/21% + (n/2)% — n)/2 pairs (i, j}, | < i < j < n, with the distance
d(P;, P;) being at most 1.

67 Let P, P32, ..., P, be points in the unit cube, Show that at least n(n — 7)/14
pairs (P;, P;), | <i < j < n, are at distance at most 1 from each other.
68F Let G = G(n, m) be triangle-free. Show that for some vertex x € G we have

e(G[Wy]) < m — 4m’fn?,

where W, = {y € G: d(x,y) = 2}.

Show also that if n is even and m = rn/2 for some integer r then this
inequality is best possible: for some graph G = G(»n, m) equality holds for
every x € G. [Hint. Imitate the proof of Theorem 2 in Chapter L.}

69. Deduce from Exercise 68 that if  is a tnangie-free graph then e(G[W, ]} <
n?/16 for some vertex x. Show also that if » is a multiple of 4 then this
inequality is best possible.

70. Let G be a graph of size (g) + 1. Show that either k is even and A(G) = 1,
or else G has a subgraph of order k + 1 without isolated vertices,

71. Forn = 1, let m(n) be the maximal integer m such that every graph of order
21 + | and size at most m is the union of a bipartite graph of maximal degree
less than n. Check that m(1) = 2 and m(2) = 7, and prove that forn > 3 we

have
2n+1 n
'"(”)=( 2 )_(2)_1'

[Hint. Make use of the resuit in Excrcise 70.]

IV.8 Notes

There is an immense literature on extremal problems: here we shall give only the
basic references.
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The results concerning Hamilton cycles and paths presented in the chapter all
originate in a paper of G.A. Dirac: Some theorems on abstract graphs, Proc.
London Math. Soc. 2 (1952) 69-81. Theorem 2, L. Posa's extension of Dirac’s
theorem, is from A theorem concerning Hamiltonian lines, Publ. Math. Inst.
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ory, Discrete Math. 15 (1976} 111-135; Corollary 14, characterizing minimal
forcibly Hamiltonian degree sequences, is in V. Chvatal, On Hamilton’s idc-
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of Discrete Math. 3 (197R) 259-268.

The fundamental theorem of Turdn concerning complete subgraphs is in
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about the degree sequence of a graph without a X, is in P. ErdGs, On the graph
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theorem and maximal degrees, J. Combinatorial Theory Ser. B. The Erdds—Stone
theorem is in P. ErdGs and A.H. Stone, On the structure of linear graphs, Balil,
American Math. Soc 52 (1946} 1087-1091; its extension, Theorem 22, is tn B. Bol-
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by V. Chvital and E. Szemerédi, Notes on the Erdts—Stone theorem, in Combi-
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vol. 75, North-Helland, Amsterdam, 1983, pp. 183-190.

Concerning the problem of Zarankiewicz, Theorem [2 is from [. Reiman, Uber
ein Problem von K. Zarankiewicz, Acta Math. Acad Sci. Hungar. 9 {1958} 269~
279, Brown'’s constructien is from W. G. Brown, On graphs that do not contain a
Thomsen graph, Canad, Math. Bull, 9 (1966} 281-285 and inequality (7), greatly
improving Theorem 10, is from Z. Fiiredi, An upper botund on Zarankiewicz's
problem, Combinatorics, Probability and Computing 5 (1996) 29-33. The elegant
result in 34 is from A. Gyirfas, A simple lower bound on edge coverings by
cligues, Discrete Math. 85 (1990) 103-104.

There are numerous papers of Erdds and Simonovits about forbidden subgraphs
and the structure of graphs with many edges, including P. Erd5s and M. Simonovits,
A limit theorem in graph theory, Studia Sci. Math. Hungar: 1 (1966) 51-57, which
can be found in Chapter VI of B. Bollobds, Extremal Graph Theory, Academic
Press, Eondon-New York-San Francisco, 1978; Chapter III of the same book
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chapier.
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eds), Bolyai Math. Soc., Budapest, 1996, pp. 295-352.



\Y

Colouring

We wish to arrange the talks in a congress in such a way that no participant will
be forced to miss a talk they would like to hear: there are no undesirable clashes.
Assuming a good supply of lecture rooms enabling us to hold as many parallel
talks as we like, how long will the programme have to last? What is the smallest
number k of time slots required? Let us reformulate this question in terms of
graphs. Let & be the graph whose vertices are the talks and in which two talks
are joined iff there is.a participant wishing to attend both. What is the minimal
value of k for which V () can be partitioned into k classes, say Vi, Va, ..., V4,
such that no edge joins two vertices of the same class? As m Section IV.4, we
denote this minimum by x (G) and call it the (vertex) chromatic number of G.
The terminology originates in the usual definition of x(G): a proper colouring or
simply a colouring of the vertices of & is an assignment of colours to the vertices
in such a way that acljacent vertices have distinct colours; x () is then the minimal
number of colours in a (vertex) colouring of G. Thus, for example, x (Kx) = &,
XKy = 1, x(Ce) = 2 and x{(Cas1) = 3.

In general, it is difficult to determine the chromatic number of a graph. However,
it is trivial that if Ky C G then x(G) = x(Ki) = k. Putting this slightly
differently,

x(G) = w(G), (1)

where w(G) 15 the cligue number of G, the maximal order of a complete subgraph
of G.

Let us remark here that we shall use real colours {red, blue, ...) only if there
are few colours, otherwise the natural numbers will be our “colours”. Thus a
k-colouring of the vertices of G is a function ¢ : V{(G) — {1.2,...,k} such
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that each set c‘I{j) is independent. The sets ¢! () arc the colour classes of the
colouring.

Another scheduling problem goes as follows. Each of n businessmen wishes to
hold confidential meetings with some of the others. Assuming that each meeiing
lasts a day and at each mecting cxactly two businessmen are present, in how many
days can the meetings be over? In this case one considers the graph H whose
vertices correspond to the # bustnessmen and where two vertices are adjacent iff
the two businessmen wish to hold a meeting. Then the problem above asks for the
minimal number of colours in an edge-colouring of H, that is, in a colouring of
the edges of H in such a way that no two adjacent edges have the same colour.
This number, denoted by x'(H). is the edge-chromatic number or chromatic index
of H. Nole that x'(H) is exactly the chromatic number of the line graph of H;

X' (HY= x(L(H)). (2)

In the first two sections of the chapter we shall present the basic results con-
cerning calourings of vertices and edges. The chromatic numbers of graphs drawn
on surfaces, especially on the plane, merit separate study, We shall devote much
of Section 3 te planar graphs; we shall afso discuss graphs on other surfaces, and
we shall give a briet outline of the proof of the most famous result in graph theory,
the four colour theorem.

If, instead of colouring every vertex with a colour from the same set (k] =
{1,2,...,k}, we demand that the colour of a vertex x be chosen from a special
set or list L{x) assigned to x, then we arrive at the concept of list colouring. How
long do the lists have to be to guarantee that there is a proper colouring with
this restriciion? In terms of our example of 1alks in a congress, each speaker is
available to talk onty on a set of days L{x): for how many days must each speaker
be available to ensure that we can devise an appropriate programme? Scme of the
many beautiful results concerning list calourings will be presented in Section 4.
As we shall see, list colourings are connected to the stable matchings we studied
in Section IIL5.

In the final section we shall prove the basic results concerning perfect graphs.
A graph 1s perfect if for every induced subgraph of it we have equality in (1).
These graphs have a surprisingly beautiful structure, and are important not only
for their own sake but also because of their connections to optimization, linear
programming and polyhedral combinatorics.

V.1 Vertex Colouring

In Section 1.2 we noted the simple fact that a graph is bipartite iff it does not
contain an odd cycle. Thus x(G) = 2 iff G contains an edge and x (G) = 3 iff
G contains an odd cycle. For & > 4 we do not have a similar characterization
of graphs with chromatic number at least k, though there are some complicated
characterizations (cf. Exercises 30-34). Rather than asking for a characterization,
let us fower cur aim considerably, and ask for the most obvious reasons for a
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graph to have a large chromatic number. We have already noted one such reason,
namely the existence of a large complete graph: this gave us inequality (1). After
a moment's thought, another simple reason springs to mind: the absence of a large
independent set. Indeed, if G does not contain 2 + | independent vertices, then
in every colouring of G at most & vertices get the same colour (every colour class
has at most & vertices). Hence

x(G) z max{w(G), |Gl/a(G)}, (3)

where o (G), the independence number of G, is the maximal size of an independent
set.
Although for many a graph G inequality (2) is very weak, it is a definite
improvement on {1 ). Nevertheless, it Is not too easy to see that w{{(7) can be much
smaller than x ((). In fact, it is also not easy to see that we can have w(G) = 2
and x(G) large, that is, that there are triangle-free graphs of large chromatic
number (cf. Exercise 12). In Chapter VII we shall make use of random graphs
and inequality (2} to show that there exist graphs with arbitranly large chromatic
number and arbitrarily large girth. The difficulty we encounter in finding such
graphs shows that it would be unreasonable to expect a simple characterization of
graphs with large chromatic number. Thus we shall concentrate on finding ways
of colouring a graph with few colours.

How would one try to colour the vertices of a graph with colours 1, 2, . . ., using
as few colours as possible? A simple approach is as follows. Order the vertices,
say X|(, Xz, - .., Xp, and then colour them one by one: give x| colour 1, then give
x2 colour 1 if x1xz ¢ E({) and colour 2 otherwise, and 50 on; colour each vertex
with the smallest colour it can have at that stage. This so-called greedy algorithm
docs produce a colouring, but the colouring may (and usually does) use many
more colours than necessary. Fig. V.1 shows a bipartite (1.e., 2-colourable) graph
for which the greedy algorithm wastes four colours. However, it is easily seen
{Exercise 3) that for every graph the vertices can be ordered in such a way that
the greedy algorithm uses as few colours as possible. Therefore it is not surprising
that it pays lo investigate the number of colours needed by the greedy algorithm
in various orders of the vertices.

X, Xy X5 X

i 2 3 4

1 3 4
X3 X4 Xg Xg

FIGURE V.1. In the order x,, x2. ..., xg the greedy algorithm needs four colours.
First, note that whatever order we take, the greedy aigorithm uses at most

A{G) + 1 colours for colouring the vertices of a graph G. Indeed, when we come
10 colouring a vertex x of degree d(x), at least one of the first d(x) + 1 colours
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has not been used for a neighbour of x, so at icast one of these colours is available
for x. This simple observation shows that what matters is not even the maximal
degree but the maximal number of neighbours of a vertex we have coloured before
we get to the vertex itself. From here it is but a short step to the following result.

Theorem 1 Let k = maxy 8{H), where the maximum is taken over ail induced
subgraphs of G. Then x (G} <k + 1.

Proof. The graph G itseif has a vertex of degree at most &; let x,, be such a vertex,
and put H, | = G — {x,}. By assumption, H,_, has a vertex of degree at most
k.Let x,_1 be one of them and put Hy_2 = Hpo 1 — {xn_1} = G — {xn, xn—1}.
Continuing in this way we enutnerate all the vertices.

Now, the sequence xj, xa, ..., x, Is such that each x; is joined to at most k
vertices preceding it. Hence the greedy algorithm will never need colour & + 2 to
colour a vertex. |

In a somewhat more down-to-earth formulation, Theorem 1 says that a minimal
(k 4+ 1)-chromatic graph has minimal degree at least k: if x(G) = k + 1 and
X (HY) < k for every proper (induced) subgraph H of  then §(G) = k.

It is, of course, very easy to improve the efficiency of the greedy algorithm. If
we already have a subhgraph Hy that we know how to colour with x { Hp) colours,
then we may start our sequence with the vertices of Hy, colour Hp in an efficient
way, and apply only then the algorithm to cotour the remaining vertices. This gives
us the following extension of Theorem i.

Theorem 2 Let Ho be an induced subgraph of G and suppose every subgraph H
sanisfying Ho C H C G, V(Hy) # V{(H), containsavertexx € V(H) — V{(Hy)
withdy(x) < k. Then

x(G) = max{k + 1, x(Ho)}. O

In some cases the problem of colouring a graph can be reduced to the problem
of colouring certain subgraphs of it. This happens if the graph is disconnected or
has a cutvertex or, slightly more generally, contains a complete subgraph whose
vertex set disconnects the graph. Then we may colour each part separately since,
at worst by a change of notation, we can fit these colourings together to produce
a colouring of the original graph, as shown in Fig, V.2.

As a rather crude consequence of Theorem 1 we see that x{(G) < A + 1,
where A = A(() is the maximal degree of G, since maxgy-5 8(H) < A(G).
Furthermore, if & is connected and not A-regular, then clearly maxy-¢ 6(H) <
A — 1,30 x(G) < A. The following resuit, due to Brooks, takes care of the regular

case.

Theorem 3 Let G be a connected graph with maximal degree A. Suppose G is
neither a complete graph nor an odd cycle. Then x(G) < A.

Progf. We know already that we may assume without Joss of generality that G
is 2-connected and A-regular. Furthermore, we may assume that A > 3, since a
connected 2-regular 3-chromatic graph is an odd cycle.
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3 2

FIGURE V.2, The vertex set of the thick triangle disconnects &, and we find that x (G) =
max{x{G1), x{G2). x(G3)).

If G is 3-connected, let x,, be any vertex of & and let x|, x2 be two nonadjacent
vertices in I"(x,). Such vertices exist since & is regular and not complete. If G is
not 3-connected, let x,; be a vertex for which G — x, is separable, and thus has at
least two blocks. Since G is 2-connected, each endblock of & — x,; has a vertex
adjacent to x,. Let x1 and x» be such vertices belonging to different endblocks.

In either case, we have found vertices x1, x2 and x, such that G — {x), x3}
is connected, xjx3 ¢ E(G), but x1x, € E(G) and x2x, € E(G). Let x, 1 €
V — {x1, x3, x»} be a neighbour of x,, let x,_3 be a neighbour of x, or x,_;, etc.
Then the order x1, x3, X3, . .., Xn is such that each vertex other than x, is adjacent
to at least one vertex following it. Thus the greedy algorithm will use at most
A colours, since x; and x3 get the same colour and x,, the only vertex with A
neighbours preceding it, is adjacent to both. O

Another colouring algorithm can be obtained by reducing the problem to colour-
ing two other graphs derived from G. This reduction also enables us to obtain some
information about the number of colourings of a graph with a given set of colours.

Let a and b be nonadjacent vertices of a graph G. Let G’ be obiained from G
by joining a to b, and let G be obtained from G by identifying a and /. Thus in
G" there is a new vertex (ab) instead of g and &, which is joined to the vertices

adjacent to at least one of a and b (Fig. V.3}.
These operations are even more natural if we start with the G”: then G is obtained

from G’ by cutting or deleting the edge ab, and G” is obtained from G” by fusing,

of contracting, ab.
The colourings of & in which a and b get distinct colours are in |-to-] cor-

respondence with the colourings of G'. Indeed ¢ : V(G) — {1,2,....,k}isa

Gn

15} G
a ]
ab
b

FIGURE V.3. The graphs G, G' and G”.
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colouring of G with c(a) # ¢(b) iff ¢ is a colouring of G’. Similarly the colourings
of & in which @ and b get the same colour are in a 1-to-1 correspondence with the
colourings of G”. In particular, if for a natural number x and a graph H we write
pH{x) for the number of colourings of a graph # with colours 1,2, ..., x, then

pc{x) = pg:(x) + pgr(x). (4)
By definitton x (G} is the least natural number &k for which pg (k) > 1. Thus both
the remarks above and relation (3) imply that
x{G) = min{x(G"), x(G")}. (3)
The basic properties of py(x) are given in our next result.

Theorem 4 Let H be a graph with n > 1 vertices, m edges and k components.
Then

H—k
pux) =) (-Diax"™,
=0

where ag = 1, a) = m and a; is a positive integer forevery i, 0 < i <n —k,

Proof. We apply induction on n -+ m. For n +m = | the assertions are trivial
so we pass to the induction step. If m = 0, we are again done, since in this
case £ = n and, as every map f : V(H) — {1,2,...,x} is a colouring of
H, we have pg(x) = x". If m > 0 we pick two adjacent vertices of H, say a
and b. Putiing G = H — ab we find that G’ = H. Since e(G) = m — 1 and
IG”| + e(G™") < n — 1+ m, by the induction hypothesis the assertions of the
theorem hold for pg(x) and pge(x). Note now that G” has &k components and G
has at least k components. Therefore,

n—k
pelx) = x" — (m— Dx"' + 3 (= 1Dbix",
=2

where b; is a nonnegative integer for each i, and
n—k ] )
per(x) =x""1 =3 (—1Ycix™,
—

where c; is a positive integer for each i. Hence, by (3),
pa(x) = per(x) = pg(x) — pgr(x)

n—k
=x"—mx" ! + Z(— D (b + ¢i)x""
=2
n—k . ‘
= x" ~ mx" + Z(—l)’a,-x”_'.
i=2

where a; is a positive integer for each {. ’ O
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As a trivial consequence of Theorem 4, we see that py(x} is a polynomial,
so we are justified in calling it the ckromatic pelynomial of H. In fact, it is very
easy to see from first principles that pg(x) is a polynomial in x with integer
coefficients. Write 7, (#) for the number of pariitions of V (H} into r non-empty
independent sets. Then for every natural number x we have

palx) = Zﬁr(H)(x)n
=l

where (x)r = x(x—1)(x —2)-- - (x —r+1) is the falling factorial. The coefficients
of the chromatic polynomial have a fairly simple interpretation.

Theorem 5 Let H be a graph with n vertices and edge set E(H) =
{e1, €2, ..., em}. Call a subset of E(H) a broken cycle if it is obtained from
the edge set of a cycle by deleting the edge of highest index. Then the chromatic
polynomial of H is

n—]

pr(x) =) (—1ax""",

i=0
where a; is the number of | -subsets of E(H) containing no broken cycle.

Proof. Let us apply induction on m. For m = () the assertion is trivial, so suppose
that m = 1 and the assertion holds for smaller values of m. Let ¢ = ab and, as
before, set G = H — ab, so that G' = G + ab = H and G = G/ab satisfy (1).

With a slight abuse of notation, we identify not only E(G) = {e2, €3, ..., &n},
but also E{G"), with a subset of E(H). If an edge of E(G") comes from only one
edge of E(G), we keep its notation, and if an edge (ab)x comes from two edges of
G, say ¢; = ax and e, = bx, then we denote (ab)x by e;, where k = max({i, h}.

As (1) holds, to complete the induction step, ail we have to check is that the
number of i -subsets of E(G’) containing no broken cycle of G’ is precisely the sum
of the number of { -subsets of E(G) containing no broken cycle and the number of
(i — 1)-subsets of E{(G"} containing no broken cycle. But this is a consequence
of the following iwo simple assertions.

(1) Suppose e; & F C E(G"). Then F contains no broken cycle of G' iff F
contains no broken cycle of G.

(2) Suppose ¢ € F < E(G’). Then F contains no broken cycle of G’ if
F — (et} ¢ E(G") and F — {e;]} contains no broken cycle of G”. |

As a by-product of Theorem 5, we see that the number of i-subsets of E(H)
containing no broken cycle is independent of the order imposed on E(H)—a fact

which is far from obvious.
In general, Theorem 5 does not provide a practical method for determining the

coefficients of the chromatic polynomial. However, if the graph has no short cycles
then it does give us the first few coefficients.
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Corollary 6 Ler H be a graph with n vertices, m edges, girth g and chromatic
polynomial

prxy =Y (~1Yax"".
i=0

Then a; = (7) fori < g — 2. Furthermore, if g is finite and H has ¢g cycles of
length g thenag.1 = (7 ) — 5. O

The reduction G — {G’, "} also gives us a natural, although not very practical,
algorithm for finding the chromatic number, Given a graph G, construct a sequence
of graphs Gp, G, ... as follows. Put Gy = . Having constructed G, if G is
complete, terminate the sequence; otherwise, let G4.1 be G} or G!. The sequence
has to end in a complete graph G, say of order [G;{ = k. A k-colouring of G, can
easily be lifted to a k-colouring of the original graph G, so x (G} < k. Equality (4)
shows that if we construct all possible sequences from G then x (G) is precisely
the maximal order of a terminal graph.

There are other problems that can be tackled by the reduction G — {G', G"};
a beautiful example is Exercise 157,

In Chapier X we shall return to this topic, when we study a substantial gener-
alization of the chromatic polynomial, the Tutte polynomial, As we shali see, one
of the most important properties of the Tutte polynomtal is that it can be defined
by the analogues of the cut and fuse operations for multigraphs.

V2 Edge Colouring

In a colouring of the edges of a graph G, the edges incident with a vertex get
distinct colours, so x'(G), the edge-chromatic number, is at least as large as the

maximal degree, A(G) = max, d{x)}:
2 (G = A(G). (&)

At first sight it is somewhat surprising that this trivial inequality is, in fact, an
equality for large classes of graphs, including the class of bipartite graphs. Indeed,
Exercise 22 of Chapter III, which is an easy consequence of Hall's theorem, asserts
that the edge set E{(G) of a bipartite graph & can be partitioned into A(G) classes
of independent edges, that is, x'(G) = A(G).

Another trivial lower bound on x'(G) follows from the fact that if G does not
contain 8 + 1 independent edges, then each colour class has at most 8 edges, so
we need at least [£(G )/ B8] colour classes to take care of all the edges:

X'(G) = [e(G)/ A1 N

Proceeding as in the proof of Theorem [, 11, itis easy to show that if G is acomplete
graph of order at least 2 then equality holds in (7), thatis, x (K" =n —1ifnis
even, and x (X™) = n if n = 3 is odd (Exercise 29).
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How can one obtatn an upper bound for x'{G'}? Since each edge is adjacent to
at most 2(A(G) — 1) edges, Theorem | implies that

¥ (G) < 2A(G) ~ 1.
Furthermore, if A{G) > 3, then Brooks’ theorem gives
x'(G) = x(L(G)) < 2A(G) — 2.

At first sight this inequality seems reasonably good. However, the following
fundamental theorem of Vizing shows that this is not the case, because the
edge-chromatic number is always very close to the maximal degree.

Theorem 7 A graph G of maximal degree A has edge-chromatic number A or
A+ 1

Proof. Let us assume that we have used 1,2,..., A + 1 to colour all but one of
the edges. We are home if we can show that by recolouring some of the edges, we
can colour this last edge as well withone of 1,2,..., A+ 1.

We say that a colour is missing at a vertex z if no edge incident with z gets that
colour, If z is incident with 4'(2) < d(z} < A edges that have been coloured, then
A + 1 — d'(2) colours are missing at z. In particular, at each vertex at least one
colour is missing. Qur aim is to move around the colours and the unceloured edge
in such a way that a colour will be missing at both endvertices of the uncoloured
edge, enabling us to complete the colouring.

Let xy) be the uncoloured edge; let s be a colour missing at x and let 7 be
a colour missing at y;. We shall construct a sequence of edges xy, xy2, ...,
and a sequence of colours 11, #y, ... such that ¢; is missing at y; and xy;; has
colour #;. Suppose we have constructed xy1, ..., xy; and &, ..., #. There is at
most one edge xy of colour #. If ¥ € {yi,.... ¥}, we put yiy1 = y and pick
a colour £, missing at ¥;41, otherwise we stop the sequence. These sequences
have to terminate after at most A{G) terms; letxy, ..., xysand #;, ..., f; be the
complete sequences. Let us examine the two reasons that may have forced us to
terminate these sequences.

(2) No edge xy has colour 1. Then recolour the edges xy;, i < h, giving xy;
colour #;. In the colouring we obtain, every edge is coloured except xyx. However,
since f, occurs neither at x nor at y,, we may complete the colouring by assigning
iy 10 X ¥;.

(b) For some j < h the edge xy; has colour ;. To start with, recolour the edges
xvi, i < j, giving xy; colour 1;. In this colounng the uncoloured edge is xy;. Let
H (s, 1) be the subgraph of G formed by the edges of colour s and 1, where s is
the original colour missing at x and f;, is missing at y,. Each vertex of H (s, 1) is
incident with at most 2 edges in H (s, t;) (one of colour 5 and the other of colour
1), so the components of H (s, r;) are paths and cycles. Each of the vertices x,
y; and y; has degree at most 1 in H (s, ), so they cannot all belong to the same
component of H (s, ). Thus at least one of the following two cases has to hold.
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(bl) The verrices x and y; belong 1o distinct components of H (s, 1;). In this
case interchange the colours 5 and ¢, in the component containing y;. Then 5 is
missing at both x and y;, so we may complete the colouring by giving xy; colour s.

(b2) The vertices x and y, belong to distinct components of H(s, ). Now
continue the recolouring of the edges incident with x by giving xy; colour r;
for each { < A, thereby making xy, the uncoloured edge. This change does not
involve edges of colours 5 and #,, so H (s, #;) has not been altered. Now switch
around the colours in the component containing y». This switch makes sure that
5 is missing at both x and y;, so we can use s to colour the so far uncoloured

edge xyp. )

Note that the proof above gives an algorith for colouring the edges with at
most A 4 1 colours.

V.3 Graphs on Surfaces

There is no doubt that for well over a bundred years the best known problem in
graph theory was the the four colour problem: prove that every plane graph is 4-
colourable. After numerous false starts and partial results, the problem was solved
in 1976 by Appel and Haken, relying on ideas of Heesch, when they proved that
every plane graph can indeed be coloured with four colours. On the other hand,
Euler’s formula implies that every plane graph can be coloured with 6 colours.
Indced, by Theorem 1.16, every plane graph of order n has at nost 3r — 6 edges and
so its minimal degree is at most 5. Hence, by Theorem 1, the chromatic number
is at most 6. Furthermore, with a little more work we can obtain the following
stronger assertion.

Theorem B Every plane graph is 5-colourable.

Proof. Suppose the assertion is false and let & be a 6-chromatic plane graph with
minimal number of vertices. As above, we know that G has a vertex x of degree
at most 5. Put i = G — x. Then H is 5-colourable, say with colours 1, 2, ..., 5.
Each of these colours must be used to colour at least one neighbour of x, otherwise
the missing colour could be used to colour x. Hence we may assume that x has 5
neighbours, say xq, x3, ..., X5 in some cyclic order about x, and the colour of x;
isi,i = 1,2,...,5. Denote by H(i, j) the subgraph of H spanned by vertices of
colour i and j.

Suppose first that x; and x3 belong to distinct components of H(1, 3), Inter-
changing the colours ! and 3 in the component of x(, we obtain another 3-colouring
of H. However, in this 5-colouring both x; and x3 get colour 3, so 1 is not used
to colour any of the vertices x1, . .., xs. This is impossible because then x can be
coloured 1.

Since x; and x3 belong to the same component of H (1, 3), there is an x;—x3
path Pj3 in H whose vertices are coloured ! and 3. Analogously, H contains an
x3—x4 path Pos whose vertices are coloured 2 and 4. However, this is impossible,
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FIGURE V4. The paths 3 and Paq.

since the cycle x| Py3xy of & separates x7 from xg but Po4 cannot meet this cycle
(Fig. vV.4). O

Clearly, not cvery plane graph is 3-colourable. Indeed, X4 i5 planar and it does
need 4 colours, Ancther 4-chromatic planar graph is obtained by joining all five
vertices of a Cs to a sixth vertex. Thus xo = max{x(G) : G is planar} trivially
satisfies yo > 4 and o < 5, and the problem is to prove yp < 4.

Instead of a plane graph, we may wish to consider a graph drawn on a closed
surface of arbitrary Euler characteristic. We shall see in a moment that, rather
curiously, the plane is the exception: for every closed surface other than the plane,
the problem is of an entirely different nature (and much easier).

We shall need very liitle about closed surfaces: in fact, all we need is their
classification theorem and the Euler-Poincaré formula. For p > 0, let S, be
the closed surface obtained from a 4p-gon by identifying pairs of sides, as in
Fig. V.5(i), and for ¢ > 0, let N, be the closed surface obtained from a 2g-gon by
identifying pairs of sides, as in Fig. V.5(ii). Thus 5, is the torus, Ny is the projective
plane and N, is the Klein botile; also, let Sp be the sphere. By the classifieation
theorem, every closed surface is homeomorphic to precisely one of the orientable
surfaces 5g, S, ... or one of the non-orientable surfaces Ny, N2, ... . For p > (},
the surface Sy, has genus p and Enler characteristic x = x(8;) = 2(1— p),and for
g > 0, the surface N, has genus q and Ewler characteristic x = x(Ng) =2—g. It
is rather unfortunate that x is the standard symbol for both the Euler characteristic
of & surface and the chromatic number of a graph. This conflict will occur only in
this section and, hopefully, it will not lead to any confusion.

I
'E"

f W ) 4a; a4
A b bld 4

FIGURE V.5. The torus 5y, the projective piane #; and the Klein bottle N7,
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A triangulation of a surface is a drawing of a graph on the surface such that
every face is a triangle. The Euler—Poincaré formula states that if a triangulation
of a closed surface of Euler characteristic ¥ has ag vertices, o edges and o faces,
then ag — &y + a2 == x. An immediate consequence of this is that if a graph G of
order n is drawn on a surface of Euler characteristic x, then

e(G) = 3n - 3y, (8
with equality iff (7 is a trianguiation of the surface.

The following easy upper bound on the chromatic nuinber of a graph drawn on
a closed surface was obtained by Heawood in 1890,

Theorem 8 The chromatic number of a graph G drawn on a closed surface of
Euler characteristic ¥ < 115 at most

h(x) = {(T+ /49 -~ 24x)/2}.

Progf. 1et k be the chromatic number of G, We may and shall assume that G
is a minimal graph of chromatic number k; otherwise, we may replace it by a
subgraph. But then 8(G) > & — 1, so all we need is that if, for & = A(x), G has
n > h + 1 vertices then its minimal degree 1s at most & — [. Now, if n > & + |
then ¢(&r) < 3n — 3x implies that

Gy <6 6x/(h+1)
Hence if we had é{&) > & then we would have
h<6—-6x/th+1),

that is,
K — Sh+6(y — 1) < 0.

But this would imply the contradiction

hs%ﬁ+%§fﬁﬁ- 0

For a surface M, define its chromatic number, s(M), as the maximum of the
chromatic numbers of graphs drawn on M. Trivially, s(S;) < §(S¢+1) since
every graph that can be drawn on 5 can also be drawn on Sg,; similarly,
5{Ng} < ${Ny,1}. The simple Theorem 9 states that if M is a surface of Huler
characteristic y then the chromatic number s{M) is at most as large as the Heawood
bound h(x) = 1(7 + /49 ~ 24x)}/2].

When does equality hold? The following easy result shows that, for imost values
of x, what matters is whether a complete graph can be drawn on a surface.

Theorem 30 Ler x < 0 h = h(x) = [(7+ /39 =34x)/2}, and ler G be
a mirimmal h-chromatic graph drawn on a surface of Euler characteristic . If

x#F—1,—20r-7then G = K,

Progf. All we shall use is inequality (8): a graph of order # drawn on a surface of
Euler characteristic x has at most 3(n — x) edges.
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Suppose G # K. Thenn > h + 2. Furthermore, if n = h + 2 then, as claimed

by Exercise 38,
h+2
e(G) = ( : ) -5,

which is easily checked to be greater than 3(k + 2 — x). Hence n > & + 3. Our
graph & is a minimal A-chromatic graph, so 5(G) = A — 1 = 6 and, by Brooks’
theorem, G is not (b — 1)-regular. Therefore
nth — 1)

2 L

e(G) >

and so
nth—1)+1 <6(n—x) &)
Since i > 1, inequality (9} has to hold for n = £ + 3, that is,
h*—4h — 204+ 6x <0,
This implies that

h <2+ /24— 6x. (10)

Simple calculations show that (10) fails for ¥ < —20, and it is easily checked that
for —19 < ¥ < O inequality (10) fails unless x = -1, -2 or 7. O

In fact, Theorem 10 holds without any exceptions: this can be proved by using
a slightly better bound on the size of a minimal A-chromatic graph of order n,
From Theorem 10, it is easy to determine the chromatic number of a surface of

small genus other than the sphere.

Theorem 11 The torus, the projective plane and the Klein bottle have chromatic
numbers s(81) =7 s(N1) =6 and s(N2) = 6.

Proof The Euler characteristics of these surfaces are x(Ny) == 1 and x(5)) =
x (N2} = 0, therefore Theorem 9 implies that s(N|} < 6 and 5(5)), s(N2) < 7.
Fig. V.6 shows that K4 triangulates Ny and K7 triangulates S|, so s(Ny) = 6,
s(SP=Tand6 <s(N) =7

Our problem is then to decide whether the chromatic number of the Klein botde
is 6 or 7. We know from Theorem 10 that s(N;) = 7 iff K7 can be drawn on
N>, and so K7 toangulates N2, To complete the proof, we shall show that K7
tnangulates a unique closed surface, the torus, so that s(N3) = 6.

Suppose then that we have a triangulation by X7 of a closed surface (of Euler
characteristic 0). Then every vertex of X7 is on the boundary of six triangular
faces, and the third sides of these triangles form a 6-cycle, Writing 0,1,...,6
for the vertices, we may assume that the 6-cycle ‘surrounding’ 0 is 123456, Then
vertex 1 is surrounded by 602x - y, vertex 2 by 301x - -, and so on (see Fig. V.7).
But then x has to be 4 or 5: by symmetry, we may assume that it is 4. Having
made this choice, everything else is determined: looking at the neighbourhoods
of 1 and 6, namely the cycles y6024- and 501y - -, we see that y == 3, then we
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[
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Y

FIGURE V.6. Triangulations of the projective plane My by K¢, and of the torus 51 by K.

getz = 2, u = |, and so on, as shown in Fig. V.7. What we have proved is that
if K7 triangulates a surface then this triangulation is unique (up to reflection) and
is as in Fig. V.7. But this labelling is easily seen to be consistent and to give a
triangulation of the torus. (As it happens, we already know that X7 triangulates
the torus, but in this proof we were forced to find that triangulation.) In particular,
K7 cannot be drawn on the Klein bottle, so s{N3) = 6, and we are done. O

FIGURE V.7. The start of a triangulation given by K7, and the labelling of the entire
triangular lattice.

In fact, the Heawood bound 4(x ) in Theorem 9 is best possible for every closed
surface other than the Klein bottle: if M is a closed surface of Euler characteristic
x < | and M is not the Klein bottle, then s(M) = h(x). Although this was
claimed by Heawood in 1890, his proof was incorrect, and the assertion became
known as Heawood's conjecture. The first correct proof of Heawood's conjecture
was found by Ringel and Youngs only over 75 years later. Note that the difficulty
in proving this deep result lies in finding a drawing of a single fixed graph, Kz 3,
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on a surface of Euler characteristic y < 1. What we have to do for y < —1is
rather similar to the proof of Theorem 11: we have to find a ‘consistent colouting’
of a triangular tessellation of the hyperbolic plane in which every vertex has degree
h{x) — 1. On the other hand, in order to sclve the four colour problem one has to
show that every plane graph can be coloured with four colours. Thus the difficulty
in solving the four colour problem has almost nothing to do with the problem of
determmning s{M) for x (M) < |

For fear of upsetting the balance of the book, we shall say only a few words about
the solution of the four colour problem. We saw in Section 1.4 that a plane graph G
determines a map M = M{G) consisting of the plane graph G and the countries
determined by the plane graph. A colouring of a map is a colouring of the countries
such that no two countries sharing an edge in their boundaries get the same colour.
The original form of the four colour problem, as posed by Francis Guthrie in 1852,
asked for a proof of the assertion that every plane map can be coloured with four
colours. His teacher, de Morgan, circulated the problem amongst his colieagues,
but it was first made popular in 1878 by Cayley, who mentioned it before the
Royal Society. Almost at once “proofs” appeared, by Kempe in 1879 and by Tait
in 1890. Heawood’s refutation of Kempe’s proof was published in 1890, though
he modified the proof to obtain the five colour theorem. Tait’s paper also contained
false assurnptions, which prompted Petersen to observe in 1891 that the four colour
theorem 1s equivalent to the conjecture that every 2-connected cubic planar graph
has edge chromatic number three {Exercise 28¥}. Contributions to the solution
since the turn of the century include Birkhoff’s introduction of the chromatic
polynomial and works by various authors giving lower bounds on the order of a
possible counterexample. In 1943 Hadwiger made a deep conjecture containing
the four colour theorem as a special case: if ¥ (G) = &, then G is contractibie to
K, (see Exercises 16-18).

In hindsight, the most important advance was made by Heesch. The problem
was at last solved by Appel and Haken in 1976, making use of a refinement of
Heesch’s method and fast computers. The interested reader is referred to some
papers of Appel and Haken, to the book of Saaty and Kainen, and a recent paper
of Robertson, Sanders, Seymour and Thomas for a detailed explanation of the
underlying ideas of the proof. All we have room for is a few superficial remarks.

What makes the five colour theorem true? The following two facts: (i) a mmimal
6-chromatic plane graph cannot contain a vertex of degree at most 3, and {ii) a
plane graph has to contain a vertex of degree at most 5. We can go a step further
and ask why (i) and (ii} hold. A look at the proof shows that (i} is proved by
making a good use of the paths F;;, called Kempe chains after Kempe, who used
them in his false proof of 1870, and (ii) follows immediately from Euler’s formula
n—-e+ f=2

The attack on the four colour problem initiated by Heesch goes along similar
lines. A configuration is a connected cluster of vertices of a plane graph together
with the degrees of the vertices. A configuration is reducible if no minimal 5-
chromatic plane graph can contain it and a set of configurations is unavoidable if
every plane graph contains at least one configuration belonging to the set. In order
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ta prave that every plane graph is 3-colourable, one sets out to find an unavoidable
set of reducible configurations. How should one show that a configuration is
reducible? Replace the cluster of vertices by a smaller cluster, 4-colour the obtained
smaller graph and use Kempe chains to show that the 4-colouring can be “pulled
back™ to the original graph. How should one show that a set of configurations is
unavoidable? Make extensive use of Euler’s formula. Of course, one may always
assume that the graph is a maximal plane graph. Assigning a chargeof 6 — k£ to
a vertex of degree &, Euler's formula guarantees that the total charge is 12, Push
charges around the vertices according to some discharging rules, that is, transfer
some charge from a vertex to some of its neighbours, until it transpires that the
plane graph has to contain one of the configurations.

Looking again at the five colour theorem, we see that the proof was based on
the fact that the configurations consisting of single vertices of degree at most 5
form an unavoidable set of configurations (for the five colour theorem).

The simplistic sketch above does not indicate the difficulty of the actual proof.
In order to rectify this a little, we mention that Appel and Haken needed over
1900 reducible configurations and more than 300 discharging rules to complete
the proof. Furthermore, we invile the reader to prove the following two simple

assertions,

+ %@4}

FIGURE V.8. Three reducible configurations; in the last two examples the outer vertices
may have arbitrary degrees.

I. The configurations in Fig. V.8 are reducible.

2. Let G be a maximal planar graph of order at least 25 and minimal degree 3. Call
a vertex a major vertex if its degree is at least 7, otherwise, call it minor. Then G
contains one of the foHowing:

{a) aminor vertex with 3 consecutive neighbours of degree 5,

{b) a vertex of degree 5 with minor neighbours only,

(c) amajor vertex with at most one neighbour of degree at least 6.

For twenty years, the Appel and Haken proof was neither simplified, nor thor-
oughly checked, as in addition to the¢ huge program, the proof requires that
some 1400 graphs be put into the computer by hand. Recently, however, Robert-
son, Sanders, Seymour and Thomas produced their version of the proof, with an
unavoidable set of ‘only’ 633 reducible configurations, and with ‘only’ 32 dis-
charging rules. This proof is considerably easier to check, since the immense task
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of checking unavoidability by hand is replaced by a formally written proof, which
can be read and verified by a computer in a few minutes.

V.4 List Colouring

Recall that a graph is k-colourable iff to every veriex x we can assign a colour
c(x) € [k] = {1,2,..., k) such that adjacent vertices get distinct colours. Now
suppose that to every vertex x of a k-colourablc graph we assign a paint-box or
list L(x) of k colours. Is it possible to assign to each vertex one of the colours
from its own list such that adjacent vertices get distinct colours? At first sight, it
seems trivial that such an assignment is always possible, since “surely the worst
case is when the lists are identical, as that maximizes the chances af a conflict.”

However, this first impression is clearly misleading. For example, let G be the
complete three by three bipartite graph K3 3 with vertex classes V; = {x|, x2, x3}
and V7 = {y1, y2, va}, andlet L(x;) = L(y:) = {1, 2,3} —{i}.i = 1,2, 3. Thenin
any colouring of the vertices from these lists, at least two colours must be used to
colour V|, and at least two to colour V3, so there is bound to be an edge joining two
vertices of the same colour {see Fig. V.9). This realization leads to an important
variant of the chromatic sumber, the list-chromatic number.

{2.3} {13} {1,2}
» Yz Yig

X1 4 X X1
{2,3} {1.3} {1,2}

FIGURE V.9. The graph K3 3 with lists of size 2 assigned 1o the vertices, without a proper
colouring from the lists.

Given a graph G and a map L assigning to each vertex a set L(x), an L-
colouring of G is a proper colouring ¢ of the vertices such that c(x) € L(x) for
every x € V{(G). The list-chromatic number 3¢(G) of G 15 the minimal integer
k such that G has an L-colouring whenever |L(x)| > k for every x € V(G).
Clearly, x¢(G) = x(G) for every graph G, since x(G) is the minimal integer k
such that G has an L-colouring when L(x) = [k] for every x € V(G).

The example above shows that we may have y¢(G) > 3 and x(G)y=2.1In
fact, it is easily seen that for every k = 2 there is a bipartite graph G with
xe(G) > k. Indeed, writing A® for the set of all k-subsets of aset A, let G
be the complete bipartite graph with vertex classes V| = {x1,x2,..., xap—}®
and Vz = {¥1, ¥z, ..., ya—11®. Also, for x = [xi), xpp,... %) € Viand y =
1%y Yip, - - ¥y} € Vo, set L(x) = L{y) = liv,i2. ..., ik} Then G is bipartite
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and has no L-colouring, since in any L-colouring we would have to use at least
k colours to colour ¥ and at least k colouss to colour V3, so we would have two
adjacent vertices with the same colour. Hence x (G = 2 and yy > 4. On the other
hand, the greedy algonthm shows that x,(G) < A(G) 4 1 for every graph G.

Our aim in this section is lo prove two beauntiful results, due to Thomassen and
Galvin, clarming that under certain circumstances the list-chromatic number is not
much larger than the chromatic number. These theorems strengthen considerably
two of our rather simple earlier results. As the proofs are short and very ¢legant,
the reader may be surprised to learn that much effort had gone into proving these
results before Thomassen and Galvin found their ingenious proofs.

We start with Thomassen's theorem, strengthening Theorem 8 by claiming that
the list-chromatic number of a planar graph i1s at most 5. The proof below is a
striking example of the admirable principle that it 15 frequently much easier to
prove an appropriate generalization of an assertion than the original clean assertion.
In this case the generalization concerns list-colourings of almast maximal planar
graphs, with varying list sizes. To be precise, call a plane graph anegr-triangulation
if the outer face is a cycle and all the inner faces are triangles.

As in a maxymal plane graph of order at least 4 every face is a triangle, the
following result is clearly stronger than the assertion that every planar graph has
list-chromatic number at most 5.

Theorem 12 Let G be a near-triangulation with outer cycle C = xyxy-- - xg,
and for each x € V{G) let L(x) be a list of colours assigned to x, such that
Lix)) = {1}, L2} = {2} L) 2 3 for3 =i < k, and |L(x)| = 5 for
x € V(G = C). Then G has an L-colouring.

Proof. Letus apply induction on the order of G. For |G| == 3 the assertion is trivial,
so suppose that |G| > 3 and the assertion holds for graphs of order less than |G|.
We shall distinguish two cases, according to whether C contatns a ‘diagonal’ from
X Or not,

(i) First suppose that & contains a ‘diagonal’ xex;, 2 < j < k=2, of C.
Then we can apply the induction hypothesis to the graph formed by the cycle
Xgx1x7 - - - x; and its interior and then, having fixed the colours of x; and x;, to the
" cycle xgxj X4 - - - Xg—1 and its interior, to find an L-colouring of G.

{ii) Now suppose that G contains none of the edges xx;, 2 < j < & —2.Letthe
neighbours of xz be x;—j, ¥1, ¥z, ..., y¢ and Xy, in this order, so that xgxp— | ¥1,
XipYEY2, .. ., XeYexy are internal faces of our plane graph (see Fig. V.10).

Let a and b be colours in L(xy), distinct from 1. Our aim is to use one of
a and b to colour xi, having coloured the rest of the graph. To this end, let
L'(x) = Lx)if x ¢ {y1.....y¢) and L' () = L(y;) —{a. b} for | <i <.
Then, by the induction hypothesis, the graph G’ = G — x;, with outer cycle
XXz« - Xp_1¥1¥2 - ¥¢, has an L'-colouring. Extend this L’-colouring of G’ 1o
an L-colouring of G by assigning @ or b to x; such thay x; and x;_ get distinct
colours. m
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FIGURE V.10. The second case in the proof of Theorem 12,

Theorem 12 is not onty considerably strenger than Theorem 8, the five colour
theorem, but it is also best possible: as shown by Voigt, there are planar graphs of
list-chromatic number exactly 3.

Our next aim is to prove Galvin's theorem concerning list-colourings of the
edges of a bipartite graph. Suppose that for every edge ¢ € E(G) of a graph
G, we are given a list L(e) of colours. An L-edge-colouring of G is a proper
edge-colouring A of G such that A(e) € L(¢) for every e € E(G}. For a function
f 1 E(G)Y > N, wesay that G is f-edge-choosableif G has an L-edge-colounng
whenever|L(e)} = f(e) forevery e € E(G). The minimal k such that G is k-edge-
choosable is called the fist-edge-chromaric number of G, or the list-chromatic
index of G, or the edge-choosability number of G, and is denoted by x/(G) or
ch(G). To make this terminology a little less cumbersome, we shall frequently
omit the word edge when there is no danger of confusion, so we shall talk of
L-colourings and f-choosable graphs.

As we shall make use of the existence of a stable matching, we shall follow
the conventions used in Section 111. 5. Let G be a bipartite graph with bipartition
(Vy, V2) and a certain assignment of preferences. For ¢ = aA € E(G) let tg(¢)
be the sum of the number of vertices the vertex a prefers to A and the number of
vertices the vertex A preferstoa. We call 1t : E(G) — Z+t = {0,1, ...} the total
function of the assignment of preferences.

Note that if H is a subgraph of G and Eg C E(H) then

tg{e) — to_Ey(e) = ty(e) — th—_Egy(€) (11
for every edge e € E(H) — Ep. (Needless to say, the preferences in subgraphs of
G are taken as in G.) Furthermore, a matching M in H is stable iff

tu(e) —th-p(e) = 1 (12)

foreveryedgee € E(H) - M.
After all this preparation it is easy to state and prove a result that will readily

imply that x;(G) = x'(G) for every bipartite graph G.
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Theorem 13 Ler G be a bipartite graph with total function tg given by a certain
assignment of preferences. Then G is (tg + 1)-choosable.

Proof. We apply induction on the size of G. If E(G) = £, there is nothing to
prove, 5o suppose E () # 0 and the assertion holds for graphs of smaller size.

Let us fix an assignment of preferences for &, For each edge ¢ € E(G), let
L{e)} be a set of 15 (e) + T natural numbers. We have to show that the edges of G
have an L-colouring.

Let 7 # @ be the set of edges whose lists contain a certain colour {, and let
H = (V(G), I} be the subgraph of G with edge-set /. By Theorem IIL15, the
graph H contains a stable matching M. Let G' = G — M, and for e € E(G’) set
L’'(e) = L{e) — {i}. We claim that

IL'(e)l = tgr{e} + 1 (13)

forevery e € E(G’). Indeed, if e ¢ I then L'(e) = L{(e) so this is clearly the case.
Also,ifee I — M = E(H)— M then, by relations (11} and (12),

tgle} —tgr(e) = tule) —ty(e) > 1,

SO
IL'(e)] = {L(e)] — 1 = tg{e) = tgr(e) + 1,
proving (13).
By the induction hypothesis, G’ has an L'-colouring; colouring the edges of M
by i, we get an L-colouring of the edges of G. a

From here it is but a short step to Galvin's theorem.

Theorem 14 The list-chromatic index of a bipartite graph equals its chromatic
index.

Proof. Let G be a bipartite graph with bipartition (Vy, V3), and let 4 : E(G) —
[£] be an edge-colouring of &, where k is the chromatic index of . Define
preferences on G as follows: let a € Vi prefer a neighbour A to a neighbour
B iff A(aA) > AaB), and let A € V; prefer a neighbour a to a neighbour &
iff A{aA) < A(bA). Note that the total function defined by this assighment of
preferences is at most & — 1 on every edge, since if A(@A) = j then a prefers at
most k£ — j of its neighbours to A, and A prefers at most j — 1 of its neighbours
to a. Hence, by Theorem 11, G is k-choosable. O

As we noted in Section 2, the chromatic index of a bipartite graph equals its
maximal degree, so Theorem 14 can be restated as

X(G) = x'(G)Y = A(G)

for every bipartite graph G.
It is easily seen that the result above holds for bipartite multigraphs as well
{see Exercise 52); indeed, all one has 1o recall is that every bipartite multigraph

contains a stable matching.
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We know that, in general, x:(G) # x(C) even for planar graphs, although we
do have equality for the line graphs of bipartite graphs. Recall that the line graph
ofagraph G = (V. E)IsL(G)=(E, F),where F = lef 1 e, f € E,eand f
are adjacent}. Indeed, it is conjectured that we have equality for all line graphs, in
other words, xE(G) = x'(G) for ail graphs. Trivially,

Xe(G) = xelL(G) = AULG) +1 224(G) - 1,
but it is not even easy to see that
x:(G) = 2~ 107'DAG)

iIf A(G) is large enough. In fact, 1n 1996 Kahn proved that if £ > 0 and A(G) is
large enough then

X0(G) = (1 + £)A(G).

Even after these beautiful results of Galvin and Kahn, we seem to be far from a
proof of the full conjecture that x,(G) = x'(G) for every graph.

V.5 Perfect Graphs

In the introduction to this chapter we remarked that perhaps the simplest reason
why the chromatic number of a graph G is at least & is that G contains a k-ciigue,
a complete graph of order &£. The observation gave us the trivial inequality (1},
namely that x () is at least as large as the clique number w(G), the maximal
order of a complete subgraph of G.

The chromatic number x () can be considerably larger than w(G); in fact, we
shall see in Chapter VII that, for all k and g, there is a graph of chromatic number
at least k and girth at Jeast g. However, here we shall be concerned with graphs at
the other end of the spectrum: with graphs all whose induced subgraphs have their
chromatic number equal to their clique number. These are the so-called perfect
graphs. Thus a graph G is perfect if x (H) = w(H ) for every induced subgraph H
of G, including G itself. Clearly, bipartite graphs are perfect, but a triangle-free
graph containing an odd cycle is not perfect since its clique number is 2 and its
chromatic number 1s at least 3. It 15 less immediate that the compiement of a
bipartite graph is also perfect. This is perhaps the first result on perfect graphs,
proved by Gallai and Konig in 1932, although the concept of a perfect graph was
only explicitly defined by Berge in 1960. Recall that the complement of a graph
G = (V,E)is G = (V,V? — E). Although «(G) is a((), the independence
number of G, in order to have fewer functions, we shall use w(G) rather than
a(G).

Theorem 15 The compiement of a bipartite graph is perfect.

FProof. Since an induced subgraph of the complement of a bipartite graph is also
the complernent of a bipartite graph, all we have to prove is thatif G = (V, E) s
a bipartite graph then x(G) = w(G).




166 V. Colouring

Now, in a colouring of G, every colour class is either a vertex or a pair of
vertices adjacent tn G. Thus x (G) is the minimal number of vertices and edges of
G, covering all vertices of G. By Corollary IIL.10, this is precisely the maximal
number of independent vertices in G, that is, the clique number w(G) of G. ]

For our next examples of perfect graphs, we shall take line graphs and their
complements,

Theorem 16 Let G be a bipartite graph with line graph H = L(G). Then H
and H are perfect.

Proof. Once again, all we have toproveis that y (H)} = w(H ) and x (H) = w(H).
Clearly, w{H) = A(G) and x(H) = x'(G). Bul as & is bipartite, ¥y (G) =
A (G} (see the beginning of Section 2), so x(H) = A(G)} = w(H).
And what is x (H)? The minimal number of vertices of G covering all the
edges. Finally, what is w(H)? The maximal number of independent edges of G.
By Corollary I11.10, these two quantities are equal. 3

Yet another class of perfect graphs can be obtained from partially ordered sets.
Given a partially ordered set P = (X, <), its comparability graph is C(P) =
(X,E), where E={xye X® :x «yory <x}.

Theorem Y7 Comparability graphs and their complements are peifect.

Proof. Once again, it suffices to show that if P is a partially ordered set then for
H =C{P)wehave x(H) = w(H) and x(ﬁ) = w(H).

To see the first equality, for x € P let r(x}, the rank of x, be the maximal integer
r for which P contains a chain of r elements, with maximal element x. Then for
k = max, r(x) the map r : P — [k] gives a k-colouring of ff, and a chain of size
k gives a k-clique. .

The second equality is deeper. Indced, x (H) is the minimal number of chains
into which P can be partitioned, and w(H) is precisely the maximal number of
elements in an antichain. Therefore the equality x (H) = w(H) is none other than
Dilworth’s theorem, Theorem I11.12. ]

It does not take much to notice that, in ali the examples above, the complement
of a perfect graph is also perfect. In fact, the cornerstone of the theory of perfect
graphs, the perfect graph theorem, claims that this holds without exception, not
only for the examples above. This fundamental result was proved by Lovasz and
Fulkerson in the early 1970s; although the proof below is relatively simple, it

needs a little preparation.

Lemma 18 A necessary and sufficient condition for a graph G to be perfect is
that for every induced subgraph H C G there is an independent set of vertices, 1,

such that
w(H -1 <« w(H).

That is, a graph is perfect iff every induced subgraph H has an independent set
meeting every clique of H of maximal order w{H).
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Proof. The necessity holds with plenty to spare. Indeed, let H be a graph with
k = y(H) = w(H), and let I be a colour class of a k-colouring of H. Then
w(H — 1) < x(H - 1)=x(H) -1 <a(H)

The sufficiency of the condiion will be proved by induction on w(G). For
w(G) = 1 there is nothing to prove, so suppose that w(G) > 1 and the assertion
holds for smaller values of the clique number. Let H be an induced subgraph of G
and { an independent set with w(H — I') < @(H ). By the induction hypothesis,
we can colour H — [ with w(H — [I) colours; colouring the vertices of / with
a new colour, we obtain a colouring of H with w(H — I} + 1 < w(H) colours.
Thus y(H) < w(H), and we are done. O

The next result needed in the proof of the perfect graph theorem we shall give is
of interest in its own right, as it enables one to construct large families of perfect
graphs. In order to state it, we need the notion of substitution.

Let G be a graph with vertex-set V(G) = [n] = {1, ..., n},and ket Gy, ..., G,
be vertex-disjoint graphs. Let G* = G[G|, ..., G,] be obtained from U?=I G;
by joining all vertices of G; to all vertices of G; wheneverij € E(G). We say that
G* is obtained from G by substituting G, . . ., G, for the vertices of by replacing
the vertices of G by Gy, ..., G,. Note that if we replace the vertices of G one by
one with the graphs G, ..., G,, we get the same graph G*.

We are ready to state the replacement theorem for perfect graphs.

Theorem 19 A graph obtained from a perfect graph by replacing its vertices by
perfect graphs is perfect.

Proof. As we may replace the vertices one by one, it suffices to prove that if
a vertex x of a perfect graph G is replaced by a perfect graph G, then the
resulting graph G* is perfect. Furthermore, since every induced subgraph of G*
is of precisely the same form (obtained from a perfect graph by replacing one of
its vertices by a perfect graph), by Lemma 18 it suffices to show that G* itself
contains an independent set of vertices meeting every clique of G* with w{(G*)
vertices,

Having identified our task, let us get on with the job. By Lemma 18, the graph
G, has an independent set f such that (G, — I) < w(G;). Colour & with w(G)
colours, and let W, be the colour class containing x. Then J = F U (W, — x) is
an independent set in G*. We claim this set J will do for the independent set. Let
K be a clique of G* with w(G*) vertices, and let us show that J meets X.

Note that either X is a clique in G — x, or it is the union of a clique of G, of
order w(G ;) and aclique of G[I"(x)]. Now, if X is aclique in G — x then, as it has
w{G*) > w(G) vertices, it meets every colour class of & 1n our w(G)-colouring,
including Wy, so K N J = K 0 W, 3 @. On the other hand, if KX meets G; then
K meets !, as the part of X 1n G 15 an w(G,)-clique of G,. Hence J does meet

K as claimed. a

After all this preparation, we are ready to prove the perfect graph theorem of
Lovész and Fuikerson,
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Theorem 20 The complement of a perfect graph is perfect.

Proof. Let us prove the theorem by induction on the order n of our perfect graph.
For n = 1 there is nothing to prove, so suppoese that » > 1 and the theorem
holds for perfect graphs of order less than n, In order to prove the induction step,
by Lemma 18 all we need is that if G is a perfect graph of order #, then G
contains an independent set [ such that (G — I) < w(({). Translating this into
an assertion about (7, all we need is that G contains a complete graph K such that
(G ~ K) < a(G).

Suppose then that this fails, that is, for every complete subgraph X of G, there
is an independent set /x with o(G) vertices that is disjoint from X. As we wish
to count, let us put this slightly differently: if X, K1, .. ., K, are all the complete
subgraphs of G then, for every r, 1 < r < ¢, there is an independent set I, with
a ((7) vertices, which is disjoint from X,.

For a vertex x of G, denote by i (x) the number of independent sets /, containing
x. Let G* be obtained from G by substituting a complete graph of order i (x) for
every vertex x. We know from the replacement theorem, Theorem 19, that G* Is
perfect. But is it?

First, let us give an upper bound for the clique nummber @ (G*}. Every complete
subgraph of G* is obtained from a complete subgraph of & by substituting at most
i (x) vertices for each vertex x. Hence, there isan #, 1 < r < ¢, such that

w(G*) = Z i(x).

ek,
But
Y i =3y Zl:illfrnhlfr—l.
ek, xekK, xel; =1
since | K, N I;| < 1 forall » and s, and | K N I | = (. Therefore,
w(GHY <t —1.

And what about x{G*)? By the construction of G*,

3
1G* =) ix) = | = 1e(G),

xeld r=]

and as (G* is obtained from G by substituting complete graphs for the vertices,
a(G*) = a(G). Consequently,

|G*
G > =1.
2GD 2 L6 .
Thus w(G*) < x(G*), contradicting the fact that (7* is perfect, and so completing
the proof of the theorcm. O

There is another beautiful proof of the perfect graph theorem or, to be pre-
cise, of a slight extension of the perfect graph theorem, suggested by the trivial
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inequality (2). Indeed, if H is an induced subgraph of a perfect graph then, by (2),
w(H) = y(H) > |H|fa(H) = |H|/o(H),

50 that
(H| < w(H)w(H). (14)

Hajnal and Simonovits conjectured that this trivial necessary condition for a graph
to be perfect is also sufficient, namely that a graph is perfect if, and only if, (14)
helds for every induced subgraph H. This conjecture was proved by Lovész in
1972, and in 1996 Gasparian found a shorter proof of it. Note that the perfect
graph theorem is an immediate consequence of this result,

Let us turn to yet another characterization of perfect graphs, indicating the
connection between perfect graphs and linear programming. First we need a variant
of the independence number of a graph. Identifying a set with its characteristic
function, an independent set of vertices of a graph G is naturally identified with a
function £ : V(G) -> {0, 1} such that 3, f(v) <1 for every clique K C G,
The clique number a(G) is the maximum of ), ¢ f (v) over all such functions,

I we allow f to take any value between O and 1 (or just any non-negative value),
then we get the fractional independence number o*(G) of G:

o*(G) =max ¥ f(v),

vels

where the maximum is over all functions f : V(G) — [0, 1] such that
3 vex () < | for every cligue K C G. Another beaytiful result of Lovdsz
is that a graph is perfect if, and only if, «*{H) = a(H) for every induced
subgraph H.

Having seen several classes of perfect graphs, what about graphs that are not
perfect? We noted carlier that every triangle-free non-bipartite graph is imperfect.
But what about a characterization of perfect graphs in terms of forbidden induced
subgraphs? As an induced subgraph of a perfect graph is perfect, it would suffice
to characterize critically imperfect graphs, that is, imperfect graphs whose every
induced proper subgraph is perfect. Examples of such graphs are the odd cycles
of length at least 5 and, by the perfect graph theorem, the complements of these
graphs.

Rather surprisingly, no other minimal examples are known. Indeed, the so called
perfect graph conjecture, proposed by Berge in 1960, claims that these are the
only examples: a graph G is perfect if, and only if, neither G nor its complement
G contains an induced odd cycle of length at least 5, Equivalently, the odd cycles
of length at least 5 and their complements are the only critically imperfect graphs.

Clearly, the perfect graph theorem would be an immediate consequence of the
perfect graph conjecture. However, in spite of much effort, we do not seem to be
clase to a proof of this conjecture.
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V.6 Exercises

1~ Show that a graph G has at least (*${"?) edges.

2. For each k > 3 find a bipartite graph with vertices x1, X3, ..., x, for which
the greedy algorithm uses k colours. Can this be done with n = 2k — 27 Show
that it cannot be done with n = 2k — 3.

37 Given a graph G, order its vertices in such a way that the greedy algorithm
uses only k = x (G) colours.

4 Order the vertices of a graph & according to their degrees, so that V{(G) =
{xy.x2,...,x2} and d(xy} = d(x2) = - - -. Show that in this order the greedy
algorithm uses at most max; min{d(x;) + |, {} colours, and so if k is the
maximal natural number for which £ < d(x;) + 1 then x(G) = k.

5. Deduce from Exercise 4 that if G has n# vertices then
x(G)+ x(G) =n+1.
6. Show that x(G) + x(G) > 2./n.

7. Let G = (V, E) be a graph of maximal degree 3. Show that for some partition
V = V,UV; hoth G{ V1] and G[ V3] consist of independent edges and vertices.

8. Let d, d; and o2 be nonnegative integers with & + d2 = d — 1. Prove that
if A(G) = d then the vertex set V((G) of G can be partitioned into two
classes, say V(G) = V| U V,, such that the graphs G; = G[V;] satisfy
A(G;)y < d;, i = 1, 2. [Hint. Consider a partition V (G) = V| UV, for which
d12(G2) + d2¢(G)) is minimal.]

9. (Exercise & contd.) Let now d, dy, d2, ..., d, be nonnegative integers with
¥ 1{d; + 1) = d + 1. Prove that if A(G) = d then there is a partition V(G) =
U7 V; such that the graphs G; = G[V;] satisfy A(G;) <d;,i=1,2,...,r.

10. Given natural numbers 7 and, 2r < ¢, the Kneser graph K" is constructed as
follows. Its vertex set is (7, the set of r-element subsets of T = {1,2,...,t},
and two vertices are joined iff they are disjoint subsets of 7. Fig. V.11 shows

K7, the so called Petersen graph. Prove that x (K) < 1—2r 42, x (kP =
3 and x(K’ézl) =4,

FIGURE V.11. The Petersen graph and the Grétzsch graph.
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11. Check that the Grérzsch graph, shown in Fig. V.11, has girth 4 and chromatic
number 4. Show that there is no graph of order 10 with girth at least 4 and
chromatic number 4.

124+ Try to construct a triangle-free graph of chromatic number 1526 without
looking at Chapters VI or VII

13 Show that there is a unique graph Gg of order n and size m = |n2/4] such
that if & is also of order n and size m then

PG(x) = pGy(x)
whenever x is sufficiently large.

14~ Find graphs G and H of order n and the same size such that x(G) < x(H)
but ps(x) < pa(x) if x is suffictently large.

15F Given a connected graph G containing at least one cycle, define a graph H on
the set § of all spanning trees of G by joining Ty to T iff |E(T)\ E()| = 1.
(Cf. simple transforms of an x-path in Section IV. 3.) Imitate the proof of the
fact that py(x) is a polynomial (Theorem 4) and the proof suggested in
Exercise 12 to show that A 15 not only Hamiltonian, but every edge of it is
contained in a Hamilton cycle.

16. Let x be a vertex of a graph G and, for r > 0, let G, be the subgraph of
¢ induced by the vertices at distance r from x. (Thus G, is the ‘sphere’ of
radius r about x.} Show that x (G) is at most x{G,) + x(G,+) for some r.

17} Recall from Chapter I that a graph G has a subgraph contractible to a graph 4

with vertex set {y|, ..., y¢} if & contains vertex disjoint connected subgraphs
G1, ..., Gi such that, for § 3 j, there is an edge y;y; € E(H) iff G hasa
C,;—G; edge; in notation, G > Hor H < G.
Prove that for every natural number p thete 15 a minimal integer c(p) such that
every graph with chromatic number at least c{ p) has a subgraph contractible to
K p. By making use of the result in the previous exercise, show that c(1) = 1,
c(y=2andcin+ 1) < 2c(n)— 1 forn > 2.

18 Hadwiger's conjecture states that c(p) = p forevery p. Prove this for p < 4.

19. Can you show that for every p > 1 there is an Integer 3(p} such that every
graph of minimal degree at least 5(p) is contractible to X,?

20. Let G be obtained from a 3-connected graph by adding to it a vertex x and 3
edgcs incident with x. Show that G is contractible to K¢, that is, to a complete

graph of order 5 from which an edge has been deleted.

21. Prove that if x(G) = 5 then cither K5 < G or K < G — x for every
x € V(G).

22. Show that the truth of Hadwiger's conjecture for p = 5 implies the four
colour theorem.
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23. Show that a planar map M = M((G) can be 2-coloured iff every vertex of &
has even degree. {Hint. If every vertex of G has even degree then G is a union
of edge-disjoint cycles. For another solution, apply induction on the number
of edges, and delete the edges of a cycle forming the boundary of a face of

M(G).]

24~ Let M = M{G) be a triangular map, that 15, a map in which every country
has three sides, Show that M is 3-colourable unless & = K.

257 Prove that a map M = M(G) is 4-colourable if G has a Hamilion cycle.

267" For each plane graph & construct a cubic plane graph H such that if M (H)
is 4-colourable then so is M((5).

277 According to Tait's conjecture every 3-connected cubic plane graph has
a Hamilton cycle. (1) Show that Tait’s conjecture implies the four colour
theorem. (it) By examining the graph in Fig. V.12 disprove Tait’s conjecture.

FIGURE V.12, Tutte’s counterexample to Tait’s conjecture.

281 Let G be a cubic plane graph. Show that G is 3-edge-colourable iff M(G) is
4-colourable. [Hint. Let 1, a, b and ¢ be the elements of the Klein four-group
Cy % C3, 5o that a2 = »* = ¢? = 1. Colour the edges with a, b and ¢, and
the countries with 1, g, b and ¢.]

29, Find the edge chromatic number of K.

30.~ Show that every cubic Hamiltonian graph has at least three Hamilton cycles.

31. Suppose the cubic graph G has exactly one edge-colouring with x'(G)
colours, up to a permutation of the colours, Show that x'(G) = 3 and that G

has exactly 3 Hamilton cycles.

32F Let P,; be obtained from two vertex-disjoint a-cycles, vivy--- v, and
W w2 - - uy,, say, by joining v; to w;4s, with suffices computed modulo
n. Show that Py, is uniguely 3-edge-colourable (cf. Exercise 31); that is,
up to a permutation of the colours it has a unique 3-edge-colouring. Show
also that if n > 2 then Pg,3.2 is not uniquely 3-edge-colourable, and it has
exactly three Hamilton cycles.
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33. Let n = 27, Show that .. is not the union of p bipartite graphs but K, 1s.
Deduce that if there are 27 + 1 pomnts in the plane then some three of them
determine an angle of size at least n (1 — (1/p)).

34, Let x(G) = k. What is the minimal number of r-chromatic graphs whose
union is G?

357 Show that a k-chromatic graph can be oriented in such a way that a longest
directed path has k vertices.

36. Prove the following theorem of Roy and Gallai. If 2 graph G can be oriented in
such a way that no directed path contains more than k vertices then x (G) < k.
[£int. Omit a minimal set of edges to destroy all directed cycles. For a vertex
x let ¢{x) be the maximal number of vertices on a directed path in the new
graph starting at x. Check that ¢ 15 a proper colouring.}

37. Let G be a graph of maximal degree at most 2, without a triangle and without
three independent edges, such that for any two vertices there is an edge
incident with neither of them. Show that G = C5 U K, _s.

38. A graph G is said 10 be k-critical if x(G) = k and x(H) < k for every
proper subgraph H of . Note that X is the only 2-critical graph and the
odd cycles are the only 3-cnifical graphs. Show that if G # K}, is k-critical
then |G| > k + 2. Deduce from the previous exercise that if G is a k-critical
graph with £ 4+ 2 vertices then k > 3 and G = Cs + Kj_3. In particular,
e(G) = (*33) - 5.

39, Let G| and G be vertex disjoint graphs, containing edges x; yy € E£((}) and
xayy € E{G). The Hajos sum G = (G1, x1y1) + (G2, x2y2) of the pairs
(G, x1y;) and (Gq, x2y2) is obtained from Gy U G by identifying x; and
x3, deleting the edges x|, x2y2, and adding the edge y\v2 (see Fig.V.13).
Check that x(G) > min{x (G1), x(G2)}. [In fact, Hajés proved in 1961 that
{G : x(G) = k} is precisely the smallest class of graphs containing K, that
is closed under Hajés sums and the trivial operations of adding edges and
identifying non-adjacent vertices.}

x| X, X ™ X

Y Y2 » J’z

FIGURE V.13. The Hajos sum (G, x1y1) + (G2, 42y1) of a wheel and a complete graph.

40F (Exercise 39 contd.) Let H. be the smallest collection of (isomorphism classes
of) graphs such that (1) Kx € Mg, (2)if H € Hy and G D H then G € H,,
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(3) if H € H; and G is obtained from # by identifying two nonadjacent
vertices, then G € My, (4) if G, G2 € ‘H and G is the Hajos sum of G
and G2 then G € H;. Prove that H; is precisely the class G; of graphs of
chromatic number at least k. [Hint. The result in Exercise 39 implies that
Hy C Gy, Assume that the converse inclusion is false and let G € G \ Hy
be a counterexample of minimal order and maximal size. Then G cannot
be a complete g-partite graph, so it contains vertices a, #; and & such that
by e (GYbutakb),aby € E(G).1et Gy = G + ab) and G2 = G + ab;.
Then G and G are not counterexamples so belong to Hg. Find out how G
can be obtained from copies of G and (77 by the allowed operations.]

(Exercises 39 and 40 contd.) Show that, for £ = 3, the Hajds sum of two
k-critical graphs is again &-critical.

Show that, for & > 3 and € > |, there is a k-critical graph of order n =
(k — 1)¢ + 1 and size £(5) — 1.

Show that a 4-critical graph with 7 vertices has at least 11 edges, and this
bound is best possible.

Let & be a natural number. Prove that an infinite graph is Z-colourable iff every
finite subgraph of it is. [Hint. Apply Tychonov’s theorem as in Exercise I11.31.]

Check that the chromatic polynomial of a tree 1" of order » is
prix)y=x(x—1yL
Deduce that the chromatic pelynomial of a forest F of order # and s51ze m is
priy =x"""(x — )7,
Use Coroliary 6 to deduce the same assertion.
Let e be a bridge of a graph G. Show that pg(x) = =t-3:--1,a.'.v.;;,,,gn:,’.yc).
Let G be a connected graph with blocks B;, Ba, ..., By. Show that

£
pox) =" T pa, ().

i=l
Let G = Gy UGy, with H = G N G3 being a complete graph K. Show that

PG, {x) pG,(x) _ PG, (X} pG,(x)
(x)s pulxy

pelx) =

Show that if G is a connected graph of order # then (— 1~ ! pg(x) > 0 for
alx, 0 «x < 1.
Show that | pg{—1)] is the number of acyclic orientations of G.

Let us assign a list L(x) of two colours to every vertex x of an odd cycle. Show
that there is an L-colouring unless we assign the same set to every veriex.

Check that Theorem 14 holds for bipartite multigraphs as well.

. —men— - ra—— e -
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A graph is said to be triangulated if every cycle of length at least 4 has a
diagonal, that 1s, if the graph contains no induced cycle of leagth at least 4.
Show that a connected graph & is triangulated iff whenever § 15 2 minimal
set of vertices such that & \ § is disconnected then G[S] 1s complete.

A vertex whose neighbours induce a complete graph is said to be simplicial.
Show that every non-empty triangulated graph has at [east two simplicial ver-
tices. Deduce that a graph G is triangulated iff its vertices have an enumneratjon
X}, X2, ..., xn such that each x; is a simplicial vertex of G[{x;, ..., xx}l.

55 An interval graph has vertex set {1}, ..., I}, where each 1, is an interval

56.

[a;. &} C R, and two Intervals {; and /4 are adjacent If they meet. Show that
every interval graph is triangulated, and its complement is a comparability
graph.

Without making use of the perfect graph theorem, show that interval graphs
and their complements are perfect.

Given a permutation w of [#] = {1,2,..., n}, the permutation graph G(m)
has vertex set {n], with ij an edge if w switches the order of i and j. Thus,
fori < j, wejoini to j iff m(j) < = (). Without making use of the perfect
graph theorem, show that permutation graphs are perfect.

57F% To appreciate the depth of Theorem 14, try to give a direct proof of the

58.

59,

assertion that the list-chromatic index of the complete k by k hipartite graph
is k. If you fail (and it would be a wonderful achievement if you did not), try
to prove it fork = 2, 3 and 4.

Griinbaum conjectured in {970 that forallk > 2and g > 3therearc (&, k. g}-
graphs, that is, k-chromatic k-regular graphs of girth at kcast g. Show that the
graph in Fig. V.14, constructed by Brinkman, 1s a (4, 4, 5)-graph.

Fill in the details in the proof of Theorem 10.

FIGURE V.14, The Brinkman graph.
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60. Let n > 4. Show that if K, triangulatcs a closed surface then n # 2
(mod 3}. Deduce the converse from the Ringel-Youngs theorem, namely that
s{M) — h(x) = (T + /49 ~ 24x) /2] for every closed surface M of Buler
characteristic y < 0.

61. Let G be a graph of order 2n such that for every § C V(G), the graph G — §
has at most |§| odd components. Show that x (G} < s, and we can have

equality foreveryn > 1.

62. Check from first principles that the complement of an odd cycle of length at
least 5 is imperfect.

637 For o, w > 2, call a graph G an («, w)-graph if it has aw + | vertices and for
every v € G the graph G — v can be partitioned 1nto « cliques, each of order @,
and also into @ independent sets, each with e vertices. Recalling that a graph
G 15 perfect ff every induced subgraph H C G satisfies (/[ < a(H )w(H),
show that every critically imperfect graph is an (t, w)-graph for some «,
w > 2.

64F Leta, w > 2 be integers, and let G be the (v — 1)st power of an (oew+ 1)-cycle
Cuwsi- Thus V(G)Y == Zgy | and i € E(G) if

FGy={ij: i—j=2£1%2,..., =lw~-1).
Show that G is an («, w)-graph. Is G critically imperfect?
65. Fork = 1, Iet Gy be the graph with vertex set
v=[2t+ 119 =(1,2,..., 2"+ 3P

in which {a, »} € V is joined to {b, ¢} € V whenevera < & < c. Thus Gy

k v
has (2 ;]) vertices and ¥ 2_g £(2% — £} edges. Prove that G, is triangle-free

and ¥ {(Gg) =k + L.

66. In 1947, Tutte constructed a sequence &3, Gy, ... of triangle-free graphs as
follows. Let &1 be an odd cycle with at least 5 vertices, Having constructed
G with ny vertices, set my = k(ng — 13+ 1 and gy = ('::)nk + my. Let
W be a set of my vertices, and for each & € W), je. cach ng-subset &
of W, let G4 be a copy of Gy, with the sets W and V(G,), & € W) all
disjoint. Let Gy be obtained from |_J, Go U W by adding, for each «, a
complete matching from o to V(G,). Thus [Gry1] = ngq). Show that each
(' is triangle-free and x (Gl = k.

67} Let G be the infinite graph whose vertex set is R? and in which two points
are joined if their distance is 1. Show that4 < x(G) < 7.

68 Show that the chromatic number of a triangle-free graph drawn on a surface
of Euler characteristic £ < 01s at most (5 + /25 — 16E)/2.
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69. Let & be a triangle-free graph with vertex set {x;, x2, ..., x,}. Construct a
graph G’ from G by adding to it » + 1 vertices, x}, x5, ..., 1, and ¥, and
joining each x! to the vertices in Cg(x;) U {¥}. (Thus x; ‘duplicates’ x;,
and y s joined to the other new vertices.) Show that G’ is triangle-free and
x (G} = x(G). Use this construction to exhibit triangle-free graphs (3, G4
and Gs, with x{(Gp) = k.

70. Let & be the graph of order 2n + 1 > 5 obtained from K, , by subdividing
an edge by a vertex. Show that x'(G) = A(G)+ 1 =n+1,but y' (G —¢) =
A(G — ¢) = n for every edge e of G.

71. Show that there is no plane graph G such that
(1} every face other than x| x3 - - - x¢ 15 a triangie,
(2} all degrees not on this face are even, and
(3) all degrees d(x1}, ..., d(xm—1} are odd, where m = (£/2}, and d(xp) is
odd iff £ is odd.

72. Let G be a triangulation of the plane, with all degrees even. Show that x (G) =
3. [Hint. Pick a vertex xi. Let V; be the smallest set of vertices such that
(1) xy € Vy,and (2) if x € V| and both xyz and x'yz are faces then x' € Vy.
Use the result in Exercise 71 to check that V| is an independent set. Clearly,
G — V) is a collection of even cycles.]

73. Let G be a cubic plane graph. Prove that the map M (G) is 3-colourable iff
each country has an even number of sides.

74. Show that the only vertex-critical 3-chromatic graphs are the odd cycles: if
x{(G) = 3 and x(G — x) = 2 for cvery vertex x then G = Cy 4 for some

k=1

75. Let G be the graph on Z)7 with i joined to j iff { — j € {£2, £6, 7, £8}.
Show that G is a vertex-critical 5-chromatic graph with acritical edge: x (G) =
5, x{(G ~ x) = 4 for every vertex x, and x {& — xy) = 5 forevery edge xy.

76" Prove that the chromatic number of a triangle-free graph of size m is at
most 2m'/3 4+ 1. [Hint, Apply induction on m, making use of Exercise 68 of

Chapter IV.]
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Vi
Ramsey Theory

In a party of six people there is always a group of three who either all know each
other or are all strangers to each other. If the edges of the complete graph on
an infinite set N are coloured red or blue then for some infinite set M C N all
the edges joining vertices of M get the same colour. Boih of these assertions arc
special cases of a theorem published by Ramsey in 1930. The original theorems of
Ramsey have been extended in many directions, resulting in what has come to be
called Ramsey theory: a rich theory expressing the deep mathematical principle,
vastly extending the pigeon-hoie principle, that no matter how we partition the
objects of a ‘large’ structure into a ‘few’ classes, one of these classes contains
a ‘large’ subsystem. While Dirichiet’s pigeon-hole principie guarantees that we
have ‘many’ objects in the same class, without any condition on their relationship
to each other, in Ramsey theory we look for a large substructure in the same class:
we do not only want infinitely many red edges, say, but we want all the edges
joining vertices of an infinite set to be red. Or, in the first example, we do not only
want three pairs of acquaintances, but we want these three acquaintances to *form
a triangle’, to be the three pairs of acquaintances belonging to three people.

The quintessential resuit of Ramsey theory dealing with richer mathematical
structures than graphs is van der Waerden’s theorem, predating the theorems of
Ramsey, which states that given & and p, if W is a large enough integer and we
partition the set of the first W natural numbers into k classes, then one of the
classes contains an arithmetic progression with p terms.

Ramsey theory is a large and beautiful area of combinatorics, in which a great
variety of techniques are used from many branches of mathematics, and whose
results are important not only in graph theory and combinatorics, but in set theory,
logic, analysis, algebra, and geometry as well. In order o demonstrate this, we
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shall go well beyond graph theory to present several striking and deep results, in-
cluding the Erd&s—Rado canonical theorein, extending Ramsey’s original theorein
to infinitely many colours; Shelah’s theorem, extending the Hales-Jewett theorem
(which itself extends van der Waerden’s theorem); and the theorems of Galvin,
Prikry, and Hindman about Ramsey properties of infinite sequences. Nevertheless,
we shal! hardly do more than scratch the surface of modern Ramsey theory.

VI.1 The Fundamental Ramsey Theorems

We shall consider partitions of the edges of graphs and hypergraphs. For the sake
of convenience a partition will be called a colouring, but one should bear in mind
that a colouring in this sense has nothing to do with the edge colourings considered
in Chapter V. Adjacent edges may have the same colour and, indeed, our aim is
to show that there are large subgraphs all of whose edges have the same colour.
In a 2-colouring we shall often choose red and blue as colours; a subgraph is red
(biue) if all its edges are red (blue).

As we shall see, given a natural number s, there 1s an integer R(s) such that
if 1 = R(s) then every colouring of the edges of K, with red and blue contains
either a red K; or a blue K,. The assertion about a party of six people claims
precisely that R(3) = 6 will do. In order to show the existence of R{s) in generai,
for any 5 and ¢, we define the Ramsey number R(s, t} as the smallest value of n for
which every red-blue colouring of K yields a red X or a blue X,. In particular,
R(s, t} = oo if there is no such n such that in every red-blue colouring of K,
there is ared K, or a blue X,. [tis obvious that

R(s, ) = R{z, 5)
for every s, t > 2 and
R(s, )= R(2, s} =y,
since in a red-blue colouring of K either there is a blue edge or ¢lse every edge is
red. The following result, due to Erdds and Szekeres, states that R(s, r) is finite
for every s and r, and at the same time it gives a bound on R{s, r). Although

qualitatively it is a special case of Ramsey’s original theorem, the bound it gives
is considerably better than that given by Ramsey.

Theorem 1 The function R(s, £} is finite for ail 5, = 2. [fs > 2and1 > 2 then

_ Ris, N <R(s—1. )+ R(s, 1) (L)
and
R(s, 1) < (““_’2). 2)
F—1

Proof. As we shall prove (1) and (2), it will follow that R(s, t) is finite.
(i) When proving 1) we may assume that R(s — 1, #) and R(s, 7 — 1) are finite,
Letn = R(s — 1, £) + R{(s, t — 1) and consider a colouring of the edges of K,
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with red and blue. We have to show that in this colouring there is either a red
K; or a blue K,. To this end, let x be a vertex of K. Since d(x) = n -1 =
R(s—1, £)+ R(s, t — 1} — 1, either there are at least n; = R(s — 1, ¢) red edges
incident with x or there are at least 15 = R(s, t — 1) blue edges incident with x.
By symmetry we may assume that the first case holds. Consider a subgraph K,
of K. spanned by n vertices joined to x by red edges. If X, has a blue X, we
are done. Otherwise, by the definition of R(s — 1, 1), the graph K,;; contains a red
K;.1 which forms a red K; with x.

(i) Inequality (2) holds if s = 2 or t = 2 (in fact, we have equality since
R(s, 2) = R(2, 5) = 5). Assume now that s > 2, ¢ > 2 and (2) holds for every
pair (s, t'} with 2 < 5 + ' < 5 4+ ¢. Then by (1) we have

R(s, ) <R(s—~1, 0+ R, 1t-1)
< s+r—3 + s4t-3 — s+r—2. 0
§—2 s—1 s—1

It is customary to distinguish diagonal Ramsey numbers R(s) = R(s, 5) and
off-diagonal Ramsey numbers R(s, 1), s 5 t. It 1s not surprising that the diagonal
Ramsey numbers are of greatest interest, and they are also the hardest o estimate.
Re calling that a graph is (rivial if it is either complete or empty, the diagonal
Ramsey number R(s) is the minimal integer n such that every graph of order n

has a trivial subgraph of order s.
We see from Theorem 1 that

R(s) < (

_ 252
28 2) < 2 3)

7
Although the procf above is very simple, the bourd (3) was hardly improved for
over 50 years. The best improvernent is due to Thomason, who in 1988 proved
that

5 —1

2
R(s) < ZT (4)

if s is Targe. Although the improvement over (3) is small, this is a hard resuit,
and we shall not prove it. In Chapter VII we shall show that R(s) does grow
exponentially: R(s) > 2°/2. It is widely believed that there is a constant ¢, perhaps
even ¢ = 1, such that

R'(S:] — 2({.'—'-0(‘].”3‘

but this is very far from being proved.

The result easily extends to colourings with any finite number of colours: given
k and 51,52, ..., 5, if n is sufficiently large, then every colouring of K, with
k colours is such that for some {, 1 < i < k, there is a K, coloured with the
i th colour. (The minimal value of n for which this holds is usually denoted by
Ri(51, ..., 5).) Indeed, if we know this for & — 1 colours, then in a &-colounng
of K, we replace the first two colours by a new colour, If r is sufficiently large
(dependingon sy, 52, .. ., 5 ) then either there is a K, coloured with the i thcolour
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forsome i, 3 <i < k, orelse form = R{sy, 57) there is a K, coloured with the
new colour. In other words, in the original colouring this X, is coloured with the
first two (original) colours. In the first case we are home, and in the second, for
i = 1 or2 wecan find a K;; tn X, coloured with the i th colour. This shows that

Ri(si, ..., 5k) = Re1(R(s(, 52), 53, ..., 5%)-

In fact, Theorem | also extends (o hypergraphs, that is, to colourings of the set
X of all r-tuples of a finite set X with & colours. This is one of the theorems
proved by Ramsey, We now turn our attention to this.

Denote by R\ (s, ) the minimal value of n for which every red—blue colouring
of X yields a red s-set or a blue ¢-set, provided that | X| = n. Of course, a set
Y < X is called red (blue) if every element of Y is red (blue). Note that
Ris, 1} = R¥{(s, 1). As in the case of Theorem 1, the next result not only
guarantees that RUMs, 1)y is finite for all values of the parameters (which 1s
certainly not at all obvious at first), but also gives an upper bound on R\(s, 1).
The proof 1s an almost exact replica of the proof of Theorem 1. Note that if
r > min{s, t} then RV (s, t} = min{s, ¢}, and if r = 5 < ¢ then R (s, ) = 1.

Theorem 2 Let 1 < r < min{s, t}. Then RV (s, #) is finite and
RO(s, 1) < RED (RV (s =1, 1), R (s, 1 - 1)) +1.

Proof. Both assertions follow immediately if we prove the inequality under the
assumption that R~V (u, v) is tinite for afl u, v, and both R (s — 1, ¢) and
R¢s, ¢ — 1) are also finite.

Let X be aset with RU"(R (s — 1, 1), R (s, £ — 1)} + 1 elements. Given
any red—blue colouring ¢ of X7, pick an x € X and define a red-blue colouring
¢’ of the (r — 1)-sets of ¥ = X — {x} by colouring & € Y“~U the colour of
o U{x} € X, By the definition of the function R"~D(k, v) we may assume
that ¥ has a red subset Z (for ¢’} with RU2 (s — I, ¢} elements.

Now let us look at the restriction of ¢ to Z¢7, If it has a blue -set, we are done,
since ZU ¢ X7 50 a blue 1-set of Z is certainly also a blue £-set of X. On the
other hand, if there is no blue t-set of Z then there is a red (5 — 1}-set. The union
of this red (5 — 1)-set with {x} is then a red s-set of X, because {x} U g is red for
every o € Z¥D, 0

It is easily seen that Theorem 2 and the colour-grouping argument described
after Theorem 1 imply the following assertion. Given r and 51, 53, . . ., 5%, then for
large enough | X | every colouring of X with k colours is such that for some i,
| < i<k, thereisasetS; C X, |5/ = 5, all of whose r-sets have colour i. The

smallest vaiue of | X| for which this is true is denoted by Rf) (51,32, ..., 5;); thus
RU(s, 8y = R (s, 1) and Rels1, 52, ..., 5) = RP(s1, 52, ..., 5). The upper

bound for R,E”(s;, $2, ..., 8¢} implied (via colour-grouping) by Theorem 2 is not
very good. Imitating the proof of Theorem 1 one arrives at a better upper bound
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(cf. Exercise B8):

RV (st 52,050 < RVTVR (51 = 1,52, s
RO Gu e sien s — 1) + 1

Very few of the nontrivial Ramsey numbers are known, even in the case r =
2. It is easily seen that R(3, 3) = 6, and with some work one can show that
R(3, 4 =9 R3,5 =14, R3,6)= 18 R(3, 7) =23 and R(4, 4) = 18.
Considcrably morc effort is needed to prove that 8(3, 8) = 28 and R(3, 9) = 36.
Furthermore, McKay and Radziszowski proved in 1995 that 8(4, 5} = 25. These
are the only known two-colour Ramsey numbers. For the other ones, all that is
known are bounds, as shown in Tahle V1. 1. The proofs of many of these bounds
needed a surprising amount of ingenuity, work and computing time.

At first sight, the paucity of exact Ramsey numbers may well seem surprising.
However, there are many reasons why it is unlikely that a large Ramsey number,
like R(6, 6}, will ever be determined. The two-colourings of K, without large
monochromatic complete subgraphs lack order: they look as if they had been
chosen at random. This apparent disorder makes it highly unlikely that a simple
induction argument will give a tight upper bound for R(s, t}. On the other hand,
a head-on attack by computers is also doomed to failure, even for R(5, 5). For
example, if all we want to prove is that 48 is an vpper bound for R(5, 5}, we
have to examine over 2'%% graphs of order 48: a task well beyond the power of
computers.

It is not too easy to prove general lower bounds for Ramsey numbers either. As
the colourings without large complete monochromatic subgraphs are ‘disorderly’,
it is not surprising that random methods can be used to give fairly good lower
bounds. In Chapter VII we shall show some beautiful examples of this.

As it is very difficult to find good estimates for R(s,f) as 5,f — 00, it is not
surprising that very few fast-growing Ramsey functions have been determined
exactly. In fact, ErdGs and Szekeres proved that the right-hand side of (2) is
exactly 1 smaller than the value of a natural Ramsey function. In order to present
this result, we introduce some terminology. Call a set § ¢ R? non-degenerate if
any two points of it have different x coordinates. A k-cup, or a convex k-set, is a

non-degenerate set of k points of the form {(x;, A(x;}) : i = 1,...,k}, where h
is a convex function. Writing s(p, p") = (¥ — ¥)/(x — x’) for the siope of the
line through the points p = (x, y) and p' = (', ), if K = {py, ..., pr} with

pi=(xi, ¥ x1 < - <xp, then Kisak-cupiff s(pr, p2) £ 5(p2. p3) =--- <
s{pi_1. pi). An £-cap, or a concave £-set, is defined analogously.

Here is then the beautiful result of Erdds and Szckeres about £-cups and £-caps.
The first part was published in 1935, the second in 1960.

Theorem 3 Fork, £ > 2, every non-degenerate set of (tﬁ?) + | points contains

a k-cup or an £-cap. Also, for all k, £ > 2, there is a non-degenerate set Sy ¢ of
(kj{'f;d) points that contains neither a k-cup nor an £-cap.
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Proof. Let us wnite ¢ (k, £) for the binomial coefficient (“1’5’2'4).

(1) We shall prove by induction on & + £ that every non-degenerate set of
¢k, £) + 1 points contains a k-cup or an £-cap. Since a non-degencrate set
of 2 points i1s both a 2-cup and a 2-cap, this is clear if min{k, £} = 2, since
Pk, 2y =¢(2, L) = 1forallk, £ > 2. Suppose then that £, £ > 3 and the assertion
holds for smaller values of k+ £, Let 5 be anon-degenerate set of ¢(k, £)+ 1 points
and suppose that, contrary to the assertion, S contains neither a k-cup nor an £-cap.
Let L ¢ S be the set of [ast points of (kK — 1)-cups. Then S\ L has neithera (k — 1)-
cup nor an £-cap sa, by the induction hypothesis, |S\L| < ¢(k — 1, £). Therefore
L] = @k, &) + 1 — p(k — 1,£) = ¢k, £ — 1) + | s0, again by the induction

hypothesis, L contains an (£ — I)-cap, say {q1, ..., g¢—1}, with first point our set
Scontains gy, Since gy € L,a(k—1)-cup{p;, ..., pi—1}, whose last point, p;_|,
is precisely q;. Now, ff s{pi—2. pe_1) < s(pe—1,q2) then {py,..., pi—1. 92} is
a k-cup. Otherwise, s{px—2.491) > s{g1, g2}, 50 {Pa—2. 41, ..., ge—y] 15 an £-cup.

This contradiction completes the proof of the induction step, and we are done.

(11) We shall construct 83 ¢ also be induction on £ + £. In fact, we shall construct
Sk.¢ in the form {(f, yi) : 1 <i < ¢k, £)].

If min{k, £} = 2 then ¢(k, £) == 1 and we may take S; ; = {{1, 0)}. Suppose
then that k, £ > 3 and we have constructed Sy ; for smaller values of & + £.
Set ¥ = S11¢6. Z = Sge-1.m =@k —~1,€yand n = @k, £ — 1), so that
Y = {(i,y) : 1 € < m} contains neither a (k — 1)-cup nor an £-cap, and
Z = {{i,zi) : | <i < n}contains neither a k-cup nor an (¢ — 1)-cup.

Forz > 0,set Y& = {(f. ey 11 <i < m}and Z¥ = {(m + {,m + £2;);
1 =i < n}. Now, if £ > 0 is small enough then every line through two points of
Y ) goes helow the entire set Z'*?, and every line through two points of Z*} goes
above the entire set Y{). Hence, in this case, every cup meeting Z¥ in at least
two points is entirely in Z*?, and every cup meeting Y} in at least two points is
entirely in ¥ . But then Y U Z®) will do for S ¢ since it continues neither a
k-cup nor an £-cup. |

As an easy consequence of Theorem 3, we see that every set of (5 ,) + 1
points in the plane in general position contains the vertices of some convex -
gon, In 1935, Erdds and Szekeres conjectured that, in fact, every set of 28241
points in general position contains a convex X-gon. [t does not seem likely that
the conjecture will be proved in the near future, but it 1s known that, if true, the
conjecture is best possible (see Exercise 23).

After this brief diversion, let us return to hypergraphs. Theorem 2 implies that
every red—blue colouring of the r-tuples of the natural numbers contains arbitrarily
large monochromatic subsets; a subset is monochromatic if its r-tuples have the
same colour. Ramsey proved that, in fact, we can find an infinite monochromatic
set.

Theorem 4 let |1 <r < oocandletc: AV — [k] = {1,2,...,k} be a k-
colouring of the r-tuples of an infinite set A, Then A contains a monochromatic
infinite set.
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TABLE V1.1, Some values and bouads for two colour Ramsey nurnbers.

Proof. We apply induction on r. Note that the result is trivial for r = 1, so we
may assume that r > | and the theorem holds for smaller values of r.

Put Ap = A and pick an element x; € Ap. As in the proof of Theorem 2,
define a a colouring ¢ : B{erl} — [k] of the (r - 1)-tuples of By = Ag — [x1}
by putting ¢|{z)} = c{r U {x}), 7 € B]("-”. By the induction hypothesis B
contains an infinite set A; all of whose (r — 1)-tuples have the same colour, say
dy, where d) € {1,....k}. Let now xp € A;, B2 = Aj; — {x3} and define a
k-colouring ¢z : Bg'“ — [k] by putting c2(t) = c(r U {x3}). T € Bé'_l). Then
B has an infinite set A all of whose (r — 1)-tuples have the same colour, say
d>. Continuing in this way we obtain an infinite sequence of elements: x, xa, .. .,
an infinite sequence of colours: di, da, ..., and an mfinite nested sequence of
sets: Apg D Ay D Ay D -, suchthatx; € A;_[,and for/ = 0, 1,.. ., all »-
tuples whose only element outside A; is x; have the same colour d;. The infinite

sequence {dp}]° must take at least one of the k values 1, 2, ..., k infinitely often,
say d = dy—t = dn, = .. .. Then, by the construction, each r-tuple of the infinite
set [x,, Xpy, ...} has colour d. O

1n some cases it is more convenient to apply the following version of Theorem 4.
As usual, the set of natural numbers is denoted by N.

Theorem 5 For each r € N, colour the set NV of r-tuples of N with k. colours,
where k. € N. Then there is an infinite set M C N such that for every r any two
r-tuples of M have the same colour, provided their minimal elements are not less
than the r'™ element of M.

Proof Put Mp = N. Having chosen infinite sets Mp > --- O M,_1, let M, be
an infinite subset of M, such that all the r-tuples of M, have the same colour.
This way we obtain an infinite nested scquence of infinite sets: Mg D My D .-,
Pickay € My,az € My —(1,....ay}, a3 € My — {l,... a3}, etc. Clearly,
M = {ap, a3, ...} has the required properties. 1
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it is interesting to note that Ramsey’s theorem for infinite sets, Theorem 3,
easily implies the corresponding result for finite sets, although il fails to give
hounds on the numbers B} (51, 52, ..., sz ). To sce this, all one needs is a simple
compactness argument, a special case of Tychonov's theorem that the product of
compact spaces is compacl.

We have already formulated this (see Exercise II1.30) but here we spell it out

again in a convenient form.

Theorem 6 Let v and k be natural numbers, and for every n > |, let Cy, be
a non-empty set of k-colourings of [n}'") such that if n < m and cm € Cm
then the restriction ¢ of co 1o (1] belongs to Cy. Then there is a colouring
¢+ N s (k] such that, for every n, the restriction ¢ of ¢ to [n]" belongs to
Co

Proof. For m > n, write Cp . for the set of colourings [n]" — k] that
are restrictions of colourings in Cp. Then Cymst € Cam C C, and so
Co = (1 pe1 Cam # @ for every n, since each Cp is finite, Let ¢, € Cr,
and pick ¢,41 € Crets €143 € Cry2, and so on, such that each is in the preimage

of the previous one; ¢, = cﬁ]. Finally, define ¢ : N7 —» [k} by setting, for
p € NO,

c(p) = ealp) = cpert(P) =+,
where n = max p. This colouring ¢ Is as required. O

[.et us see then that Theorem 5 implies that R (51, 57, ..., sx) exists, Indeed,
otherwise for every n there 1s a colouring [1)¥) — [k] such that, for each i, there
is no s;-sel all of whose r-sets have colour . Writing C, for the set of all such
colourings, we see that C, 5 @ and C,.m C G, for all n < m, where 4 15 a3
in the proof of Theorem 5. But then there is a colouring ¢ : N — [k} such
that every monochromatic set has fewer than s = max §; elements, contradicting

Theorem 4.
To conclude (his section, we point out a fascinating phenornenon. First, let us

see an extension of the fact that R}i’}(ﬂ s ... k) EXISES.

Theorem7 Letr, k and s > 2. If n is sufficiently large then for every k-colouring
of [n]V ) there is a monochromatic set § C [n] such that

|S] > max{s, min S}.

Proof. Suppose that there is no such #, that is, for every  there is a colouring
[n]"} — [k] without an appropriate monochromatic set. Let C, be the set of all
such colourings. ThenC, # # and, in the earlier notation, Cp m C Cy foralln < m.
But then there is a colouring ¢ : N — [k} such that its restriction " 1o [n]"
belongs to C. Now, by Theorem 4, there is an infinite monochromatic set M C N.
Set m = min M, ¢ = max{m, s}, and let S consist of the first 1 elements of M.
Then, with n = max $, the colouring ¢ does have an appropriate monochromatic
set, namely §, contradicting c®ec,. 17
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This is a beautiful result but it is not too unexpected. What is surprising and
deep is that, as proved by Paris and Harrington in 1977, although Theorem 8
is a (fairly simple) assertion concerning finite sets, it cannot be deduced from
the Peanc axioms, that is, it cannot be proved within the theory of finile sets.
In other words, we actually need the notion of a finite set to prove Theorem 7.
This theorem of Paris and Harrington became the starting point of an active area
connecting combinatorics and logic.

As this is a book on graph theory, we cannot digress too far into logic, so let
us return to graphs. Let R*(5) be the minimal integer n such that for every two-
colouring of [n]?? there is a monochromatic set § C {n] with |S| > max{s, |5|}.
Thus R*(s) is the minimal value of n such that for every graph & with vertex set
|n] there is a set § C [r] with |S| = max{s, [S[} such that G[S] is trivial, that is,
either complete or empty. We know from Theorem 7 that R*(s) exists. Clearly,
R*(s) = R(s) but, not surprisingly, R*(s5) is of a greater order of magnitude
than R(s): it turns out that there are positive constants ¢ and d such that 227«

R*(s) < 22%.

VI.2 Canonical Ramsey Theorems

Can anything significant be said about colourings of N} with infinitely many
colours? Can we guarantee that there is an infinite set M C N such that on
M7 our colouring is particularly *nice’7 In 1950, Erdds and Rado proved that,
unexpectedly, this is precisely the case.

In what follows, M, N, M, N1, ... denote countable infinjte sets, and r, 5, ...

are natural numbers.
We call two colourings ¢ : Nf'} — Crandcy : N — €, equivalent if there

is a 1-to-1 map ¢ of Ny onto N2 suchthatfor p, p° € N](') we have ¢1{(p) = ¢1(p")
if and only if c2{¢ (p}) = c2(¢ ("))

In an ideal world, for every colouring of N (with any number of colours)
there would be an infinite set M C N on which the colouring is equivalent to one
of finitely many colourings. Surprisingly, even more is true.

Call a colouring ¢ : N — C irreducible if for every infinite subset Ny of
N, the restriction of ¢ to NI(') is equivalent to c. Also, call a set C of colourings
N{) — N unavoidabie if for every colouring ¢ of N there is an infinite set
M ¢ N such that the restriction of ¢ to M{") is equivalent to a member of C. Erdds
and Rado proved that for every r there is a finite unavoidable family of irreducible
colourings,

What are examples of irreducible colourings of N7 Two constructions spring
to mind: a monochromatic colouring, in which all r-sets get the same colour,
and an all-distinct colouring, in which no two sets get the same colour. After a
moment’s thought, we can construct more irreducible colourings. Given ¥ C N,
o ={ar,--,a)eN a <«...<a,andSClr]l=[1,...,r}|S] =5, set
ws = |a; 1 i € §}. Define the $-canonical colouring ¢ : N7 — N9, by sciting
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cs{a) = as. Thus we are colouring the elements of N7 with s-sets, and two r-sets
get the same colour iff their { th elements coincide for i € § and are different for
i & 8. Itis casily seen (see Exercise 29) that cg is an irteducible colouring for every
S < [r]; also, these colourings include the two irreducible colourings mentioned
above: cp is a monochromatic colouring and ¢, is an ali-distinct colouring.

Clearly, for S # §’ the colourings cs and cg of N are not equivalent, so N\
has at least 2" ireducible colourings, namely the 2" canonical coloyrings. As we
shall see, there are no cther irreducible colourings. At first sight this might be rather
surprising since a canonical colouring of N depends on the order of elements
of N. To resolve this ‘paradox’, note that if {a;,az,...} and {b), b2, ...} are
two enumerations of /¥ then there are subsequences ag,, Gk;, ... and by, by,, .. .,
ky <ky <---, 01 <l <--.,suchthata; = by, foreveryi.

Before we turn to the resuits, Jet us introduce a concept similar to the equivalence
of colourings, but taking into account the order on the underlying set, Let ¢ :
NY — Cand T, U € N¥ for some ¢ > r. Also, let ¢ : T — U be the unique
order-preserving map from T onto {7, The scts T and U/ are said to have the same
pattern (with respect to ¢) if for p, p’ € T we have c(p) = ¢(p’) if, and only
if, e{¢(p}) = c(¢(p’)). Note that the number of patterns of r-sets is precisely the

number of partitions of () distinguishable objects; clearly, (1) G) is a crude upper
bound for this number.

After all this preparation, let us prove the Erdés—Rado canontcal theorem for
graphs, that is, for » = 2. Note that for every infinite set N C N there are four
canonical colourings of N@, In the B-canonical colouring of N?, all edges have
the same colour, in the {1, 2}-canonical colouring all edges have distinct colours,
in the {1}-canonical colouring two edges have the same colour iff their first vertices
coincide, and in the {2)-canonical colouring two edges have the same colour iff

their second vertices coincide.

Theorem 8 For every colouring ¢ : N9 — N there is an infinite subset M of N
such that the restriction of ¢ to MY is canonical.

Proof As there are only finitcly many patterns for the colourings of [4]®, we
may apply Ramsey's theorem for infinite sets, obtaining an infinite set M < N
such that all 4-sets of M have the same pattern sr. We claim that this set M will do.

Let M = {m|.m2,---}, where m; < m3 < .... Since all 4-sets have the same
pattern, for any two edges m;m; and mym;, the colours e{m;m;) and c(mim;) do
or do not coincide, according to the relative position of the pairs /j and &/ in the
set {i, j, k,!}. For example, 25 and 57 have the same relative position as 36 and
67, similarly, 38 and 46 have the samc position as 29 and 78.

After these observations, let us prove that the restriction of cto M 2 is canonical.
With a slight abuse of notation, from now on write ¢ for the restriction of ¢ to M2,
We may assume that ¢ # ¢(1.2}, that is, M* has two edges of the same colour:
say c(mjm;) = c(mgmp), where m;  (m;, my}. Note that we do not (and can not)
assume that i < jori > j. Butthen c(mymz;) = cimymy) = clmaiima;)
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so M@ has two adjacent edges of the same colour. Let us distinguish three cases
according to the positions of these adjacent edges, and see what we can deduce.

(i) Suppose first that c(m;m;) = c(m;my) for some i « j < k. Then, by
considering the 4-set {m;, m;, mi, myy |}, we see thatin the pattern 7 the edges 12
and 13 get the same colour. But then any two edges sharing their first vertices have
the same colour, since if r < 5 < # then the restriction of cto {m,, my, m,, n,y (}@
shows that c(m,m;) = c(m,m,). This means that there is a colouringd : M — N
such that for r < s we have c(m,m;) = d(m,).

(ii) Suppose nextthat c(m;my) = c(m;m;) forsome i < j < k. Then, stmilarly,
therc is amap ¢ : M — N such that c(m,m;) = e(m;} if r < s.

(ii1) Finally suppose that e(m;m;} = c(m;my) for some § < j < k. Then
cim,m;} = c(mem,) for all r < 5 < . Hence c{mma) = clmims) =
c(mams) = c(msmy4), say, so there are edges of the same colovr sharing their
second vertices. Therefore, there are maps d : M ~— Nand e : M ~> N such that
if i < j then c{mim;) = d{m;} = e(m;). But then any two edges of M'? have
the same colour, so ¢ = ¢g.

What we have seen so far 1s that if (iit) holds then we are done. In fact, 1t is very
easy to complete the proof in the case when (iii} does not hold. Indeed, if (i) holds
but (iii} does not then d(m;} # d(m;) for alli # j, so ¢ = c(1y, and if (ii) holds
but (iii) does not then e(m;} # e(m;) fori # j,soc = cy). O

As it happens, the proof of the full Erdds—Rado canonical theorem is hardly
more complicated than the proof above.

Theorem 9 Let r be a positive integer and ¢ : N — N a colouring. Then there
is an infinite subset M of N such that the restriction of ¢ to MY is canonical,

Proof. Let us apply induction on r. For r = 1 there is nothing to prove, so suppose
that 7 > 2 and the theorem holds for smaller values of r. Given ¢ : N — N,
colour each T &€ N@) with the pattern of the restriction of ¢ to T, As there are
only finitely many patterns, there is an infinite set N C N such that all 2r-subsets
of N have the same pattern . In order to simplify the notation, we assume that
N = N: all this amounts to is an appropriate relabelling.

If no two r-subsets of N have the same colour then we are dome: ¢ =
crr). Therefore we may assume that c¢(p) = c(g) for some g,0 € N
p Fo,say p = {at,...,a,}and ¢ = {b1,.... b}, where a1 < -+ < a;
and by < -+ < b,. A5 p # o, there is an element b; € o\p. Note
that all the sets po = {2a1,2a3,....2a}, o7 = {2b1,2b2,...,2b,} and
o == {2b1,2b3, ..., 2b;1,2b; — 1,261, ..., 2b,} get the same colour. Indeed,
oo U ay| = jppUoa| = u,say,sotherearesets 71, 73 € N2 such that pg U o
is the set of the first # elements of T, and pg U o is the set of the first # elements
of 15. As T](r) has pattern 7, we have c(pg) = c{o), and as T;r) has pattern ,
we have c(pg) = c(o2).

Now, since o and o7 get the same colour, any two r-subsets of ¥ differing only
in the £ th place also get the same colour: if 7, T € N) and 71)_jj) = 7, _;y then
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¢(t) = c(r’), that is,the colour of T € N depends only on 1(,;—(;). This enables
us 1o define a colouring ¢’ : NC— 1) — N U (oo} as follows: for v € NU 1) set
&(v) = (1) if v = jp )=y for some T € N and ¢’ (v) = oo otherwise.

By the induction hypothesis, there is an infinite set M C N such that ¢’ is
canonical on M= Then ¢'(v) # oo for v € MU~V and ¢ is a canonical
colouring of M), |

As an amusing point, note that Theorem 9 is clearly stronger than Theorem 4
since for an infinite set M C N the only canonical colouring of M that uses
finitely many colours is ¢y, the canonical colouring using enly one calour.

V1.3 Ramsey Theory For Graphs

Let A and H; be arbitrary graphs. Given #, is it true that every red-blue colouring
of the edges of K, contains a red H| or a blue /27 Since f; 1s a subgraph of
K, . where 5; = |H;|, the answer is clearly “yes” if r > R(s1, 52). Let r(H), H2)
be the smallest value of » that will ensure an affirmative answer, and define
r(Hy, ..., Hg) analogously for £ colours. Note that this notation is similar to the
one introduced earlier: R(s\, 57) = r(K,, K,). Instead of a red-blue coleuring,
one frequently works with a graph and its complement: clearly, r(H;, Ha) — lis
the maximal value of n for which there is a graph G of order n such that H, & G
and o ¢ G.

The numbers r{H,, ..., Hy), called generalized Ramsey numbers or graphical
Ramsey numbers, have been the subject of much study, and by now there is a large
body of results about them, Nevertheless, there is a long way to go, which is not
surprising, since the generalized Ramsey numbers include the classical Ramsey
numbers R(s, t). Here we shall present some of the basic results about generalized
Ramsey numbers.

in order to avoid trivialities, throughout this discussion we shall assume that
H\, H3, ... do not have isolated vertices. Let us start with the observation that if
H is very sparse, say it consists of € independent cdges, then r(H|, H2) is rather
small. In fact, if H) consisis of £ independent edges, and H> is a complete graph,
then we can determine r{f, F;) exactly.

Theorem 10 For ¢ > | and p = 2 we have
rifK2, Kp) =26+ p—2.

Proof The graph K2¢-1 U Ep. 2 does not contain £ independent edges, and its
complement, Ez¢_| + K -2, does not contain a complete graph of order p. Hence
rieKy, K;) =28+ p—2.

On the other hand, let G be a graph of order n = 2£+ p—2, containing amaximal
setof s < €—1independentedges. Thenthesetofn—2s > 26+ p—2—-2({—1) =
p vertices not on these edges spans a complete graph of order at least p. Therefore
r{£Kz, Kp) <28+ p—2. [
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Note that if H is any graph of order & then, by Theorem 10, r(£K;, H) <
r(fK:, Ky) <28+ h—12.

The nextobservation is a lower bound for r (H, H2), valid for all pairs (H,, H2).
For a graph G, denote by ¢(G) the maximal order of a component of (5, and by
u(G) the chromatic surplus of G: the minimal number of vertices in a colour
class, taken over all proper y{(G)-colourings of G. Thus u{(G) = min{l/ ¢
V(G): x(G — U) < x(G)). Forexample, ¥ (Cak) = k and u(Cap1) = 1.

Theorem 11 for all nonempty graphs H)| and i) we have
r{H), Hz} = (x (A1) — (M) — 1) + u(Hy).
In particular, if Hy is connected then
r(Hy, Hp} = (x(Hy) — DOH - 1D + 1.

Proof. Set k = x(H), u = u(H) and ¢ = ¢(Hy). Trivially, r(f,, Hy) >
r(Hy, K3) = [|H)| = x(H)u(H)) = ku. Hence, ifc < uthenr(H|, ;) = ku >
{k — 1)¢ + u. On the other hand, if ¢ > u then the graph G = (k — DK, U
K, -1 does not contain >, and its complement does not contain H). Therefore,
r(H, 2} 2z |Gl + 1=k —1)(c—1}+u. |

Although the inequalities in Theorem 9 are very simple, in some cases they
are best possible. Let us see two examples of this: the first is a beautiful resuit of

Chvital.

Theorem 12 Let s, t > 2. then for every tree T of order t we have r(K;, T) =
(s—-D(—1+1.

Proof. From Theorem 10 we know that r{K;, T) = (s — 1)z — 1) + 1. To prove
the reverse inequality, let G be a graph of order n = (s — 1)}(t — 1) + 1 whose
complement does not contain K. Then x(G) > {n/(s — 1)] = ¢ so it contains
a critical subgraph H of minimai degree at least ¢t — 1 (see Theorem V.I}. It is
easily seen that A contains (a copy of) T. Indeed, we may assume that 77 C H,
where T) = T — x and x is an endvertex of T, adjacent to a vertex y of T| (and
of H). Since y has at least ¢t — | neighbours in /', at least one of its neighbours,
say z, does not belong to T1. Then the subgraph of H spanned by T} and z clearly
contains (a copy of) T. O

The second example of equality in Theorern 8 concerns fans, For [ > 1, the
graph Hy = K| +£K3 is called a fan with £ blades. Thus Fy = K3, and Fy is made
up of £ triangles with a vertex in common. In 1996, Li and Rousseau demonstrated
the following result.

Theorem 13 For € > 2we haver(F, Fr) = r(K3, Fp) =48+ 1.

Proof. We know from Theorem 11 that r(Ka, Fp) = 2(|Fel — D+ 1 =4£ + 1.
To prove the reverse inequality, suppose that the inequality is false; that is,
there is a triangle-free graph & of order n = 4 + 1 whose complement does not

contain Fy.
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Forx € G, let U = I'g(x). Then U is a set of independent vertices and since
G does not contains Fp, we see that dg(x) = |U/| < 2¢.

On the other hand, how large can the degree of x be in G? Set W = Fmlx) =
V{GYy — (7 U {x}). Then G[W] does not contain £ independent edges, and its
complement, G[W], has no triangle. Hence, by Theorem 10, dz(x) = |W] < 2¢.

This shows that d(x) = dz(x) = 2¢, that is, G is a triangle-free 2¢-regular
graph of order 4£ + 1. But from the result in Exercise [V.48 we know that this is
impossible, 4

If we define a graph H3 to be H)-good if equality holds in Theorem 11, then
the previous two results claim that every tree is X;-good for s > 2, and the fan F;
15 K3-good for £ > 2. In fact, Li and Rousseau proved also that, for every fixed
s = 2, if £ is large enough then F; is K;-good. Even more, if Hy and H, are fixed
graphs and £ 1s large enough then X; + £H2 is (K2 + H))-good.

As we know very little about 7 (K;, X;),itis only tobeexpectedthat r (G, G3)
has been determined mostly in the cases when at least one of G| and G, is sparse,
as in Theorems 12 and 13. As we shall see now, there are particularly pleasing
results for 7 (s Hy, tH3) when H) and H; are fixed and s and ¢ are large. The
following simple lemma shows that for fixed £1 and H> the function r (s Hy, 1 F5)
1s at most 5| H| 4 t|Hz| + ¢, where ¢ depends only on H and A, and not on s

and .

Lemma 14 For all graphs G, H, and H, we have v(G,. H) U Hp) <
max{r (G, Hi) + |H|, (G, H2}}. In particular, r(sH,, Hy) < r(H;, H) +
(s — DIH||.

Proof. Letn = max{r(G;, H1) + | Ha}, r(G. Hy)}, and suppose that we are given
a red-blue colouring of K, without a red G. Then n = r(G, H2) implies that
there is a blue A7, Remove it. Since n — | H2| = r(G, H)), the remainder contains
a blue Hy. Hence K, contains a blue H| U H>. [

This simple lemma can be used to determine r(s H, t ) when H is K5 or K5,

Theorem 15 [fs > 1 > 1 then
r(sKz, tK2) =2s +1—1.

Proof. The graph & = Ky, U E,—| does not contain 5 independent edges and
G = Ej3;_) + K,;—| does not contain ¢ independent edges. Hence r (s K>, 1K) >
25+t — 1.

Trivially (or, by Theorem 10), r{s Kz, Kz) = 25, 50 to complete the proof it
suffices to show that

r{is+ DKg, 2+ NK3) <r(sK3, 1K)+ 3.

To see this, let G be a praph of ordern = r(sK3, 1K) +3 > s+t 4+ 2. If
G =Kpthen G O (s+ 1)Ko, and if G = E, then GO (t + ) K7. Otherwise,
there are three vertices, say x, y and z, such that xy € G, xz ¢ G. Now, etther
G — {x, ¥, z} contamns s independent edges of G and then xy can be added to
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them to form s + ! independent edges of G, or else G — [x, y, z} contains ¢
independent edges and then xz can be added 0 them to form ¢ + 1 independent
cdges of G. Cl

Theorem 16 Ifs =t > lands = 2 thenr(sK3, tK3) =35+ 21

Proof. Let G = K35 U (Ky + Ey-1)- Then G does not contain 5 independent
triangles and G = E3,_ ) + (K| UK ) does not contain ¢ independent triangles.
Hence r(s K3, 1K3) is at least as large as claimed.

It is not difficult to show that r{2K3, K3} = 8 and r(2K3, 2K3) = 10
(Exercise 15). Hence repeated applications of Lemma 14 give

riskKsz, K3) <3s+2,
and to complete the pronf"it suffices to show that fors > 1,¢ > | we have
r((s + 1}K3, (¢ + DDK3) < r(sKs, tK3) + 5.

To see this, let n = r(sK3, tK3) + 5 and consider a red-blue colouring of K,,.
Select a monochromatic (say red) triangle Rz in K. If K, — R3 contains a red
5K then we are home. Otherwise, K, — R3 contains a blue triangle Bj (it even
contains a blue 1 X3). We may assume that at least five of the nine Ry — B3 edges
are red. At least two of these edges are incident with a vertex of B3, and together
with an edge of R3 they form a red triangle R} meeting B3, Since K, — R} — B3
has r(s K3, tK3) vertices, it contains either a red sX3 or a blue 1X3. These are
disjoint from both R and B, so K, contains either a red (s + 1)K3 or a blue

{t + DK [l

By elaborating the idea used in the proofs of the previous two theorems we can
obtain good bounds on r(sK,, 1K), provided that max(s, t) is large compared
to max{p, ). Let p, ¢ = 2 be fixed and choose fo such that

romin{p, g} = 2r(Kp, Ky).
Put C = r{nKp, 10Ky).
Theorem 17 Ifs >t = 1 then
ps+{g— Dt —1<r(sKp, tKg) < ps+(g— 1+ C.

Proof. The graph Kp_j U E(g_1),~| shows the first inequality. As in the proofs
of the previgus theorems, we fix 5 — 1 and apply induction on 7. By Lemma 14 we
have

r(sKp, tKg) < (s~ Dp+1(tKp, tKg) < ps+ C,

provided that 1 < #zp. Assume now that ¢t > fo and the second inequality of the
theorem holds for s, £.

Let G be a graph of order n = p(s + 1) + (g — 1)t + 1) + C such that
G 7 (s+ 1)K, and G 3 (1 + 1)K,. We claim that some K, of G and K, of G
share a vertex. Indeed, suppose that this is not the case. By altering G, Hf necessary,
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we may assume that G 2 5K, and G D tK,,. Denote by V), the set of vertices of
G that are in K, subgraphs and put V; = V\V,, n, = |V,], and n,; = |V,].

By our assumption, np, > sp and n, > ig. In the graph G, a vertex x € Vy is
joined to at most r{Kp—1, Kg) — Lveniccs of V,, since otherwise there is a K,
of & contamning x or else a Ky of G consisting of vertices of V,,. Similarly, in the
graph G every vertex y € V, Is joined 10 at most 7 (Kp, K4 1) — | vertices of V.
Hence, counting the Vp, — V, edges in G and G, we find that

ngr{Kp—(, Ky)+ nprikp, Kg_1) > npny.

However, this 1s impossible, since n, > sp > fop and n, > tq > fog, SO
np = 2r(Kp—1, Ky)and ng > 2r(K,, K, 1). Therefore, we can find a K, of ¢
and a K, of G with a vertex in common. -

When we omit the p + g — | vertices of these two subgraphs, we find that
the remainder H is such that H 2 5K, and H? tK,. However, |H| = ps +
(g — 1)t + C, so this is impossible. 0

In all the resuits above, we have r (#f;, Hz) < C(|H |+ |Hy|), where C depends
only on the maximal degrees of | and H. That this is not by chance is a beautiful
and deep theorem, proved by Chvital, Ridl, Szemerédi and Trotter in 1983.

Theorem 18 Foreveryd = 1 there is a constantc = ol{d) such that if A(H) < d
thenr(H, H) < ¢]H|. ]

In fact, it is tikely that much more is true. Burr and Erdds conjectured in 1975
that the maximal degree can be replaced by the maximum of the minimal degrees
of subgraphs, as in Theorem V.1: for every d there is a constant ¢ = ¢(d) such
that if every subgraph of H has a vertex of degree at most d then r(H) < c|H|.

Additional evidence for the truth of this conjecture was provided by Chen and
Schelp: they proved that r(H) < c|H| for some absolute constant ¢ and every
pianar graph H. Extending this result, Rédl and Thomas proved in 1995 that for
every k there is a constant ¢ = c(k) such that if H has no subconiraction to Ky
then r(H) < c|H|.

It wouid not be unreasonable to think that the various Ramsey theorems hold
for finite graphs, bceause the graph whose edges we colour is K, and not some
sparse graph with few edges. For example, one might guess that, if G is a graph
such that whenever the edges of G are k-coloured there is a monochromatic X,
then G has to be rather dense, In fact, this is not the case at all, For every graph
H with clique number r = w(H)} and every k > 1 there is a graph & with clique
number also r such that every k-colouring of G contains a monochromatic copy of
H . This beautiful result was proved by Negetiil and Rodl in the following stronger
form, extending earlier results of Graham and Folkman.

Theorem 19 For every graph H and integer k > 1, there is a graph ©
with w(G) = w{H) such that every k-colouring of the edges of G contains a
monochromatic induced subgraph isomorphic to H. (1
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FIGURE VI.1. The graph C3 + Cs.

To conclude this section, let us note that occasionally mainstream problems of
extremal graph theory masquerade as problems of Ramsey theory, as the problems
have very little to do with partitioning the edges. For example, whatis r (H, K ¢)?
It is the smallest value of n such that every graph & of order n and minimal degree
at least n — £ contains a copy of H. As another example, if

kex(n: H) < (;),

then in every k-colouring of the edges of X, there is a colour class with more than
ex(n; H) edges, so that colour class automatically contains a copy of H.
For example, by Theorem IV.12,

ex(n; Cy) < ;—'(1 + /3n —3),

so forn = k% + k + 2 we have

Ly
kex(n, Cy) < k}%ﬂ(l + 2k + 1))
K+ +E+D) - (n)

2 2}

Therefore, r (Cs) < k2 + k + 2. Chung and Graham showed that this bound is
close to being best possible: 7 (Ca) = k — k + 2 if k — 2 is a prime power (see
Exercise 17).

V14 Ramsey Theory for Integers

1t may sound strange that the first results concerning monochromatic substructures
arose in connection with the integers, rather than graphs; however, as graph theory
is very young indeed, this is not too surprising. In this section we shall present
three classical results, together with some substantial recent developments.
Perhaps the first result of Ramsey theory is a theorem of Hilbert concerning
‘cubes’ in the set of natural numbers. Although the result is simple, its proof is
clearly more than a straightforward application of the pigeon-hole principle.
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Letus call aset C < Nan £-cube in N if there are natural numbers s, 54, . .., 5¢,
withs; + ...+ 5 < 5;4) for 1 < < £, such that

‘
C = C(59; 51,...,5) =[50+ Zam cg; =0o0r 1}
i=l
Thus an Z-cube in N is the affine image of the unit cube {0, 1}¥ R, and this

affine image has 2¢ vertices.
In 1892 Hiibert proved the following resuit.

Theorem 20 If N is coloured with finitely many colours then, for every £ > |,
one of the colour classes contains infinitely many translates of the same £-cube.

Proof Tt clearly suffices to prove the following finite version of this result.

There is a function H : N x N — N such that if N = H(k,1) then every
k-colouring of [N] contains a monochromatic £-cube.

Since a l-cube in N is just a pair of integers, H(k, 1) = k + 1 will do in this
assertion. Therefore, it suffices to show that if we can have H({k, £) < n then
Hk, 2+ 1) = N = kn®! will do.

Tosee this, letc : [N] — [k]beak-colouring, and partidion [N]into N/n = kn
intervals, each of length n:

Nin

W= J 7.
i=l

where I; = [(j — I)n+ 1, jrk j = 1,...,N/n. Then each [; contains a
monochromatic £-cube. But, up te translation, there are at most (n — 1)¢ < n?
cubes in these intervals, and each monochromatic cube can get one of & colours.
Since there are kn® intervals, some two of these intervals, say {; and I, contain
translations of the same £-cube Cr in the same colour. The union of these two
translations i1s a monochromatic (£ + 1)-cube. O

The result above had essentially no influence on the development of Ramsey
theory, bui the following theorem, proved by Schur in 1916, became the starting
point of an area that is still very active today.

Theorem 21 For every k > 1 there is an integer m such that every k-colouring
af [m] contains integers x, ¥, 7 of the same colour such that

x+y=z.

Proof. We claim that m = R (3) — 1 will do, where Ry (3} = Ri(3,...,3)is the
graphical Ramsey number for k¥ colours and triangles, i.e., the minimal integer n
such that every k-colouring of the edges of X, contains a monochromatic triangle.

Letthenn = Rig(3) and let ¢ : [m] = [r — 1] = [k] be a k-colouring. Induce
a k-colouring of [#], the edge set of the complete graph with vertex set [n], as
follows: for ij € E(K,) = [n]'® set ¢'(ij) = c(} — j|). By the definition of
n = R(3), there is a monochromatic triangle, say with vertex set {£, f, i}, so that
i =h <i < j=<nandc'(hi) =c'(if) = (hj) = £ for some £, But then
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x=i—h y=j—iandz = j— b aresuchthat c(x) = e¢{y) = ¢(z) = £ and
X+y=z ]

Writing S(k) for the minimal integer m that will do in Theorem 20, we see that
S{k) < Rg(3)— 1. As itis easily shown that By (3) < [ek!] 4+ 1 (see Exercise 25),
we find that S{&) < ek!.

The third and most important classical result, predating Ramsey’s theorem, was
proved by van der Waerden in [927. The length of a sequence is the number of its

terms,

Theorem 22 Given p and k, if n is large enough, then every k-colouring of {n}
contains a monochromatic arithmetic progression of length p.

In view of Theorem 22, we can define the van der Waerden functions W(p) and
W(p.k). Here W{p) = W(p, 2), and W({p, k) is the minimal value of n that will
do in Theorem 22; thus W (p, k) is the minimal integer # such thatif {n} = (JF_, Ny
thentherearea.d = l,and1 <i < ksuchthata, a+d,a+2d,...,a+(p~1)d €
N;. Not surprisingly, the two-colour function function W{ p} has been studied most,
and by now it 1s known that W(2) =3, W{(3) =9, W({4) = 35 and W(5) = 178.
However, very little is known about the growth of the functions W{p) and W (p, k).

Rather than proving van der Waerden’s theorem directly, we shall deduce it
from a remarkable extension of the theorem proved by Hales and Jewett in 1963,
In order to state it, we need some definitions.

For a finite set A and integer r the cube of dimension n > 1 over the alphaber
Aisthe set A" = A" = {{ay,...,a,} ' a; € A for every {}. A combinatorial

line, or simply a {ine, in A” is a set L of the form
L={(ay,....an) € A" : a3y = a; fori, j € I and q; =a?for£ &l

where [ is a non-empty subset of (n] and a:-} is a fixed element of A fori € [n]— 1.
Note that every line in A" has precisely |A| elements. Taking A == [p], as we

often do, the “points’ a',_az. ...,a? of a line can be renumbered in such a way
thata’ = {aj,a;, ..., a3) satisfies
j j ifiel,
4G =1 0 ey
a; figl

Clearly, every line has p clements, and there are

Yo M= Y M=ty
Icein), 149 Jnl T#n]

lines in A”. Forexample, the cube { p}* of dimension 2 has 2p +1 lines: p ‘vertical’
lines, p ‘horizontal’ tines, and one ‘diagonal’ line, namely {(a, @) : a € A}.

Theorem 23 For every p and k, there is an integer n such that if A is an alphabet
with p letters then every k-colouring ¢ © A" — [k] contains a monochromatic

line.
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The Hales—Jewett function H J(p, k) is defined much like the corresponding
van der Waerden function: HJ(p, k) is the minimal value of » that will do in
Theorem 23.

To see that the Hales-Jewett theorem implies van der Waerden’s theorem, all
we need is a map & : [p]" — [p"] sending every combinatorial line onto an
arithmetic progression of length p. For example, we could take & : [p])" — [p”]
given by (&)} > a1+ +ap or @) — | + Z?_:l(a; — l}p'“'. Then,
every k-colouring ¢ of [ p"] induces a k-colouring ¢ of the cube [p]” by setting
£({a;)7) = c(8((a)})). Now, a monochromatic line in the colouring ¢ 1s mapped
onto a monochromatic arithmetic progression of length p in the colouring ¢ of
[p"]. Hence, W{p. k) < p7»:b),

The original proofs of Theorems 21 and 22 used double induction (on p and k)
and not even for W(p) = W(p, 2) did they provide a primitive recursive upper
bound, so the bound grew remarkably fast. In fact, the upper bound for W{p) grew
like Ackerman’s function A(p}. To define A(p), first define fi. f2,... : N = N
by setting fi{m}) = 2m and

fn+l(m) = fn Ofn O-- an(l}-

n

m

In particular, f2(1) = fi(1) = 2, LH(2) = fio i) = (D =22 fou(3) =
fio fio fill) = eH = 23, and so on, so that falm) = 2’;"; then f1(1) = 2,
A = ho h2) = HED =27, 43) = £2¥) =27, and so on. Then
Ackerman’s function is A(p) = f,(p). For obvious reasons, f3 is known as a
‘tower’ function. At the end of Section IV. 5 we already encountered this tower
function in connection with Szemerédi’s regularity lemina.

The breakthrough in the upper bounds for van der Waerden's function came over
60 years after van der Waerden proved his theorem, when Shelah, in a remarkable
tour de force, gave a primitive recursive upper bound for the Hales—-Jewett function
H J{p, k) and so for the van der Waerden function W{(p, k). The main aim of this
section is to present this beautiful theorem of Sheiah.

Let us start with a technical lemma, known as Shelah’s pigeon-hole principle.

Lemma 24 Given integers n and k, if m is large enough, the following assertion
holds. Let ¢; : [mi®"~ 11 » [k], j = L...., n, be k-colourings. Then there are
integers 1 < aj < by < m such that for every j. 1 < j < n, we have

Cj’(ﬂ]!bl’ ....aj._l,.bj_],ﬂj,ﬂj.}_[, bj-}-lt ‘e 1aﬂ1bﬂ)
= ¢j(a, b1, ..., i1, bj—1, b a4y, 8541, ... an, bp).

Proof. Let us apply induction on n. For n = 1 we may take any m > k + 1.
I
Suppose now that mg will do for n and &, and let us prove that any m > ™0 4 |

will do forn + 1 and k.
Given colourings ¢; : [mp)®" "1 — [k], j = 1,...,n + 1, induce a colouring

c:[m] » [k][’"‘"]lz“l by setting, for every @ € [m] and (a), by, ..., a4, by,) €
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[mo}?"),
cal@i, b1y ..., an, ba) = cpr1{ar, b1, ..., ap, by, a).

By our choice of m, there are 1 < az41 < bpyy < msuchthat g, , = cp,,,; that
is,

casifar, b1, ..., 8n, bn, Gny1) = Cnr1 (@1, 81, .-, G, By, bui1)

for all {aj.bt,...,dn by) € [mol®l. Now, for j = 1,...,n, define ¢
[mo}2—11,

cilxn, ..., X2m—1) = Ci(X1, .oy X2n=1, Gntls Bni1)-
By the induction hypothesis, there are t < a; <& <mgfori =1,....n such
that

cilar, b .-, 8j-1,bj-1. 8. G415 By - An, Be)

= Cj»(d],,b],--..aj—]-bj-l-bjsaj+l.bj+l| e o2 i, by)
for every j. But then the numbers 1 < a; < b; <m,i =1,...,n+ 1, have the
required property. I

Writing S(n, k) for the smallest value of m that will do in Lemma 24, the proof
above shows that $(1,%k) =k + | and
S+ 1, k) < kS0™

forn > 1. We call S(n, k) Shelah's function.
Before we turn to Shelah’s theorem, let us reformulate Lemma 24 in a more

convenicnt form. Given positive integers n and m, define
S =f{(ar. by, ....an, by} € [m}™)
and
So = {{a1.b1,....an, Ba} € [m] : a; < b; for every i}.
We call S and S the Shelah subsets of [m]1*". Also, fors = (), b1, ..., an. bn) €
Sand ! < j < n,set

.!'J'] = (a|,b], ...,aj_l,bj_l.aj.aj,ajﬂ,bj“, “u .a,,,b,,)

and
sht=(a, b, ..., 8=, bj-1, b, Bj,aj41, Bier, ... @ns Ba).
With this notation, the proof of Lemma 24 gives the following assertion.

Lemma 25 Given n and k, if m > 5(n, k) then the following assertions hold.
Let S and Sy be the Shelah subsets of [m1**] and let ¢ : S — (k). Then there isa
point s € So such that c(sily = c(sf'z)for every j,1 £ j=<n d

After all this preparation, we are ready for Shelah’s theorem, greatly
strengthening the Hales—Jewett theorem.
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Theorem 26 Given intepers p and &, there is a munimal integern = HJ{p k)
such that every k-colouring [p" — [k} contains a monochromatic line.
Furthermore, ifn = HJ(p, k) then HJ(p + 1, k) < nS{n, £'P+D7),

Proof Clearly, HJ(1,k) = 1. Let us assume that n = HJ{p, k) exists and
m=Sn kPt Let

¢ [p+ 11" 5 k)

be a k-colouring. We have to show that this A-colourtng contains a monochromatic

line.
Partition [nm] into » intervals, each of iength m:

L
tem) = }1;,
J=i

I; = {(j —1m-1, jm]. Also, let § and Sp be the Shelah subsets of[m]??] Fors =
(@5.61...,60, ba) € Soax = (x1, ..., xz) € [pH 1] and £ = (j-1ym+i € [,
set

p+1 ifi <a,
e = X ifa <i < bj,
p ifi > b;.
We call ;(x) = e(s,x) = (e1,...,eam) € [p+ 11%7] the s-extension of x.

Clearly, for every s € So, the map ¢; : [p + 1]1") — [p + 1]*™} is an injection,
mapping a line of [p + 11! onto a line of ip-+ 1)inm],

Let us use ¢ 1o induce a colouring & : § — [k]P+ ™ 5 s &, where &,(x) =
e{e(s, x)) for x € {p + 1)) Since m = S(n, £P*1"), by Leruma 25 there is an
s € 8p such that

clets™!, 1)) = cle(s?%, x))

foral x € [p + 130%]. Let us fix this point 5 = (a1, by, ..., a,, ;) € Sp, and

consider the k-colouring [ p1**) — [k] given by x — c{e(s, x}).
Sincen = H J{p, k), the cube { p)l*}contains amonochromatic line. This means

that, by renumbering the points, if necessary, there are points x 1_. L xP e [pI]
and an interval f = [k], # > 1, such that with x/ = (x{, . .., x4) we have

; i ifi<i<h,

X! = . .
' [x!} ifh <f <n,

where x,?ﬂ, e .xﬂ €[pl
Now define xP+! = (xio“, .. xE™y € [p + 1 to continue this sequence:

ot [p+1 ifl<i<h,

X: , .
! x? ifth <i <n.
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Then {x',..., x”*1} is a line in [p+ 111" and so {e;(x!), ..., es(x" DN is a
line in [ p + 111" To complete the proof, all we have to check is that this ling is
monochromatic, that is,

cle(s, xP*1Y) = cle(s, x7)). (5)
We prove (5) by a telescoping argument. For 0 < j < h, define y o=
ol o elp+ 1)@ by
x? ifh <i <n,
so that y¥ = x” and y* = x7*!
Note that, for every j,

els, y/) = (/1) Ty < e(sh?, y)

and
cle(s!, y/) = ele(s/ 2, y/)).
Hence
ee(s, YO = ete(s™, ¥1)) = cles"2 ¥ = cles, ¥
Similarly, c{e(s, y')) = cle(s, y1)) = -+ = clefs, y*)), s0 cle(s, xP) =
c(e(s, xP+1Y). Thus (5) holds, and we are done. Ol

Theorem 26 implies that the Hales-Jewett function does not grow anywhere near
as fast as Ackerman'’s function: in fact, for some constant ¢ we have H J(p, k) <
fale(p + k), where f4 is the fourth function in the Ackerman hierarchy, the next

3

function after the tower function 22 .

The bound on the van der Waerden function W{k) impiled by Theorem 26 is,
in fact, the best upper bound on W(k) known at the moment.

The Hales-Jewett theorem and Shelah’s theorem extend van der Waerden’s
theorem in an abstract, combinatorial direction. Van der Waerden's theorem also
has many beautiful and deep extensions in the ring of integers: the starting point
of these extensions is Rado’s theorem concerning systems of linear equations.
Let A = (ay;) be an n by m matrix with integer entries. Calt A partition regular
if Ax = 0 has a monochromatic solution in every celouring of N with finitely
many colours. In other words, A = (ay;) is partition regular if for every partition
N= Ui:l N, one of the classes N¢ contains iniegers x|, . .., x, such that

n

Za,-jxj =0

=

fori = 1,...,m. Note that not every matrix is partition regular: for example a
matrix with some positive and no negative entries is not parfition regular, since
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0 ¢ N, and neither is A = (1 —2). On the other hand, Schur’s theorem,
Theorem 21 says that ( 1 ! — 1) is partition regular and, as we shall sce, van
der Waerden’s theorem is slightly weaker than the assertion that a certain matrix
Is partition regular. In 1933 Rado gave a remarkable characterization of partition
regular matrices.

Let us write g, ..., an, € Z™ for the column veciors of A = (a;;). Thus
a; == (@17, @2j, + - -+ ] yT . We say that A satisfies the columns condition if, by
renumbering the column vectors if necessary, there are indices 1| < ny < --- <
ny = n such that, with b; = _Z’.'*':l ay, the vector by is 0, and for { > 1 the vector
b; is a rational finear combination of the vectors @), a2, ..., an,_,, thatis, b; isin
the linear subspace of Q" spanned by the set {a;, az, .. .. an,_, |- For cxample, if
A = (g1 ---am) witha; > O forevery i, then A satisfies the columns condition iff
some collection of the g; sums to 0.

Here then is Rado’s partition regularity theorem.

Theorem 27 A matrix with integer entries is partition regular if and only if it
satisfies the columns condition. O

This beautiful theorem reduces partition regularily io a property can be checked
in finite time, It is worth remarking that neither of the two implicattons is easy.
Also, as in most Ramsey type results, by the standard compactness argument we
have encountered several times, the infinite version implies the finite version. Thus
if A is partition regular then, for each k, there is a natural number R = R(A, &)
such that Ax = 0 has a monochromatic solution in every k-colouring of | R].

In order to deduce Schur’s theorem from Rado’s theorem, all we have to notice
is that (1 1 -- 1) is partition regular, since it satisfies the columns condition.
Furthermore, as a matrix of the type

1 -1 ¢ 0 O 1
o 1 -1 0 0 1
0 0 1 -1 0 1
0 0 0 1 -1 1

satisfies the columns condition, Rado’s theorem implies that for integers p and &
there is an integer n such that every k-colouring of [#] contains a monochromatic
arithmetic progression of length p whose difference is also in the same colour
class: this is a littie more than van der Waerden's theorem (see Exercise 44).

Yet another immediate consequence of Rado's theorem is that, given integers
k and n, there exists N = N(k, n) such that if [V] is k-coloured then there is
a set A of # natural numbers such that 3" _,a < N and all the sums 3",z b,
B £ B C A have the same colour. At the end of the next section we shall discuss
a beautiful extension of this to infinite sets.

In conclusion, let us say a few words about Szemerédi’s theorem. In the 1930s,
Erdds and Turdn conjectured the far-reaching extension of van der Waerden's
theorem thai the largest colour class will do: it suffices to know that our sei
is ‘large’ rather than a part of a partition. To be precise, they conjectured that
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every set of natural numbers with positive upper density contains arbitrarily long
arithmetic progresstons: if A C Nis suchthatliimsup,_, ., [AN[N]{/N > 0, then
A contains arbitrarily long arithmetic progressions. By the standard compaciness
argument, this means that if § > 0 and p = 1 then there exists an N such that
every subset of [V] with at least §N elements contains an artthmelic progression
of length p.

The first evidence for the truth of the Erdés—Turan conjecture was provided by
Roth in 1953, when he proved the conjecture in the special case p = 3. The full
conjecture was proved by Szemerédi in 1975, by a deep and intricate combinatorial
argument, It is in this proof that Szemerédi needed his regularty lemima, presented
in Chapter I'V. Section 5. As we saw there, this result revolutionized extremal graph
theary.

In fact, Szemerédi’s theorem greatly influenced ergodic—theory as well: in 1977,
Fiirstenberg gave an ergodic theoretic new proof of the theorem, and thercby
revitalized ergodic theory. But all that is weil beyond our bnief.

V1.5 Subsequences

Let (f;) be a sequence of functions on a space T. Then we can find an infinite
subsequence (g, ) such that one of the following two alternatives holds:

aif (hy) is any subsequence of (g,), then sup,.7 | Y-F A.(1)] > 1/N for every
N =1,

" bif (hy) is any subsequence of (g,), then sup,er | Z‘?’r ha(t)| < 1/N for every
N=1

This rather difficult assertion about sequences of functions is, in fact, an
immediate consequence of a Ramsey-type result about infinite sets.

As usual, given a set M, we write 2¥ for the set of subsets of M, M) for the
set of #-tuples of M, and M for the set of countably infinite subsets of M. In
view of Theorem 4, it is natural to ask whether every red-blue colouring of N
contains an infinite monochromatic set. It does not take long to realize that this s
not the case (see Exercise 45). Motivated by this observation, call a family 7 < 2V
Ramsey if there exists an M & N such that either M@ ¢ For M@ c 2N - F.
In other words, if a red—blue colouring of N contains an infinite monochromatic
set, then we say that the collection F of red elements of N is Ramsey.

Of course, 2N can be identified with the Cartesian product [, 4 7. where
T. = {0, 1) for all n. We give T, the discrete topology and the product 2M the
product topalogy: in this topology 2M is a compact Hausdorff space. A weak form
of a theorem due to Galvin and Prikry states that open subsets of 2N are Ramsey.
(This is easily seen to imply the above assertion about sequences ol functions:
see Exercise 46.) To prove this result it is convenient to use the notation and
terminology introduced by Galvin and Prikry. We use M, N, A and 8 to refer to
infinite subsets of N, and X and Y for finite subseisof N. We write X < aifx < «
for every x € X; X < M means that X < m forevery m € M. An M-extension
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of X is a set of the form X U N, where X < N and N C M. Let us fix now a
family F < 2N. We say that M accepts X if every M-extension of X belongs to
F; M rejects X if no N C M accepts X.

Lemma 28 IfN rejects @ then there existsan M € N that refectsevery X C M.

Proof Note first that there is an My such that every X C My is either accepted
or rejected by Mg. Indeed, put Mo = N, ap = 1. Suppose that we have defined
NoDdDN DD Nyandag; € Ni — Ny, 0 <i <k— 1 Picka € N If
N — {ax) rejects fag, - . ., ax ) then put Npy | = Ni — {ae); otherwise, let Ny be
an infinite subset of Ny — {ag} that accepts {ap, ..., ax}. Then Mg = {ap, @ ...}

will do.
By assumption My rejects #. Suppose now that we have chosen &g, by, . . ., by

such that Mp rejects every X C {bo, b1, ....bx—1}. Then Mg cannot accept in-
finitely many sets of the form X U {¢;}, j = 1,2, ..., since otherwise {1, c2, .. .}
accepts X, Hence Mg rejects all but finitely many sets of the form X U {c}. As
there are only 2% choices for X, there exists a b; such that Mp rejects every
X C {bo, b1, ..., bi}). By construction the set M = {bg, b, ...} has the required

property. O
Armed with Lemma 28, it is easy to prove the promised theorem of Galvin and

Prikry.

Theorem 29 Every open subset of 2N is Ramsey.

Proof Let F C 2N be open and assume that A ¢ F for every A € N@, je,,
N rejects @. Let M be the set whose existence is guaranteed by Lemma 28. 1f
M@ g N _ F let A € M@ N F. Since F is open, it contains a neighbourhood
of A, sothereis anintegera € A suchthatif Bn{l,2,...,a} = AN{l1,2,..., 4}
then B € JF. But this implies that M accepts AN {1,2,...,a}, contrary to the
choice of M. Hence M@ ¢ 2N — F, proving that F is Ramsey. 0

Roughly speaking, Theorem 29 tells us that sets ‘insensitive (o small changes’
are Ramsey: as Exercise 45 shows, sets *sensitive to small changes’ need not be
Ramsey.

We now set out to show that Theorem 29 leads to an elegant extension of
Theorem 4. Denote by X (<) the family of finite subsets of X. A family G < N(~»)
is dense if G M<® = @ for every M € N® and it is thin if no member of
G is an initial segment of another member (that is, if X < ¥ implies X ¢ & or
X UY &G). FPor example, foreachr =1, 2, . . ., the family N is thin. '

Corollary 30 Let G ¢ N(5%) pe dense. Then there isan M € N @) such that
every A C M has an initial segment belonging to G.

Proof. Let F = {F ¢ N : F has an initial segment belonging to &}. Then F 1s
open, so there isan M € N such that either M@ < F, in which case we are
done, or.else M@ ¢ 2N — F The second alternative cannot hold since it would

imply M<®) NG = B. 0
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This corollary enables us to deduce a major exiension of the original Ramsey
theorem for infinite sets (Theorem 3).

Corollary 31 Let G < N®) pe g thin family, and let k € N. Then for any k-
colouring of G there Is an infinite set A C N such that all members of G contained
in A have the same colour,

Proof. It clearly suffices to prove the result for & = 2, Consider a red and blue
colouring of G : G = Fred U Fiue- If Freq is dense then let M be the set guaranteed
by Corollary 30. For every F € ¢ N 2¥ there is an infinite set N < M with initial
segment .%. Since ¢ 1s thin, F is the unique initial segment of N that belongs to
. Hence F € Feq, so every member of & contained in M 1s red.

On the other hand, if Freq is 00t dense, then 2M N Fog = B for some infinite
set M. Hence 2% NG C Fhiue. {1

Let us now turn to the result concerning monochromatic sums we promised at
the end for the previous section. This beautiful result, conjectured by Graham and
Rothschild and first proved by Hindman, s not very near to the other results given
in this section, but the stnking proof given by Glazer illustrates the rich methods
that can be applied in infinite Ramsey theory.

Theorem 32 For any k-colouring of N there is an infinite set A C N such that
all sums Y, .x X, 8 # X C A, have the same colour

Proof. We shall not give a detailed proof but only skeich one for those who are
(at Jeast vaguely) familiar wita ultrafilters on N and know that the set SN of all
ultrafilters is a compact topological space (the Stone—Cech compactification of the
discrete space N). The proof, which ts due to Glazer, is at least as beautiful as the
theorem and is considerably more surprising. Let us recall that afilter FonNisa
non-ctnpty collection of subsets of N suchthat (3} if A, B € F,then AN B € F,
(ii)if A € Fand A C B then B € F and (iii) FNe2N, that is,8 ¢ F. Zorn’s
lemma implies that every filter is contained in a maximal filier, called an uitrafilter.
If If is an ultrafilter, then for every A C Neither A € U orelse N — A € U{. This
impiies taat every ultrafilter I{ defines a finitely additive O—F measure m on w™:

1 ifAeld

'"(AJ“{ 0 fN—Acl.
Conversely, clearly every finitely additive 0—1 measure on 2N defines an ultrafilter,
If there is a finite set of measure |, then one of the elements, say a, of that set
also has measure 1, and so if = {A C N . a € A}. These ultrafiiters are called
principal. Not every ultrafilter is principal: the ultrafilters containing the filter
F ={A C N :N — Aisfinite} are not principal.

That ultrafilters can be useful in proofs of Ramsey theorems can be seen from
the following very simple proof of the case r = 2 of Theorem 3. Fix a nonprincipal

ultrafitter . Let N©@ = PyUP,U- . .UP.. Forn € Nlet AE") ={m:{n, m)e B}.

Then exactly one of the sets A&"jt A("), N Ain} belongs to i4, say the set Afﬂ).
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Now, with B; = {n : c(n) =i} we have N = By U ... U By, so again exactly
one of these sets, say B;, belongs to U, Finally, pick a) € B;, az € B; N Af‘,
ase Bin A}-" n A;z, etc. With A = {ay, a,...] wehave AW C P;.
Let us turn at last to Glazer’s proof of Theorem 32. Let us define an addition on
BN by
U+ V=fACN:{neN:A-nelfl eV}

whered,V € fNandA—n={a—-n:.ac A, a > n}.

With some effort one can check that &4 + V is indeed an ultrafilter and that with
this addition SN becomes a semigroup. Furthermore, the semigroup operation is
right-continuous, i.e., forafixed V € 8N the map 8N — 8N, givenbylf — VHU,
is continuous. By applying a short and standard topological argument we see that
the properties above imply that 8N has an idempotent element, that is,an element
P with P + P = P. This P is nonprincipal, since if {p} € P then 2p} € P+ P
sofplg P+ P,

Let now A € P. Then, by the definition of addition, the set

A*=neN:A—-—neP)

helongsto P. Thusifa € AN A* then B = (A ~ a) N (A\fa}) € P. (We could
replace A by A\[a} since P is not principal.) Hence for every A € P there exists
ac Aand B C A\{a}suchthat B €« Panda + B C A.

Of course, this ultrafilter P has nothing to do with any colouring of N, However,
just as any nonprincipal ultrafilter enabled us to find a monochromatic infinite set
in a direct way, this idempotent P enables us to find an appropriate infinite set.
Let N = () U . -- Uy be the decomposition of N into colour classes. Exactly
one of these colour classes, say Cy, belongs to P. Put A1 = C;. Select A € A;
and Az € P, A2 € At — [a1) such that a; + Az € A;. Then select Az € Az and
Az € P, Az C Az — {az} such that ez + A3 C Az, etc. The set A = {a), a2,...}

clearly has the required property: every infinite sum 3 _y x, X C A, hascolouri.
O

Finally, it should be emphasized that the infinite Ramsey results presented in
this section form only the tip of an iceberg: the Ramsey theory of infinite sets,
called partition calculus, is an essential and very cultivated branch of set theory,
and it has a huge literature.

V1.6 Exercises
1.~ Prove that every 2-colouring of the edges of K, contains a monochromatic
spanning tree (cf. Exercise I.1).
2. Prove that R(3, 4) = 9 (see Fig. V1.2).

3. Extending the construction in Fig, V1.2, find for each ¢ = 2 a t-regular graph
that shows that B(3, ¢t + 1) > 3r — 1.
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FIGURE VI1.2. A graph showing that R(3, 4) > &.

4. By considering the graph with vertex set £;7 (the integers modulo 17) in
which i is joined to j iff i — j = +1, £2, +4 or +8, show that R(4, 4) = 18.

5. Prove that R(3, 5) = 14.
61 Let e be an edge of K4. Show that r(K3 — e, Kg) = 11.

7. By considering the 3-colouring of K g with vertex set G F(16), the field of
order 16, in which the colour of an edge ¢ depends on the coset of the group
of the cubic restdues to which i — } belongs, show that R3(3, 3, 3) = 1.
{(Remember to check that the graph i1s well defined.)

R. Establish the upper bound for Ri"] (1, ..., s} given after Theorem 2.

9. Give a direct proof of the result of Erd6s and Szekeres in Exercise 11.54
that, for all £, £ > 1, every sequence of k£ + | real numbers contains an
icreasing subsequence of & -+ 1 terms or a decreasing subsequence of € + 1
terms. [Hint. Imitate the proof of Theorem 3: consider the last elements of
increasing subsequences with k terms.]

10. Showthatifx] < x3 < .- < xparen = ("'}"54) + 1 real numbers, then we

can findeither 1 <mj < - < <nwithxy, —xp CXpy —ay, -+ <
Xp, — Ny, Orelsel <mp <. <mg <nwithxm, —xm = Xy — Xpny >

- 3 Xy, — Xm,_,- Give two proofs: in the first, consider the numbers in
the two intervals [xy, (x1 + x2)/2] and [(x] + x2)/2, x,), and in the second
imitate the proof of Theorem 3.

11. Note that the proof of Theorem 3 gives the following common extension of
the upper bound in Theorem 3 and the assertion in the previous exercise. Let
k€>2n= kf:g )+ 1, and w : [#]® — R. Then either w{nns) <
winani) < - < wing_jke) forsome l <mny <my <--- < n <n,or
else wimima) > wimams) > --- > wime—my) forsome 1 < m; < m2 <
.-« < myg¢ < n. Note also that this need not hold for smaller values of n.

127 Given 2 < k£ < n, denote by cx{n) the maxirnal integer that is such that in
every k-colouring of the edges of X, we can find a connected monochromatic
subgraph of order cx{n). Show that c2(n) = n. (See Exercise 1.)
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13~ (Exercise 12~ contd.) Prove thatc,_1(n) = 2ifn > 2isevenand ¢,_(n) =
3 if n > 3 1s odd. [Hint. Use Theorem [.9.]

14 (Exercises 12~ and 13~ contd.) Prove that

%+1 if n =72 (mod 4),
c3(n) =
n )
L—J otherwise.
2
15. Check that r(2K1, K3) = 8 and r(2K4, 2K3) = 10.
16. Show that r(Cy, C4) = 6.

17} Using two-dimensional vector spaces over finite fields (cf. Theorem 1V.12),
show that

re(Cs, Cs, ..., Cy) = k* + O (k).
18. By considering H) = Py and H = K 3, show that
r(Hy, Hz) :—’flllingr(ﬂ"‘ i}

need not hold.

19. Let H,, H, be graphs of order p and g, respectively, and let a(Hp) = i,
a(H;) = j. Then there is a constant C depending only on p and ¢ such that,
with m(s, 1} = min{si, 17}, we have

pstqt—mis ) —2<r(sty, tHy) < ps+gt —m(s, 1)+ C.

[Hint. Find a red K;(,_j), say R, a blue K, j;, say B, and a set & of i
other vertices such that the R — N edges are red and the B — N edges are
blue. [Cf. the proof of Theorem 17.}

In the next four exercises, f(n) is the minimal integer N such that whenever
X is a set of N points in a plane, no three of which are collinear, X contains

n points forming a convex n-gon.

20. Show that £ (3) = 3 and f(4) = 5. Deduce that f(n) < R“(5, n) for every

n>n,
211 Prove that £(5) = 9.
22. Deduce from Theorem 3 that f{n) < (1":24) + 1.

23F Prove that f(n) > 2"~% + 1; i.e., for every n = 3 there are 272 points in
the plane in general position, such that no n of them form a convex polygon.
[Hint. Let S ¢ be as in the proof of Theorem 2. Fori =0, 1,...,n—2,let §;
be obtained from S, 4;2-; by flattening if, shrinking it, and finally translating
it so that Sg, Sy, ..., Sn—2 are on an increasing circular arc, as in Fig. VL3.
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25.

26.

27,

28.

29.

30.

31.

32,
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FIGURE V1.3. The case n = 5: a sct of eight points without a convex pentagon.

Show that if the S; are far enough apart and small enough then ::92 S: does
not contain a convex n-gon.]

Let S be an infinite set of points in the plane. Show that there is an infinite
set A C § such that either A is contained in a line or no three points of A are
collinear.

Show that R:(3,3,...,3) < [|ek!] + 1. [Hint. Note that (ek!] = 1 +
kle(k — 1)1}.]

Show that there is an inftnite set of natural numbers such that the sum of
any two elements has an even number of prime factors, counted without

multiplicity, say.

Show that there is 2 sequence #1 < n2 < - - - of natural numbers such that if
r<i <iy<-.-- <i,,then ):f=1 ni; has an even namber of prime factors
iff r has an odd number of prime factors.

Define a graph with vertex set [N]? by joininga < 105 < ¢. Show that this
graph does not contain a triangle and its chromatic number tends to infinity
with N. (Cf. Exercise V.12.)

Check that every S-canonical colouring ¢g : NC¢) 5 NG, defined before
Theorem 8, is irreducible.

Let g1{x), g20x), .. ., ga(x) be boundedreal functions and let f {x) be another
real function. Let £ and & be positive constants. Suppose that max; (g (x) —
2:(»)) > & whenever f(x) — f(y) > &. Prove that f is bounded.

Prove that every 2-colouring of the edges of K3,_1 contains n independent
edges of the same colour. Show also that the result is best possible: there is a
2-colouring of the edges of K3,—2 in which no set of n independent edges is

monochromatic.

Show that for every € there is a natural aumber a such that if [#] is partitioned
into two classes then x¢ + - - - + Xz = X+ is solvable in one class. Wriling
n(£) for the smaliest natural number that will do here, show that n{2) = 5
and n(€) > €2 4 £ — 1. Determine n(3).

v ——— - R
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33. Show thatif [9]) = {1, 2, ..., 9} is partitioned into two classes then x| +x2 +
I = x3y is solvable in one class.

34} Asusual, let P(n) be the collection of all 2 subsets of [n] = {1, ..., #]. Show
that if P{n) is coloured with n colours then there are sets A, B C [n), A £ B,
such that A, B, A U B and A N B all have the same colour. Show that if we

use # + I colours then the sets A, B need not exist.

35} Show that every red-blue colouring of the edges of K¢, contains # vertex
disjoint triangles with all 3» edges of the same colour.

36. Let n = 27, Show that K, is not the union of p bipartite graphs but X, is.
Deduce that if there are 27 + 1 points in the plane, then some three of them
determine an angle of size greater than s (1 — (1/p)).

37. Letn = 27, and let K, be the union of the bipartite graphs &q, ..., G,. Show
that 2t — 1 < Z’LI dg,(x) <2P —2P* foreveryk, k= 1,.. ., p. (Hint.
Note that each ; has 27! vertices in each of its classes.)

38. Forn = 2, let g(n) be the minimal value of N such that any N points in R"
contain three that determine an angle strictly greater than /2. Prove that
(1) g@)=5,
(i)t g(3) =9,
(i) gr)=2"+1,
{ivy*  g(n) is finite for every n.

39.%* Prove that for every n > 2 and £ > 0 there is an N such that any N points
in R" contain three that determine an angle greater than w — ¢.

40. Prove that for every k > 1 there 1s a natural number n = n(k) such that if the
subsets of an n-element set are k-coloured, then there are disjoint sets A, B
such that A, B and A U B all have the same colour and |A| # |B)|.

41.* Let (x,) be a sequence of unit vectors in a normed s'ipace Show that (x,) has
a subsequence (y,) such that if (JL.-)"f e RY, with ):1 |A;] = 1, then

¥ k
0D Ay = 1D ey l| < 17k
1 1

wheneverk < m) < :--<mpandk <n| < --- < n;.

42. (1) Show that every red-blue colouring of the edges of 2 K3 3 contains a

monochromatic path of length 3.
(ii) Show that every red-blue colouring of the edges of a Kz —1 221 contains
a monochromatic tree of order 2k — 1, with two vertices of degree k.

43. Show that the matrix { 1 — 2 ) is not partition regular by constructing a red—
blue-colouring of N in which, for every x, the numbers x and 2x have different
colours.
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44, Deduce from van der Waerden'’s thcorem that for all p and k there is an integer
n such that every k-colouring of [n] contains a monochromatic arithmetic
progression of length p whose difference belongs to the same colour class.

45. Deduce from Zorn’s lemma that there is a minimal set M ¢ N@) sych that
for every N € N there is a unique M € M with the symmetric difference
MAN finite, Colour N red if MAN has an even number of ¢lements, and
biue otherwise. Show that this red-blue colouring of N does not contain an
infinite monochromatic set,

46, Deduce from Theorem 29 the assertion at the beginning of Section 5,
concerning sequences of functions.
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VI
Random Graphs

Although the theory of random graphs is one of the youngest branches of graph
theory, in importance it is second to none. It began with some sporadic papers of
Erdds in the 1940s and 1950s, in which Erdfis used random methods to show the
existence of graphs with seemingly contradictory properties. Among other resuits,
Erdés gave an exponential lower bound for the Ramsey number R(s, 5); i.e., he
showed that there exist graphs of large order such that neither the graph nor its
complement contains a K. He also showed that for all natural numbers & and g
there are k-chromatic graphs of girth at least g. As we saw in Chapters V and VI,
the constructions that seem to be demanded by these assertions are not easy to
come by. The great discovery of Erdds was that we can use probabilistic methods to
demonstrate the existence of the desired graphs without actually constructing them.
This phenomenon is not confined to graph theory and combinatorics: probabilistic
methods have been used with great success in the geometry of Banach spaces,
in Fourier analysis, in number theory, in computer science—especially in the
theory of algorithms—and in many other areas. However, there is no area where
probabilistic methods are more natural and lead to more striking resuits than in
combinatorics.,

In fact, random graphs are of great interest in their own right as well, not only
as tools to aitack problems that have nothing to do with probability theory or
randomness.

We are asking the most basic questions: what do ‘most’ graphs in various
families look like? Rather than being interested in the extreme values of our
parameters, we wish to discover what happens on average. In addition to this,
what makes the field so attractive and important is that more often than not the
phenomena we discover are surprising and delicate.

P mm ran s skt ot
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The systematic study of random graphs for their own sake was started by ErdGs
and Rényi in 1959: in a series of papers they laid the foundations of a rich theory
of random graphs, proving many of the fundamental results. Loosely speaking,
Frd6s and Rényi discovered that in the spaces they studied, there was a ‘typical’
random graph: with high probability a random graph had certain sharply delineated
properties. The other great discovery of Erdfs and Rényi was that al) the standard
properties of graphs (being connected, having diameter at most 5, containing a
complete graph of order 4, being Hamiltonian, etc.) arise rather suddenly: while a
random graph with » vertices and a certain number of edges is unlikely to have the
property at hand, a random graph with a few more edges is very likely to have the
property. This phenomenon is described by a phrase borrowed from physics: there
is a phase transition. The most dramatic example of a phase transition discovered
by Erdés and Rényi concerns the order of the largest component of a random
graph.

The contents of this chapter will reflect both aspects of the theory: we shall
prove a number of hasic results concerning the most frequently studied models of
randoin graphs, and we shall use probabilistic methods to answer some important
graph—theoretic questions that have nothing to do with randomness.

For many a problem one uses specifically tailored random models. For m-
stance, remarkable successes have been achieved by arguments building on random
colourings of graphs. Percolation theory is nothing more than the study of random
subgraphs of various lattices. Also, many algorithms ar¢ based on the use of certain
graphs, whose existence is most easily demonstrated by the use of random tech-
niques. The importance of random graphs and random methods is duc precisely
to applications of this type.

For the sake of convenience, we state some simple inequalities that will be used
it our calculations. For approximating factorials, we shall never need more than

the following version of Stirling's formula:
V2xs(sfe) <5 < ¥ 2ms(s/e). (1)

In fact, in most cases it will suffice that 5! > 2./s(s/e)* = (s/e)*, and so

n n* 1 renyk enyk
(k) = (k!) W/ (%) = (3) 2)
We shall also use the inequality | ~ x < e™*, so that

(1—xf<e™ (3)

forallx < landk = 0.

VIL.T The Basic Models—The Use of the Expectation

Our first task is to make precise the notion of a ‘random graph’. Rather trivially,
every probability space whose points are graphs gives us a notion of a random
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graph. We shall concentrate on those probability spaces or models that arise most
naturally and have been found to be most useful. Three closely related models
stand out: G(n, M), G(n, p) and G*. In each case, the probability space consists
of graphs on a fixed set of a distinguishable vertices: as usual, we take this set to
be V = [#] = {1, 2, ..., n}). Note that the complete graph X, on [a] has ¥ = (';_)
edges and 2% subgraphs.

For 0 < M < N, the space C(n, M) consists of all (ﬁ) subgraphs of K,
with M edges: we turn G(n, M) into a probability space by taking its elements
to be equiprobable. Thus, writing Gy = G, u for a random graph in the space
Gn, ﬂﬁ; the probability that Gy 1s precisely a fixed graph X on [n] with M edges
is 1/(3):

Nl
Py(Gy = HY= (M) ]

The space G(n, p) , or G(n, P(edge) = p). is defined for0 < p < 1. To geta
random element of this space, we select the edges independently, with probability
p. Putting it another way, the ground set of G(n, p) is the set of all 2¥ graphs on
[n], and the probability of a graph H on [n] with m edges is p™(1 — p)” ~M: sach
of the m edges of H has to be selected and none of the N — m ‘non-edges’ of H
is allowed to be selected. It is customary to write g for 1 — p, the probability that
an edge of K, is not selected. Then, writing G, = G, , for a random element of

G(n, p),
PP(GJJ = H) — PE(H)qN_e(H}-

The space G" is not a space of random graphs but a space of seguences of
random graphs, one from each G{n, M). An element of G" is a graph process, a
nested sequence of graphs Go C G € +-- C Gy, with G; having precisely ¢
edges. Clearly, there are N graph processes G = (G,)g’ on [n], since every graph
process G is trivially identified with a permutation (e,-)';'" of the N edges of the
complete graph K, on [n]: this identification is given by {e;} = E(G,) — E(G,-1).
We turn G”, the set of all Nt graph processes, into a probability space by taking
all processes to be equiprobable. _ N

There is a pleasing interpretation of a random graph process G = (G,)§ € 6™
it is a living organism that starts its life as the empty graph Go = E, and evolves
by acquiring more and more edges, namely, at time 7 it acquires one more edge at
random from among the N — ¢ possibilities.

In all these examples, we tend to be interested in what happens as n — oo. Itis
worth remarking that both M = M(n) and p = p(n) are functions of n, The space
G{n, p) is of great interest for fixed values of p as well; in particular, G(n, 1/2)
conld be viewed as the space of random graphs of order n: it consists of all 2V
graphs on {n], and all graphs are equiprobable. Thus G, /7 is obtained by picking
one of the 2V graphs on [n] at random. However, G(n, M) is not too exciting for
a fixed value of M as n — o0, since then, with probability tending to 1, Gp a¢ is
just a set of M independent edges and n — 2M isolated vertices (see Exercise 1).
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The spaces G(n, M), G(n, p} and G" are closely related to cach other. For
example, the map " — C(n, M), given by G (G;)U > G, 15 measure-
preserving, so g-" ‘couples’ the spaces G(n, M), M = 0,1,..., N. Also, if in
G(n, p) we condition on e(G,) = M, then we obiain G(n, M). To get G(n, p)
from 7, we pick arandomelement G = (G, )0 and take G,, where ¢ is a binomial
random variable with parameters N and p, so that P(¢ = M) = () pMgV-¥.
As we shall see later, for M ~ pN the spaces G(n, M) and G(n, p) are close to

each other.

Now that we have obtained a space of random graphs, every graph invariant
becomes a random variable; the nature of such a random variable depends crucially
on the space. For instance, the number X (G) of complete graphs of order 5 in
G is a random variable on our space of random graphs; whether it be G(n, M),
G(n, p) or some other space.

In this section we shall confine ourselves to making use of the expectations
of some basic random variables: it is surprising that even this minimal use of
probability theory enables us to prove substantial results about graphs. As a first
example, let us calculate the expectation of X;. This will lead us quickly to
the lower bound of Erd8s on the Ramsey numbers. As ecarlier, we shall use the
subscripts M and p to identify the space we are working in; thus Ep (X) denotes
the expectation of the random variable X in the space G(n, M).

Analogously 0 X;(G), let X, (G) be the number of independent sets of order
s. Let us calculate very carefully the expectations of X; and X in G(r, M)} and
G(n, p).LetS = (71 be the set of s-subsets of [n}, and for o € & let Y, be the
indicator function of the complete graph Ky with vertex set a:

1 ifGle]l=K
0 otherwise.

Yo (G) = {

Then
X;(G)y =) Ya(G)

aES

for every graph G on [n]. Similarly, writing ¥, for the indicator function of £,
the empty graph with vertex set &, we have X(G) = 3.5 ¥,(G). Hence, no
matter what probability space we take, by the additivity of the expectation,

E(X;) = ZE(m = ) P(G[e] = Ko),

aES

and a similar assertion holds for E(X).
Let us make use of this formuia in the spaces G(n, M) and G(t, p). Starting

with G(n, M),

N-8S\/NM\!
() = PuGutel = Ko = (3 ") ()
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where § = (“2), since there are (:.:i) graphs of size M on [r] that contain ail §
edges joining vertices of . Similarly,

N-S\/N\!
Ex(Y,) = Pu(Gulal = Ey) = ( M S)(M)

The formulae are even simpler in G{r, p):
Ep(Ya) = Pp(Gpla] = Ka) = p°
and
Ep(Y2) = Pp(Gplo] = Eo) = g°.
Since | S| = (7), we have the following simple result.

Theorem 1 Let X; = X;(G) be the number of complete subgraphs of order 5 in
G, and let X| = X (G) = X;(G}. Then

Esr(X,) = (:) (; - i) ( ;)—1,
: Ep (X)) = (:) (N’; 3) ( g)_,,

and
E,(X;) = (:)p*’l Ep(X)) = (:)q’"

where $ = (3} andqg =1 — p.

As alittie diversion, let us remark that if instead of complete subgraphs we take
subgraphs isomorphic to a fixed graph F then the arguments hardly change. Thus,
writing Xz == Xz {(G )} for the number of subgraphs of G, isomorphic to F,

E,(Xp) = Npp®, 4)

where Nr is the number of subgraphs of X, isomorphic fo F,

At the danger of belabouring the point, note that (4) can be seen as above by
taking an enumeration Fi, £3, ..., Fy, of the subgraphs of X, isomorphic to
F and writing ¥; for the indicator function of F;, that is, setting ¥;(Gp) = 1 if
F CGpand Yi(Gp) =0 F; & Gp. Then Xp = Zf":ﬂ ¥;, and the summands
are again identically distributed 0~1 random variables. Hence, by the additivity of

expectation,

NFr Nr
Ep(XF) = Y Ep(¥p) =) Bp(¥; = 1) = Npp®,
i=1

i=1

as claimed by (4).
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The number Mg is closely related to the automorphism group of F, that is, to
the group of permutations of the vertices of F preserving adjacency. Indeed, if
F has & vertices and its automorphism group has nrdcr a, so that K; has k!/a
subgraphs isomorphic to F, then N = (})% K = 8% where (n)y is the kth falling
Jactorial: (M) =n(n—1)---(n —k+1). chcc in this case,

n
Ep(Xp) = 1 o), )
In particular, if F 15 a k-cycle Cy, then
(n)i
E,(Xc) = - p". (6)

Similar formulae hold for the number of induced subgraphs: for example,
writing Y¢, for the number of induced k-cycles,

W p vy (1l -
E.{Yc,) = —Z-k—pkq(z) k_ __Z_I_pqu(k 372,

Let us return to our main thread, The simple Theorem I was all Erdés needed
to get exponental lower bounds for the Ramsey numbers R{s, 7).

Theorem 2 (i) If3 < 5 < n are such that
()<
5

R(s,5) > e—lf-ésfﬁ. 7)

(ii) Suppose that3 <s <t <nand(Q < p < | are such that

W) ") D)
(S)p +(Iq < I,

whereg=1—p Then Rs,t) = rn+4 1.
Proof. (i) Consider G(n, 1/2). With the notation above,

Eypa{X; + X:.) = 2(:)2_{;) <1,

then R(s,s) > n+ 1. Also,

so there is a graph G € G{n, 1/2) with (X; + X )}(G) = X(G)+ X (G) = 0.
This means precisely that neither G nor its complement contains a complete graph
of order s. Hence R(s, s) > n + 1, proving the first assertion.

Inequality (7} is an immediate consequence of this and inequality (1). Indeed,

with n = Lii;;], by (1} we have

(ﬂ)z-(;)u 2 @ _ eV "22_(2)4-1 2 .1
) A 2rs(s/e)s A2ms

so R{s,s)=n+1.
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(i1) This assertion is just a slight variant of the first: by our assumption, we have
Ep(Xs + X)) < 1, 50 X:(G) = X;(G) = 0 for some graph G € G(n, p). This
means that G does not contain a complete graph of order s, and its complement
G does not contain a complete graph of order ¢. Since G has n vertices, R(s, 1) >

n + 1, as claimed. O

The argument above can be applied to the space G(n, M) as well, instead of
Gn, py:if
Eu(X:) + Ey(X)) < 1,

then R(s, £ > n+ 1. Infact, in this way we get a slightly better result. For example,
assuming that & is even, it is eastly seen (cf. Exercise 11) that for M = N /2 we

have
Exm(Xs) < Eyp2(X;s).

However, the improvement is negligible, and the calculations are considerably
prettier in G(n, p) than in G(n, M).

Having seen the striking simplicity of the proof of Theorem 2 we do not think
it unreasonable to expect that with more work we could improve on the bound
cs2°/2, where ¢ is a constant, In fact, it seems that this is not the case: although
the constant ¢ = 1/ (e+/2) can he improved hy a factor 2 to +/2/e (by a simple
application of the Lovasz local lemma, not discussed in this book), it 1s not even
known whether the exponent | of 5 can be improved. Thus the Erdds—Szekeres
upper bound (Theoremn VI.1) and the Erd3s lower bound (Theorem 2) tell us that

22 < R(s,5) < 2%,

and at the moment 1/2 and 2 are the best constanis in the inequality above, It
is very likely that in fact, R(s, 5) = 2¢+°0)) for some constant ¢, probably for
¢ = |, but a proof of this seems to be far in the future.

Concerning the off-diagonal Ramsey numbers R(s, ), it is of particular interest
to determine the order of R;(¢f) = R(s,1) as 5 is kept fixed and ¢t — oo. After
decades of improvements, it is now known that

2 2
ar” < R(3.1) < Lar”
logt logr
for some positive constants ¢ and c3. The upper bound was proved by Shearer
in 1983, making use of a method of Ajtai, Komlds and Szemerédi, while the lower
bound was proved by Kim in 1995 by an ingenious and intricate probabilistic
argument. As one of the first striking applications of the probabilistic method,
Erd§s had shown over 30 years before that ¢1t2/log?¢ is a lower bound for
R(3,1).

Only a slightly more complicated argument is needed to give lower bounds
in the problem of Zarankiewicz (cf. Theorem 11 and inequalities (6) and (7) of
Chapter I1V). We shall use an analogue of the model G(n, M), rather than an
analogue of G(n, p), partly for the sake of variety, and also because it makes the
second part of the argument a little easier.
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Theorem 3 [let2 < s <m, 2 <t S<sma=-1}/st—-1Dand g =
(t — 1)/ (st — 1). Then there is a bipartite graph Ga(n|, n3) of size

that does not contain a K (s, t) (with s vertices in the first class and t vertices in
the second class),

Proof. Let

n=ny+ny,

Vi=1{1,2,...,nt},

Vam{m+1Lni+2,...,m+n3}.

E={ij:ieV, je WV,

M= [n}_“nimﬁj.
We shall consider the probability space G(K, »,. M) consisting of the (lf;l) graphs
with vertex set V = V| U V; having exactly M edges from E and none outside E.

(Note that this is not the probability space considered in the previous theorems.)
The expected number of X , subgraphs contained in a graph G € G(Kn, n,, M)

is
g — (M) (R (1EI = st\ (IE ™
S t I\ M -5t J\ M ;
where the first factor is the number of ways the first class of X , can be chosen,

the second factor is the number of ways the second class can be chosen and the
third factor is the number of ways the M — st edges outside a K, can be chosen,

Now,
(us; —st) (;Ef -l ]‘:[1 M —i M\
] - .
M — st M 0 niny —i ninz
50
1 M\ 1 — — [~
E; 1 < Eﬁ"i"é ( ) = E’I“f"{nrz(nl a”z ﬁ)“ = '“'“"nll ﬂ”g g

st

Thus there is a graph Go € G(K, »,, M) that contains fewer than n{"“n;"’ﬁ,’s!:!
complete bipartite graphs X; ;. Omit one edge from each K  in Gy. The obtained
graph G = G3(n, n3) has at least

1 |
1 -8 |- 1-8 l—g 1-
[nl""nz ] = [mnl "nz J = [(I - ;m)ﬂl “nz ﬂJ

edges and contains no K, ,. 0
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By similar methods one can construct a graph of order » and size

I VN 2 r—Bts—1)
2 (- 5)

that does not contain a X; ; (see Exercise 12).

It is very likely that the lower bound in Theorem 3 is also far from the wuth:
for example, for s = 7 it gives z(n, n; ¢, 1) > ca? YU+ while it is expected
that the upper bound in Theorem I'V.11, namely cn?>~1/¢, is the correct order of
z(n, n; 1, 1), Nevertheless, for a fixed large value of s = ¢, Theorem 3 is essentialty
the best lower bound at the moment.

As our third, and final, application of random graphs to central problems of
graph theory, we present the theorem of Erdds about the existence of graphs of
large girth and large chromatic number.

Theorem 4 Given natural numbers g = 3 and k > 2, there is a graph of order
k32, girth at least g and chromatic number at least k.

Proof 'We may assume that g > 4, and & > 4 since otherwise the assettion
is trivial. Set n = k7%, p= 2%2738 = ?.kz/ n, and consider the space G(n, p).
Writing Z¢ = Z¢(Gp) for the number of £-cycles in our random graph G, we
know from (6) that
(Me o _ et 2

2 ? T T 2
Hence the expected number of cycles of lengthat most g — I'is

Ep(Zy) =

kﬂ.’ 28-1325—2
Zmp(zg < Zz < (8)

where the last inequality is rather crude. Denote by £2; the sct of graphs in G(n, p)
that contain at most f = 287 k%2 cycles of length less than g. Since

g=1
Y Ep(Z)e 2 Pp@u)f =2 (1 - Bp(Q) S,
=3

where Q| = G(n, p)\Q1, from (8) we see that
2

Nowputs = n/k = k32=1 and write Q for the set of graphs in G(n, p)
that do not contain a set of s vertices spanning at most f edges. Note that the
assertion of the theorem follows if we show that ) N 2y # B. Indeed, suppose
that Go € €21 N 2. In Gy, delete an edge from each cycle of length less than g
to obtain a graph G of girth at least g. As Go € £21. at most f edges have been
deleted. Also, Gy € £, s0 every s-set of vertices spans at least f 4+ 1 edges.
Hence in G every s-set spans at least one edge; i.e., an independent sei has at
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most s — [ vertices: @(G) < 5 — 1. Since by inequality (2) of Chapter V we have
al{G)x (G) = n, this gives x (G) > k, and we are done.

Now £2| N 2z # @ follows if we show that P,($2z) = 1/3. In fact, we shall
be more gencrous and we shall show that P; (€23} is very close to 1. In particular,
Pn(S22) = 2/3, sathat P, (2) NQ2) = Pp(21) + Pp(§22) — 1 > 1/3.

For G, € G(n, p) and £ > 0, write I¢(Gp) for the number of s-sets of vertices
spanning precisely £ edges. Thus 7.(,) is the number of s-sets of vertices that

are independent but for £ edges. Setting 1(G,) = Zl{:{, 1¢(Gp), we have
S22 = {Gp € G(n, p) : 1{Gp) = 0}.

Hence

e2) o]
Ep(l)= Y Byl =mymz Y Ppll =m) =Py > 1)
m=0

m=}
=1 ~Pp(I =0) =1~ P, ()

so it suffices to prove that B, (1) < 1/3.
This is only a matter of straightforward estimates. Indeed, with § = (3),

S
E,(Iz) = (:) (E)p"fu —- 5,

since we have (7) choices for the s-set and (i) choices for the £ edges spanned
by the s-set; choosing these £ edges and none other that joins vertices in our s-set
gives the factor p(1 — p)*~¢. Note that, by (3), (1 — p)¥~ is at most e=285—8)
It is easily checked that Ep({¢)/Ep({p4+1) < 1/2for0 <! < f. Recalling that
(%) < (ea/b)t, s = njk = k34, § =52/2 —5/2 <5%/2, p = 2k*/n, ps = 2k,
pst =2n = 2%, f =28'%%"2 and pf = 28k~%, we find that

f
Ep(1) = Y Ey(le) < 2En(ly)
£=0

(7 (5) e

S

< (ek)y* €PN s idtpsittef
2f

- {ek)ﬂ,!kk(g'i'z}fe—ﬂ
ekg+2

== (el ¥ (___._

f
E—n+k+23 k%
28| )

in the last step above, we made use of the fact that f = 8k, and so
(e/28 NS kB ITE o pk+1-f o |, Hence

1+logk (g-+2)25"liogk
k ket+2

logEp (1) «::-n[l— } < —nf4,
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S0
E,(f) < e~ < 173,

as required. 0

Theorem 4 raises a natural question which, at present, is far from being an-
swered. About how large is 1 (g, k), the minimal order of a graph of girth at least
g and chromatic number at least ? Since a graph of chromatic number at least k
has a subgraph of minimal degree at least £ — 1, we have (g, k) > nolg, k — 1},
where no{g, 8) is the function in Theorem I'V.1. Hence n1 (g, £) is roughly between
k%/2 and k3¢, With some more work the upper bound can be reduced a little, but
it seems to be difficuit to determine limg 4 .00 %"—J, if the limit exists, which
is most likely.

VIL.2 Simple Properties of Almost All Graphs

In the first section we saw how useful it is to know that most graphs in a model
have a certain property. Now we shall go a step further, namely we shall discuss
properties shared by almost al! graphs. Given a property (), we shall say that
almost every (a.e.) graph in a probability space 2, consisting of graphs of order
» has property O if (G € £, : G has Q) —» 1 as n —» co. In this section we
shall always take Q,, = G(n, p), where 0 « p < | may depend on n.

Let us assume first that 0 < p < [ is fixed; that is, p is independent of n.

There are many simple properties holding for almost every graph in G(a, p).
For instance, if H is an arbitrary fixed graph, then almost every G, € G(n, p)
contains H as a spanned subgraph. Indeed, if | H| = &, then the probability that
the subgraph of & spanned by a given set of A vertices 15 isomorphic to  is
positive, say r > 0. Since V(G) contains |n/ %] disjoint subsets of 4 vertices
each, the probability that no spanned subgraph of  1s isomorphic to H is at most
(1 — r)!*/8) which tends to 0 as 1 — co. The following result is a strengthened

version of this observation.

Theorem 5 Let | < h < k be fived natural numbers and let O < p < 1 be fixed
also. Then in G(n, p) a.e. graph G, is such that for every sequence of k vertices
X1, X2, ..., X there exists a vertex x such that xx; € E(Gp)if | <i < h and

xxi ¢ E(Gp) ifk <i <k

Proof. Let xj, x2, ..., x; be a sequence of vertices. The probability that a vertex
x e W=V(G)~-{x1,.... xx} has the required properties is p"'q"_h. Since for
x.y € W, x # y, the edges xx; are chosen independently of the edges yx;, the
probability that no suitable vertex x can be found for this particular sequence
1s (1 — p"q’“")"‘k. There are (n)y = n(n — 1)---(n — k + 1) choices for the
sequence x1, X1, . . ., Xk, 80 the probability that there is a sequence x|, X2, ..., Xt
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for which no suttable x can be found is at most

£ =ﬂk(] — phqk—ﬂ)ﬂ—k‘

Clearly, ¢ - 0asn — oo, O

By a result of Gaifman concerning first-order sentences, Theorem 5 implies
that for a fixed 0 < p < | every first-order sentence about graphs is either true
for a.e graphin G € G(n, p) or is false for a.e. graph. Though this result looks
rather sophisticated, it is in fact weaker than the shaliow Theorem 5, for given any
first-order sentence, Theorem S enahles us to deduce without any effort whether
the sentence holds for a.e. graph or it is false for a.e. graph. In particular, each of
the following statements concerning the model G(n, p) for a fixed p € (0, I} is
an immediate consequence of Theorem 5.

1. For a fixed integer k, a.e. graph G, , has minimal degree at least £.
2. Almost every graph G, , has diameter 2.

3. Given a graph H, ae. graph G, p is such that whenever Fy C G, is iso-
morphic to a subgraph F of H, there exists an Hy isomorphic to H satisfying

FU C Hﬂ CGn‘p.

Rather naturally, most statements we are interested in are not first-order sen-
tcnces, since they concern !arge subsets of vertices. “For a gwen £ > 0, a.e. graph

Gp,p has at least 2(p — £)n? edges and at most + (p + £)n? edges”. “Almost
no graph G, , can be coloured with n'/2 colours”. “Almost every graph G,
contams a complete graph of order logn/log(1/p)”. “Given & > 0, a.e. G, P 15
5 L(p — #)n-connected”. These statements are all true for a fixed p and are easily
proved {(see Exercises 16-20); however, none of them is a first-order sentence.

Now we shall examine the model 2 = G(n, p) under the assumption that
0 < p < | depends on n, but pn® — oo and (1 — pyn® — coasn — oo. In
this case for every fixed m, a.e. G, is such that e(GP) > m and e(GPJ > m. As
before, we put N = ( ), and for M =0, 1,..., N, we denote by §23s the set of

graphs in G(n, M). Clearly, @ = ¥ _, nu, and the elements of €2 have equal
probability both in G(n, M) and G(n, p).

We shall show that the models @ = G(n, p} and G(n, M) are very close to each
other, provided that M is about pN, the expected number of edges of a graphin Q.

Clearly,
N
Pp(Sar) = Pple(Gpy = M) = (M)PM‘IN M,
Hence
Pp{gH) _ M+ E
Po(Quri) N-Mp

This shows that P, {(S24}/Pp (214 1) increases with M, and Pp(£2s) is maximal
for some M satisfying pN — p < M < pN + q. Furthermore, if 0 < £ < 1 and

9)
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n is sufficiently large then since pn? — ooasn — oo,
Py (S2ar)
Pp(2pm41)
provided that M < (1 — g) pN; also, since (1 — p)n®* — coasn — o,
Po(S2p+1)
Py (S2p)
when M > (1 4+ e)pN. Putting Ne = [(1 +e)pNfand N_; = (1 — &)pNT.

we see from these inequalities that a.e. graph G, satisfies N_, < e(G,) < Ng;
that is,

< 1~—g,

< (148"

Ne
Pp( L QM)-rlasn—;»co. (10)
M=N_,

Another consequence of (9) is that there is an n > 0 {in fact, any 0 < n < %

would do) such that
LN )
Pp(U ﬂu)r»u an

M=0
if n is sufficiently large. Now (10) and {11) imply that if 2* C £ is such that
Pp(2*) — 1 and n — o0, then for any ¢ > 0 there are M| and M7, such that
(1—epN <M =pN<My<(1+g&pNand

€201 M 2%
€21, |
We call a set 2 € Q convex if G € % whenever G; C G < Gz and
G, G2 € §*; a convex property of graphs is defined analogously. It is easily seen
that for a convex set £&* relation (12) implies that
|S2pr 02
|21
whenever M| < M < M, and, in particular, if M = [pN]. Let us restate the
assertions above as a theorem about the ¢connection between the models G(n, p)
and G(n, M).

Theorem 6 Ler0 < p = p(n) < 1 be such that pn> — 00 and (1 ~pin? — oo
as n —» oo, gnd let Q be a property of graphs.

(i) Suppose & > Q is fixed and, if (1 — )N < M < (1 +£)pN, then a.e. graph
inG(n, M) has Q. Then a.e. graph in G(n, p) has Q.

(ii) If Q is a convex property and a.e. graph in G(n, P(edge) = p) has Q, then
a.e graphinG(n, [ pN]) has Q.

All this is rather simple and could be proved in & much sharper form, but
even in this weak version it does show that §(r, p) and G(n, M) are practi-
cally interchangeable in many situations, provided p = M/N, M — oo and
(N - M) - o0

—+ lasn—> 00 (i =12). (12)

— lasan — oo (12')
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VII.3 Almost Determined Variables—The Use of
the Variance

If X = X(G) is a non-negative variable on @2 = G(n, M) or 2 = G(n, p), and
the expectation of X is [E(X) = pu, then, forc > I,

P(X > cu) <~ and PX < cp) > S,

c c

since
#=EX)>P(X = cp)ep.

Thus if the expectation of X is very small, then X is small for most graphs. This
simple fact, Markov’s inequality, was used over and over again in the first section.
However, if we want to show that X is large or non-zero for almost every graph
in 2 then the expected value itself can very rarely help us, so we have to try a
slightly iess tnivial attack. In the first instance we turn to the variance for help.
Recall that if & = E(X), is the expectation of X then

Var (X) = o2(X) = E((X — ) = E(X?) - u?
is the variance of X and ¢ = ¢ (X) > 01s the standard deviation. Chebyshev's
inequality, which is just Markov's inequality applied to (X — )%, states that if
a > 0, then

2
P(X — ul 2 @) < 2.
a

In particular,

[ )

P(X=0)51P(|X—u|2u)5%. (13)

In many examples, X = X(G) is the number of subgraphs of G contained in a
family 7 = {F1, F2, ...}. Here F depends on n, and V(F;) C V(G) = [n]. For
example, F may be the set of {7} complete subgraphs of order s as in Section |,
the set of Hamilton cycles, or the set of complete matchings. As in Section 1, X
can be written as » _; ¥;, where ¥; = Y, = ¥, (G) is the indicator function of F;:
itis 1 if ¥; C G and 0 otherwise. Then, clearly,

E(X2)=IE((E}1)3)=EEE(Y,-}‘})= Y P(G contains F; U ;). (14)
i i

(Fi.F})

where the summation is over all ordered pairs (F;, F;) with F;, F; € F.

Let us use these ideas to determine the values of p = p{n) for which G, p
is likely to contain a subgraph F. Following Erdss and Rényi, we call a graph
balanced if no subgraph of it has strictly larger average degree. Thus if F =
Gk, £), that is, F has k vertices and £ edges, then it is balanced if every subgraph
with &’ vertices has at most k'£/k edges. Note that complete graphs, cycles and
trees are balanced; see Fig. VII.} for an illustration of the concept.
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FIGURE VILI. The first two graphs are balanced; the second two are not.

The following result of Erdés and Rényi shows that, as p(n) increases, balanced
subgraphs of G, , appear rather suddenly.
Theorem?7 lethk>2,k—1<{f < (g) andlet F = G(k, 1) be a balanced graph
{with k vertices and £ edges). If p(myn*/" —» O then almost no Gy, contains F,
and if p(n)n*! — o0 then almost every Gy contains F.

Proof Let p=yn~*¢ 0 < y < n*/, and denote by X = X(G) the number of
copies of F contained in G, p. Denote by kr the nummber of graphs with a fixed
set of k labelled vertices that are isomorphic to F. Clearly, kg < k!. Then

p=EyX) = (:)karu — POt < pk(ytnhy = 41,

s0 Ep(X) — 0as y — 0, showing the first assertion.
Now let us estimate the vaniance of X when y is large. Note that there is a
constant ¢1 > 0 such that

@ > ey for every y. (5
According to (14), we have to estimate the probability that G contains two fixed
copies of F, say F' and F". Put
Ac= Y Pp(Gnp D F'UF),
4

where ) means that the summation is over all pairs (F/, F”) with s vertices in
common. Clearly,

Ag < p'.g.

Furthermore, in a set of s vertices F’' has ¢ < (£/k)s edges. Hence, counting first
the choices for F' and then for F” with s > 1 common vertices with F', we find

that for some constants ¢z and c3,

Loy (")(ﬂ-*)Hpr—rqts)—@—w
T SNk s

t—r
= 3 et ()

t<ls/k

s e e —aema— — o s
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Here in the last step we separated the term with ¢ = 0 from the rest. Consequently,
making use of (14), we find that

E, (X% 3§ As
u? u?
for some constant c4. Therefore, by (13),

<1+ .:'4)"“1

P(X =0) < — 5 < aay”t,

"5‘:

soP(X =0)— 0asy —» 00. [

One of the most striking examples of a graphic invariant being almost deter-
mined in a random graph is that of the cligue number, the maximal order of a
complete subgraph. It turns out that for afixed p, 0 < p < I, the clique number of
almost every graph in G(n, p) takes one of two possible values. In fact, as proved
by Bollobas and Erd&s in 1976, for most values of 7 (in a well-defined sense) the
cligue number of almost every graph is just a function of p and n. We shall confine
ourselves to proving a simple result in this direction. As in Theorem 1, denote by
X, = X, (Gp,p) the number of K, subgraphs, so that

E(X,) = (’:) @

Let d = d(n, p) be the greatest natural number for which
B(Xg) = (Z) P > logn. (16)

AsE(X)) = nand E(X,) = p&) < 1, thereissuchad, with 1 <d <n — L.
With the aid of Stirling’s formula (1), it is easily checked that

s R -d
Tog, 7 <5 <p < n, (17
where b = 1/p and log, n = logn/logh. Also
d = 2log, n + C(loglogn). (18)

Theorem 8 Let O < p < 1 be fixed. Then the cligue number of almost every
Gupisdord + 1, where d = d(n) is given by (16},
Proaf. The assertion is equivalent to the following:

P(Xg42 >0) -0,

P(Xg >0 1.
Note that, by the definition of d, Ez(Xg41) < logn so, by (17},
—d-1

W d+tE{Xd [) < Pd’r’z ]0g2 < n B4 — ]
implying the first assertion.

E(Xa42) =



VIL.3 Almost Determined Variables—The Use of the Variance 23]

Let us turn to the main assertion that P(X4 > 0) — 1. Note first that pug =

E(X4) = logn — o0 so, by (13), it suffices to prove that oy /gy — O, where
g4 = (X ).

Let us use (14) 1o calculate the second moment of X4, summing scparatel: over
pairs of K4 subgraphs with exactly £ vertices in common:

E(xi)r-i(;)(d)(d f) ()G)=() 2(2};;()( ) oY

£==0

2 d
=ro=(5) 79 = (3)79 3 () (5 -%)
#-]E(XJJ—()IJ?— peh :
a d d g £/\d~¢

with oy = & (Xy) we have

4Rk ()G e -n()
d _ 4l d ()_
— (p~% — 1)
e 2 y
- e
é()( 900
d1? ot
EZZW pm@

=2 st.
t=2

say. The terms €2, €4. .., & are first decreasing and then increasing. In fact, it
suffices to check that

Since

M

1A

Er = &3 1 Eg—|
for3 < ¢ =<d - 1. Hence
0'2 ‘
— ‘:2(52+Ed;"i"2d(33+3d 1)- (19}
#d
Now
260 <dn2p7 < n7!
2dey < 2d'n3pd < n7?,
~d p~(D
284 =2dIn"pT\ < 2fuy,
and

2degy = dznpe"led <n 172
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Putting these bounds into (19), we find that

2
“4 < 207 4 2 g = 00),
Kq

as required. |

After these specific examples, let us say a few words about the broader picture.
As before, a property of graphs is a class of graphs closed under isomarphism. In
particular, a property (0 of graphs of order # can be viewed as a subset of the
sct of graphs with vertex set [#]: all we have to require is that this set is invariant
under permutations of [n]. A property @ of graphs is monotone increasing if  is
invariant under the addition of edges: if G € @, G C H and V(G) = V(H) then
H € Q. (Similarly, a property is monotone decreasing if it is invariant under the
deletion of edges. Thus being connected or Hamiltonian is a monotone increasing
property, the property of being at most 3-connected is monotone decreasing, but
the property of containing an induced 6-cycle is neither increasing nor decreasing.

Given a property @, we write Fp(Q) = Pp(Gp,p has @) = F,(G,, € @)
for the probability that G, , € Gn, p) has property (; the analogous notatien is
used in G(n, M). It sounds like a tautology, but it does need a proof that, for a
monotone increasing property ¢, the probability P, (Q) is an increasing function
of p, and Py (Q) is an increasing function of M (see Excrcises 21},

Theorems 7 and 8 illustrate the general principle discovered by Erdds and Rényi:
many a mohotone increasing property of graphs arises rather suddenly. To express
this assertion precisely, it is convenient te introduce threshold functions. A function
pi(n) is a lower threshold function (lif) for a monotone increasing property (0 if
almost no Gy p, i has @, and py,(n) 15 an upper threshold function (utf) for @
if almost every Gp p,(n) has Q. Threshold functions are defined similarly for the
space G(n, M).

In terms of threshold functions, Theorem 7 says that if m(n) — oo and F is
a balanced graph of average degree 2¢/k then n~*/% /@ is an Itf and wn™*/f s a
utf for the property of containing F as a subgraph. Although we did not prove it
here, the converse of these assertions is also true: pg(n) is an Itf for containing ¥
iff pe(n)n*/t — 0 and p,(n) is a utf iff p,(n)n*/t — cc. In fact, in many cases
the lower and upper threshold functions are much closer to each other than in this
example. To illustrate this, we present a classical result of Erdés and Rényt.

Theorem 9 Let w(n) — <0 and set pr = (logn — w(n))/n and p, = (logn +
w(n}/n. Then a.e. Gy, is disconnected and a.e. G, is conneécted. Thus, in the

model G(n, p). pe is an ltf and p,, is a atf for the property of being connected.

Proof. Inproving the theorem, we may and shall assumne that w{r) is not too large,
say w(n) < logloglogn, and r is large enough to guarantee that w(n) > 0.
For k € N, let X; = X(G) be the number of components of G € G(n, p) having
exactly & vertices.
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Th(i) Let p = pg and write i for the expected number of isolated vertices of .
en

W= ]E-(X]) = n(l _ p}?‘l—-l ~ne log a4 (n) = em(n) — 0O, (20)
Furthermore, the expected number of ordered pairs of isolated vertices is
E(X((X; — 1)) = nln — D - p)?73,

since there are n(n — 1) ways of choosing an ordered pair of vertices, and two
given vertices are isolated iff none of the 2r — 3 pairs of vertices incident with at
least one of them is an edge of Gp.

Consequently,

E(X}) =nn — 1)1 — p)* 3 + a1 — p)"~!
and so the variance 62 = o2(X;) is
E((X) — w)?) = E(X]) — p?
=nn—D(1-p)* 3 4n(l-p" ' ~-nP1-p
< n(l = py*~! + pn¥(1 - p)>»=>

< p + {w(n) + logn)ne_z logn+2ulmy (g _ p)—3
2logn

)2.1—2

2! < 1. (21)

*.'..u-*-

In the penultimate inequality we made use of the fact that p is small so (1 - P =
1/2, with plenty to spare. Therefore, by (20) and (21) we have

i+ 1

1
P(G) is connected) < P(X1 =0) < ;B((X1 —w)) s —g==u™ +u7",
showing that almost every G, is disconnected.
(ii} Set p = p, = (logn + w(n))/a. Clearly,
ln/2}
P(G, is disconnected) =P | Y " Xi > 1
| k=1
[ a/2) |72
<E| ) X[=) EX
L k=1 k=1
/2l .
<) (f)a-pres @)
=1 k

since we have (’:) choices for the vertex set of a component with & vertices and we
have to guaraniee that there are no edges joining this set to the rest of the graph (in
addition to having some edges to guarantee that the component is connected, but
we do not make use of this condition). Let us split the sum above into two parts.
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First we take the case when k is small:

n kin—ik) enNk _pnp 12
S (a-mens B (F) ehea
l<k=n¥4 tk<n3/d

e(l—a:-(n))kk—k t?2;!:2[]czn_g.u}l,m

1A

t=k<ndfd

<3O0 (23)

if n is sufficiently large. When £ is large, we argue slightly differently:

Y kit ERNE —knp2
()(1 e (Y e

n¥<k=ns2 * a<k=ns2
< E (en /)y —k12
ald<kant?
—n34
s 3 e/ T (2)
n¥d<k<ns3

Putting together (22), (23) and (24), we find that
P(G, is disconnected) < 472
if n is sufficiently large. This shows that a.e. G, is connected. .

What about the chromatic number of a random graph G, , for a fixed value of
p! Theorem 8 immediately gives us a lower, bound since x(G) > [G|/a(G) for
every graph G. Also, the complement of 2 random graph G, ; is a random graph
Cinq with ¢ = 1 — p, so the distribution of the independence number a(Gp p)
is precisely the distribution of the clique number @w{G, 4). Since, by Theorem 8§,

{(Gng) = (3 + 0(1)) logn/log(1/g), we see that

1 logn
X(Gnp) = (5 +0(1)) m (23)

for almost every G, .
How far 1s this trivial lower bound from the truth? A natural way of getting

an upper bound for x (G, p) is to analyse the result of a colouring algorithm run
on Gp,,. Now, the easiest colouring algorithm is the greedy colouring algorithm
discussed in Section V.1. As shown by Bollobis and Erdés in 1976, this algorithm
does produce a colouring that, with high probability, uses only about twice as
many colours as the lower bound in (25). In 1988, Bollobas used a different,
non-algorithmic, approach to prove that, in fact, (25) is almost best possible.

Theorem 10 Let 0 < p < | be constant. Then

{1 logn
X(Gn.p) = (2 * "(”) iog(L/q)

Jorae Gy p whereq=1—p.
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What Theorem 10 claims is that if £ = 0 then
) ]
fim P, (mcn.p) log(1/g)/ logr — 51 < s) =1.

The optimatl threshold functions tell us a considerable amount about a property,
but in order to obtain an even better insight into the emergence of a property, we
should lock at kitting times. Given a monotone increasing property {0, the time 1
at which Q appears in a graph process G = (Gr}(";"F is the Aitting time of Q:

T=1p = r(é; ) = min{t : &, has Q).

The threshold fuactions in the model G(n, M) are easily characterized in terms
of hitting times. Indeed, m is a lower threshoid function for a property {2 if, and
only if,

(G Q) > my

for almost every G, and an upper threshold function is characterized analogously.

There arc scveral striking results concerning hitting times siating that two prop-
ertics that seem to be far from each other are almost the same in our spacc of
random graphs, A beautiful example of this is the property of being cornected,
considered in Theorem 9.

What is a simple obstruction to being connected? The existence of an iso-
lated vertex. Putting it another way, if @) is the property of being connccted
(Q) = “conn”) and @ is the propesty of having minimal degree at least |
(@2 =8 = 1"}, then G Q) = (G 03) for every graph process . Rather
surprisingly, equality holds for almost every graph process.

Theorem 11 For aimost every graph process G we have T(G; conn) = 1(G;
§= 1.

Although the proof is only a little more complicated than that of Theorem 9, we
shali not give it here. However, let us expand on the assertion. What Theorem 10
tells us is that if we start with an empty graph on a large set of vertices and keep
adding 10 it edges at random until the graph has no isolated vertices then, with
high probability, the graph we obtain is connected: the very edge that gets rid of
the last isolated vertex makes the graph connected. At first sight this 1s a most
unexpected result indeed,

Note that it is easy to deduce Theorem 9 from Theorem 11, since Theorem [ 1
implies that the property of being connected has the same threshold functions
as the property of having minimal degree at [east 1. It is easily proved that
Pp(8(Gnp) = 1) = 0if, and only if, Ep(X, p) — 00, where X, p is the
number of isolated vertices of Gy p. Also, Pp(8(Gyr p) > 1) — 1if, and only if,
E,{(Xap) —» 0. Simitar assertions hold for the properties of being k-connected
and having minnnal degree at least k.
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VIIL.4 Hamilton Cycles—The Use of Graph Theoretic Tools

In the proofs so far we always adopted a more or less head-on attack. We hardly
needed more from graph theory than the defimitions of the concepts involved, the
emphasis was on the use of elementary probability theory. This section is devoted
to a beautiful theorem of Pésa, concerning Hamilton cycles, the proof of which is
based on an elegant result in graph theory. Of course, the ideal use of probabilistic
methods in graph theory would have a mixture of all the ideas presented in the four
sections. Thus we would prepare the ground by using non-trivial graph theoretic
results and would apply probability theory to get information about graphs in a
probability space tailor-made for the problem. We could then select an appropriate
graph which we would afterwards alter with the aid of powerful graph-theoretic
tools.

As we saw in Chapter IV, the study of Hamilion cycles has been an important
part of graph theory for many years, and by now we know a good many sufficient
conditions for a graph to be Hamiltonian. Here we are interested in a rather
different aspect of the Hamilton cycle problem: what happens in the average case?
Given n, for what values of m does a fypical graph of order n and size m have a
Hamilton cycle?

A Hamiltonian graph of order n has at least # edges, and a non-Hamiltonian
graph of order n has at most ("51) + 1 edges. This leaves arather large ‘uncertainty’

window: for
n<m=< (n I) + 1
=m= 7

some graphs G{n, m) are Hamiltonian, and some others are non-Hamiltonian.
Changing the restriction from the size to the minimal degree, we are only slightly
better off: a Hamiltonian graph has minimal degree at least 2 and, by Dirac’s
theorem (Theorem II1.2), a non-Hamiltonian graph has mimimal degree at most
L(n - 1)/2].

What is fascinating is that if we do not demand certainty, only kigh probability,
then the window above becomes very small indeed.

Instead of fixing the size, we shall fix the probability: as we know, there is
very little difference between the two approaches, and it is easier to work with
G(n, p) then G(n, M). Thus the problem we wish to tackle is the following. For
what values of p = p(n) is G, ; likely to be Hamiltonian? From the results in
the previous section we do know a lower bound, atheit a rather weak one: if p =
(logh —w(n})/n, where w(n) — oo, then almost every G, p 15 disconnected and
50, a fortiori, almost no G, pis Hamiltonian. In 1976 P6sa achieved a breakthrough
when he proved that the same order of the probability guarantees that almost every
Gn,p is Hamiltonian.

The basis of the proof of this result is Theorem IV.15. Let § be a longest xg-path
in & graph H and write L for the set of endvertices of the transforms of 5. Denote
by N the set of neighbours of verticesof Lon Sand put R = V(HY - LUN.
Then Theorem IV.15 states that /f has no L—R edge. All we shall need from this
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is that if [L] = £ < [H}/3 then there are disjoint sets of size £ and [H| — 3£+ |

that are joined by no edge of H.
We start with a simple lemma in the vein of Theorem 4. Denote by [J; the

number of pairs (X, Y) of disjoint subsets of V such that [X| =1, Y| =»n — 3¢,
and G has no X-Y edge.

Lemma 12 letc > 3 and0 < y < % be constants and let p = (clogn)/n.
Then in G(n, p) we have

Pp(D; > Oforsomez, I <¢ < yn)= ao(n3-9).

Proof. Put f = {22 Clearly,

WZH:JE(D)—LY"J(H)(H_!)(I“ yn3)
Lo TP =2 t)\n -3t o

f=]

<n n-— I (l _ )n—:!l + % lnh(l _ )f(n—:ﬂ]
=nl", p 2 P
+ 27 = pyin T,
I=|ﬂ'n]+l

Now, since (1 — p)? < n™°, we have
n3(l _ p)n—3 < (1 - P)—3n3—c;

if 2 <t < Bn, then

n3r( =1 < nr(J—-{c(rr—ﬂr}fn)) < ﬂ1"1—1:';

I-p)

and if Bn <1 < yn, then
22-’3(1 _ p)l(n—3l] < nlﬂfll)gn—(ﬂ—il‘}!fn . o(n—ﬂ(l—:’ay)n)-

Consequently,
Lyn)
Y Ep(Dy) = 0(r¥),
r=]
implying the assertion of the lemma. O

Theorem 13 Let p = (clogn)/n and consider the space G(n, p). If c > 3 and
x and y are arbitrary vertices, then almost every graph contains @ Hamilton path
from x to y. If ¢ > 9 then almost every graph is Hamiltonian connected: every
pair of distinct vertices is joined by a Hamilton path.

Proof. Choose y < % in such a way thatcy > 3ifc > 9andey > lifec > 3.
Let us introduce the following notation for certain events in G(n, p).
D={D, =0foreveryi,1 <t < |yn]}, where D, is as before

E(W, x) = {G, ,[W] has a path of maximal length whose end vertex is
joined to x}
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E(W, x|w) = {Gpn, p[W] has a w-path of maximal length among the w-paths,
whose endvertex is joined to x}

F{x) = {every path of maximal length contains x}
H(W) = {G, p[W] has a Hamilton path}
H(x, y) = {Gp , has a Hamilton x—y path}
HC = {Gp,p is Hamiltonian connected}.
We identify an event with the corresponding subset of G(n, p), so that the

complement of an event A is A = G(n, p)\A.
Note that by Lemma 12 we have

Py(D) = 1 — Pp(D) = O(>°).

letusfixaverfex x andaset W C V\{x}with|W]=n—-20tn— 1. Our
first aim is to show that P, (D N E(W, x)) is rather small. Let G € D N E(W, x)
and consider a path § = xpx; - - - x4 of maximal length in G[W]. (By introducing
an ordering in W, we can easily achieve that § is determined by G[W].) Let
L = L{G[W]) be the set of endvertices of the transforms of the xy-path S and let
R be as in Theorem IV.17 (applied to G[W]). Recall that |R} > [W[ + 1 — 3|L]
and there is no L-R edge, so no L—(R U {x}) edge ecither. Since G € D and
(R U{x}| = n ~ 3IL], we find that |[L]| = yr. Now, L depends only on the edges
of G[W], so it is independent of the edges incident with x. Hence,

Po(D NE(W, x)) < Pp(IL(GIWD = ym)Pp(T(x)N L' =B,
where L' is a fixed set of [yn] vertices of W, Therefore,
PADNEW,x)) <(l-p)"" <n™,
so the probability in question is indeed smail. Exactly the same proof implics that
Py(DNE(W, xlw)) < n~°7,

provided |W| =n_-2orn_‘ I,bwe Wandx ¢ W.
Note now that F(x) C E(V — {x}, x), s0

Po(H(V)) =P, (.U F(x)) <P, (D nJ F(x)) + Pp(D)
eV

xe¥

< ) Po(DNF(x)) + Pp(D)

eV
<Py (DN EV — {x), x)) + By(D)
< nl= 4 03,

This proves that if ¢ > 3 then almost every graph has a Hamilton path.
Now let x and y be distinct vertices and put W = V — {x, y}. By the first part,

P,(H(W)) < 201~ 4 0(n~).
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Since
Hix,y) D HW)Nn E(W, y)Nn E(W, x|y),

we have
Po(H{x, y)) < Po(H(W)) +Pp{D N E(W, ¥)}
+ P, (DN EW, x1y)) + Pp (D)
< 207 207 4 O(n3Y),

Therefore, if ¢ > 3 then alost every graph contains a Hamilion path from x to y.
Finally, as there are (;) choices for an unordered pair (x, y), x # ¥,

Ppo(HC) < Y Pp(H(x, y)} ™Y 4277 4 0(n™).
Ey
Thus if ¢ > 9 then almost every graph 1s Harmiftonian connected. O

Since every Hamultonian connected graph 1s Hamiltonian, by Theorem 13 we
have in particular that if ¢ > % and p = clogn/n then almost every G, p
15 Hamiltonian, Independently of Pdsa, Korshunov proved the essentially best
possible result that this assertion holds for every ¢ > |, More importantly, in 1983
Komlos and Szemerédi determined the best threshold functions for the property

of being Hamiltonian.

Theorem 14 Let w(n) — oo and set py = {logn + loglogn — w(n))/n and
p. = (ogn +loglogn + w(n))/n. Then pg is a lower threshold function for the
property of being Hamiltonian and p,, is an upper threshold function.

In fact, analogousty to Theorem 11, there is a hitting time result connecting the
property of being Hamiltonian to its obvious obstruction. We remarked that being
disconnected is an obvious obstruction to being Hamiltonian. In fact, there is an
even more obvious obstruction, which is easy to detect: having rminimal degree
at most 1. As shown by Bollobéds in 1983, in a graph process this is the main

obstruction.

Theorem 15 Almost every graph process G is such that T(G; Ham) = t(G;
& = 2), where “Ham” is the property of being Hamiltonian and “§ = 2" is the
property of having minimal degree at least 2.

Thus if we stop a random graph process as soon as we get rid of the last vertex
of degree at most I then, with high probability, we have a Hamiltoman graph.
Theorem 15 easily implies Theorem 14; in fact, with only a little additional work
it implies the following sharper form of Theorem 14.

Letc € R be fixed and set p = (logn + loglogn + ¢)/n. Then

lim P,(Ga,, is Hamiltonian) = e~

Needless to say, the story does not stop here: there are many further questions
concerning randomr graphs and Hamilton cycles. For example, having discovered
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the ‘primary’ obstruction, namcly the existence of vertices of degree at most 1,
we find 1t natural to rule them cut and ask for the probability that a random
graph of order n and size m, conditional on having minimal degree at least 2, is
Hamiltonian. As it happens, the secondary obstruction 15 a ‘spider’; three vertices
of degree 2 having a common neighbour. However results of this type are better
suited for a specialist treatise on random graphs, rather than for this bock an graph

theory.

VI1I.5 The Phase Transition

What does a ‘typical’ random graph Gu look like? Better still, what does a
‘typical’ graph process (G,)S’ look like? In particular, how does the component
structure of (; change as ¢ increases?

It 1s fairly easy to see that if ¢ is rather small then G, tends to have only
tree-components, with the orders depending on the size of 1.

Theorem 16 Almost every random graph process is such that if k = 2 is fixed
and t = o(n* V%) then every component of G, is a tree of order at most 1.
Furthermore, if 5 is constant and 1 /n'*—2/&=1 s o0 then G, has at least s

components of order k.

The proof of this assertion goes along the lines of the proof of Theorem 7 and
is rather vapid: we do not even need that there are k=2 trees of order k (see
Exercise 1.41 and Theorem VIIL20). All we have to do is to estimate E{X ;) and
E{X f), where X; is the number of trees of order k in &, using that there are some

1R, 1 <tk < (E)]), trees on k distinguished vertices (see Exercise 34).

The growth of the maximal order of a component described in Theorem 16 is
fairly steady and regular, without any unexpected changes. What Erdds and Rény:
discovered is that around r = n/2 this growth becomes frantic: taking a bird’s-eye
view of the graph we see a sudden qualitative change in the component structure.
This qualitative change is the phase transition of a random graph process. Vaguely
speaking, before time n/2 every component has O(log n) vertices, but afler ume
n/2 there is a unique largest component of order » (i.e., containing a constant
proportion of the vertices). Even more, all other components are still of order
log n; in fact, as # increases, they are getting smaller,

In order to formulate a result precisely, for a graph G let us write £L(G) >
L@(G) = - - - for the orders of the components of G, so that }_, LENG) = |G.
We see from Theorem 16 that LUYYNG,) = k for almost every G, = G, if
g/ n* 0% s papd r/p%-2E-1 5 o0, For t = {en/2), with ¢ constant, the
following is a sharper version of the celebrated resuit of Erdds and Rény1 about
phase transition.

Theorem 17 Let ¢ > Qand b > 1 be fired and let o¥(n) — o0. Set ¢ =
c—1—logcandt =t{n) = |cn/2)
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(i) If ¢ < 1 then, for almost every random graph G,
: 1 5
ILYG,) ~ ” Ilngn -3 loglngnl | < win)

forevervi, 1 <i <h.
{ii) There are constants U < ¢; < ¢y such that, foreveryi, | <i <A,
cn?? < L(j)(GLnfzj} < Czﬂl'ﬂ

for almost every G n/2).
(it} If ¢ = 1 then, for almost every random graph G,,

ILDG) - ynl < wmnl’?,
where 0 < y = y(c) < | is the unigue solution of
e~V =1 —y.

Furthermore,

< win)

I L‘”(G,) - l Ilogn - gloglogn]
o 2

foreveryi,2 <i <h.

To appreciate the striking nature of Theorem 17, observe what happens to
L{(G,), the maximal order of a component, in a typical random graph process,
as ¢ increases from [cn/2] to (¢'nf2), where ¢’ = B¢, say. If0 < ¢ < ¢’ < Lor
I < ¢ < ¢, then LUXG,) increases by a constant factor. However, if ¢ < 1 < ¢’
then L1)(G,) grows dramaticaily, from order log n to order n. Passing through the
critical point ¢ = 1, tbe component structure changes completely, and a so-called
phase transition occurs: before the critical point there are many components of
about maximal size, and this maximal size is ((log ), but after the critical point
there is aunique maximal component, which is much larger than the second largest.
Passing through the critical point, a giant component emerges, with about yn
vertices for some positive constant ¥ = y(c), while the second largest component
still has order Q(logn).

To see that y = y{c) is well-defined for ¢ > 1, set fo(¥) = cy and g(¥) =
—log(l —y) =y + v2/2+ y*/3+ ... Since for y = 0 the function g(y) is
strictly convex, g'(0} = 1 and g(y) — oo as g — 1—, there is indeed a unique
y € (0, 1) such that f.(y) = g(¥).ie. e~ = 1 —y.Infact, it is easily checked
that forc = 1 4+ & > 1 we have y(c}) = y(l + &) = 26 — %e?—+ %534- oEh
(see Fig. VIL2).

What happens near the critical point remained a mystery for over 20 years, with
many natural questions unanswered. In a typical graph process, for what values of
t is the largest component at least twice as large as the second? How large can the
second largest component become? Can it grow to n/ log a, say? Once we see the
giant component of a graph process, at what speed does it grow?

Questions like these were answered by Bollobds in 1984, greatly clarifying the
phase transition, and much more detailed results were proved by Euczak in 1990,
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FIGURE VIIL.2. The curve y{c) forc > 1.

and by Janson, Knuth, Luczak and Pittel in 1993. For example, if 1 = 5 + s,
s/n*? = coand s/n — Othen

LG,y = 4s + o(s)

for almost every G,; that is, on average, the addition of one edge adds 4 new
vertices o the giant component. Also, L@(G,) does not grow substantially ahove
n2/3: for example, in G* we have

lingo ]P‘(L{Z)(G;} > n33*E forsome 1) =0

forevery £ = 0.
We shall not give a proper proof of Theorem 17, nor shall we do more than

outline a very elegant approach due to Karp that can lead to a proof of Theorem 17,
Karp's idea is to ignore the structure of a component and concentrate on the
correspondence x —» [C{x){, where C(x) is the vertex set of the component of
the vertex x in our random graph, and to exploit the similarity with a branching
process. As usual, it is more convenient to work with the model G(n, p) rather
than G(n, M): as in Section 2, it is then easy to pass from one model to another.

Fora graph G and vertex x € V{(G), let Cg (x) be the vertex set of the component
of x in G. To construct C = Cg(x), proceed as follows. Set x; = x, Ap = @ and
Bo = {x)). Then set A = {x,}, and add to By all the neighbours of x| in G to get
B,.If B; = Ay, then C = B; = Aj; otherwise, pick a vertex x3 € B) — Ay, set
A» = Ay U{x,}, and add to By all the neighbours of xz in G to get By, If B2 = A3
then C = By = A,; otherwise, pick a vertex x3 € By — A3, set A3 = Ay U {x3}
and add to B, all the neighbours of x3 in G to get B3, Proceeding in this way, we
getaset C = By = Ag: thisis precisely Cg (x). Not:e that this set depends only on
G, and not on the choices we made during the construction. At ‘time’ i, A; is the
set of vertices in C that we have tested for neighbours, so that at time £ we ron out
of new vertices to be tested, and thus A; = By is precisely the component Cg (x).

Note that in the construction above, |A;| =iand A; C Bjfori =0, 1,...,¢,
and £ is the first index with Ay = By. Now if G is a random graph G, p then,
A; C B;, A; # B;, having constructed the probability that a veriex in V — B; is
put into B;y, is precisely p, independently of all other vertices and of all earlier
choices. Hence we can run the process without any reference to the sets A; (of
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vertices tested in the first { rounds): baving constructed B;, select the vertices
of V — B; independently of each other, and add the selected veruces of B; to
obtain B;, . This sequence By C B| C --- can be run ad infinitum. However,
the connection with C(x) is easy to recover: write £ for the smallest index with
[ Be| = £, the set B, is distributed precisely as C(x}. In particular, the probability
that C(x) has exactly k vertices is at most the probability that | B, | is precisely k.

The crunch comes now: each [B;| has a very simple diswibutien. Indeed, what
is the probability that a vertex y € [n] — {x} is not put into B;? We make
attempts at adding y to 8;, with each attempt succeeding with probability p,
so P(y ¢ B;) = (1 — p]i. As all choices are mdependent, |B;| has binomial
distribution with parameters n — 1 and 1 — (1 — pY¥':

-1

; )fl — (1 - py Yl — pyitnt) (26)

P(B;) = k) = (”

As noted above, this probability is an upper bound for P, (|C{x}| = &).

This relation enables us to show that some values are extremely unlikely to
occur as orders of components of G, ,: with very high probability there is a gap
in the orders of components.

Theorem 18 Let a = 2 be fixed. If n is sufficiently large, £ = g(n) < 1/3 and
p=piny= l"ﬁ then, with probability at least 1 — n™%, G, , has no component
whose order k satisfies

Ba g

7 logn <k < —l—in.
Proof. Setkp = [8ae~2logn] and ky = [£2n/12]. Writing p; for the probability
that the component of G, ; containing a fixed vertex has k vertices, the probability
that G,,, has a component of order k is at most np;. Hence, it suffices to prove

that
ki
> pesnt
k=kn

We may assume that kg = k3, 50 gt = 96a(logn)/n = 1/n, since otherwise
there is nothing to prove. Now, by (26),

k
Pr ZP(Br|=k) < :—!e_kz”z"(kp)"(l . pytla—k-1),

since

k .
e  § (B e

and
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Noting that
I 4&<efe/3
for |g| < 1/3, and recalling (1), Stirling’s formula, we have

P = exp[_kzﬂn - szkﬁ +E2(1 + £)/n}
< expl—e2k/3 + k2 n) < e KA,

Therefore,
k) k|
Y s Y e pmehalbg — e
% k=
< %euslku,m *_:.rm"z" < n—a1
£
as required. In)

With more work, Theorem 18 could be proved in a much stronger version,
giving us that a steadily growing, much larger gap arises soon after time n/2
and lasts till the end of the process, Nevertheless, even m this form it tells vs a
great deal about the components in a random graph process. For example, grven
0 < g1 < £2 < 1/3, there are positive constants a, £ such that almost every graph
process G = (G;){, is such that for (1 + ¢))n/2 <t < (1 + £2)n/2 the graph G,
has no component whose order is between e log n and fn. Call a component small
if it has at most & log n vertices, and large if it has at least Sn vertices. Also, set
1) = [(1 + &1)n/2] and & = ({1 + g2)n/2]. Then a typical graph process {Gr)g
is such that for ¢) < t < f; every component of G, is either small or large.

Let us observe the changes in the component structure in a typical process
(G;)S” as 1 grows from f1 to t>. What is the effect of the addition of an edge to G,
to produce G4 7 If the new edge is added to a component, there is no change.
If the new edge joins a large component to another, then the two components are
replaced by a single component. Most importantly, what happens if the new edge
joins two small components? The union of these small compenents is certainly not
large, as 2clogn < fn, with plenty to spare, so it has 10 be smail. In particular,
Gy, 1 has at most as many large components, as G.; even more, if the new edge
joins two large components then G,.+1 has one fewer large component than G,.

Conditioning on G = (G')t} being a typical graph process and G, containing
at least two large components, the probability that the (r + I}st edge joins two
large components is at least ﬁznl,f (;) > 28%. Now, G, has at most 1/8 large
compenents, so if w{n) — oo then with probability 1 — (1), after the addition
of the next w(n) edges all large components have been united. In particular, in a
typical graph process G, has a unique large component, the giant component of
G,, and all other components have at most ¢ log n vertices. This is precisely the
qualitative version of the most intercsting part of Theorem 17, part (iii).
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The value of ¥ in Theorem 17(}ii) can be determined by exploiting the similarity
between a branching process and the growth of a component containing a vertex.
Let us give a brief heuristic description of the similarity.

Let p = ¢/n, ¢ > 1, and suppose we know that almost every G, , has a
unique giant component with (y + o(1))n vertices, where y > 0, and all other
components are small, with no more than o log n vertices. How can we find »?
Clearly, p is the limit of the probability that the component C(x) of a fixed vertex
x is small: |C{x})] =< alogn. To estimate this probability, let us ‘grow’ C(x),
starting from x, as in the proof of Theorem 18, but keeping track of the neighbours
we put into C(x). To be precise, let I/ be the set of vertices at distance € from
x, and let Vs = |J!_, U; be the set of vertices at distance at most £ from x. We
stop this process if |V¢| > « logn for some £, since then C(x) is large, and also if
{er) = Band |V < alogn, since then C{x) = V is small.

Let us take z close look at the way Uy arises from (U/y, Vy). Letting Uy =
{w1, un, ...}, first take all new neighbours of u}, then all new neighbours of k3,
and so on, stopping the process if we ever reach ar log n vertices. Suppose then that
we have reached 2 < a log n vertices from x when we test for the new neighbours
of u;, What is the distribution of the number of new neighbours of u; ? Clearly, for

k < alogn, we have

—h
P(u; has k new neighbours) = (n L )p"‘(l -~ gtk

k

= %e*f(l + O((log )2/ ).

This means that the distribution of the number of descendents of «;, that is, the
number of vertices we add to C(x) because of i;, is close to the Poisson distribution
with mean ¢. Therefore, the distribution of |C(x)} 18 close to the distribution of
the total population in a Poisson branching process. provided C{x) is small.
To define this process, let Z;, i = O, 1,..., j = 1,2,..., be independent
Poisson random variables, each with mean c:
ek _ R
P(Z; =k) = it_!e .

Set Zp = 1. Having defined Z,, set Zpp) = 2y + 22 + - - - + Z,7,, where the
empty sum (for Z, = 0} is 0, as always. The interpretation is that Z, is the size of
the population in the nth generation and Z,; is the number of descendents of the
ith member of the nth generation.

Theorem 19 Let (Z,)3° be as above, withc > 1, and write pe for the probability
that Z, > 0 for every n. Then pes is the unigue root of

ff-_cpm — 1 - pm
in the interval (0, 1).

Proof Let p, be the probability that Z, > 0, so that po = | and pe =
Hinp—, 00 Pa- First we check, by induction on », that p, > y forevery n, where p is
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the unique root of e7¥¢ = 1 — y in (0, 1). This holds forn = O since py = 1 = y.
Assume then that n > 0 and p, > y. Conditioning on Z; = &k > 1, the process
is the sum of k£ independent processes with the same distribution. Since 1 — p; is
the probability that the process dies out by time ¢,

b= Pt =B(Zi = 0)+ Y P(Zi = k)(1 ~ po)*
k=1

ot
= Z Fe c(l —_— p,-.}k
k=0 -
oG k
_ (c(l — pa)Y _.1—

—_— cPn At R —cll—py)
=™y k. °

k=0

= 7P < g7,

Hence pnyy = y, as claimed, and 50 pog == limy_y00 pr > ¥.
By applying the argument above to 1 — po rather than 1 — ppyy and 1 — py,
we see that

= o]
[ = poo =P(Z1 =0) + Y _P(Z = )1 — po)’ = e~
k=1
Hence poo is a root of e P2 = | — p,, satisfying 0 < po, < 1, and we are
done. 0

Returning to the size (y + o(1)})n of the giant component in Theorem 17(ii), we
know that y is the limit of the probability that our fixed vertex x € [n] belongs to
the giant component. Therefore, y is the probability that Z,, in Theorem 19 does
not die out, 50 ¥ = poo. Hence ™Y = 1 — y, as claimed in Theorem 1 7(iii),

To make all this rigorous, we bave to do more work, but it is clear that this
approach can be used to establish the principal features of the phase transition.
In fact, the method above is only one of several ways of investigating the phase
transition. In particular, Erdds and Rényi, Bollobés, and Fuczak made use of the
finer structure of the components, and Janson, Knuth, £uczak and Pinel relied on
generating functions and hard analysis to obtain very detailed results about the

emergence of the giant component.

VIL.6 Exercises

1~ Show that the complement ‘G_P of a random graph G is precisely G, where
g=1-p.

27 Let M = O be fixed and for n > 2M let H, pr consist of M independent
edges and n — 2M isolated vertices. Show that

Bim Pos(Gnmt = Huar) = 1,
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3~ Prove that there is a tournament of order n (see Exercise 12 of Chapter 1) that
contains at least n12~"*! directed Hamiltonian paths.

47 Let G = (V, E) be a directed graph with m edges and without loops. Use
expectation to show that V can be partitioned into sets V| and V3 such that G

contains more than m /4 edges from V| to V2.

57 Show that a graph of size m has a k-partite subgraph with at least (k — 1)m/k
edges. [Hint. Consider a random k-colouring of the vertices. What is the
expected number of edges joining vertices of distinct colours?]

6.~ Show that a graph of order # and size m has a bipartite subgraph with at least
2\nf4{m/n(n — 1) edges. [Hint. Consider random bipartitions into as equal
classes as possible.]

7. Let G = G(n, m) be a graph with chromatic number r. Show that & has a
bipartite subgraph with at least

3 (1 =) = (1 (:)) (,:)

edges, [Hint. Let V|, ..., V; be the colour classes. Consider partitions of the
colour ¢lasses.]

8, Show that a.e. graph G, /> has maximal degree at least n/2+ ./ and minimal
degree at most n/2 ~ /n_

9. Show that a.e. graph Gy 112 has at least n'/? vertices of degree precisely
Ln/2). [Hint. Compute the expectation and variance of the number of these

vertices.]

10" Let G and H be graphs of order n. Show that (7 has a subgraph with at least
e(G)e(H);‘(;) edges that is isomorphic to a subgraph of 4.

11. Let F be a fixed graph and let X = X p(G) be the number of subgraphs of
G isomorphic to F. Suppose that N = (7} is even and set M = N/2. Show

that
Ep(XrF) < Ep(XrF).

12. Show that there is a graph of order # and size
[1 (1 —1/slth) nz—'fW'—lJ.f(rr—nJ
2

that does not contain a K ;.

13. Given2 < 5 < n, letd be the maximal integer for which thereisa G3(n, n, n)
without a K3(s, 5, 5}, in which every vertex is joined by at least 4 edges to
each of the other two classes. Prove a lower bound for 4.

- me———— e = = emcmR o
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14 Use Theorem 3 to prove that if r > 2,0 < £ < 3(r ~ 1)"% and
df > — 2 ,
log(2(r — 1)2g)

then for every sufficiently large n there is a graph G(n, m) not containing a
K. (), where m = {(r — 2)/(2(r — 1)) + ¢}n? and t = |d* logn]. (Note that
this shows that Theorem IV.20 is essentially the best possible.)

15. Show that a fixed vertex is isolated in about 1/€? of the graphs in G(r, n) and
has degree 1 in about 2/e? of the graphs in G(n, n).
In Exercises 16-20 the model G(n, P(edge) = pYisusedand 0 < p < 1 is
assumed to be fixed.

16. Show that for & > 0 a.e. graph has at least J(p — £)n? edges and at most
-21—(p + &)n? edges.

177 Prove that a.e. graph & satisfies.
5(G) = AM(G) = x(G) = pn — 2pgrlogm)/* + o(nlogn)!/2,
whereg =1 - p.

18 Estimate the maximal value of ¢ for which a.e. graph contains a spanned X ;.
Estimate the corresponding value for X, (£} = K, ..

19. Let 0 « ¢ < 1. Prove that a.e. graph has the property that for every set W of
k = {clog; n| vertices there is a vertex xz for each subset Z of W such that
xz is joined to each vertex in Z and to none in W — Z. Check that forc = 1
it is impossible to find even a set of 2% vertices disjoint from W. {Hinet. Refine
the proof of Theorem 7.)

20. Let A be a fixed graph. Show that a.e. G, , is such that whenever an induced
subgraph Fg of Gy, p is isomorphic to an induced subgraph F of H, ther G, 5
has an induced subgraph Hy = H containing Fp. :

217 Let £ be a monotone increasing property of graphs of order n. Show that if
po < pi1and My < My then Py (Q) < Py, (3) and Pagy (@) < Pag, (Q).

227 Letx € Rbefixedand p = p(n) = (logn)/n+x/n. Show that P, (G, , has
no isolated vertices) ~» e~ . [Hint. Write X = X (G, p) for the number of
isolated vertices. Show that, for every fixed &k > 1, the kth factorial moment
E,({Xy)) =Ep,(X(X—1)--- (X -k+1))tends to ek, Apply the Inclusion
-Exclusion Formula to prove the result.)

23+ Sharpen Theorem 9 to the following result. If p = (logn)/n + x/n
then the probability that Gy , is connected is e~¢". [Hint. Show first that
a.e. Gn,p consists of a component and isolated vertices. Apply the result from
Exercise 22].
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24. Let p = logn/n + w{(n)/n, where w{(n) — oo arbitrarily slowly. Prove
that a.e. Gy, p contains a 1-factor. [Hint. Use Tutte's theorem, Theorem 11,12,
ignoring the parity of the components.]

25. Show that 1/n is a threshold function for Fy in Fig. VIL3; thatis, if pn — 0
then almost no graph contains Fi, and if pn — oo then a.e. graph does.

26. What is the threshold function for 7 in Fig. VIL3?

LK

FIGURE VII3. The graphs F;, F;, and F3.

27} Let & > 0. Prove that if p = n~1/2~* then almost no Gn, p contains F3 in
Fig. VL3 but if p = n~ /245 thep ace, Gp,p does. [Hinz. Find a suitable
graph F; that has average degree 2 + ¢.]

287 Consider the random bipartite graph G, ., with two vertex classes of n
vertices each, in which vertices in different classes are joined with probability
p. independently of each other. Show that, forall fixedk > land 0 < p < 1,
almost every G . p is k-connected, has a k-factor, and has diamcter 3.

29 Consider random directed graphs in which all edges are chosen independently
and with the same probability p. Prove that there is a constant ¢ such that
if p= z:({lc.‘agn}l,".r:)”2 then a.e. directed graph contains a directed Hamilton

cycle. [Hint. What is the probability that a graph contains both edges ab and
ba? Apply Theorem 14 to the random graph formed by the double edges. ]

30. Note that the suggested solution of Exercise 29 gives two directed Hamilton
cycles with the same underlying (non-directed) edge set. Show that with
p = {1 - eX(logn)/ n}/2 almost no directed graph contains such a pair of
Hamilton cycies.

31+ Show that there are at least (27 /n!) + o{2¥ /n!) non-isomorphic graphs
of order n. [Hinr. Show that a.¢, graph in G(n, P{cdge) = %) has trevial
automorphism group; for the automorphism group see Section VIIL3.]

32 Construct a random interval graph G, with vertex set [n] = {1, 2, ..., n} as
follows; partition [2n] into n pairs, {a;, &1}, ..., (@, Ba}, 52y, with a; < b;,
and join  to j if [a;, bj1N[a;, b;] # #. What is the expected number of edges
of G, 7 Show that almost every G, is connected.
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33, Show that every tournament of order 2* contains a transitive subtournament
of order & + [ (i.e., there are vertices x|, ..., xx + 1 such that x; dominates
xj whenever i < j). Show also that a tournament on (2%/2) vertices need not
contain a transitive subtournament on k + 1 vertices.

34. Give a detailed proof of Theorem 16 calculating the expectatton and variance
of the number of tree-components of orders £ 4- 1 and &, Concerning the
number ¢ (k) of trees on k distinguishable vertices, use only the fact that

t{k) > | depends only on k.

35F The conjugate of ¢ > 1 150 < ¢’ < |, satisfying
c'e™ =ce .
Show thatevery ¢ > | has auniquc conjugate. Show also that y(c) = t —¢'/c,
where ¥ {c) is the function in Theorem 17(iii), so that the giant component of

a typicat Gr /o has about y(c)n vertices.

36. Given the space @, of random permutations of [z], with the permuations
taken to be equiprobable. Write a permutation m € 2, as a sequence
(D, (2}, -, mm) . If 1 <i) <+ <ipg <nand (i)} < ... < 7(i),
then m{iy), ..., m{ix) is said to be an increasing subsequence of length k in
n. Show that almost no subsequence m € §2, contains an increasing subse-
quence of length at least e /r, [Hint. Let I () be the number of increasing
subsequences of length & contained in 7. Estimate the expectation of 1.

37 (Exercise 36 contd.) Find a constant ¢ < ¢ such that almost no permutation
€ 2, contains an increasing subsequence of length at least ¢ /n. [Hint. for

d < ¢ < e setk = [c/n], £ = [d /], and note that E(/¢) > (5)P(Jk = 1).]

38" (Exercise 36 contd.) Show that almost every permutation 1 € §2, contains
an increasing subsequence of length at least \/n/e. [Hint. Write I(rr) for the
maximal length of an increasing subsequence of r, and D(r ) for the maximal
length of a decreasing subsequence. Recall the result of Erdds and Szekeres
stated in Exercise I1.54 that [ () D({x) > n forevery m € £2,. The assertion
is easily deduced from this inequality and the assertion in Exercise 36. In fact,
I(m) = (2 + o(1)}/n for almost every m € £2,,, but the proof of this is quite

substantial. ]

39. Let A be the area of a triangle formed by three points selected at random and
independently from a convex set D C R?2 of area 1. Show thatfor0 < g < |

we have P(A < a) > a.
40" (Exercise 39 contd.) Let A be the area of a triangle formed by three points
selected at random and independently from a unit disc (of area 7). Prove that

for a > 0 we have P(A < a) < 4a. Can you prove a sharper inequality?
{Hint. Let x, y and z be the three points, Show first that

P(A <a|dix,y)=1t) <da/tx.
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Deduce from P(d{x, y) < t} < ¢? that
I 44 4
P(A < a) < f 2241 22
0 i3 i o

Note that all these inequalities are very crude, and are easily impraved ]

417 (Exercise 40 contd.) Prove that, for every n > 1, there are n points in the unit
disc such that no three points form a triangie of area less than 1/6n°.
[Hint. Select 2n points at random, and delete a point from every triple whose
triangle has area less than 1/6n?. Use the assertion of Exercise 40 to prove
the result. In fact, Heilbronn conjectured in the 1930s that the assertion in this
exercise is essentially best possible: no matter how we arrange n points in the
unit disc, some three of the points form a triangle of area G(1/r°). In 1981,
this conjecture was shown to be false by Komlos, Pintz and Szemeredi. ]

42. By imitating the proof of Theorem 4, show that for p = 1n~U/? almost cvery
G, p is such that no maximal triangle-free subgraph of it contains more than

2n' /2 Jog n vertices.

437 (Exercise 42 contd.) Let p = —21-11‘”2. Show that almost every G,  is such
that if H is a maximal triangle-free subgraph of it then
() n3216 < e(H) < n3/%3,
(iiy H does not contain an induced bipartite subgraph with more than
30n1/2(tog n)? edges.

VIL7 Notes

Perhaps the first non-trivial combinatorial result proved by probabilistic methods
is the assertion of Exercise 3, proved by T. Szele in Combinatorial investiga-
tions concerning directed complete graphs (in Hungarian), Mar. Fiz. Lapok 58
(1943) 223-256; for a German translation see Kombinatorische Untersuchungen
iiber gerichtete vollstindige Graphen, Publ. Math. Debrecen 13 (1966) 145—168.
However, the theory of random graphs really started with a number of papers
of P. BErdds, including Some remarks on the theory of graphs, Bull. Amer. Soc.
53 (1947) 292-294, Graph theory and probability, Canad. J. Math. 11 (1959)
3438, and Graph theory and probability II, Canad. J. Math. 13 (1961) 346-352.
These papers contain Theorems 2 and 4, and the bound on R(3, f) mentioned after
Theorem 2.

The result about first order sentences that we mentioned after Theorem 7 15 due
to R. Fagin, Probabilities on finite modcls, J. Symb. Logic 41 (1976) 50-58.

The sharpest results in the direction of Theorem 8 are in B. Bollobds and
P, Erdds, Cliques in random graphs, Math, Proc, Cambridge Phil. Soc. 80 (1976)
419-427, and Theorem 10 is from B. Bollob4s, The chromatic number of random
graphs, Combinatorica 8 (1988} 49-55.
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Pésa’s theorem (Theorem 13) is in L. Posa, Discrete Math. 14 (1976) 359-
364, its sharper form is in A D. Korshunov, Solution of a problem of Erdfs
and Rényi, on Hamilton cycles in nonoriented graphs, Soviet Mat. Doklady 17
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graphs (Theorem 14) is from J. Komlds and E. Szemerédi, Limit distributions for
the existence of Hamilton cycles in a random graph, Discrete Math. 43 (1983)
5563, and its hitting time version (Theorem 15} is from B. Bollobas, Almost
all regular graphs are Hamiltonian, Europ. J Comb. 4 (1983) 97-106. For the
result on ‘spiders’ mentioned at the end of §4, see B. Bollobas, T.1. Fenner and
A. M. Frieze, Hamilton cycles in random graphs of minimal degree £, in A Tribute
to Paul Erdds, (A, Baker, B. Bollobas and A. Hajnal, eds), Cambridge University
Press, 1990, pp. 59-95.

The fundamental paper on the growth of random graphs 1s P. Erdds and A. Rényi,
On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960}
17-61. This paper contains a detailed discussion of sparse random graphs, covering
amongst other phenomena the distribution of their components, the occurrence of
small subgraphs (Theorem 7), and the phase transition {Theoremn 18). The real
nature of the phase transition was revealed in B. Bollobds, The evolution of
random graphs, Trans. Amer. Math. Soc. 286 (1984) 257-274. For more detaiied
results see T, Luczak, Componcent behaviour near the critical point of the random
graph process, Random Structures and Algorithms 1 (1990) 287-310, T. Luczak,
B. Pittel, and 1.C. Wierman, The structure of a random graph at the point of the
phase transition, Trans. Amer. Math, Soc. 341 (1994) 721-748, and S. Janson,
D.E. Knuth, T. Luczak and B. Pittel, The birth of the giant component, Random
Structures and Algorithms 4 (1993) 233-358.

For Heilbronn’s conjecture, mentioned in Exercise 41, see J. Komlés, . Pintz
and E. Szemerédi, On Heilbronn's triangle prohlem, J. London Math. Soc. (2) 24
(1981} 385-396.

This chapter was based on B. Bollobas, Random Graphs, Academic Press,

London, 1985, xvi+447 pp.



VIII

Graphs, Groups and Matrices

This chapter provides a brief introduction to algebraic graph theory, which is a
substanttal subject in its own right. We shall deal with only two aspects of this
subject; the interplay between graphs and groups, and the use of matrix methods.

Graphs arise naturally in the study of groups, in the form of Cayley and Schreier
diagrams, and also as objects whose automorphisms help us to understand finite
simple groups. On an elementary level, a graph is hardly more than a visual
or computational aid, but it does help to make the presentation clearer and the
prablems more manageable. The methods are useful both in theory and in practice:
they help us to prove general results about groups and particular results about
individual groups. The first section, about Cayley and Schireier diagrams, illustrates
both these aspects, It also contains an informal account of group presentations.

The second section 1s about the use of the adjacency matnx of a graph, and
its close relative, the Laplacian. Elementary lincar algebra methods enable one
to establish close links between eigenvalue distributions and basic combinatorial
properties of graphs,

Matrix methods are espectally powerful when the graphs to be studied have
particularly pleasant symmetry properties, The third section is about such ciasses
of graphs. Among other results, we shall present the theocrem of Hoffinan and
Singleton, stating that a natural class of highly symmetric graphs has only few
members.

The last section is about enumeration. As we shall see, some classes of labelled
graphs are easily enumerated, while other enumeration problems, such as counting
isomorphism classes of graphs, lead us to the study of orbits of permutation groups.
The highlight of the section is Plya’s classical theorem, proved in 1937, which is
the fundamental theorem for enumerating such orbits.
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VIII.1 Cayley and Schreier Diagrams

Let A be a group generated by a, &, ... The graph of A, also called its Cayley
diagram, with respect to these generators is a directed mulitigraph whose edges
are coloured with the generators: there is an edge from x to y coloured with a
generator g iff xg = y. To illustrate this concept, in Fig. VIIL.} we show the
Cayley diagrams of three small groups.

)
-
Por

FIGURE VIIL1. The Cayley diagrams of (i) the cyclic group C4 generated by a, (i1) the
Kiein four-group with generators @, & and {iii) the symmetric group $3 with generators
a = (123) and b = (12).

A Cayley diagram of a group is regular, and so is its colouring, in the following
sense: for each vertex x and each generator (colour) g there is exactly one edge of
colour g starting at x and exactly one edge of colour g ending at x. Furthermore,
at most one edge gocs from x to another vertex y. If we know the Cayley diagram
of a group then we can easily answer questions posed in terms of the generators.
What is the element aba?b in 37 1t is the end of the directed walk starting at 1
whose first edge has colour a, the second has colour b, the third a, the fourth a
and, finally, the fifth b. By following this walk in the third picture in Fig. VIIL1,
we find that aba®h = a?. In general, two elements expressed as products of some
generators are equal iff the corresponding walks starting at 1 end at the same
veriex.

The Schreier diagram is a slight extension of the Cayley diagram. This time we
have a group A, a set § of elements of A and a subgroup B of A. The Schreier
diagram of A mod B desctibes the effect of the elements of § on the right cosets
of B: it is a directed multigraph whose vertices are the right cosets of B, in which
an edge of colour 5 € § goes from a coset H to a coset X iff Hs = K. (Thus
a Cayley diagram is a Schreier diagram mod B, where B is the triviai subgroup
{1}.) In most cases S is chosen (o be a set of generators or a set which together
with B generates A. Instead of giving a separate illustration, note that if A is
the syminetric group on {I, 2, 3, 4}, B is the subgroup of elements fixing 1 and
§ = {a} with a = (1234) then the Schreier diagram is exactly the first picture in
Fig. VIIL1, that is, the Cayley diagram of C4. Once again we note that for each
vertex # and each colour g € § exactly one edge coloured g starts at A and
exactly one edge coloured g ends at /. However, some of the edges may be loops,
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that is, they may start and end at the same coset. Furthermore, there may be many
edges of different colours joining two vertices.

Group diagrams do not tell us anything about groups that cannot be expressed
algebraically. However, the disadvantage of the aigebraic approach is that many
lines of print are needed to express what is conveyed almost instantancously by a
single diagram. These diagrams are especially helpful when we have a concrete
problem to be solved by hand, and moreover, the purely mechanical techniques
involved are ideal for direct use on a computer. Since the advent of fast electronic
computers, ntany otherwise hopeless problems have beer solved in this way.

Group diagrams are particularly useful in attacking problems concerning groups
given by means of their presentations. For the convenience of the reader we recall
the basic facts about group presentations. We aim throughout for an intuttive
description, rather than a rigorous treatment; the interested readers may fill in the
details themselves or turn to some specialist books on the subject. A word W in
the symbols a, b, ¢, . .. is a finite sequence such as ba~lccaa™1b1a; the empty
sequence is denoted by 1. We call two words equivalent if one can be obtained
from the other by repeatedly replacing xx~! or x~!x by 1 (the empty word) or
vice versa. Thus abb~la=le~! and cc~ ¢~ 'dd ™! are both equivalent to ¢ L. In
fact, we shall use the same notation for a word and its equivalence class and so we
write simply abbla ¢! = cc7le¢71dd™! = ¢~} Furthermore, for simplicity
abbe e 1e™1 = ab?c 73, etc. The (equivalence classes of) words form a group if
multiplication is defined as juxtaposition: (ab~'c)(c~'ba) = ab~lcc'ba = a’.
Clearly, a~1 is the inverse of @ and (@167 1¢)~! = ¢~ !ba. This group is the free
group generated by a, b, c...and itis denoted by {a, b, c.. ).

Let R, R., ... be words in the symbols a, b,c, ..., &t F = {a,b,c,...) and
let X be the normal subgroup of F generated by R,,, R..,.... Then the quotient
group A = F/K is said to be the group generated by a, b, ¢, . .. and the relators
Ry, Ry,..;innotation A = (g, &, ¢, ... | By, Ry, .. ).

Once again we usc a word to denote its equivalence class and write equality
to express equivalence. More often than not, a group presentation is written with
defining relations instead of the more pedantic relators. Thus {a, b | a® = b’
denotes the group {a, b | a?b=3). A group is finitely presented if in its presentation
there are finitely many generators and relations. It is easily seen that two words W,
and W, are equivalentin A iff W3 can be obtained from W) by repeated insertions
or deletions of aa~!,a~'a, bb~!, ..., the relators Ry. Ry, ... and their inverses
Ry, R;',.... As an example, note that in A = (a, b | a’b, b, a*) we have
a = aa’h = a*h = b. Hence | = a’b(h>)~! = a = b and 50 A is the trivial

group of order L.
Even the trivial example above illustrates our difficulties when faced with a

group given in terms of defining relations. However, groups defined by means of
a presentation arise naturally in diverse areas of mathematics, especially in knot
theory, topology and geometry, so we have to try to overcome these difficulties.
The fundamental problems concerning group presentations were formulated by
Max Dehn in 1911. These problems ask for general and effective methods for
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deciding in a finite number of steps (i) whether two given words represent the
same group element (the word problem), (ii) whether they represent conjugate
elements (the conjugacy problem) and (1ii) whether two finitely presented groups
are isomorphic (the isomorphism problem). All these problems have turned out
to be problems in logic, and cannot be solved in general. Explicit solutions of
these problems are always based on specific presentations and often make use of
group diagrams. (Dehn himself was a particularly enthusiastic advocate of group

diagrams.)
Let A = {a,b,... | Ry, Ry,...}. We shall attempt to construct the Cayley
diagram of A with respect to the generators a, &, .... Having got the Cayley

diagram, we clearly have a solution to the word problem for this presentation,

The Cayley diagram of a group has the following two properties.

{a) The (directed) edges have a reguiar colouring with @, b, . _.; that is, for each
vertex x and generator g there Is exactly one edge coloured g starting at x and
exactly one edge coloured g ending at x.

(b} Every relation is satisfied at every vertex, thatis, if x is a vertex and R, is a
relator then the walk starting at x corresponding to R, ends at x.

How shall we go about finding the Cayley diagram? We try to satisfy (a) and
(b) without ever identifying two vertices unless we are forced to do so. Thus at
cach stage we are free to take a new vertex and an edge into it (or from it). We
identify two vertices when (a) or {b) forces us to do so. If the process stops, we
have arrived at the Cayley diagram. Note that until the end we do not know that
distinct vertices represent distinct group elements.

As an example, let us see how we can find the Cayley diagram of A = {a, b |
a® = b = (ab)* = 1). We replace each double edge corresponding to b by a
single undirected edge; this makes the Cayley diagram into a graph, with some
oriented edges. We start with the identity and with a triangle 123 corresponding to
a’ = 1; for simplicity we use numbers 1, 2, ... to denote the vertices, reserving
1 for the identity element. An edge coloured b must start at each of the vertices
1, 2 and 3, giving vertices 4, 5 and 6. Now a® = 1 must be satisfied at 6, giving
another triangle, say 678, whose edges are coloured a, as in Fig. VIIL.2. At this
stage we may care (o bring in the relation (ab)? = abab = 1. Checking it at 8,
say, we see that the walk 86314 must end at 8, so the vertices denoted so far by 8
and 4 have to coincide. Next we check abab — 1 at 7: the walk 7(8 = 4)125 must
end at 7 so 5 and 7 are identical. All that remains to check is that the diagram we

.
-q—-——--‘
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3 2 3 6 7

[ Ry A . -

FIGURE VI1I1.2. Construction of a Cayley diagram.
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FIGURE VII1.3. Some Cayley diagrams. The shaded regions correspond 1o abc = 1.

obtained satisfies {a) and (b), so it 1s the Cayley diagram of the group in question.
In fact, the diagram is exactly the third picture in Fig. VIII.1, so the group is Ss.

For p > g = r = 2 denote by (p, g, r) the group {a, b, c | a” = b =" =
abc = 1). Given specific values of p, g and r, with a little effort the reader can
find the Cayley diagram of the group {p, g, ) with respect to the generators a, &
and ¢. Fig. VIIL3 shows some of these diagrams.

The diagrams above indicate some connection with tesseliations. The beauty
of the use of Cayley diagrams is that one can make good use of this connection.
Indeed, the reader who is slightly familiar with tessellations of the sphere, the
Euciidean piane and the hyperbolic plane, can easily prove the following result.

Theorem 1 If{1/p)+ (1/q) + (1/r) > 1 then the group (p, g, r} is finite and
has order 25 where 1/s = (1/p) + (1/q) + (1/r} — 1. The Cayley diagram is a
tessellation of the sphere (as in the first two pictures in Fig. VIIL3).

IF/p)+ (1/gq)y+ (1/r) < 1 then the group (p, q,r) is infinite. If equality
holds, then the Cayley diagram is a tessellation of the Euclidean plane, while
otherwise it is a tessellation of the hyperbolic plane (as in the last two pictures in

Fig. VIIL3). O

As we remarked ecarlier, groups given by means of their presentations arise
frequently in knot theory. In particular, Dehn showed how a presentaton of the
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group of a (tamne) knot (that is, the fundamental group of R? after the removal of
the knot) can be read off from a projection of the knot into a plane. The projection
of the knot forms the boundary of certain bounded domains of the plane. To
each of these domains there corresponds a generator (the identity corresponds to
the unbounded domain) and to each cross-over there corresponds a relator. The
general form of these relators 1s easily deduced from the two examples shown in
Fig. VIIL.4. (Indeed, readers familiar with the fundamentals of algebraic topology
can easily prove the correctness of this presentation.) The group of the trefoil
{or clover leaf) knot is (a, b, c,d | ad ‘b, cd=la, cbd™!) and the group of the
figure of eight knot is {a,b,c,d.e | ab~le,ad teb™' ed leb™ ' acd™ ). In
Section X.5 we shall study knots in a compleiely different way, namely by means
of polynomial invariants rather than groups.

FIGURE VII1.4. The (right-handed} trefoil knot and the figure of eight,

Of course, before embarking on an investigation of the group, it is sensible 10
atternpt to simplify the presentation. For example, cbd =1 = | means that d = ch
or bd~'c = 1. Thus the group of the trefoil knot is

{a,b,c.d| ad~ b, bd™ ¢, cda)

or, equivalently,

{a,b,c|ch=ba=ac).

We invite the reader to check that ihe Cayley diagram of this group is made up of
replicas of the ladder shown in Fig. VITL5. (Exercise 4). At each edge three ladders
are glued together in such a way that when looking at these Iadders from above,
we see an infinite cubic tree (Fig. VIIL.5). Having obtained the Cayley diagram,
we can read off the properties we are interested in. In the case of this group the
method does not happen to be too economical, but this is the way Dehn proved
in 1910 that the group of the trefoil knot is not the group of a circle, which is the
infinite cyclic group.

Schreier diagrams can be constructed analogousiy to Cayley diagrams. In fact, in
order to determine the structure of a largish group given by means of a presentation,
it is often advantageous to determine first the Schreier diagram of a subgroup. In
order to show this, we work through another example, once again due to Dehn.

What is the group
A={abla’=b"=(ba) =1}7
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FIGURE VIILS. The ingredients of the Cayley diagram of the trefoil knot.

Let us construct the Schreier diagram of the cosets of the subgroup B generated
by b. As before, we take a vertex 1 for B and try to construct as big a diagram as
conditions (a) and (b) allow us. (Recall that {a) requires the colouring to be regular
and (b) requires that each defining relation is satisfied at each vertex.) However,
in this case there is one more condition: the edge coloured b starting at 1 must
end in 1 (so it is a loop) since Bb = B. Thus after two steps we have the diagram
shown in Fig. VIIL.6. (Once again the edges coloured a will not be directed sinice

at=1)
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FIGURE VIL6. The initial part of the Schreier diagram of A mod B.

Now let us check the condition bababa = 1 at vertex 6. The walk babab takes
us from 6 10 3, so there must be an edge coloured g from 3 to 6. In order to have
edges coloured a starting at 4 and 5, we take up new vertices 7 and 8, together with
edges 47 and 58 coloured a. Next we check the condition ab~lab~lab™! = 1,
which is equivalent to (ba)? = 1 at 7, and find that there is an edge from 7 to
8 coloured &. To satisfy b° = 1 at 7 we take three new vertices, 9, 10, and 11.
Checking (ba)® = 1 at 11 we find that there is an edge from 9 to 11 coloured
a. At this stage we are almost home, but no edge coloured a begins at 10, so we
take a new vertex 12 joined to 10 by an edge coloured a. What does the condition
ab~lab~lab~" = 1 tell us at vertex 127 The waltk ab~1ab™ g starting at 12 ends
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FIGURE VIIL7. The complete Schreier diagram.

at 12, so there must be an edge coloured b starting at 12 and ending at 12, giving
us Fig. VIIL7. This is the Schreier diagram we have been looking for, since the
colouring ts clearly regular and it is a simple matter {o check that each defining
relation is satisfied at each vertex. In fact, a*> = 1 and #° = 1 are obviously
satisfied; since (ba)® = 1 holds at 6 by construction, it also holds at each vertex
of the walk 621236, etc.

This detailed and cumbersome description fails to do justice to the method
which, when performed on a piece of paper or on a blackboard, is quick and
efficient. The reader is encouraged to find this out for himself.

What the Schreier diagram certainly tells us is the index of B: it is simply the
number of vertices. Indeed, Schreier diagrams are often constructed on computers
just to determine the index of a subgroup. In some cases, as in the example above,
it tefls us considerably more. The Schreier diagram is essentially 2 shorthand
for the representation of A as a group of permutations of the cosets of B. In this
casea — (12)(36)(A7X(5B)(FL1)(I0 12)andb — (1)(23456)(7891011)(12).
Since the permutation corresponding to & has order 5, which 1s exactly the order
of bin A, we see that A is a group of order 5 - 12 = 60 and is, in fact, isomorphic
to As, the alternating group on 5 symbols.

If we want our Schreier diagram to carry more information, then we fix certain
representatives of the cosets and keep track of the effect of the generators on these
representatives. We decorate each coset by its representative: if H 1s decorated by
[h) then H = Bh. Now, if there is an edge coloured a from H = Bh to K = Bk,
then we decorate this edge by [«] if ha = «k. Since K = Bk = Ha = Bha,
we see that & € B, so the edges are decorated with elements of B. Furthermore,
if H, K and I are decorated with A, k and I, and there are edges coloured
a, b, ¢ and decorated [}, [8] and [y] joining them, as in Fig. VIILE, then
habc = akbe = aflc = afyh. In partticular, if & = 1 then we have abec = a¢fy.
Of course, an analogous assertion holds for arbitrary walks starting and ending at
B: the product of the colours equals the product of the decurations.

One of the simplest ways of decorating the vertices and edges makes use of
spanning trees. Select a spanning tree of the Schreier diagram. Decorate B, the
subgroup itself, by 1 (the identity) and decorate the edges of the spanning tree also
by I. This determines the decoration of every vertex (that is, every coset) and every
edge. Indeed, for each vertex H the spanning tree contains a unique path from B
to H; clearly, H has to be decorated with the product abe - - - corresponding to this
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FIGURE VIIL8. A cycle in a decorated Schreier diagram.

path. These coset representatives are said to form a Schreier system for Bmod A.
What is the decoration of a chord H K, an edge not in the tree? By the remark
above it is the product of the colours on the B—H path, the edge H K and the K-B
path, as in Fig, VIIL9.
blb ]
) blab'a" ']
afab~'ab™'a"']

FIGURE VIIL9. The decorations induced by a spanning tree.

Since each element of B is the product of the colours on a closed walk from 8
to B in the Schreier diagram, the decorations of the chords generate B. Thus from
a Schreier diagram we can read off a set of generators of B, independently of the

structure of A.

Theorem 2 The subgroup B of A is generated by the decorations of the chords.
O

In particolar, the subgroup B in Fig. VIILS is generated by b, ab’a~l,
ab~lab~la~! and ababa.

It is equally simple to find a presentation of B, provided that we have a pre-
sentation of A, This is obtained by the Reidemeister—Schreier rewriting process;
we give a quick and loose description of it. The generators of the presentation are
the chords of the spanning tree; to distinguish chords of the same colour we write
c; Tor the edge coloured ¢ starting at vertex i. For each vertex i and each relator
Ry, denote by Rj, the (word of the) walk starting at i given by R, expressed as
a product of the ¢;, say RL = b;¢; - - - . The reader can easily fill in the missing
details in the proof of the following beautiful result, due to Reidemeister and
Schreser. o
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Theorem 3 The subgroup B has a presentation
(@bl ... anba, | RL Ry R RE ). 0

Now, if we wish to preserve the connection between this presentation of B and
the original presentation of A, we simply equate ¢; with the decoration of the edge
coloured ¢ starting at vertex 1.

If A is a free group, ils presentation contains no relations. Hence the above
presentation of 8B contains no relations either, so 8 is also a free group. This is a
fundamental result of Nielsen and Schreier.

Theorem 4 A subgroup of a free group is free. Furthermore, if A is a free group
of rank k (that is, it has k free generators) and B is a subgroup of index n, then B
hasrank (k — n -+ 1.

Proof. The presentation of B given in Theorem 3 is a free presentation on the set
of chords of the Schreier diagram. Altogether there are 4n edges of which n — 1
are tree edges; hence there are (X — 1)r + I chords. O

It is amusing to note that Theorem 4 implies that the rank of a free group is well
defined. Indeed, suppose that A is freely generated by a, b, ... Then every directed
multigraph with a vertex (corresponding to the subgroup) and a regular colouring
(by a, b, ...) is the Schreier diagram of some subgroup 8 of A, for there are no
relations to be satisfied. Hence subgroups of index n are tn 1-to-1 correspondence
with regularly coloured multigraphs of order #. In particular, if A has & > 2
generators, it has 25 — 1 subgroups of index 2, for there are 2% multigraphs of
order 2 regularly coloured with k colours, but one of those is disconnected. The
number of subgroups of index 2 is clearly independent of the presentanon, so k 1s

determined by A.

VIII.2 The Adjacency Matrix and the Laplacian

Recall from Section IL.3 that the vertex space Cy(G) of a graph & is the complex
vector space of ail functions from V(G) into C. Once again we take V(G) =
{v1, vz, ..., U}, 50 that dim Cp(G) = n, and we wrile the elements of Co(G) in
the form x = 3 ., xiv; or X = (x;)]; here x; is the value of x at v;, also called
the weight at v;. The space Co(G) is given the natural inner product associated
with the basis (1)} : {x, ¥} = >0, x;¥;- The norm of x s |Ix{| = (x, x)!/%.

As in the paragraph above, bold letiers (x, v, . . .} will be used for vectors only if
we wish to emphasize that they are vectors; for example, v; denotes both a vertex
and the corresponding basis vector. This slight inconsistency is unlikely to lead to
confusion.

First we shall consider the adjacency matrix A = A(G) = (a;;)} of G, the
0 — | matrix where a;; = 1 iff v;v; is an edge. As usual, A is identificd with
a linear endomarphism of Co(G). To start with, we recollect some simple facts
from linear algebra. The matrix A is real and symunetric, so it is Aermitian, that is,
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{AX, ¥} = {X, Ay). Hence its numerical range
V(A) = {{Ax, x} : lix]| = 1}

is a closed interval of the real line. The distinct eigenvalues of A are real, say p1y >
py = --- > ty, and V(A) 1s exactly the interval [z, 1) ]. (OQur notation here is not
entirely standard; it is customary to write Ay, Az, . . . for the eigenvalues rather than
42, ..., However, we reserve the A; for the eigenvalues of the combinatorial
Laplacian.) For simplicity, an eigenvalue of A is said to be an eigenvalue of
(7. We shall write fima(G) for the maximal eigenvalue gy and e () for
the minimal eigenvalue g, If G has at least one edge, say vjv2 € E((), then
{Ax,x} > 0ifx=(1,1,0,...),and {Ax, x}) < 0ifx=(1,-1,0,...,0). Hence
tmin < 0 < [Umax, unless G is empty.

The inner preduct space Co () has an orthonormal basis consisting of eigenvec-
tors of A. In particular, writing m () for the (geometric or algebraic) multiplicity
of an eigenvalue i, we have EL, m(i;) = n. Since @;; = 0 forevery i, the trace
of AisO:trA = 37, a;; = 0. In an orthonormal basis consisting of eigenvectors
of A, the trace of Ais 3 ., m(u;)e;; as a change of basis does not alter the trace,
Yoo muiu: = 0.

We collect some further basic properties of the eigenvalues in the following
theorem:.

Theorem 5 Let G be a connected graph of order n with adjacency matrix A.
(i} Every eigenvalue i of G satisfies {i1] < A = A(G).

(1i) The maximal degree A is an eigenvalue of G iff G is regular; if A is an
eigenvalue then m(A) = 1.

(iii) If —A is an eigenvalue of G then G is regular and bipartite.

fiv) If G is bipartite and p is an eigenvalue of G then so is —u, and m(() =
m{—pu).

(v) The maximal eigenvalue satisfies 8(G) < fipmax(G) < A(C).

(vi) If H is aninduced subgraph of G then pnin(G) < ptmin{H) < gtmax (H) <

imax (G).

Proof. {i) Let x = (x;) be a non-zero eigenvector with eigenvalue ., Let x, be a
weight with maximum modulus: |xp| > (x;{ for every i; we may assume without
loss of generality that x, = 1. Then

n
2 apixe

=1

|| = {pxp] =

i
< 3 aplxel < Ixpid(vp) < IxplA = &,
i=1

showing [u] < A.
{ii) If 4 = A is an eigenvalue and x, x, are chosen as in (i), then

n
£=1
and x¢ < 1 imply thatd{v,} = A and x; = xp = 1 whenever vy Is adjacent to v,
In turn, this implies that d(v;) = A and x; = x¢ = 1 whenever vy is adjacent to
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vg, and so on; as 7 is connected, d(v;) = A and x; = 1 for every . Hence  is
A-regular and x is j, the vector all of whose entries are equal to .

Conversely, if G is A-regular, then (AJ); = 3 j| ai = A, 50 Aj = Aj.

(iii) If 4 = —A is an eigenvalue then, as in (ii), we find that d{vy) = A and
x¢ = —xp = —1 whenever vy is adjacent to up. As in (ii), this implies that G is
A-regular. Furthermore, at each vertex vy adjacent to vy the weight 1s 1, at each
neighbour of 1 it is —1, and so on. The weight is 1 at the vertices at an even
distance from v, and it is -1 at the other vertices; also, every edge joins vertices
of different weights. Thus G is bipartite, say V = V| U V3, where v, € V.

(iv) Suppose & s bipartite with vertex classes V) and V3. Let b be the function
(vector)thatis, 1 on V| and — I on V2. Thenx — bx = (b;x;)] is an automorphism
of the vector space Co({r). Now, if AX == ux and v; € V), say, then

(A(bx)); == Za,_,bjxj Z ajjxj — Z ajjxj = — Z ajj X;

veV v;ely vieVy
L.IjEVI :JJE 2 j=1

Hence, writing I, for the n by n identity matrix, we find that b gives an isomorphism
between ker(A — ui,) and ker(A + wfy). In particular, m(u) = m(—pu).

(v) We know already that fimaz(G) < A(G). Note that for j = (1,1,...,1)
we have {j, j} = n, so V(A) contains

L =13 au= —Zd(vx) > 5(G).

R o=t =1
Hence pmax(C) = max V(A) > 8(G).

(vi} It suffices to prove the result for an induced subgraph H of order n — 1,
say with V(H) = [, 12, ..., tr-1].

Let A’ be the adjacency matrix of H. Then there is a vector y € Co(H)
such that (y,y) = 1 and (A'y,¥) = pmax(H). Let x = (y1. y2..... ¥a-1, O},
Then x € Co{@), x,x) = 1| and {Ax,x} = (A'y,¥) = pmax(H) € V(A).
Conseqguently, timax (&) = wmax(H). The other inequality 1s proved analogously.

O

Let us note an immediate consequence of Theorem 5 (v) and (vi), concerning
the chromatic number.

Corollary 6 Every graph G satisfies x(G) < pmax(G) + 1.
Proof. For every induced subgraph H of G we have
8(H) < prmax (HY £ pmax (G,
so we are done by Theorem V.1. O

In fact, with a little work one can also give a lower bound on the chromatic
number in terms of the eigenvalues.
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Theorem 7 Let G be a non-empty graph. Then
 taax(G)
#min(G)

Proof. As before, we take V = {vy,..., 1} for the set of vertices, so that
(vr, ..., vg) 1s the canonical basis of Co((). Let ¢ : V() — [k] be a (proper)
colouring of G with £ = x{G) colours. Then, writing {a, b, .. .) for the space
spanned by the vectors a, b, . . ., the space Cp(G) is the orthogonal direct sum of
the ‘colour spaces’ U; = (y; :c(y) =i}, i=1,..., k. Since no edge joins ver-
tices of the same colour, the adjacency matrix A = A(G) is such that if 4, w € U;
for some i then (Au, w) = O. In particular, {Au, ¢} =0foru e U, i =1,... k.

Let x € Co(G) be an eigenvector of the adjacency matrix A with eigenvalue
itmax, and letx = EL] Eiug, whereu; € Uy and |lu; || = 1. Let I = (uq, ..., ug),
so that (4, ..., u) is an orthonormal basis of I/, and let § ; I/ — Cp(G) be the
inclusion map.

Foru € U/, fju]] = 1, wehave ||Suil = |[u]| = 1,50 (§*ASu, 0} = {ASu, Su} =
(Au,u} € V(A). Hence the numerical range of the hermitian operator §*AS is
contained in the numerical range of A:

V(S*AS) C V(A) = [14min, Hmax]-

x(G) = 1

In fact, temax 18 an eigenvalue of S*AS as well, with eigenvector x;
(STASx, wi} = (Ax, u;) = pmax (X, 8;} = pmax&i,
D S‘ASI = ,u.maxx.

Also, {(§*ASu;, u;} = {Aui, u;) = O for every i, 5o tr(S*AS) = 0. Therefore,
since every eigenvalue of $*AS is at least fimin,

Hmax + (K — Diimin < tr(S*AS) = 0.
As G is non-empty, iimin < 0, 50 the result follows. i

The guadratic form {Ax, x) appearing in the definition of the numerical range
and in the proofs of Theorems 5 and 7 is sometimes called the Lagrangian of G,

and is denoted by fg(x):

n
fo(x) = {Ax, x) = Z aijXixXj = Z XiXj.
ij=! Vi v

Note that every edge v;v; coniributes 2x;x; to the Lagrangian: x;x; for v; ~ vy
and xjx; = x;x; forv; ~ v

Before we illustrate the use of the Langrangian, let us note some additional
simple facts from linear algebra. Let W be an n-dimensional complex inner product
space,and let T : W — W be a hermitian operator on W. Let W, be the subspace
of W spanned by the eigenvectors of T with strictly positive eigenvalues; define W_.
similarly, for negative eigenvalues, and set W = ker T. Then W is the orthogonal
direct sum of these three subspaces: W = W, @ W_ & Wp. Set n.(T) = dmW,,
a_(T) =dimW._, and no(T) = dimWj, so thatn = n; +n_ + np.
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Let g(x} = gr(x} = (Tx, x} be the quadratic form associated with 7. Note that
q 1s positive definite on W, and negative definite on W_, that is, g(x) > 0 and
g(y) <Oforallx € W,y € W_, x,y # 0. Similarly, g is positive semi-definite
on W, & Wy and negative semi-definite on W_ @ Wy: if x € W, & Wy and
y € W_ & Wp with x,y # 0then g(x) > 0 and g{y) < 0. The subspaces above
also have maximal dimensions with respect to these properties; for example, if g
is positive semi-definite on a subspace {f C W then

dim¥ < ny +ny = dim{(W, & Wy). (1)

Indeed, if diml/ > ny +npthen UNW_ contains a non-zero vectorx; asx € W,
we have g(x) < 0.

These simple facts imply the following connection between the independence
number 8(G) and the distribution of the eigenvalues.

Theorem 8 The adjacency matrix of a graph G has at least S(G) non-negative
and at least 8{G} non-positive eigenvalues. counted with multiplicity.

Proof. The Lagrangian f(x) is identically 0 on every subspace spanned by a set of
independent vertices. In particular, f¢ is positive semi-definite and negative semi-
definite on a subspace of dimension £(G). Hence we are done by the analogues

of {1). O

Ideally, one would like to determine the entire spectrim of a graph, that is, all
the ¢igenvalues and their multiplicities. Needless to say, in most cases this is out of
the question, and we have to be satisfied with various bounds, However, in some
simple cases 1t 1s easy to delermine the spectrum. For example, it is trivial that the
empty graph E, = K, has one eigenvalue, 0, with multiplicity n. More generally,
adding an isolated ventex to a graph G just increases by one the multiplicity of 0. It
1s only a little less trivial that the compiete graph K, has eigenvalues ;o) =n — 1
and 4 = —1, with multiplicities m(n — 1) = | and m(—1) = »n — I. Indeed,
3% | xjv; is an eigenvector with eigenvalue — 1 if 3 | x; = 0.

The complete bipartite graph K n_s has threc eigenvalues: (k(n — &))'/? and
—(k(n — k))'/2, each with multiplicity one, and 0, with multiplicity n — 2. If

={vy,....wland W = [w, ..., wy_i} are the two classes then Zf;!. xXiv 4

;';f ¥jw; 1s an eigenvector with eigenvalue 0 if

Y=
These simple facts about spectra suffice to give us the following theorem of

Craham and Pollak.

Theorem 9 The complete graph K, is not the edge-disjoint union of n — 2
complete bipartite graphs.

F

n—

"—'-'-0.

uM

Proaf. Suppose that, contrary to the assertion, K, is the edge-disjoint union of
complete bipartite graphs G, ..., G.-2. For each i, let H; be obtained from G,
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by adding to it isolated vertices so that V (H;) = V (K,;). Note that the Lagrangians

of these graphs are such that fx, = :1=_|2 JH, -
We know that cach fg is positive semi-definite on some subspace ¢/, C Co(K,)

of dimension n — 1. But then I/ = ﬂ:-:f U; 1s a subspace of dimension at least 2,
-2

on which each fy, 1s positive semi-definite, Hence fx, = » .| fa 15 positive
semi-definite on {/, contradicting the fact that fg, is not positive semi-definite on
any subspace of dimension 2. 0

Clearly, the simple argument above proves the following more general assertion.
Suppose a graph G of order » is the edge-disjomntunion of # —r complete bipartite
graphs. Then the quadratic form of G is positive semi-definite on some subspace
of dimension r, and negative semi-definite on some subspace of dimension r.

in 1965, Motzkin and Straus showed tbat one can use the Lagrangian to give
yet another proof of a slightly weaker form of Turdn’s thcorem (Theorem [V, 8);
this is our final application of the adjacency matrix and the Lagrangian. Consider
the simplex S = S, = {x=(x)] e R" : ) 7, x; = | and x; > O for every n},
and set

H(OE max fa(x}.

It is immediate from the definition of f that it is an increasing function: if
H ¢ Githen f(H) = f(G). Furthermore, if f;(x) attains its supremumatx =y,
and H = G[W] is the subgraph of G induced by the support of y:

W =suppy = {vi : ¥ > (],

then f(G) = f(H).

As the theorem of Motzkin and Straus below shows, f(G) is intimately related
to the complete subgraphs of G: in fact, it depends only on the cligue number
w(G) of G, the maximal order of a complete subgraph. Note first that if G is a

complete graph of order a then f(G) = (n — 1) /n. Indeed,

f(G)=max{2 Y xyixe s}

l<i<j<n

]
= max Zx,-(] ~ X)X E S’
i=1

=max‘l-— x,?‘:xeS]

;]

)

!
=1—n{t/m} =(@n—1)/n.

Theorem 10 Let G be a gruph with cligue numberky. Then f(G) = (ky— 1)/ k.

Proof. Lety = ()] € S be a peint at which fg(x) attains its maximum and

suppy = {v; : yi > (1} s as small as possible. We claim that the support of y spans

a complete subgraph of G. Indeed, suppose y1, yz > 0 and v; 7 v2. Assuming,
as wemay, that 3, . ¥ > 20, o YiosetY = (n+y2,0,¥3, 04, .- .. ¥n) € 5.
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Then f;(¥") = fe(¥) and suppy’ is strictly smaller than supp v, contradicting our

choice of y.
Writing K for the complete subgraph of & spanned by the support of ¥, we

have f{G) = f(K)= (k — 1)/k, where k = |K| = Isupp ¥|. Hence £ is as large
as possible, namely kg, and we are done. O

The result above implies the following assertion, which is only slightly weaker
than Turdn’s theorem.

Corollary 11 Let G = G(n, m), withm > 57=%:n?. Then G contains a complete
graph of orderr.
Progf. Writing kg = @(G) for the clique number of G, we know that f{G) =

(ko — 1)/ ko. On the other hand, withx = (1/n, 1/n, ..., 1/#) we sec that
2m  r =2
O = fox)y=— > :
n r—1
Hence kg > r, as claimed. N
Recall from Chapter II that, for a graph G with vertex set {vy, ..., v} and

adjacency matrix A, the (combinatonial) Laplacian of G is L = D — A, where
D = (Dy;) is the diagonal matrix in which Dy; is the degree d{v;) of v;. The
Laplacian i1s an even more powerful tool than the Lagrangian, although for a
regular graph they are just two sides of the same coin.

In our study of the Laplacian, we shall need a simple and useful characterization
of the spectrum of a hermitian operator T on an n-dimensional complex inner
product space V. Let Ay < A3 < ... < A, be the eigenvalues of T, enumerated
with multplicities, and let g(x} = (Tx, x) be the quadratic form of T. We know
that the numerical range of T is [A(, A,]:

Ay =min{g(x) : [x{| = I} and A, = max{g(x} : [[x[| = 1}.
Infact, if g(x1} = Ap and ||x1 ]| = 1 then x; is an eigenvector of T with eigenvalue
A1, and
Az = minf{g(x) : {x,%;} =0and ||x|| = 1}. (2)
It is easily seen that the other eigenvalues have similar characterizations (see

Exercises 47-48). As we shall see, the second smallest eigenvalue of the Laplacian

is especially important.

The quadratic form g(x) = {{D — A)x, x) associated with the Laplacian has
a particularly pleasing form, emphasizing the intimate connection between the
Laplacian and the structure of the graph: for x = 3" _; x;v; we have

g(x) = an{d(v,-)xf— Yowxl= Y —x)t 3)
=1

vj~u, v v €E(G)

We shall write A; < Az < ... £ A, for the sequence of eigenvalues of L, so
that Cp(() has an orthonormal basis (x;,x3,...,%,) with Lx;, = ;x,. If G is
r-regular then g 1s an eigenvalue of the adjacency matrix A iff A = r — g is an



VIIL.2 The Adjacency Matrix and the Laplacian 269

cigenvalue of the Laplacian L, so the spectrum of L 1s just the spectrum of A
‘reversed and shifted’. In particular, if & is also connectedthen Ay =7 — ) =0
and Az = r — uy = 0. In general, the connection between the spectra of A and L
is a little less straightforward.

We know from Theorem I1.10 that L = B B*, where B is the (signed) incidence
matrix of G. Consequently, L is positive semi-definite. Furthermore, as Lj = 0
far the vector j with all 1 coordinates, A} = (. However, A3 = A3(G), the second
smallest eigenvalue of the Laplacian, is far from trivial; in fact, it is difficult to
overemphasize its importance. Roughly, the larger A2 (G) is, the more difficult it 15
to cut &7 into pieces, and the more G ‘expands’. We present two resulis illustrating
this assertion.

Before we turn to these results, fet us adapt (2) to the case of the Laplacian.
Since Lj = (D — A)j = 0, with g(x) = {Lx, x) we have

A2((G} = min %% X, Jy=0,x # {]]
(D~ A)x, x}
(X, X} '

(4

=:min[ {x,j):ﬂ,x%ﬂ].

FG=K,thenL =(n—1)—-—A=nl-J,s0A|=hx=...=Ay_1=n
and Ap, = 0. In particular, £ # = 2 then A3(Ky) = n > «(K;) = n — 1. However,
if G is incomplete, this inequality cannot hold.

Theorem 12 The vertex connectivity of an incomplete graph G is at least as
large as the second smallest eigenvalue 33(G) of the Laplacian of G.

Proof. f G = K, then Ay = n—1 = x(G). Suppose then that (& is not a complete
graph, and let ¥/ U S U V" be a partition of the vertex set {vi, ..., vy} of G such
that |§] = «(G), V' and V" are non-empty, and G has no V'—V” edge. Thus § is

a vertex cut with X = () vertices,
Qur aint is to construct a vector x erthogenal to j such that g(x)/[[x}|? is small,

namely at most k. To this end, set @ = |V’|, & = |V”|,and letx = 3 || x;%; €
Cp(G) be the vector with '
b v eV,
X = 0 ify; €8,
—a ifv; eV,
Then {x, j} = 0 and [jx||* = ab? + ba’.

What are the coordinatesof (D~ A)x =y = Y+, yivi? Since (D — A)bj =0,
wehavey = (D — A}(x—bj),s0if v; € V' then y, is precisely b times the number
of neighbours of v, in S. Hence y; < kb. Similarly, y; = —ka for v; € V7",
Therefore, as |V’| = @ and |V”| = &, it follows from (2) that

rlxli2 < g(x) = (D — A)x, x) < kab® + kba® = ki|x|?,

completing the proof.
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It is easily seen that for every connectivity there are infinitely many graphs for
which the bound on Az 1o Theorem 12 is sharp {see Exercise 49).

The next result is the basic reason why A2(G) is such an important parameter.
Given a subset U/ of the vertex set of a graph G, the edge-boundary U = ogU is
the set of edges of & from U to V \ U/,

Theorem 13 Let G be a graph of arder n. Then for U C V = V(G) we have

A U\V\NU
oyl » ROWIVAUL
n
Proof. We may assume that @ # U £ V = {v), ..., v,}. Set k = |U/|, and define

x= ):?:[ xju, as follows:

n—k ifv;el,
Ay =
! —k  ifyyeV\\U.

Then (x, j} = Gand ||x[* = kn(n — k). By (3),
UD — A, x} = [3U[n

and so, by (2),
12(G) < {3U|n?/kn(n — k),
as claimed. 0

For another connection befween the expansion of a graph G and A1((), see
Exercise 50.

VIII.3 Strongly Regular Graphs

Ii 1s reasonable to expect that a graph with many automorphisms will have partic-
ularly pleasing properties and that these will be reflected in the adjacency matrix.
The automorphism group of a graph G is the group, Aut;, of permutations of the
vertices preserving adjacency. Every abstract group can be represented as the au-
tomorphism group of some graph. For instance, if £ i1s any finite group, consider
its Cayley diagram with respect tc some set of generators. The automorphism
group of this coloured and directed multigraph is exactly F. It only remains to
replace each edge of this diagram by a suitable subgraph that bears the informa-
tion previously given by the direction and colour. This produces a graph G with
automorphism group isomorphic to £. An example is shown in Fig. VIII.10.
Each # € AutG induces an endomorphism of Cy(G), and this endomorphism
1s given by a permutation matrix P. In fact, an arbitrary permutation matrix
Q corresponds to an automorphism of & precisely when it commutes with the
adjacency matrix A, that is, AQ = @A. The group of these matrices therefore
faithfully represents AutGG. Regarding A as an endomorphism of Co(G), we find
that the eigenspaces of A are invariant under P. In particular, if an eigenvalue of A
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FIGURE VIIL10. A graph with automorphism group §3, constructed from the Cayley
diagram in Fig. VIILI.

is simple (that is, it has multiplicity 1) then  must map an eigenvector to a multiple
of itself. Thus if all eigenvalues are simple, we must have P2 =] Thisisa strong
restriction on those permutations which might correspond to automorphisms of
G, For example; if G has at least 3 vertices and every eigenvalue is simple, then
AutG cannot be vertex-transitive, so not every pair of vertices can be interchanged
by an automorphism.

These remarks indicate how the methods of representation theory may be used
to deduce restrictions on the adjacency matrix of graphs which have extensive
automorphism groups. Lack of space prevents us from exploring this further.
Instead, we shall use algebraic methods to study graphs which are highly regular,
although this regularity is not expressed in terms of the automorphism group.

Algebraic methods are particularly useful if we want to prove that certain regu-
larity conditions cannot be satisfied except perhaps for a small set of parameters. A
problem of this type arose in Chapter IV: for which values of k is there a &-regular
graph of order n = k2 + 1 and girth 57 We shall show later that if there is such a
graph then % is 2, 3, 7 or 57. Group theory is particularly rich in problems of this
type: at the end of this section we shall mention some examples.

Regularity, that is, the condition that all vertices have the same degree &, is not
too restrictive, although the adjacency matrix of a connected regular graph does
satisfy a very pleasant condition. Let J = J, be the # by n matrix with all n*
entries | and, as before, let j = j, € C" be the vector with all coordinates 1. Note
that J has two eigenvalues: n, with multiplicity 1 and eigenvector j, and 0, with
multiplicity n ~ 1. Thus J/n is the orthogonal projection onto the I-dimensional

subspace {j).

Theorem 14 Let & be a connected k-regular graph of order n, with adjacency
matrix A and distinct eigenvalues k, jiq, i3, . . ., ptr. Then

l—r-[A—p;fI _.a'
=t K o

Proaf Each side is the orthogonal projection onto {j}. O
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Theorem 14 readily implies that J is a polynomial of 4 iff G is connected and
regular (see Exercise 46).

The above algebraic characterization of regular graphs is mildly interesting,
but 1t does not come close to showing the power of algebraic methods in graph
theory. This is not surprising since for a fixed & and large » there are simply
too many k-regular graphs of order n (provided that kn is even), so that we
cannot even contemplate a meaningful characterization of them. In order to give
algebraic methods a chance to work their magic, we have to impose more restrictive
regularity conditions on our graphs.

Call a connected graph G highly regular with collapsed adjacency matrix
C = {(c;;) if for every vertex x € V = V(G) there is a partition of V into
non-empty sets V) = {x}, Vo, ..., ¥V, such that each vertex y € V; is adjacent to
exactly ¢;; vertices in V; (see Fig. VIIL.11). It is immediate from the definition
that G 1s regular, say every vertex has degree 4. In this case each column sum in
the collapsed matrix is k. The collapsed adjacency matrix € can be obtained from

the adjacency matrix A as follows:

Cij = E dy, whereuy, € V).
veeV;

The point is exactly that the above sum 15 independent of the representative vy of
V;. We are especially interested in the collapsed adjacency matrix C if it is of a
much smaller size than A.

. 1
1 2
1
2 2 3 2 2
2
3 3 4
3 3 3

010 o100 ¢ 10
(2 0 I) JO2 0O (3 0 l)
ot 1 0 20 3 0 2 2
0010

FIGURE VIIL11. The pentagon, the cube and the Petersen graph together with their
collapsed adjacency matrices.

At the risk of being too pedantic, in the arguments below we shall be particularly
careful to identify the various spaces and maps. Let P be the p-dimensicnal
complex vector space with basis (w), ..., wp), and identify C with the linear
map P — P with matrix C in this basis. For v, € V = {v(,..., v}, let
Vlm = {v, ], Vz(r), e V_,,[’) be a partition belonging to the vertex v,. (We consider
v, the root of this partition,) Also, let ;. : Co{G) — P be the linear map given
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by

n,@x,-uj):i 3 x|

Theorem 15 Let G, A, C, P and i, be as above.
i} 7, A = Cnt,, that is, the diagram below commutes.

Co(G) 2+ Co(C)

4k

p -5, p

(ii} The adjacency matrix A and the collapsed adjacency matrix C have the
same minimal polynomial. In particular, ji is an eigenvalue of A iff it is a root of
the characteristic polynomial of C.

Proof (i} Let us show that 7,(Av,} = C(w, v}, where v, is the basis vector

comresponding (o an arbitrary vertex v, € P}(’). To do this it suffices to check that
the ith coordinates of the two sides are equal. Cleatly, mrv; = w; so

(Clrrvdl = (Cwp)i = cy

and

(mr(Av))i = E gy

DsE V[ ir}

and these are equal by definition.
(i) Let g be the minimal polynomial of C. In order to prove that g(A) = 0, let

x € Co(G) and set g{A)x =Y ., yiv;. Then foreachr, 1 < r < n, we have
¥r = (q(AYR)y = (7, (g(AY3h = (g(C) (X)) = (01 =0
Conversely, the minimal polynomial of A annihilates C since x, Cp{G) = P.
il

This result enables us to restrict rather severely the matrices C that may arise
as collapsed adjacency matrices.

Theorem 16 Let G be a connected highly regular graph of order n with col-
lapsed adjacency matrix C. Let 1, pa, . .., pr be the roots of the characteristic
polynomial of C different from k, the degree of the vertices of G. Then there are

natural numbers my, my, . .., m, such that

I
Zm;mn—l
i=1
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and

Zr: mii; = —k.
f=1

Proaf. We know from Theorem 5 that iy, j22, .. ., ji, are the eigenvalues of A
in addition to k, which has multplicity 1. Thus if m{g;) is the multiplicity of g,
then

1+§r:m(m)=n,

=1
since Co{(G) has an orthenormal basis consisting of eigenvectors of A. Fur-
thermore, since the trace of A is 0 and a change of basis does not alter the
trace,

TA=k+ ) m(uu; =0. O

i=|
The condition expressed in Theorem 16 is not easily satisfied, especially if
[y, {2, ..., ft, are not rational numbers, so it rules out the possibility of con-
structing highly regular graphs with many seemingly feasible parameters. For the
so-called strongly regular graphs we shall rewrite the condition in a more attrac-
tive form. A graph G is said to be strongly regular with parameters (k, a, b) if it
is a k-regular incomplete graph such that any two adjacent vertices have exactly
a > 0 common neighbours and any two non-adjacent vertices have b > | common
neighbours. In other words, G is highly regular with coliapsed adjacency matrix
0 ] 0
C=1] &k a b
0 k—a—-1 k-5
Putting it yet another way: if G is a connected incomplete graph with adjacency
matrix A then & is strongly regular iff

Al e (I, 4, A),

where, as before, J is the matrix with every entry 1. More precisely, G has
parameters (n, k, a, b} iff

A=kl +aA+b(J — T - A),
where A, I and J are n by n matrices. Indeed, the last equation is equivalent to

ko ifi=j,
(AYy; =1 a ifuv; € E(G),
b otherwise.

As G is neither complete nor empty, b > 1, so this is just the statement that G is
strongly regular, with parameters (n, k, @, ). From Theorems 14 and 15 we can
read off another simple characterization of strongly regular graphs.
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Theorem 17 Let G be a connected imcomplete regular graph. Then G is strongly
regular iff it has precisely three distinct eigenvalues.

Proof. Suppose G is a strongly regular graph with adjacency mairix A. As its
collapsed adjacency matrix has order 3, by Theorem 15 it has at most three
distinct eigenvalues. Furthermore, if G had only two distinct eigenvalues then, by
Theorem 14 we would have A € {J, J), which would imply that G is complete or

empty.
Conversely, if A has three distinct eigenvalues then, again by Theorem 14, we
have A2 € {I, J, A). O

Theorem 18 [f there is a strongly regular graph of order n with parameters
(k,a, b) then

ml.mz=-1—{n—1 (n— )b —a)— 2k l

2 [a - b)? + 4k — 1)}

are natural numbers.

Proaf, The characteristic polynomial of the collapsed adjacency matrix C is
Bt —a—kxt+(a—bk+b—kx+klk—b).

On dividing by x — k, we find that the roots different from £ are
1 /2
ﬂ],ﬂg:i[a—b:l:{(a—b)2+4(k—b}] ]

By Theorem 16 there are natural numbers m) and m; satisfying
my+mg=n—I
and
mipq +map; = —k.
Solving these for my and m; we arrive at the assertion of the theorem. O

Theorem 18 is sometimes called the rationality condition for strongly regular
graphs. It is also easily proved without invoking Theorem 16. Indeed, if A is the
adjacency matrix of a strongly regular graph with parameters (£, a, b) then, as we
know,

A2 =kI +aA+b(J -1 - A).

Therefore J is a quadratic polynomial in A, so J and A are simultaneously
diagonalizable. Noting that J has only two eigenvalues, namely r, with multiplicity
1, and 0, with muitiplicity » — 1, one can easily find that x| and p7 are as above
(cf. Exercise 30).

From the rationality condition it is but a short step (o the beautiful result of
Hoffman and Singleton, proved in 1960, concerning Moore graphs of diameter 2
(or girth 5).
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Theorem 19 Suppose there is a k-regular graph G of order n = k> + 1 and
diameter2. Then k = 2, 3, 7 or 57.

Proof. We know from Theorem IV,1 that G is strongly regular with parameters
(k, 0, I}. By the rationality condition at least one of the following twa conditions
has to hold:

(i:m—1D—-2k=k>-2k=0andn — 1 = k? is even,

(ii): 1 + 4(k — 1) = 4k — 3 is a square, say 4k — 3 = 52,
Now, if (i) holds then k = 2.

If (11) holds then & = 41(32 -+ 3); on substituting this into the expression for the
multiplicity m; we find that

[(s% + 3)2/16] — [(s* + 3)/2) l

§

1 | 2 7

that is,
S st 653 =252+ (9—32mp)s —15=0.

Hence 5 divides 15, so s is one of the values 1, 3, 5and 15, givingk = 1,3, 7 or
57. The case k& = 1 is clearly unrealizable. O

It is worth noting that for £ = 2, 3 and 7 there are unique k-regular graphs
of order k% + 1 and diameter 2 (and so girth 5). In particular, for £ = 2 it is a
pentagon and for & = 3 it is the Petersen graph. However, it is not known whether
or not k = 57 can be realized.

Sporadic simple groups are those simple groups that do not belong to one of the
infinite sequences consisting of cyclic groups of prime order, alternating groups of
degree at least 5 and simple groups of Lie type. Sporadic simple groups are often
related 10 strongly regular graphs. For exampie, there is a strongly regular graph
with parameters (162, 105, 81), and the McLaughlin group of order 898,128,000
is a subgroup of index 2 of the automorphism group of this graph. Similarly, there
is a strongly regular graph with parameters (416, 100, 96) and the Suzuki group,
which is a simple group of order 448,345,497,600, is a subgroup of index 2 of the

automorphism group of this graph.

VIIl.4 Enumeration and Pélya’s Theorem

We cannot end this chapter without considering perhaps the most basic question
about graphs, namely, how can we count graphs of vanous types? We may want to
count graphs with a given set of vertices or we may be interested in the number of
isomorphism classes of certain graphs. As we saw in Chapter VII, counting labelled
graphs is relatively easy; for instance, there are 2(3) = 2V labelled graphs on n
vertices, of which (ﬁ) have m edges. Furthermore, by applying Corollary II. 13
to the complete graph, one can easily show that there are n" 2 labelled trees of
order n. This result was first obtained by Cayley; we present it here with a proof
due to Priifer, which is independent of Corollary iI. 13.
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FIGURE VIIL.12. The Priifer code of this tree s (3, 8, 11, 8,5, 8,3, 5, 3).

Theorem 20 There are n"~* trees on n labelled vertices.

Proof AsinChapter VIL let V = {1, 2, ..., n} be the set of vertices. Given a tree
T, associate a code with T as follows. Remove the endvertex with the smallest
labei and write down the label of the adjacent vertex. Repeat the process unul only
two vertices remain. The code obtained is a sequence of length n — 2 consisting of
some numbers from 1, 2, . .., n; of course, any number may occur several times in
the code (see Fig. VIIL12). As the reader should check, each of the n*~2 possible

codes corresponds to a unique tree. O

It is easily seen that the label of a vertex of degree d occurs exactly d — 1 times
in the Priifer code of the tree. Thus the proof has the following consequence.

Corollary 21 Letd) <ds < --- < dg be the degree sequence of a tree; d) > |
and ¥ _; d; = 2n — 2. Then the number of labelled trees of order n with degree
sequence {d;)| is given by the multinomial coefficient

n—2 ) o
d]_l,dz_l,...,dn_l )

The difficultics we encounter change entirely if we wish to count certain classes
of graphs up to isomorphism. Given graphs G| and G2 with a common vertex
set V, when are they isomorphic? They are isomorphic if there is a permutation
7 of V which maps G| onto Gz. Of course, strictly speaking & does not act on
graphs, it only induces a permutation o of X = V@, the pairs of vertices, and
it is o that maps an edge of G into an edge of G2 and a non-edge of G into a
non-edge of G;. Now, G; is naturally identified with a subset of X or, equivalently,
with a function f; : X — {0, 1}. Therefore G is isomorphic to G2 iff there is
a permutation o of X = V@ (coming from a permutation & of V) such that
a* fi = f2, where a* is the permutation of the set of functions {0, 1}¥ induced
by «. Thus counting graphs up to isomorphism is a special case of the following
problem. Given sets X and ¥, and a group I" acting on X, let " act on the set of
functions ¥¥ in the natural way. How many orbits are there in ¥ X% The main aim
of this section is to present a beautiful theorem of Pélya, proved in 1937, which
answers this question.

Let I' be a group of penmutations acting on a (finite) set X. For x, y € X put
x ~ yif y = ax for some @ € T. Then ~ is an equivalence relation on X; if
x ~ y we say that x is equivalent to y under T'. The equivalence class of x is
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called the ["-orbit (or simply orbit) of x, and is denoted by [x]. For x, y € X put
F'x,y)={eel: :ax =y}
Of course, I'(x, ¥) 1s non-empty iff [x] = [y], that is, x and y belong to the same

orbit. The set I'(x) = I'(x, x) is the stabilizer of x; it is a subgroup of I". Note
that if y = Sx then

Fix,y)={a: ax=y}={o: ax = Bx} = {e: ,ﬁ_la € '{x)} = gix),

so I'(x, y) is a coset of I'(x). We see that |I"(x)| depends on the equivalence class
of x, s0 we may put s{[x]) = |["{x)]. Clearly

r=1)rem,

yelx]
and this gives us
I = [Lx] T (x3) = J[x]ls(fx]).

Pélya’s enumeration theorem is based on a version of alemma due to Cauchy and
Frobenius, extensively used by Burnside, concerning the sum of the “weights” of
orbits, (For many years, it was called Burnside’s lemma))Let @y, ..., O, betheI'-
orbits, let A be an arbitrary Abelian group (written additively)andlet w - X — A
be a function that is constant on orbits. We call w a weight function and define
the weight of O; by w(0;) = w(x}, x € 0. For a permutation ¢ € T we denote
by F(a) the set of clements fixed by a, thatis, F{a) = {x € X : ox = x}. Thus
x € F(o) iffer € T'(x). After this preparation, here is then the Cauchy—Frobenius
lemma.

Lemma 22 [} Y{_; w(0:) =Y ger 2 xeF(a) WX)-

Proof.
£
S Y ww=Y Y sm=YF ¥ e
wcl xeF{o) xeX gel{x) i=l xel; ael*(x)
£ ¢
= wOn ) 3. 1= wO)0ils(0;)
i=1 x€0; eel(x)  i=l
£
= [} Y w(0n. O

F=|

The original form of this lemima is obtained on choosing A = Zand w = 1:

1 !
N() = ?ﬁz Y 1= ﬁle(“”'

ol xeF(a) acl

where N(T") is the number of orbits.

We shall illustrate by three very simple exampies that even the Cauchy-
Frobenius lemma can be used to calculate the number of equivalence classes
of certain objects.
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EXAMPLE 1. Let X = {1,2,3,4} and " = {1, (12), (34), (12)(34)}. What is
N(TY? Clearly, F(1) = {1,2,3,4}, F((12)) = (3,4}, F({34)) = (1,2} and
F((12)(34)) = 0. Thus N(T") = }{4 + 2+ 2+ 0} = 2.

EXAMPLE 2. Consider alt bracelets made up of 5 beads. The beads can be red,
blue and green, and two bracelets are considered to be identical if one can be
abtained from the other by rotation. (Reflections are not allowed!) How many
distinct bracelets are there?

In this case we choose X to be the set of all 3° = 243 bracelets and let I” be Cs,
the cyclic group of order 5, acting on X. Then the question is: how many orbits
does T have? For the identity 1 € [ clearly, ¥(1) = X. For every non-trivial
rotation @ € " only the 3 monochromatic bracelets are invariant under o, so
N() = ${243 + 3+ 3 +3 + 3} = 5L

EXAMPLE 3. In how many essentially different ways can we colour the six faces
of a cube with at most three colours, say red, white and green? Here two colourings
are essentially the same if some rotation can take one into the other.

In this example I" is the group of rotations of the cube, so |T'] = 24. Let us
catalogue the rotations and the numbers of colourings fixed by them. The identity
rotation fixes all 3% colourings. There are 8 rotations through paits of opposite
vertices, each fixing 3% colourings. Each of the 6 rotations through mid-points of
oppostte edges fixes 33 colourings. There are 9 further rotations, through centres
of opposite faces. Those through angle m fix 3% colourings each, and those through
angle /2 fix 3° colourings each. Hence there are

%{35 +8.3%4 6.3 +3.3% +63% = 57
essentially different colourings of the faces of a cube with red, white and green.

The second and third examples resemble a little the problem we really want
to tackle. Let T be a group of permutations of a (finite) set D. Let R be another
(finite) set and let us consider the set R¥ of all functions from D into R. Each

« € " can be made to act on RZ; namely define «* : R? — RP by
(* fYd) = flad), feRP deD.

Then
I'={a*: acl}

is a group of permutations of RPD; as an abstract group, it is isomorphic to I" and
we distinguish it from I" only to emphasize that it acts on RP while I" acts on D.

As is customary in connection with Pélya’s enumeration theorem, we adopt
an intuitive terminology. The set D is called the domain and its elements are
places; R is the range and its elements are figures; the functions in R D are called
configurations; finally a pattern is an equivalence class of configurations under
I'*, that is, a ["*-orbit. Our main aim is to calculate the number of distinct patterns.

The origin of this terminology is that a function f € R? is an arrangement of
some figures into the places in such a way that for each place there is exactly one
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figure in that place, but each figure can be put into as many places as we like. Two
configurations mapped into each other by an element of I'* have the same pattern
and are not distinguished. Thus in the second example the places are, say, 1, 2, 3,
4 and 5, the figures are r, b and g (for red, blue and green) and a configuration is
a sequence of the type g, &, b, r, b, that is, a bracelet. The group I" is generated by
(12345} and distinct patterns correspond to distinguishable bracelets,

In addition to counting the number of distinct patterns, we may wish to count
the number of patterns of a certain type. It turns out that all these problems can be
solved at once, provided we learn enough about the cycle structure of permutations
in I" acting on D, and are willing to store a large amount of information about the
patiemns,

Each element o € I" is an essentially unique product of disjoint cycles (cyclic
permutations) acting on D. If ¢ = &£ --- &, is such a product, we say that
&1, - .., &m are the cycles of w. In the product we include cycles of length 1 as well
so that every @ € D appears in exactly one cycle; if }£| denotes the number of
elements in & then 3" || = d, where 4 = |D| is the number of elements in
D. Denote by ji{o) the number of cycles of @ having length k; by the previous
equality 3 )., kfi(e) = d. Note that | F(a)|, appearing in the Cauchy-Frobenius
lemma, is exactly jj{o), the number of elements of D fixed by «. We define the
cycle sum of T to be

d
E(l’; Ay, ..., 084) == Z naf‘{“}.

acl k=]

The reader should bear in mind that Z depends on the action of T on D,
not only on the abstract group T". Note also that the cycle sum is a peolyno-
mial in ay,ay, ...,ag with integer coeflicients; it tells us the distribution of
cycles in the elements of I'. When writing down a cycle sum, it is useful to
retnember that ZL 1 kjx(ee}) = d for every ae. The customary cycle index of T" is
Z(T a1, ...,a4) = (1/ITPZ(T; ay, ..., aq). As we shall consider general rings
instead of the more usual polynomial ring with rational coefficients, we have to

use the cycle sum since we cannot divide by |I|.
Let A be an arbitrary commutative ring and fet w : R — A be a function. We
call w(r) the weight of the figure f, and fork = 1,2, . .. define the k' figure sum

as
5y = z w(r)‘k.

ref
Furthermore, the weight of a configuration_f € R? is

w(f)= [ wifay.

wel}

Clearly, any two configurations equivalent under I'* have the same weight, so we
may define the weight of a paitern O; by

w(0;) = w(f}, F €0,
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Our aim is to learn about the pattern sum
/4

S=) w0,

i=1
where Oy, O, ..., )y are the I'*-orbits, that is, the distinct patterns,

Note that w{r), w(f), sy and § are all elements of our commutative ring A. If
we have a way of determining the pattern sum §, it is up to us to choose A and the
weight function w : R — A in such a way that § can be “decoded” to tell us all we
want to know about various sets of patterns. In practice one always chooses A to be
a polynomial ring (Z[x], Qlx, y), etc.), and uvsually w{r} is a monic polynomial;
the information we look for is then given by certain coefficients of the polynomial
S. We shall give several examples after the proof of our main result, Pélya’s

enumeration theorem.
Theorem 23 With the notation above,
IT)S = Z(T"; 51,52, .-, 5a).
Proof. By Lemma 22,
L
PIS=T1) w0)=3" Y wif).

f=1 acl® feF{a*)

Now, clearly F(a*) = {f € RP : F isconstanton cycles of o), so if
Er, &2, ..., Em are the cycles of o, and @ € &; means that a is an element of
the cycle &, then

Fle'Y)={f€R?: rieRand fl@)=riifack, i=1,2,...,m}

Hence
m Moy 4
Y win= ) et = H (Zw(r)“) = [T,
feF@*) ()R i=1 k=1 \reR k=1
giving
d .
]I‘|3=Znsf(ﬂ=E(T‘;.§'1..s*2,...,sdl |

ael k=]
If || has an inverse in the ring A, say if A is a polynomial ring over the rafionals,
then Theorem 23 can also be written in its more usual form:
§S=2Z(T:51,5,...,%).
Let us illustrate now how the theorem can be applied.

EXAMPLE 4. Let us consider again the bracelets made up of five beads, which
can be red, blue and green. Thea D = {1, 2,3, 4, 5} is the set of places of the
beads, R = {r, b, g} is the set of colours (figures) and I" is Cs, the cyclic group of
order 5 generated by the permutations (12345). The cyclesum is Z = ai 1 + 4as.
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On choosing A = Z and w(r) = w(b) = w(g) = 1, we find that 5, = 3 for
every k, so 58 = 3° + 4.3, Since each pattern (bracelet) has weight 1, there are
%[35 + 12} = 51 distinci patterns (bracelets).

On choosing A = Z[x, y] and w(r) = 1, wib) = x, wlg) = v, we find that
S= %{{1 + x +y)5 +4(1 +x3 +y5)}. Now it is easy to extract information from
this form of §. For example, a bracelet has weight xy? iff it has 2 red, 1 blue and
2 green beads. Thus the number of such bracelets is the coefficient of x y2 in the
polynoemial §; that 1s, {1/5)(53!/(2!121)) = 6.

EXAMPLE 5. What happens if in the previous example we allow reflections?
Then I' is the dihedral group Ds, the group of symmetries of the regular pen-
tagon, whose cycle sum is af + das + 5a lﬂ%- Thus if we take, as before,
A = Zx,yl. wir) = I, w(b) = x and w{g) = y, we find that the num-
ber of bracelets containing 2 red, I blue and 2 green beads is the coefficient of
xy?in g {4+ x + ¥ 440 + 35+ 3% + 50+ x + )1 + 22 + yH2}, that
15,341 =4

EXAMPLE 6. This is the example Pélva used to illustrate his theorem. Place 3
red, 2 blue and 1 yellow ball in the 6 vertices of an octahedron. In how many
distinct ways can this be done? The group of rotations of the octahedron has order
24 and cycle sum af + ﬁafa.; + 3a]2a% + 6&% + Sag : alﬁ comes from the identity,
6a12a4 from the rotations through /2 about axes through opposite vertices, Safa%
from the rotations through & about axes through opposite vertices, ﬁag from the
rotations through s about axes through midpoints of edges, and, finally, ag is the
summand corresponding to a rotation through 27 /3 about an axis going through
the centre of a face. On taking A = Z[x, y), w(r) = |, w(d) = x and w(y) = y,
we see that the required number is the coefficient of x%y in

I
EZ{“ +x4+ 9P +6l+x+ 20+ xt+ Y

$300 4 x+ AL+ +yHT 3601+ 22 + ¥y + 8L +x° + yH?),

that is, 3.

It should be clear by now that the theorem loses nothing from its generality if
instead of a general commutative ring A we take Z[x, : r € R], the polynomial
ring over the integers in variables indexed by the elements of R, and we define the
weight function as w(r) = x,. Then the pattern sum § contains all the information
the theorem can ever give us. In particular, if w : R — A is an arbitrary weight
function then the corresponding pattern sum is obtained by replacing x, by w(r)
in S. However, if R 15 large, the calculations my get out of hand if we do not
choose a “smaller” ring than Z[x, : r € R], which is tailor-made for the problem
at hand. The choice of a smaller ring is, of course, equivalent to a substitution
inw S,
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EXAMPLE 7. Place red, blue, green ard yellow balis into the vertices of an
octahedron. Denote by FP; the set of patterns in which the total number of red and
biue balls is congruent to i modulo 4. What is |Py| — [ P2{?

The cycle sum of the rotation group of the octahedron was calculated in
Example 6 and was found 1o be a? + 6.:1%:14 + 3afa22 + 6:15’ + Bafj.

Let A = C, the field of complex numbers, and put w(r) = w(d) =i, w(g) =
w(y) = 1. Then fora pattern f we have Rew(f) =1if f € Py, Rew(f) = —1
if fe Poand Rew(f) =01t f € P U Py. Thus | Pg| — | P2} is exactly the real
part of the pattern sum. As 5) = 2{1+¢),52 = 0,53 = 2(1 —{) and 54 = 4, we sce
immediately that after substitution the rea] part of each term is 0, so | Py| = | P> ).

We were first led to our study of the orbits of a permutation group by our desire
to count the number of graphs up to isomorphism. We realized that this amounted
to counting the orbits of the group 'Y acting on {0, 1}¥, where X = V& and
I'y, is the permutation group acting on X that is induced by the symmetric group
acting on V. So according to Polya's theorem our problem is sclved when we
know the cycle sum of the permutation group I',,. It is now a routine matter to
write down an explicit expression for this cycle sum, though we don’t display it
here singe its form is not very inspiring. Furthermore, except for smal! values of
n, this expression is too unwieldy for practical calculations, and it is much easier
to use asymptotic formulae derived by random graph techniques (see Exercises 22
and 23 of Chapter VII).

We remark finally that an extension of Pdlya’s theorem covers the case when
there is also a group acting on the range of the functuons, For instance, if we let 52
act on {0, 1} in the example above, we do not distinguish between a graph and its
complement, and may thereby compute the number of graphs that are isomorphic
to their complements.

VIII.5 Exercises

]~ Draw the Cayley diagram of the quaternion group (a, b | a® = &% = (ab)?).

2. Find the orders of (@, b | a®> = b3 =L, ab = ba), {a, b | a* = b3 = 1,
ab = ba)and {a,b | & = b* = (ab)? = 1).

3. Use Euler's formula and information about the Cayley diagram to deduce that
in the group (a, b, ¢ | a’ = b3 = ¢ = (abe)™!) we have a®% = 1.

4. Verify that the Cayley diagram associated with the trefoil knot is the diagram -
described in Fig. VIILS.

5. Write down presentations of the knots shown in Fig. VIIL.13. Show that the
group of the quinquefoil is isomorphic to {f, g | f 5 = g2} and the group of
the tweeny is {a, b | ababa b a Vbabab~la~ b1y,

6. Prove that no two of the groups of the knots shown in Figs VIIL4 and VIIL13
are isomorphic.
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FIGURE VII1.13. The quinquefoil and the tweeny: the two knots whose minimal diagrams
have five crossings.

7.

10.

A closed orientable surface of genus 2 is obtained by identifying pairs of
non-adjacent sides of an octagon, say as in Fig. VIIL.14. The fundamental

group has a presentation
=1 - I
(a1 a2, a3, a4 | aa; 'asay ' asmay ey,

Show that the Cayley diagram is a tessellation of the hyperbolic plane. Deduce
that any non-empty reduced word W equal to 1 must contain a subword of
length at least 5 that is part of the cyclically written relator or its inverse. (A
reduced word is one in which no generator occurs next to its inverse.) [Hint.

Consider the part of the walk W furthest from 1.]

¥y
d; a2

ﬂ, ﬂl

FIGURE VIIL14. An orientable surface of genus 2.

Show that the dihedral group D,,, the group of symmetries of a regular n-gon,
has a presentation of the form {a,b | a" = b = (ab)? = 1). What is its
Cayley diagram?

Give a group whose Cayley diagram is the truncated cube having 8 triangular
and 6 octagonal faces.

Draw the Cayley diagram of
(¥ {a.b | ab = ba) in the Euclidean plane, ~
(i) {a, b | ¥", ab = ba) on an infinite cylinder,
(iii) {a,b | a™ = b" = |, ab = ba) on a torus,
(iv) {a, b, c ) a* = b* = ¢* = abc = ) in the hyperbolic plane,
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12.

14,

I5.
16.
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Check the examples of Cayley diagrams Hlustrated in Fig. VIIL.3 and prove
Theorem 1.

Let A ={a,b|a’ = (ba)®* =1)and B = {b). What is the Schreier diagram
of Amod B?

. A group A is generated by a, b and ¢; the Schreier diagram of A modulo a

subgroup B is shown in Fig. VIIL15. Read off a set of generators of B,

FIGURE VIIL15. The Schreier diagram of A mod B.

Let A be the free group on g, & and ¢, and let B be the subgroup consisting
of all squares. What is the Schreier diagram of A mod B? Find a set of free

generators for B.
How many subgroups of index 2 are there in a free gronp of rank ?

How many subgroups of mndex n are there in a free group on 2 generators?

17 Show that a subgroup B of a finitely generated free group F is of finite index

18.

19.

20.
21.

in F iff B is finitely generated and there is a natural number r for which
W" ¢ B for every word W.

What is the automorphism group of the Petersen graph (shown in

Fig. VIILI[)? Find the automorphism group of the Kneser graph X", where
s > 2r + 1 (sece Exercise V.10). Deduce that the automorphism group of
K 2(:1 | is 3-arc-transitive, that is, any pa_th of length 3 can be mapped into any
other path of length 3 by an automorphism.

The Tutte B-cage has vertices ny, n3, ns forn = 1,2,..., 10, with edges
joining ns to ny and na, and n; to m; iff }n — m| = i (mod 10}. Show that

the automorphism group of the Tutte 8-cage is 5-arc-transitive.
Find the automorphism group of the Grotzsch graph (see Fig. V.11).

A vertex x € V(G) is a centre of a connected graph G if max{d(x, y) : y &
V(G)} = ming max{d(u, v} : v € V(G)}. Show that every tree has either one
or two centres, and in the latter case, they are adjacent.
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22. Show that every automorphism of a tree either fixes some vertex or swaps
some two adjacent vertices.

23. Does every tree have an Abelian automorphism group?
24. Consiruct a non-trivial tree with trivial automorphism group.

25" Let f(n) be the minimal size of a graph of order n with trivial automorphism
group, Prove that f(n) < n foreveryn > 7and f(n)}/n — lasn — ox.

26. Show that if ¥ € Aut has k odd cycles and ! even cycles then & has at
most & + 2¢ sumple eigenvalues.

27. Show that a connected graph G of udd order whose automorphism group is
vertex transittve has exactly one simple cigenvalue,

28 Let A be the adjacency matrix of a graph G. Show that the /j entry of A is
the number of v;-v, walks of length £,

29, Given k = 2, let pp(x), pi{x), ... be polyncmials defined by pp(x} =
P1(x) = x, p2(x) = x* - k and

pe(x) = xpe—1(x) — (k — 1) pe—a(x), £>3,

Show that if A is the adjacency matrix of a k-regular graph then (pe{(A));; is
the number of »; — v; walks of length £ in which any two consecutive edges

are distinct.

30. Complete the details of the second proof of Theorem 18, as suggested there.

31. Check that for n > 2 the adjacency matrix of the complete graph K, has two
distinct eigenvalues:n — l and — I, withm(n — 1) = l and m(—1) =n — 1.
Also, the n by n matrix J,, with all entries I, has eigenvalues » and 0, with
mny=1landm({Q)=n -1,

32. Check that, for »), ny > 1, 71 + nz > 3, the complete bipartite graph Ky, ,
has three distinct eigenvalues: /minz, —./niag and 0, with m(./mn2) =
m(—/mnzy=landm(@Q)=n -2

33. Check that for r > 3 and n = 1 the complete r-partite graph K,(n) has three
distinct eigenvalues: (r— I, —nand O, withm({r —1n) = 1. m{—n) =r—1|
andm(@) =rin—1).

34. Let G be a regular graph of order n, and let G* be obtained from G by
substituting r independent vertices for each vertex of G, as in Theorem 19,
{Thus G* has rn vertices, and each edge of & comresponds toa K, ,.) Show that
the eigenvalues of the adjacency matrix of G* are precisely the eigenvalues
of (7, together with 0, which has (additional) multplicity (r — Dn.

35+ Show that the eigenvalues of C, are 2, 2cos2a/n, 2cosdn/n,.. .,
2cos2(n — 1)a/n. Thus if # is odd, 2 has multiplicity one and each other
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eigenvalue has multiplicity two; if »n is even, each of 2 and —2 has multiplic-
ity one, and every other eigenvalue has multplicity two. [Hint. Assuming,
as we may, that V(C,) = Z, and E(C,) = {i{j : i — j = £1}, note that
(1, w, w?, ..., w"* 1) is an eigenvector for each nth root of unity w.]

367 Let G be the rth power, C, of an n-cycle: V(G) = Z7, say, and xy is

37.

38.

39.

40,

41.

ap edge of G if forsome | < j < r, we have x; = y; forall i # J,
and x; — y; = *1. Show that the eigenvalues of G are 2 }:;=| cos £;2n/n,
0<¢{ <n, j=1,...,r withappropnate multiplicities. (Hint. fw. . .., ay
are nth roots of unity, then f : V(G) — C., (k1..... k) > o' - 0¥, isan

eigenvector.

Let A be the adjacency matrix of a regular graph G of order n, and let A
be the adjacency matrix of G. Note that A 4 A = J, — [,;. Deduce that if
1 > .- = W, are the eigenvalues of A, enumerated with multiplicities, then

n—1—pp, —t—2,...,—1 — , are the eigenvalues of A.
For a graph G with vertex set {vy, vz, ..., v}, set
n n
go(x) = ZIE + Z Xixj = lez +2 Z XiX;j.
=1 -1y =1 u,-u‘,eE(G)

Prove that minges gg(x) = 1/£, where S is the simplex

{xeR”:xizﬁ.Zx,-=l}

and £ = B(G).

Show that if the Lagrangian fi(x) attains 165 maximum in the intertor of §
then & is a compiete k-partite graph, where k = &{G).

Let Q" be the graph of the n-dimensional cube. Thus Q" has the vertex set
{0, 1}", and two sequences (a;)], (8;)] € {0, 1}" are adjacent if they differ in
precisely one term. For | < d < n, let ¢4 be obtained from Q" by joining
vertices at distance 4. Let A, be the adjacency matrix of Q" and B, ¢ the
adjacency matrix of Q™¢. Show that A, and B, ¢ commute and B, ;7 is a
polynomial of A,.

(Exercise 40 conid.) Prove that the cigenvalues of A, are n — 2k, &k =
0,1,...,n, withn — 2k having muitiplicity (}). [Hint. Note that

A Anq I
" T An—l -

Also for ¢ = (5;)'}', g = +I, define v, = (vh)ﬁht as follows: if h =
:’;& a; 2, witha; = 0,1, then vy = Il af-"“l. Check that if k of the &; are
—1 then v, is an eigenvector of A, with eigenvalue n — 2k.]
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42F Let Gy, ..., G be (not necessarily distinct) complete subgraphs of K,,, each
of order at most n — 1, such that every edge of K, belongs to the same
number . > 1 of G;s. Prove Fischer's inequality that £ = n, provided n > 2.
[Hint. Set V(K,) = {v|,...,va}, and let B be the n by £ incidence matrix
of the cover K, = U'_, G,. Thus (B);; is 1 if v; € G; and 0 otherwise. By
considering its quadratic form, show that B B? has rank n.]

43. Let G be a connected graph with V(G) = {v),...,om}. n = 2,
adjacency matrix A and degree sequence d(v),...,d(vy). Let D =
Diag(d(v,),...,d(vs)). Let L = D — A be the combinatorial Laplacian,
and define the analytic Laplacian £ of G as £ = D™12Lp~1/2 For A € C,
let Ep-ip(A) = (DL = ADTYO) and Ec(r) = (£ — AD~1(0), so that
mp-1;(X) = dimEp-1;(A) and mg(2) = dim Eg(A) are the (geometric)
multiplicities of an eigenvalue A. Show that all eigenvalues of DL and £
are real.

Show also that D!/2 maps Ep-1;{1) onto E.(A) for every A and so

mD-—|L(P‘.) == m,g().)'.

44, (Exercise 43 contd.) Show that every eigenvalue of the analytic Laplacian £ is
nonnegative and m(0) = 1. What are the eigenvectors of £ with eigenvalue

0?

45. (Exercise 44 contd.) Prove that the following four properties are equivalent:
(a) G s bipartite,
(b) me(h) = mp(2 — ) for every A,
(€) me(2) =1,
(d) me(2) = 1.

46. Prove that the matrix J (all of whose entries are 1) is a polynomual in the
adjacency matrix A if G is regular and connected.

47. Let T be a hermitian operator on a complex inner product space V, with
eigenvalues A} < Az < .-+ £ A,, and associated quadratic form g(x} =

{Tx, x). Let § be the unit sphere of V:
S=[xeV:|x|=1}L

Define vectors x|, X3, ..., X, € S as follows. Let x € § be such that g{x) =
min{g(x) : x € S}. Suppose 1 = & < n and we have defined x|, ..., x.
Letx;y € SN {x1,..., 1{,;;}l be a vector at which g attains its minimum on

SO {xy, ... %)L
glxp+1) = minfg(x) 1 x € Sand {(x, x;} =0fori = I,... &k}
Show that foreach i, | < I < n, X; is an eigenvector of T with eigenvalue A;.
48. (Exercise 47 contd.) Show that
At = max{min{g(x) :x e SNU,_4}: Upx CV, dimli,p =n—k}.
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Show that for every £ > O there are infinitely many k-connected graphs &
with vertex connectivity K (G} = k = A,(G). [Hint. Consider (K, UK,)+ K
forr > k.]

50} Let G be a graph of order n and maximal degree A, and set ¢ = 2A2(G)}/(A+

51.

242(G)). Show that fur every set U of at most »/2 vertices there are at least
¢|7| vertices not in I/ that are joined to vertices in U. (Such a graph is said
to be an (n, A, c}-expander.)

Let Pg(x) = Y 5_g cxx™ ¥ be the characteristic potynomial of {the adjacency
matrix of) a graph G. Show that ¢g = 1. ¢) = 0, c3 = —e(G) and —c3 is
twice the number of triangles in G.

521+ Let Pg(x) be the characteristic polynomial of G, as in Exercise 51. Show

53.

34.

55.

56.

that if ¢ = xy is a bridge of G then
Po(x) = Pg—_.(x) - PG—{x,y}(x}-

Now, let ¥ be a forest with 2n vertices and denote by di the number of
k-element sets of independent edges. [Thus d, is the number of t-factors.]
Prove that

Po(x) = x¥ —dixP 2 4 dox®™ ™ — o+ (=1)"d,.
What are the possible values for d,,?

Let G be a connected k-regular graph containing an odd cycle. At time O put
a counter on a vertex. For each counter that is, on a vertex x at time f, place a
counter on every vertex adjacent to x at time ¢ + I and remove the counters
from #. Show that #,(x)/k" tends to a limit as £ — oo, where n,(x) is the
number of counters on x at time £. What is the corresponding assertion if the
counters are not removed from the vertices? [Hint. There is an aorthonormal
basis consisting of the eigenvectors of the adjacency matrix.]

A k-regular graph G of order » is such that any two non-adjacent vertices can
be mapped into any other such two by some automorphism of ;. Show that
G is strongly regular. What are the eigenvalues of G? What is the condition

that £ and n have to satisfy if there is such a graph?

Let C be the collapsed adjacency matrix of a highly regular graph. Show that
(C?)1) is the number of walks of length £ from a vertex to itse}f. Interpret the

other entries of C¥.

Why must the collapsed adjacency matrix of the Petersen graph, as shown in
Fig. VIII.11, have rational eigenvalues?

57+ In the graph G every two adjacent vertices have exactly one common

neighbour and every two non-adjacent vertices have exactly two common
neighbours, Show that G is regular of degree 2k and has order 2k + 1, for

some k in {1,2,7, 11, 56, 497}
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58* Let G be a strongly regular graph of order 100 with parameters (k, 0, b).
What are the possible values of £7? Find the eigenvalues when 4 = 22,

59+ Make use of the result of Exercise 19 to calculate the eigenvalues of the Tutte
8-cage.

60. Give detailed proofs of Theorem 10 and Corollary 11,

61. Prove that the number of trees with n — 1 > 2 labelled edges is n" 3,

62. Show that a given vertex has degree 1 1n about 1 /¢ of all labelled trees, where
e = 271828 ... (Cf. Exercise VIL15).

63. Denote by T(n, k) the number of trees with n labelled vertices of which
exactly k have degree 1. Prove that

ET(n,k) =m—=—K)Tn—-1,k-1)+4kT(n—-1,k).

64. Prove that there are
1 & 1. . {m n—1 .
—_ —_d n—m—J Pyt
ng( 2 (j)(m+j—l)n (m 4+ J)!

acyclic graphs on n labelled vertices having n — m edges. Deduce that there
are %(n — 1¥(n + 6)n"~* forests with two components.

65 Show that the cycle sum of the symmetric group S, acting on the usual n
lesters is

n! g -
it _i? In
— g a5 -
E : 7 el Bt} n
[Tezy K7t ji!

where the summation is over all partitions j; +2j + - - -+ nj, = n.
What is the cycle sum of S5 acting on the unordered pairs of 5 elements? How
many non-isomorphic graphs are there on § vertices? How many of them have
5 edges?

66 Let Z(T"; a1, az, . . -, ag4) be the cycle index of a permutation group I acting
on a set D. Consider the action of " on the set of all k-subsets of D. How
many orbits are there?

67. Determine the cycle index of the rotations of the cube acting on (1) the vertices,
(i1) the edges, (iii) the faces, (iv) the faces and vertices. In how many distinct
ways can you colour the vertices using some of n colours? The edges? The
faces? The vertices and faces?

68. Show that the cycle sum of C,,, the cyclic group of order #, 1s

ZCuia,....an) =Y ¢k)a’*
klm

where ¢ (k) is the Euler function.

E o R i e L
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69} Prove that the cycle index of the dihedral group D, (cf. Exercise 8) is
1
Z(Dn:a] ----- az,) = iz(cn;ah ---;an)"'f(aIaZ):

1 - e
*‘-'-'ilnrrgI b7z if nis odd,

flan, az) + %

7 (a;f2 + afaé"'z)’rz) if n is even.

How many bracelets are there with 20 beads coloured red, blue and green?

70. How many distinct ways are there of colouning the faces of a dodecahedron
with red, blue and green, using each colour at least once?

71.* Let S, be the symmetric group of all permutations of [} = {1, 2,...,n}. A
transposition basis is 2 minimal set B C 5, of transpositions generating S,,.
Prove that there are precisely 2”2 transposition bases.

72. A graph is vertex-tmansitive if any two vertices can be mapped into each other
by an automorphism, and it is edge-transitive if any two edges (unordered
pairs of adjacent vertices) can be mapped into each other by an automorphism.
Also, a graph is 1-transitive if any two ordered pairs of adjacent vertices can
be mapped into each other. Find a graph which is edge-transitive but not
verteX-transitive, and a graph that is edge-transitive but not |-transitive.

73.7 Construct a graph that is vertex-transitive and edge-transitive but not 1-
transitive. [Hins. First find an infinite graph, and then ‘project’ it on a finite
graph.]

In Exercises 74-76, &G is a graph of order n, size m and maximal degree A,
with eigenvalues by > A2 > ... = A,.

74. Show that A| > /A

75. ShowthatZm/n < )| < /Zm(n — 1}/n.
76. Show that if G is k-regular and has diameter D thenk — 22 = A1 — Az > 1/D.

77+ Show that if G s a bipartite graph without 0 as a n eigenvalue then - has a
complete matching.

Notes

There is a vast literature concerned with group presentations, including the use of
Cayley and Schreier diagrams. The basic book is perhaps W. Magnus, A. Karrass
and D. Solitar, Combinatorial Group Theory, 2nd ed., Dover, New York, 1976; the
connections with geometry are emphasized in H.S.M. Coxeter, Regular Complex
Polvtopes, Cambridge University Press, New York, 1974. Numerous articles deal
with the computational aspect, in particular J.A. Todd and H.S.M. Coxeter, A
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practical method for enumerating cosets of a finite abstract group, Proc. Edinburgh
Math. Soc. (2) 5 (1936} 26-34, which was the fizst paper in this line and J. Leech,
Computer proof of relations in groups, in Topics in Group Theory and Computation
(M.P.1. Curran, ed.), Academic Press, New York, 1977, in which some more recent
developments are described.

Max Dehn posed the word problem in Uber unendliche diskontinuierliche Grup-
pen, Math. Ann. 71 (1911} 116-144, and gave the above discussed presentation
of the group of the trefoil in Uber die Topologie des dreidimensionalen Raumes,
Math. Ann. 69 (1910} 137-168. The word problem was shown to be intrinsically
connected to logic by P.S. Novikov, On the algorithmic unsolvability of the word
problem, Amer. Math. Soc. Transi. (2) 9 (1958) 1-22 and G. Higman, Subgroups
of finitely presented groups, Proc. Roval Soc. A, 262 {1961) 455-475. For the
properties of knots and their groups the reader 1s referred to R.H. Crowell and
R.H. Fox, Introduction to Knot Theory, Graduate Texts in Mathematics, Vol. 57,
Springer-Verlag, New York, 1977, and G. Burde and H. Zieschang, Knots, de
Gruyter Series in Mathematics 5, Walter de Gruyter, Berlin-New York, 1985.

An exposition of general matrix methods in graph theory can be found in
N. Biggs, Algebraic Graph Theory, Cambridge University Press, 2nd ed., Cam-
bridge, 1993. For a grounding in basic functional analysis, including the use
of numerical ranges, see B, Bollobas, Linear Analysis, Cambridge Univ. Press,
1990. The first striking result obtained by matrix methods, Theorem 19, 1s due to
A.J. Hoffman and R.R. Singleton, On Moore graphs with diameters 2 and 3, IBM
J. Res. Dev. 4 (1960) 497-504. Theorem 10 and its corollary are from T.S. Motzkin
and E.G. Straus, Maxima for graphs and a new proof of a theorem of Turdn, Cana-
dian Journal of Mathematics 17 (1965) 535-540. Alon and Milman were the first
to make good use of the Laplacian in graph theory: for the first results, see N. Alon
and V. Milman, |, isoperimetric inequalities for graphs, and superconcentrators,
J. Combin. Theory (B) 38 (1985) 73~88, and N. Alon, Eigenvalues and expanders,
Combinatorica 6 (1986) 83-96. We should remark here that our use of A2 for the
second smallest eigenvalue of the Laplacian is somewhat non-standard: it is more
usual to write Ap < A] < --- < A,_ for the eigenvalues. In particular, the A in
the title of the Alon-Milman paper above is our A2. For a detailed study of the
spectrum of the Laplacian see FR.K. Chung, Spectral Graph Theory, CBMS Re-
gional Conference Series in Mathematics, vol. 92, Amer. Math. Soc., Providence,
1997.

The Cauchy—Frobenius lernma used to be called Burnside’s iemma, as it ap-
peared without attribution in the book of W. Burnside, Theory of Groups of Finite
Order, 2nd ed., Cambridge University Press, Cambridge, 1911. For a fascinating
account of this lemina, see P. Neumann, A lemma that is not Burnside’s, Math.
Scientist 4 (1979} 133-141.

The fundamental enumeration theorem of G. Pélya appeared in Kombina-
torische Anzahibestimmungen fiir Gruppen und chemische Verbindungen, Acta
Marh, 68 (1937) 145-254. Many enumeration techntiques were anticipated by
I H. Redfield, The theory of group-reduced distributions, Amer. J. Math. 49 (1927)
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433-4535. The standard reference book for Pdlya-type enumeration is F. Harary
and E.M. Palmer, Graphical Enumeration, Academic Press, New York, 1973,
The recent two-volume treatise Handbook of Combinatorics (R.L. Graham,
M. Grétschel and L. Lovasz, eds), North-Holland, Amsterdam, 1995, contains
several articles going much deeper into various aspects of algebraic combinatorics
than we could in this chapter: see, in particular, the review articles by N. Alon
{Tools from higher algebra), L. Babai (Automorphism groups, isomorphism, re-
construction}, P.J. Cameron (Permutation groups). I.M. Gessel and R.P, Staniey
{Algebraic enumeration), and C.D. Godsil (Tools from linear algebra).



IX
Random Walks on Graphs

Random walks on graphs and Markov chains with a finite number of states have
been investigated for over 90 years, but their study really took off only in the
last two decades or so. The main reasons for this heightened activity are the
systematic exploitation of the surprising and extremely useful connection with
electrical networks, the emergence of intricate combinatorial arguments, the use
of the spectral properties of relevant matrices, and applications of harmonic anal-
ysis. In this chapter we shall dip into the theory of random walks on graphs,
emphasizing combinatorial argumenits, the connection with electrical networks,
and eigenvalues.

A random walk on a graph is precisely what its name says: a walk XoX - --
obtained in a certain random fashion. In its simplest form, it depends only on the
graph and nothing else. Starting a simple walk at Xy, its next vertex, X, is chosen
at random from among the neighbours of Xg, then X7 is a random neighbour of
X1, and so on. In fact, this simple random walk on a graph is only a little less
general than a reversible finite Markov chain: attaching weights to the edges and
allowing loops, every reversible finite Markov chain can be obtained in this way.
Following the usual notation for Markov chains, instead of X¢X) - - -, we wnte
Xo, X1, ... for arandom walk. At the first sight, random walks on graphs seem to
be rather special finite Markov chains, but this is not the case: finite Markov chains
are just random walks on weighted directed graphs, with loops allowed. In view
of this, it is not surprising that random walks on graphs are of great importance, -

In Chapter I we introduced electrical networks and studied their basic proper-
ties, culminating in Kirchhoff’s theorem. In Section 1 we shall go a littie deeper
into their theory: rather than taking a static view whereby currents are solutions
of systems of linear equations or ratios of quantities described in terms of graphs,
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we describe currents as variables minimizing certain quadratic energy functions.
This implies that the current distribution is tather stable: small changes in the
resistances of the wires do not lead to a radically different current distribution.
More importantly, it also implies that cutting a wire does not decrease the total
resistance and shorting vertices does not increase the resistance.

The connection between random walks and electrical networks is established in
Section 2. This intimate connection greatly benefits both areas: we can use random
walks to prove results about electrical networks, and conversely, we can use our
theory of electrical networks to prove beautiful results about random walks. A
highlight of Section 2 is 2 stuning proof of Pélya’s classical theorem on random
walks on lattices, based on the connection with electrical networks.

In Section 3 we shall study the standard parameters of random walks such
as hilting timcs, commute times and return times. In addition to combinatorial
arguments, we shall continue exploiting the connection with electncal networks.

The last section concerns a central question of random walks: how fast is
the convergence to the stationary distribution? As we shall see, the speed of
convergence is governed by the expansion properties of the graph. '

iX.1 Electrical Networks Revisited

Let us recapitulate briefly the concepts encountered in Chapter Il. An electrical
network N = (V, E,r) = (G, r) 1s a mulugraph G = (V, E), together with a
function » : E — R7Y, where r, == r{e) is the resistance of the edge e. It is
frequently convenient to give our network in the form ¥ = (G, ¢), where ¢ is the
conductance function, so that ¢, = 1/, is the conductance of the edge e,

If there is a potential difference p, = pgp in an edge ¢ from a to b, then an
electrical current w, will flow in e from g to b according to Ohm’s faw (OL):
we = Pe/re. The distribution of cutrents is governed by Kirchhoff's laws.

Kirckhoff 's potential law (KPL) postulates that the sum of potential differences
around any cycle is 0, and Kirchhoff 's current law (KCL) states that the total
cutrrent into a vertex is 0. In calculating the total current into a vertex, we have to
take into account the amount of current both entering and leaving the network at
that vertex.

Kirchhoff’s theorem (Theorems II.1) gives a combinatotial interpretation of
the currents in the edges of an electrical network resulting in a current of size
I from a source 5 to a sink f. This easily implies the corresponding result for
several sources and sinks: if 51, ..., s¢ are vertices of a (connected) electrical
network N = (V, E, r) and the real numbers w, ..., w; sum to 0, then there is
a unique distribution of currents and potential differences in the edges such that,
fori =1, ..., &, acurrent of size w; enters (—w; leaves) the network at s;, and at
no other vertex does any current enter {or leave) the network.

Somewhat surprisingly, from Kirchhoff's theorem it is not easy to show that if
a wire is cuf then the fotal resistance of the network between two vertices does
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not decrease. Of course, if you believe that the three laws of electric currents
describe a physical system with some properties we consider “natural”, then this
monotonicity principle s self-evident. However, we know that, having postulated
the three laws, we have had our say: there is a unigue distribotion of currents
and there is a well defined to1al resistance, so we cannot appeal to our physical
intuition. This difficulty in proving the above monotonicity principle demonstrates
the shoricomings of the static approach based on using at once the full force of
Kirchhoff’s laws and Ohm’s law: although Kirchhoff’s theorem telis us that there
is a solution, this solution seems to be an unpredictable and unstable function of
the equations.

As we shall see in this section, it is much better to use only some of the
conditions given by our laws and define certain functions that attain their minima
at places satisfying the remaining equations. Unlike the solutions of the full system
of equations, these optimization problems behave in an easily predictable fashion,
enabling us to get a much better insight into the distribution of currents and
potentials. In particular, we shall give several explicit optimization methods for
constructing the currents and potentials. As a result of these methods, we can give
several proofs of the monotonicity principle.

If we do not wish to take into account all three laws at once, then there are two
natural ways open to us in our search for the proper electric currents and potentials.
We may consider currents satisfying Kirchhoff’s current law, use Ohm’s law to
define potential differences and then use a function to select currents that satisfy
Kirchhoff's potential law, or we may consider a distribution of potential differences
satisfying KPL, define currents by OL and then use a function to seiect the currents
that satisfy KCL. As we shail see, we do not have to rry hard: it will actually be
very easy.

Note that our aim is to prove the existence of a proper distribution of currents:
as we know from Section IL.1, unigueness is immediate from the superposition
principle.

Let us recall first that KPL is equivalent to the possibility of defining an absolute
potential V; for every vertex x such that p,, = V, — V), for each edge xy. Indeed,
if { pyy) is a distribution of potential differences satisfying KPL and ux1x2 - - - xzv
and uyyz - - - yrv are u—v paths then

Pux) ¥ Prig ¥ F Py = Puyy t Pyyyp + -+ Pype (1)

To define absolute potentials, pick a vertex v, and set ¥, = 0, say. For each vertex
u, pick a u—v path uxyx; - - - xzv and set

Vu = Pux + Pxixa +--+ Py 1xi + Pxpv-

By (1), V, is weli-defined, i.e., independent of the u—v path uxyxz - - xgv. Itis
immediate that p,, = V,—V) for every edge xy. The converse is even more trivial:
if (V,) is an assignment of absolute potentials to the vertices then pyy = V, — V,
gives a distribution of potential differences satisfying KPL.
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Let us write out cxplicitly the two natural ways of getting proper eleciric corrents
in a network, with no current leaving or entering the network at vertices other than

LY I, i 8
The approach assuming KCL and OL. Consider a flow (u.,) with outlets

(sources and sinks) sy, . .., S, 1.e., with Zye!"(’r) uyy = Oforevery x 3£ 51, ..., 5.
In order to turn the flow into a proper electric current with outlets (sources and
sinks) sy, ..., 8¢, all we have to make sure is that KPL holds, i.e., that
k
Zu1i1i+1r1i-’-'l+l =0 (2)
j==]

for every cycle x(xz - - - &y, with x4 ) = x).

The approach assuming KPL and OL. Consider a distribution ( V,) of absolute
potentials on the vertices. This distribution gives a proper electric current with
outlets 51, ..., 5 iff KCL holds, i.e.,

Z u=g (3)

veT() XY

for every vertex x # sy, ..., 8. (Note that every assignment (V, ) of absolute
potentials gives a distribution of cuirents, but there may be some current leaving
or entering the network at vertices other than 5, ..., 5.) Let us rewrite (3) in
terms of the conductances ¢xy = 1/ryy, with Cx = 37, (1) €xy. A distribution
{V,) of absolute potentials results in a distribution of electric currents with outlets
51, ..., 3% if, and only if, for every vertex x 5 5, ..., 53 we have

CeVe= ) oV (4)
yel'(x)

In both methods above, we shall use the same function to find the currents.
Given an edge xy with resistance r,y, potential difference pyy = V; — V;, and s0
a current of size Wy = Pay/rey = (Vx — V) )}/ ryy, the energy in xy is defined to
be

(Ve — V)
wfyrxy - "'_.r‘?x;"—};'— = (Vx - Vy)wxy.

The total energy in a network N = (G, r) = (V(G), E(G), r) is

(Ve — V)2
z w,%yrxy = E = = (Ve — Vydwyy. (5)
2yeE(G) wekG) T xy€E(G)

In the formulae above and in subsequent summations the edges are taken o be
oriented in an arbitrary fashion. This s simply to avoid double summation; if
the edges are not taken to be oriented, then the total energy is defined to be
3 Y k., wiyrxy, with the convention 0 - 00 = 0, in case xy is not an edge, so
rey = o0 and wyy = 0. In particular, the last part of formula (5) is ciearly ill-
defined if the edges are not oriented, Furthermore, the formulae above are, strictly
speaking, incorrect even with oriented edges: as our network may have several
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edges from x 10 y, in (3), (4) and (5) the sums stand for summations aver all edges
from x to y, and ryy, €1y and w,, are functions of the particular edge from x to y,
rather than of the pair (x, y). However, it is unlikely that this shorthand will lead
{o confusion.

Let us pause for a moment to remark that we lose nothing from the generality if
we restrict our attention to simple electrical networks, that is, to networks in which
each edge has resistance 1, since every electrical network can be approximated
by an electrical network {with more edges) tn which all edges have the same
resistance. In many calculations it is convenient to have general resistances, while
occasionally, as in (5}, the concepis are clearer for simple networks. Indeed, for
a simple network N = (G, 1), the total energy in & is the value of the quadratic
form given by the Laplacian £ = D — A on the vector (V) of absolute potentials.
Of course, in the general case we are hardly worse off: all we have to take is the
Laplacian of the weighted graph with the conductance ¢, = 1/r,. for the weight
of an edge e.

Let us return to our task of showing the existence of currents satisfying all three
laws. Thomson's principle says that currents and potentials are distributed in such
a way as to minimize the total energy in the network. There are two forms of this
result: in Theorem | we choose potentials and in Theorem 2 currents. Theorem 1

is also called Dirichlet's principle.

Theorem 1 Let N = (G, r) be an electrical network, 51, ..., 5 € V(G), and

Vi, ..., Vi, € R Then there are absolute potentials Vy, x € VIG)\ {s1,..., 5}
such that
(Ve — Vy)?

E=E{(V))= ).

xyeE(G) Xy

is minimal, This distribution (V) of absolute potentials gives a proper electric
current with no outlet other than s, . .., 5x. The minimum of E is precisely the
total energy of the electric current.

Proof. Since the energy function E is a continuous function of the absolute poten-
tials (V;) € RY(® and E — 00 as max |V,| = oo, the infimum of £ is indeed

attained at some (V). Furthermore, at this point (V) € RY(©) we have

dE
=0
aVy
for every x # §1,..., 5, 50
—_— T =2 = (.
Z Fey Z Wy
yel'(x) yel'(x)

Hence the absolute potentials do define a distribution of cuirents (via Ohm's Law)
satisfying KCL. 0



300 [X. Random Walks on Graphs

Theorem 2 Let N = (G, r} be an electrical network, 51 ....5: € V(G), and let

Ugy, ... g €R, with ZLI us, = 0. Consider the energy function
—~ - 2
E = E(u) = Z ul ryy
xyeE(G)

SJor flows u = () in which a current of size us, enters the network at 5 (i.e, a
current of size —u,, leaves the network at s;), § = 1,..., k, and al no other vertex
does any current enter or leave the network. There is such a flow minimizing E(u),
and this flow satisfies KPL, 5o it is a proper electric current, The minimum of E(u}
is precisely the total energy in the current.

Proof Once again, compactness implies that the infimum of E(«) is attained at
some flow u = (txy}. Given acycle xyxz---x¢, Xe+1 = x1, let #(e) be the flow

obtained from u by increasing each uy,,,,, by efori =1,..., £ Then
dE@u) _ .
de
ate =0, so

L
2 E Ui Txing = 0-
i=f

Thus KPL holds, as claimed. 0

The effective conductance Cer = Cepr(s, t) of an electrical network from s to ¢
is the value of the current from s to ¢ if s and ¢ are set at potential difference 1. The
effective resistance is Reg = Res(s5,1) = 1/Ceqr(s, 1), the potential difference
between s and ¢ ensuring a current of size 1 from s to r.

The next result, Rayleigh's principle or the conservation of energy principle,,
implies that if we replace a network with a source s and a sink ¢ with a single wire
whose resistance is the effective resistance of the network, then the total energy
in the system does not change. -

Theorem 3 feru = (u.y) ba;aﬂowﬁvm § to r with value

e = E gy = — z iz = U,

yel'{s) zel (e}

i.e., tet u be a flow satisfying KCL at each vertex other than s and t, and let (V)
be any function on the vertices. Then

(Vs — Viu; = Z (Vi — Vydixy.
1yeE(G)

Proof. The right-hand side is
Z Vx( Z Ury — Z “zx)= ey + Viy = (Ve —~ Vidus. O

reV{(G} yelt(x) zel~ (1}
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Corollaxy 4 The total energy in an electric current from s to t is (Vs — V)u,,
where w; = E:cel"(.t) Wey L5 the value of the current. If V; — V, = | then the total
energy is equal to rhe size of the current; i.e., the total energy, the total current
and the effective conductance are the same. If w; = | then the total energy is the
potential difference between s and t; i.e., the total energy, the potential difference
and the effective resistance are the same.

Proof This is immediate from Theorem 3. 0
Theorem 1 and Corollary 4 imply an expression for the effective conductance.

Corollary 5 The effective conductance Ceri (s, t) of a network between s and t is

vV, — V)2
':'—y)—:V,:-],Vrzﬂ}. (6)

Cer(s, 0y =inf{ 3
Fx
xyeE{{r) ¥
Similarly, Theorem 2 and Corollary 4 give a rather useful expression for the
effective resistance Regls, t).

Corollary 6 The effective resistance Regr (5, 1) of a network between s and ¢ is
Reg(s, 1) = inf[ Z uf).rxy » {tiyy) is an 5t flow of size 1}. {(7)
xyeE((F)
Either of Corollaries 5 and 6 implies the Holy Grail of this section, the
monotonicity principle.

Corollary 7 If the resistance of a wire is increased then the effective resistance
{berween two vertices) does not decrease. In particular, if a wire is cut, the effective
resistance does not decrease, and if two vertices are shorted, the effective res:srance

does not increase.

Proof If ry,y, is increased then the expression for Ceg (s, ¢) in Corollary 5 does
not increase, Equivalently, the expression for R.g(s, £) in Coroilary 6 does not

decrease. A

Our next aim is to establish a connection between random walks and electrical
networks; the results above will then be very usefu! in attacking questions on

randomt walks.

IX.2 Electrical Networks and Random Walks

Given a pair (G, S), where G is a simple graph and § C V(G), a function
f: V(G) = Ris said to be harmonic on G with boundary § if

x) = — f (8)
5,

whenever x € V{G)\ S and d(x) = 1. Harmonic functions are of central im-
portance in the theory of electrical networks, and we did encounter them in the
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previous section, without calling them by their name. Indeed, given a graph &, turn
it into a simple electrical network by giving each edge xy conductance ¢y = 1,
and take S = {s(,...,s5x}. Then (4) states precisely that if no current leaves or
enters & at vertices other than the s; then the function of absolute potentials, V;,
is harmonic on & with boundary §:

i
V, = d_(}_)yz vy, (9

el {x)

wheneverx € V(G)\ Sand d{x} = I.

Another natural source of harmonic functions on a graph is a random walk on
the graph. Given a connected graph 7 with a npon-empty set § C V(G), letgbea
real-valued function on S. For each x € V(G), play the following game. Starting
at x, move ahout in G at random, stopping as soon as you reach a vertex s of S;
if this happens, x wins g(s). To be precise, set Xo = x. Having defined X; = v,
if y € §, stop the sequence; otherwise, pick a neighbour z of y at random, and set
X;+1 = z. If this random walk Xp, X, ... terminates in 5 € §, then x wins g(s).
Now, let E, be the expected gain of x. Thus, if x € § then Ey = g(x); otherwise,
the expected gain of x is the average of the expectations after one step v.e.,

1
E,= —— E E,. (10)
d('x) vel'{x)

This shows that £, is a harmonic function on G with boundary §. Also, if
S = {s1,...,5) and g(s;) = V,,, then equations (9) and (10) imply that (E,)
is precisely the distribution of absclute potentials if each s; is set at Vy, and no
current leaves or enters the network at vertices other than the s;.

The importance of harmonic functions in the study of both electrical currents
and random walks on graphs establishes an intimate connection between the two
areas. This alone would suffice to make the study of random walks on graphs
worthwhile, but there is another, even more compelling reason: random walks on
weighted graphs, to be introduced next, are precisely the reversible finite Markov
chains. For an easy justification of this statement see Exercise 11.

The aim of this section is to introduce random walks on graphs and to present
the intimate connection between random walks and electrical networks. We shali
show that this connection greatly benefits both theories by giving two more proofs
of the monotonicity pninciple, and by making use of electrical networks n the
study of random walks.

A (discrete-time) Markov chain on a finite or countable set V of stares is a
sequence of random variables X, X |, ... taking values in V such that for all
X0,. .., X4t € V, the probability of X,y = x4, conditional on Xp = xo, ...,
X, = x;, depends only on x; and x;4|. As most of pur Markov chains will be
defined by graphs, we shall tend to call them random walks.

Let G be a graph of order n without multiple edges but with a loop aliowed at
each vertex. To each edge and loop xy, we assign a positive weight [avoirdupois
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weight?] ayy > 0. In particular, a,, is the weight of the loop xx at x. Writing a
for the function xy v a;y, we have obtained the weighted graph (G, a).

Now, given a weighted graph (G, a), for every vertex x € V(G), let A, =
Z}'El‘(xl agy, and for x, y € V(G), define

ary/Ax if x is joined 1o y by an edge or loop,
0 otherwise,

iy =

Thus P = (Pyy) is an n x n matrix with non-npegative entries in which each
row-sum is I.

A random walk defined by a weighted graph is a Markov chain on V = V({G)
with transition probability matrix (Pyy)x.yev, 50 that Pyy is the probability of
going from x to y. By a randem walk (RW) on a weighted graph we shall mean
a random walk with this particular transition matrix. Thus an RW is a sequence
of random variables Xg, X}, .. ., each taking values in the set V of vertices, such

that
P(Xi1 =x+i|Xo=x0, Xi =x1,.. .. Xr = x0) = Py,

for every walk (!) xoxi---x in the graph G. If & does not contain the walk
xgxy - x; then P{Xp = xp, ..., X; = x;) = Q. If X; = y then we say that ai ime
¢ the walk is at y.

Strictly speaking, we tend to consider the entire class of RWs with the same
transition probability matrix P = {Pyy), so that (X,)5° stands for any of the RWs
with this transition matrix. To select one of these RWs, we usually fix the initial
distribution, i.e., the distribution of Xg. In fact, much of the time we start our
random walk (X;)3° at a given vertex, so that Xg = xg for some xp € V(G). It
will be convenient to identify ourselves with the random walk; thus we may say
that “starting at x, we get to y before we get to 2.

It is only slightly less natural to define a random walk on a weighted multigraph,
with multiple edges and lcops allowed. Let (&, ) be a multigraph with weight
function @ : E(G) — R, ¢ — a, > 0. For x € V(G), let A, be the sum of
the weights a, of all the edges and loops e incident with x, and for x, y € V(G)
let @, be the sum of the weights of all the edges or loops joining x to y. Then
P = (Pyry), given by Pry = Gxy/ A, is the transition probability matrix of an RW
on the weighted graph (G, a).

Intuitively, in an RW on a weighted multigraph, if we are at a vertex x, then we
choose at random one of the edges and foops incident with x (rather than one of
the neighbouting vertices) according to their weights and traverse that edge to the
other endvertex.

Now, the weighted multigraphs we are especially interested in are the electrical
networks (G, ¢), with conductance function c: the weight of an edge ¢ is taken to
be its conductance c,. An RW on an electrical network will always be taken to be

an RW with this weight function.
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To simplify the notation, we shall assume that our clectrical network does not
have multiple edges and loops, so that we can write cyy for the conductance of
the edge from x to y. In fact, it will be convenient to have no loops, although the
existence of loops would not affect our formulae: the only difference is that if we
have no loops then our RW is not allowed to linger at a vertex. Thus, from now
on an electrical network N = (G, ¢) will be assumed to be on a simple graph G,
so that an RW on N will have transition probability matrix £ = (F;,), given by

p cry/Ce M xy € E(G),
v ] otherwise,

whﬂ'& CI - Z_}‘EP{X) C_ry.
After all this preamble, let us get down to a little mathematics. First we return to

the example of absolute potentials given by random walks, but state the result in a
slightly different way. We shall again consider only networks with one source and
one sink, but we shall prove a little more than in our earlier remarks. To describe
the currents, we infroduce the probability FPeye = Pesc(s — 1) of escaping from 5
to t, or simply the escape probability; the probability that, starting at 5, we get to
¢t before we retum to 5.

Theorem 8 Ler N = (G, ¢) be a connected electrical network, and let 5, t €
V(G), s # 1. For x € V(G) define

V, = P(starting at x, we get tosbefore we get to 1),

so that V;, = 1 and V; = 0. Then (V;)rev(G) is the distribution of absolute
potentials when s is set at | and t at (). The total current from s to t is

Cetr(s, £) = Cs Pegels = 1) {11)

Also,

Pege (5 — 1) _ C,

Puclt > 5) G5’ (2

Proof. By considering the very first step of the RW started at x 3 s, t, we see that
V — P V — Se— V »
x Zy xyry E c. ’

50 (4) follows:

Cx Vx = Z I:'Iy Vy.
yel'(x}

Hence (Vi )xev(c) is indeed the claimed distribution of absolate potentials.
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Note that

Pm(S""}'I)=l— Z P.I-'J'V}'!
yelis)

since our first step takes us, with probability Py, to a neighbour y of 5, and from
there with probability V, we get to s before we get to z. Hence the total current is

5O
Cese(s, 1) = Z Vs ~ Vy)fsy = Z (Vs — Vy) Jé'_, o
yel{s) yel'{s)
Csy Csy
,vt;s}( Cs G ) y';ﬂ
= C; Pese(5s — 1),
giving us (11).
Finally, (12} follows easily:
FPese(5s — 1} _ Cerr (s, 1)/C; _ &
Pesc(t = 8) ~ Celt,s}/C; Gy
since Cer(s, 1) = Cug(t, 5). 53

At the risk of being too formal, let us express Vy and Pesc(s — 1) in terms of
hitting times. For a set S of states, we define two hitting rimes:

rs =min{t > 0: X, € §} and r = min{t > 1: X, € §).

As we frequently start our RW at a state x in S, it is important to distinguish between
the two hitting times. The same definitions can be used for general Markov chains,

s0 that the hitting time defined for random graph processes is precisely 7. Also,
for x € V, let us write P, and E, for the probability and expectation conditional
on our RW starting from x; if we start from a distribution p, then we write Pp and

Ep. With this notation,
Vx = ]P.r(xq,_,] =5)

and

Pese(s = 1) = P’(th“;ﬂ =1).

Analogously to Theorem 8, there is a simple description of absolute potentials
and currents in the edges, when a total current of size 1 flows from s to ¢. The
description is in terms of our RW started at s and stopped when we first getto ¢,
For a vertex x of our network, let S; = S.(s — 1} be the expected sojourn time
at x: the expected number of times we are at x before we reach ¢, if we start at s.
In terms of hitting times and conditional expectations,

Sels = 1) = Eg()fi < 7y : X; = x})).
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Thus if our network is the simplest nontrivial network with two vertices, 5 and ¢,
joined by an edge of resistance 1, then S;(s — 1) = 1, since if we start at 5 then
7y = 1 and Xg = 5. Also, S;(s — #) = 0 for every network.

Theorem 9 Let N = (G, ¢) be a connected electrical network with s, t € V(G),
5 # t. Forx € V(G), set Vy = Sy{s — 1}/C,. Furthermore, for xy € E(G),
denote by Ey, the expected difference between the number of times we traverse
the edge xy from x to y and the number of times we traverse it from y to x, if we

start at 5 and stop when we getlo t.
Then, setting s at absolute potential Reg(s, t) and t at absolute potential 0, so

that there is a current of size 1 from s 1o t through N, the distribution of absolute

potentials is precisely (Vi ). In particular,

S;(s—> 1
Ce

Furthermore, the current in an edge xy is Ey,.

Proof. We know that 5y = 0, so ¥, = 0. Let us check that {V,) satisfies (4) for
every x # 5, t. Indeed, we get to x from one of its neighbours, so

Ss= Y SPu= Y. .s_,,%’l,

yel{x) yelix} s
which is nothing else but (4):

CVe= Y ooy
yelix}

Hence the distribution (V;) of absolute potentials does satisfy KCL at every
vertex other than s and t. Therefore, with this distribution of absolute potcntials,
no current enters or leayes the network anywhere other than s and 1.

All that remains to check is that we have the claimed current in each edge and
that the size of the total curtent froms to f1s 1.

What is the current wyy in the edge xy induced by the potentials (V,)? By
Ohm’s law it is

Rem(s, 1) = (13}

5 $
Wy = (Vy — Vy)cxy = (Ex' - ‘Ey_)fxy
x ¥

u= - = 8, Py — 5 Pyx,
C. C, t Fxy ¥ Eyx
and the last quantity is precisely E,y.
Finally, the total current through the network from s to ¢ is indeed t:

w, = Z Wey = Z E;y=1,

yel{s) yel{s)
since every walk from s to ¢ takes 1 more step from s (through an edge leaving 5}
than f¢ s (through an edge into 5). But since ¢ is at absolute potential 0 and the
total current from s to ¢ is !, the vertex 5 is at absolute potential Reg(s — 1), 50
V; == Regr(s — 1), as claimed by (13), ]
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Theorems B and 9 give two alternative expressions for Reg(s, y). Equating
them, we find that the escape probability is the reciprocal of the expected sojourn

time at 5:

Pesc(s = 1)} = ?(;—t:)-—r—) (i4)
This identity is easily proved directly (see Exercise 18).
Now let us wrn to connected and locally finite infinite networks. Thus let
= (G, c), where G = (V(G), E(()) 15 a connected infinite graph in which
every vertex has finite degree, and ¢ : E(G) — R* = (0, o0} is the conduc-
tance function. As before, we define an RW on V{(G) by defining the transition
probability Py, to be ¢,/ C; if xy is an edge and 0 otherwise.

Pick a vertex s € V(G), and let P,,(;?) = Pec(s, 00} be the probability that,
when starting at s, we never return to 5. Our RW is said to be transient if AN ()
and it is recurrent if Pés?} == (). It is easily seen that this definition 1s independent
of our choice of 5. Analogously to Theorem 8, we have the following result.

Theorem 10 The RW on a connected, locally finite, infinite electrical network is
transient iff the effective resistance between a vertex s and oo is finite, and it is
recurrent iff the effective resistance is infinite. ]

Although it is intuitively clear what Theorem 10 means and how it foliows from

Theorem g, let us be 2 little more pedantic.
Let us fix a vertex s and, for [ € N, let Ny be the network obtained from N by

shorting all the vertices at distance at least ! from s to form a new vertex #. Let Rm

be the effective resistance of the network N; between s and ¢, and let Cég = ] ;‘Rg%

be its effective conductance. We know from the monotonicity principle that the
sequence (R(”) is increasing and the sequence {C ﬂ-) is decreasing, so we may
define the effective resistance of A betwcen s and oo as R{ 00) = M 00 R;,},
and the effective conductance as C,:ﬂr == limy— o0 c' -ff (see also Exercise 5).

Let Pm be the probability that, starting at 5, we get to at least distance ! from s,
before we return to s. It is easily seen that Jsc o} limy -, o0 P, P es: (see Exercise 6).

It is immediate that ,:(:,]: is also the probability of escaping to # in N, when
starting at 5 in Nj. By Theorem 8, Pl = CUJ,"CS Hence P > 01ff C(ﬁ is
hounded away from 0, i.e., iff Rm 1/ Cﬁ# is at most some real r for every (.
But this holds iff Rgﬁ 00) < r, proving the result.

in view of Theorem 10, we are interested in ‘practical’ ways of showing that
Réﬁ and C) are bounded by certain quantities. We start with RS,

Theorem 11 The effective resistance Ri?f] of N between s and infinity is at most
r iff there is a current (uxy) in the network N such that a flow of size | enters the
network at s, at no other vertex does any current enter or leave the network, and

the total energy in the system, nyeﬂ(;) ui},rx_y. is at most r.
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Proof. Suppose that R < r for every I. Corollary 6 guarantees a flow u® of size
i from s to &; in Nj, with total energy at most r. By compactness, a subsequence
of (\?) converges to a flow u with the required properties. By Corollary 6, the
converse implication is trivial. 0

The analogous result for Ci? ) is even easier: it follows at once from Corollary
5 and the definition C'% = limy_, o, C.

Theorem 12 We have Ci?) < C ifffor every C' > C there is a function (V) on
the vertex set V(G) such that Vy = 1, V. = 0 for all but finitely many vertices x,

and 3\ e gy (Ve — Vy)zc_ty < D
Theorems 11 and 12 give us the following more explicit version of Theorem 10.

Theorem 13 Consider the RW on a connected, locally finite infinite electrical
rnetwork N = (G,c) = (G, 1/r), where ¢ = 1/r is the conductance and r
is the resistance. This RW is transient iff there is a flow (u,y) of finite energy
¥ eyeE(G) 2yTay in Which no current leaves at any vertex, but some positive
current enters at sonte vertex. Also, this RW is recurrent iff for every £ > O there
is a function (Vy} on the vertex set such that Vy > 1 for some vertex s, Vy = 0 for
all but finitely many vertices x, and 3, . p(Gy(Vx — ) exy < & @

Theorem 13 implies the random walk variant of the monotonicity principle:
in proving transience, we may cut edges, in proving recurrence, we may short
vertices.

As a striking application of Theorem 13, let us prove Pélya’s beautiful theorem

on random walks on the lattices Z9.

Theorem 14 The simple random walk on the d-dimensional lattice Z%isrecurrent
ford = 1,2 and transient ford > 3.

Proof. The simple random walk (SRW) in question is the RW on the electrical
network with graph Z%, where each edge has resistance 1. By the monotonicity
principle, all we have to show is that the SRW on Z? is recurrent and on 23 itis
transient. .

To prove the first, for n > 1 short all 8 vertices x = (x1, x2) with [lx]ee =

max{|x;], |xz|} = # to a new vertex a,, and sct ap = 0. The new nctwork is a
one-way infinite path agajaz - - -, with rg g, = ﬁlﬂ Since 3 .oy E#[ = 00,

the effective resistance between ag and ¢o is o0, so the SRW is indeed recurrent.
Let us give another argument, this time based on Theorem 13. Set 5, =

™ | 1/i and for x = (x1, x2) € Z? define

1— 8/, ifmax(|x)|, Ix2]} =4k <n,
o otherwise.
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Then

H
8
3 (Ve— V)P = ) Bk(kS) E= —
{ v < 8k (kSn) 5
yeE(ZD k=1

and the right-hand side tends to  as n — oo.

To see that the SRW on Z? is transient, define a flow ¢ = {(uyy) In the positive
octant as follows, Given a vertex x = (x1, x2, x3) withx; > Qand x1+x2+x3 =1,
send a current of size 2{(x; + 1)/(n + 1){(n + 2){(r + 3) to the vertex x + ¢;, where
(e|, 2, €3) is the standard basis of R®. Then a current of size % + ;- + % = ] enters
the network at 0, and KCL is satisfied at every other vertex, since the total current
entering at a vertex x = (x), X2, xa}, xp,xma.xa 2 xi+x2+x3=n=>1is
2(x1+x2+x3)/n(n+-1)(n+2) = 2/(n+ 1){(n+ 2), and the total current leaving
itis2{x1 +T+x3+14+x3+ )/ (n+Dn+2)n+3)=2/(n+ 1)(n+2). The
total energy of this current is

o 2 4(x; + 1)2
2, 2 2 (n + 1)2(n + 2)X(n + 3)2

n=0 x1,xz2,2320,x)+x3+x3=n i=I

= fn+2 4(n+ 1)(n+3)
5;( 2 )(n+1)2(n+2)2(n+3}2'

stnce there are "J{z) points (x, xp, x3) in Z3 withx; +x34+x3 =n,andif x; > 0
and x| + xz + x3 = n then

Gt + 1P+ (+ 12+ @m+ D<@+ D +1+15 (+ Dn+3).

Consequently, the total energy is at most

- 2
2o Hmin !

Hence, by Theorem 13, the SRW on Z3 is transient. 7]

Clearly, thts proof of Pélya’s theorem did not really test the power of Theo-
rem 13, which can be used to prove the transience or recurrence of random walks
on rich more general infinite graphs than lattices.

[X.3 Hitting Times and Commute Times

The results in the previous section were obtained by appealing to only the most
rudimentary facts concerning random watks. As we wish to keep our presentation
essentially self-contained, we shall continue in this vein; nevertheless, we shall
find it convenient to use some basic properties of random walks.

Our aim in this section is to study the important parameters of random watks
on graphs, like the expected hitting times, commuting times and sojourn times. In
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addition to combinatorial arguments, we shall make use of the connection between
random walks and electrical networks, to the benefit of both theories. Among other
results, we shall prove Foster’s theorem that the sum of effective resistances across
edges in a simple graph depends only on the order of the graph.

An attractive feature of this theory is that there are a great many interconnections:
the order of the results in our presentation is just one of many possibilities.

In order to emphasize the combinatorial nature of the results and to keep the
notation simple, we shall consider the simple random walk on a fixed graph G
with n vertices and m edges, so that the transition probability matrix is P = (Fyy),
where Py = 1/d(x) if xy € E(G). In fact, by doing this, we lose no generality:
all the results can be translated instantly to the case of general conductances.

Given an initial probability distribution p = {px)rev(s), the probability dis-
tribution after one step is pP = (3, pxPry)yev(c), since y gets a ‘mass’
or ‘probability’ p, Pry from each vertex x. If G is a multigraph then F,, =
m(xy)/d(x), where m(xy) is the number of edges from x to y. In this case in
one step each edge e from x to y carries | /d(x)} proportion of the probability p,
at x to v, and 1/d(y) proportion of the probability p, at y to x. For notauonal
simplicity, we shall resirict our attention to simple graphs without loops, although
it is clear that all the results carry over to multigraphs and, a little more generally,
to weighted multigraphs, as in §2.

Write & = (¢ )y for the probability distribution on V = V{G) with ny =
d(x)/2m. If x is our initial probability distribution, then each cdge xy transmits
1/d(x) of the probability =, = d(x)/2m at x to y, i.e.,, each edge transmits the
same probability 1/2m in cither direction. In particular, the matrix P and the
vector & satisfy the detailed balance equations

Ty .Px}- - R’y P}-x
for all x, y € V. From this it is clear that x is a stationary distribution for P:

TP =n.
Indeed,
(mP)y = Z”IPIJ’ = Z”ypyx -_.—IEJ.ZP)“ = y.
X x X

What happens if our SRW starts from a probability distribution p = (py)zev?
If & 15 bipartite then p P*, the distribution after k steps, need not tend to x as
k — oo, but if G is not bipartite then it is easily seen that p* = pP* does tend to
x (see Exercises 14—17). In particular, for every fixed ¢, x and y,

d(x)

P(Xj=1|xi=y)“*ﬂx=g (15)

as j — 00, This implies that if £ > O and |j — {] is sufficiently large then

P(X; = x, Xj =) — P(Xi = )B(X; = y)| <&, (16)
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In what follows, we shall start our SRW from a probability distribution p =
(Px)xev. 5o that P(Xg = x) = p,, and write p* = (p{”)zev, s0 that

P = P(X; = x) = (pPb);.

Let S;{x) bc thc number of times we visit x during the first & steps, that is, the
number of times x occurs in the sequence X, ..., Xg.

Theorem 15 We have limy., oo E(S; (x)/k) = d(x)/2m, and (S (x)/ k) xev tends
to w in probability as k — oc.

Proof. Note first that
e
E(Se(x)} =Y P(X; = x),
=1l

50
dw

o (17

1< o
i = lim — () _
In order to estimate the variance of S;(x)/k, note that, very crudely, if (16)
hoids for | j — | = kg then
o (Sk(x)) = E(Si(x)? — (ES(x))?
£k
= Z Z(]P(Xl =X, Xj = x) - IP{X; = I)IP(XJ = x:l)
i=l j=1
Y @Xi =x, Xj = x) — P(X; = )B(X; = x))

W—jl<ko
i<k

+ Z (PX; =x,X; =x) - P(X; = x)P(X; = x))
==k
i i<k

< gk + ke, (18)
Hence if k& > 2kg/e then this gives

2 _ 2
o (S (x) k) = kx) ESi () _ 2_:9_
Se(x) _ E(S5:(x)

kz
> 0
P( X k *”)"’

for every n > 0 so, by (17), Sg(x)/k — d{x)/2m in probability. 0

Denote by H (x, y) the mean hitting time of y from x, namely the expected time
it takesto go fromx toy: H(x, y) = IE,('.':G}). Clearly,

+ £ < 2r

Therefore

)

oo
Hx,y)=) kP(Xe=y, X; #yforl <i <k| Xo=x).
k=l -
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Putting x = y in this formula, we see that H(x, x) = Ex(t";}) is the mean return
time 1o x. Starting at x, with probability P,y = 1/d(x) the first step takes us to y,
50

1
H(x,x)=1+ZPnH(z.x}=l+m Y Hizx). (19
eV zel(x)

Occasionally, H (x, ¥) is also called the hitting time of y from x or the access time

of y from x.
The function H'(x, y) = E.(z(y}) is almost as natural as A (x, y). Clearly.

H'(x,y) = H(x, y)forx # y,butifx = ythen H'tellsus nothing: H'(x, x) = 0.
In fact, H'(x, y) is a rather useful tool in calculating H (x, y) since, arguing as
in (19},

Ha ) =1+—— 3 H'@) (20)
! d(x) zel{x) '

for all x, y.
There is no reason to expect H (x, y) to be symmetric and, indeed, it is not. For

example, if G is a path xyz then H(x,y) = 1 and H(y, x) = 3. However, the
next result, about H (x, x), holds no surprises.

Theorem 16 The mean return time to a vertex x in a connected graph is
H(x,x)=2m/fd(x).

Proof. Set Yo = 0 and let ¥; be the time our random walk (X;)§° returns to x for
the £th time when started at Xo =x. Then ¥, =Y, - Yo, Y2 - ¥;. ¥5 - 12, . ..
are i.i.d. random variables, so E(¥,) = €E(Y)) = £H (x, x). Also, ¥y < k if and
only if S;(x) > £. Hence, fora > 0,

Yi/€ <o ifandonlyif Spw) = L.
In particular, P(Ssq) /e = 1/a) = P(Y¢ /L < a) so, by Theorem 13,

1 ifa>2m/fdix),
lim 11»(& < a:) = lim IP(S“‘” > l) =
f=00 14 {00 fo o 0 ifa <2m/d(x).

Hence Y; /£ tends to 2m /d(x) in probability, so H (x, x) = 2m/d(x). O

In fact, more is true: not only is the mean return time to x exactly 2m /d{(x}, but
we expect to return to x through each edge yx in Zm steps.

Theorem 17 Let xy be a fixed edge of our graph G. The expected time it takes
for the simple random walk on G, started at x, to return to x through yx is 2m.
Thus if Xo. X1, X2, ... isour SRW, with Xo=x,and Z = min{k 2 2 : Xy =
y, Xt = x}, then B(Z) = 2m.

Proof. The probability that we pass through yx at time k + 1 is
P(Xy =¥)

P(Xy =y, Xpe1 =X) = FIes,
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Therefore, writing S (yx} for the number of times we pass through yx up to time
k+1,
ESi(yx) _ ESi(y) N 1
k kd(y) 2m’
The proof can be completed as in Theorem 16: writing Z for the time & our random
walk (X;)§°, started at Xp = x, returns to x for the £th time, i.e. X;—; = y and

Xy = x for the £th time, B(Z;) = ¢E(Z), and Sy (xy) < £if and only if Z; < k.
O

As aslight variant of Theorem 17, it is easily seen that, no matter where we start
our SRW and what oriented edge uv we take, Sy (uv)/k — 1/2m in probability.
Loosely speaking, this means that our SRW spends equal amounts of time in
each edge, going in either direction. This is far from surprising: in the long run,
T, = d(u)/2m of the time we are at 4, no matter where we start, and from u with

probability 1/d{u) we traverse the edge uv.
Since d(x)/2m is just the x coordinate of the stattonary distribution x, by

Theorem [6 we have

Hix.x)= -1— 21)

X

In fact, (21) holds in a considerably more general form, for any ergodic finite
Markov chain (X;)g°. Let & = (wx)xcv be a stationary distribution, so that if
X g has distribution x then cach X, has distribution 2, For § C V, define x5 by
ng(x) = m, f7(S); let w5 be essentially the conditional probability on S, so that
ae(xy=nax)/a({S) forx € §; and for y € V \ § set we(y) = 0. In other words,
x5 is x conditioned on the Markov chain being in §. Then we have Kac's formula:

7 (B () = 1, (22)

where [E,. denotes the expectation when our chain is started from the initial
distribution xs. It is easy to check that the proof of Theorem 16 can be repeated
to give this more general assertion. Here is another way of proving (22). Note that
ﬂlr(r;_ =k) = P (Xy é S,..., K1 ¢ S, X € 8)
=IPX(X] g Sr"'!Xk-l ¢ S)—PI(XI ¢ S,...,Xk ¢ S)
=Pr(X1€S,.... K41 €S)—Pe(XogS,.... K41 €5)
=Pe(Xoe 8§, X1 €8,.... X1 €95
= n(SPrs(rd > k).

Summing over &, we get

=) ]
1= Pl =k)=m(8) }_Prs(ts = k) = T()Eg(r),
k=1 k=1

as claimed by (22).
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For a regular graph & of degree 4, combining (21) and Theorem 16, we find

that for a fixed vertex x the average of H (x, y) over y € ["(x) is precisely n — 1:
1 2m
y Y. Hy.x)=Hxxn—1= =L
yel(x)

A similar result holds without assuming regularity, but we have to take the average

of the hitting times H (x, y) over all 2m ordered pairs of adjacent vertices. Putting

it another way, starting from the stationary distribution, we expect to return to the

original position in 1 steps.

Theorem 18 Let G be a connected graph of order n and size m. The mean hitting

times H(x, v) of the SRW on G satisfy
1

—_— Hx,y)=n-—-1. {23)
2m

xeV{Gyvel'(x)

Proof. Let x = (n,) be the stationary distribution for the transition matnx P =
{(Pxy), so that A P = 5 and 7, Py = 1/2m for xy € E(G). Then

EIE S Y Hax =Y mPyH.2)

=ZJT1 (Z nyH(}’,x)) = Z”}:(H(xr-r) — 1)
X ¥ X
x X

Theorem 18 has an attractive reformulation in terms of another invanant of
random walks, the mean commute time. For vertices x ¥ y, the mean commute

time between x and y, denoted by C(x, y), is the expected number of steps in a
round-trip, in a walk from x to y and then back to x. Thus

Clx,y)= H(x, y)+ H(y, x).
Then (23) is equivalent to the following:
L Z: Cix,y)=n—1. (24)
™ ryeE(©)

Thus the average of the commute times between the m pairs of adjacent vertices
in a connected graph of order n is 2(n — 1).

Theorem 19 With the notation above,
Cerr(s, 1) _ Hs,s) _ 2m . (25)
dis) Cis,t) d{OC(s, 1)

Fese(s = 1) =

Furthermore,
Cis.1) = 2mR.g(s, 1). (26)
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Proof. The first equality in (25) follows from relation (13} in Theorem 8. To see
the other equalities in (25), let R be the first time the random walk returns to 5, and
let A be the first time it retuns to 5 after having visited . Then K(R) = H (s, 5) =
2m /d(s) and, by definition, E(A) = C(s, t). We always have R < A4 and

B(R=A)= Pegc(s > 1) =1,

say. Also,
E(A - R) = (1 — g)E(A),
50
E{R) 2m
C(s, 1) = E{A) = = .
dis)q

Thus Pese{s —> 1) = 2m/d(5)C(s. 1), as claimed. As H (s, s) = 2m/d(s), equal-
ity (25) 1s proved. Finally, (26) is immediate from (25). 0O

The results of Section 2 also have attractive formulations for our simple random
walks. For example, the expected number of times we traverse a fixed edge sx
from s to x if we start our random walk at « and stop it when we get to ! is just
1/d(s) times the expected sojourn time at s, S;(s — ). But by (14) and (11)
(or (25)) this is exactly

Si(s > 1) i
dis) A Pescls > 1)

Let us illustrate these results on the simple graph Go on three vertices shown
in Fig. IX.1. First let us calculate the data for the simple electrical network Gg.
The effective resistance of Gg between 5 and t is Reg(5,. 1) = kl + :l‘: = %5, 50
setting 5 at absolute potential V; = 1, and ¢ at V; = 0, we get a current of size
k£/(k + £). In an edge incident with s, there is a current of size £/(% + €), and in
an edge incident with ¢ there is a current of size k/(k 4+ £). Alsc, u is at absolute
potential ¥, = k/{k + £).

X

FIGURE IX.1. The graph Gy has three vertices, 5, t and ¥, and k + £ edges: k from s w0
x,and £ fromx tof.

= Rep(s,1). (27)

And now for the simpie random walk on the graph Gg. The probability that
starting at & we get to s before ¢ is simply that the first step from u is to s: this has
probability k/(k + £), which is just ¥y,. The escape probability Pesc(s > £} is just
the probability that after the first step, which takes us to u, we go to ¢ rather than
s: this has probability £/(k + £). Hence C; Peg(s — 1) = k€/(k + £), which is
indeed the total current, Also, 1/(d(8) Pesc(s — t)) = (k + £)/ k£, which 15 just
the effective resistance between s and ¢, as clatmed by (27).
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In the SRW on Gp, the expected sojourn time at s on our way from s to ¢ is

ke i jki-1 k+¢

k+e =&+ ¢

j=1
so the expected number of times we cross an edge incident with s is (k + £)/kE,
which is precisely Regr(s, £), as we know that it has to be.

What is the expected number of times our SRW crosses a fixed edge from u to
7 If we start at 5 and stop at ¢ then this expectation is 1/£, as we know, and if we
start at # and stop at 5 then it is
1

k [ 4]
e(k+£)§{k+£)f Tk

Hence R.#(s, 1) is the sum of these two expectations. In fact, this holds in general,
not only for our simple example Gg in Fig. IX.1.

To show this, we first set the scene. Let 5, ¢, x be vertices of a connected graph
G, with 5 3 t. Write 5,(s < t) for the expected sojourn time at x in a random
round-trip from 5 to £. In other words, Sx (s « 1) is the expected number of times
the SRW on G is at x if we start at s, continue till we get to £, and then stop when
we are next at 5. Also, for an edge xy, let Sy, (s © 1) be the expected number of
times we traverse the edge xy from x to y during a round-trip from s to ¢. Clearly,

Sey(s © 1) = Se(s o 1),

1
di{x)
Theorem 20 For a connected graph G, vertices s # t, and edge xy € E(G) we
have
Sils =1 St —8)

ax T dm

Ree(s, 1) = Syy(s & 1) =

Proof. With the notation in Theorem 9, S, (s < t) is
Sy(s = O+ 8t — 5)=Vels = ndx) + V(¢ = s)d{x).

But
Vs = 1) + Vi {t = 5) = Reir(s, 1) = Rei(2, 5) (28}

for all z. Indeed, V, (s, 1) is the potential of z if 5 is set at Reg(s, t) and ¢ at 0, and
V;(t, s} is the potential of z if ¢ is set at Rer(s, £) and 5 is set at 0. Hence, (28)
holds by the principle of superposition discussed in Section II1. 0

Theorem 20 can be used to give another proof of Theorem 19. Let us restate
Theorem 19 as follows:
2m H(s, 5}

T Pe o) P =1 &

Cis,t) =2mRes(5, 1) =
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Now, at a round-trip from s to ¢ and back to s, in each step we traverse an edge
until we stop the walk at ¢, so

Cls, 1) = 2 Z Sey(s © 1).

xeV(G} yelix)

By Theorem 10, each of the 2m summands on the right-hand side is Reg (s, #), 50
the first equality of (29) follows. The second and third equalities are immediate

from (11) and (25).

There is another variant of the escape probability that is interest to us. Given
vertices 5 and u, denote by Pesc(s — t < u) the probability that if we start at 5
then we get to ¢ before either s or u. The following result is a mald extension of
Theorem 8. To prove it, add a vertex ¢’ to the graph and join ¢’ to ¢ and ¥ by many
edges. Apply Theorems 8 and 9 to measure the current from s to ',

Theorem 21 Let s, t and u be distinct vertices of a graph. Set s at potential 1,
and ¢ and u at potential Q. Then a current of size

d(S}PcsciS -3 f o u)

leaves (5 at t.

The following reciprocity law is obvicus if we believe in physical intuition. As
we shall see, it also follows easily from the reversibility of the random walk on a

graph.
Theorem 22 Let s, t and u be distinct vertices of a graph G. Then
Ad{(5) Pesc (5 = ¢ < u) = d{1) Pese(t = 5 < u).

Proof. Let W (., be the set of walks W == xgx; - -xs in G — u such that x; = 5
iffi = 0and x; = ¢ iff { = £. Then, writing {X;)3° for our random walk,
Pescls >t <u)= Y P(X;=x,15i<Xp=5)
WeW, .,

and

Posclt > 5 < 1) = 2 PX, = xgy, 1 <i < 2| Xg=10),
WEW:.;’:#

But for W € W; ., we have
£-]
P(X; = xi 1 <i < tXp=8) = [ ] d(x) ™’
i=0
and

£
P(X; =g, 1 S§ < €Xo=0 = [[dix".

l=]

The ratio of these two qualities is d()/d (s}, so the assertion follows, ;
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Theorem 22 is precisely the result needed 1o prove the fundarnentai result in
the theory of electrical networks that every network with attachment set {/ is
equivalent to a network with vertex set U (see Exercises 10-12 in Chapter IT).

A slight variant of the proof of Theorem 22 gives an imporiant property of mean
hitting times: although H (5. t} need not equal H (¢, 5), ‘taking them in triples’, we
do get equality.

Theorem 23 Let s, t and u be vertices of a graph G. Then
His, D+ Ht,u)+ Hu,s)=H(s,u)+ H{u, 1} + H(z, 5).

Proof. The left-hand side is the expected time it takes to go from s to 1, then
on to u and, finally, back to 5, and the right-hand side is the expected length
of a tour in the opposite direction. Thus, writing t for the first time a walk
starting at s completes atour s — r — u — s, and defining ¥’ analogously for
5 ~» u — t — 5, the theorem claims exactly that E,(z) = E;(r"). Consider
a closed walk W = xpx; - - - x; starting and ending at s, so that xg = x; = 5.
Clearly,

PX;=x;, | =i <élXg=5)=PXi=xs—;,1 =1 < £{Xg=75)

£-1
=[Jaen™,
i={

that is, the probability of going round this walk one way is precisely the probability
of tracing it the other way.

Fix N, and let 3 = xgx; - - - be an infinite walk with xg = 5. Set £ = £(S, N¥) =
max{i < N : x; = 5}, and let §' be the walk xzx¢—; - - - xgX¢4+1%242 - - - By the
observalion above, the map S > §' is a measure preserving transformation of
the space of random walks started at 5. Since t(3) < N iff ¢’(5') < N, we have
Py(r < N) = B (z’ < N). Hence E; (1) = E;(7"), as required. |

Theorem 22 implies another form of the reciprocity law.

Theorem 24 The expected sojourn times satisfy
d(5)8x (s = 1) = d(x)8s(x — 1). (30)

Proof. Letus define arandom walk on the set {s, ¢, x} with transition probabilities
Do = Pegel(s > 1 < x), Psx = Page(s = x < t), pss = | — pst — Psx,and so on.
Theorem 22 implies that this new RW is, in fact, also reversible; that is, it can be
defined on the weighted triangle on {s, ¢, x}, with loops at the vertices. Hence it
suffices to check (30) for this RW: we leave this as an exercise (Exercise 20). m;

The last theorem we prove is a classical result in the theory of electrical net-
works: Foster's theorem. If our graph is a tree of order n then the effective
resistance across every edge is 1, and the sum of effective resistances across edges
is n — 1. Also, we know from Kirchhoff's theorem in Section IL.1 (see Exer-
cise I1.4) that if every edge of a connected graph with n vertices and m edges is in
the same number of spanning trees then the effective resistance across any edge
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1s precisely (n — 1}/m, so the sum of effective resistances across edges s again
n — 1. The surprising result that this sum 1s n — 1 for every connected graph of
order n was proved by Foster in 1949. The two beautiful proofs below, found by
Tetali in 1991 and 1994, illustrate the power of the intricate edifice of relations we

have constructed.
Theorem 25 Let G be a connected graph of order n. Then

Reﬁ'(s, I) =n- 1
wre E(0)

First Proof. By Theorem 24, for any two vertices ¢ and x we have
z Sz(s > 1) _ Z Ss(x — 1)
seT'it) d(x) el (r} d(j) '

since the two sums are equal term by term. Now, if x 5 ¢ then the right-hand side
is 1, since it 1s precisely the expected number of times we reach ¢ from one of
its neighbours in a random walk from x to ¢. On the other hand, for x = ¢ the
right-hand side is 0. Hence, summing over V = V(G), we find that

teV sel{t)
But the left-hand sidc is

Se(s = 1) St — 5)
d{ ) d(_r:l = Rbﬂ:(ji !}1‘
e E(G) * steE(()
with the equality following from Theorem 20. O

Second Proof By Theorems 18 and 19 (or by relations (23) and (25)),
| 1
n—l=-— 3 Cls,th=z— Y 2mRegls.t)= Y Res,t). O

2m  Fo) 2m  EG) SIEE(G)

Numerous other results concerning random walks on graphs are given among
the exercises.

IX.4 Conductance and Rapid Mixing

We know that a simple random walk on a non-bipartite connected (multi)-graph
converges to the unique stationary distribution, no matter what our initiat probabil-
ity distribution is. Qur aim in this section is to study the speed of this convergence:
in particular, we shall connect the speed of convergence with a down-to-carth
expansion property of the graph.

In order to avoid unnecessary clutter, we shall restrict our attention to regular
graphs. We shall adopt the convention that is natural when considering random
walks on graphs that a loop contributes one (rather than the usual two) to the



320 IX. Random Walks on Graphs

degree of a vertex. Let us fix a connected, non-bipartite, d-regular (multi)graph
G we shall study random walks on this graph. For notational simplicity, we take
V{G) = |r] = {1,...,n}, so that the transition probability matrix P is of the
form P = (Pij)2j=1’
As in Section 3, for a simple random walk X = (Xe)§® on G, set pi{” ==

P(X, = i). Thus X is the SRW with initial distribution pg = (pi"Y_,, and
= p‘-m);‘r_ | = poP’ is the distribution of X,. Then p; tends to the stationary
distribution x = (... ., 1). In measuring the speed of convergence p, — . it
does not matter much wiich norm we take on Co{(), although it is customary to
work with the £2-norm ||xll = (30, 1%:12)!/2 or the £;-norm [|x)l; = 3°0_, |xil.
In particular, the mixing rate of the random walks on G is

_ . _ 17¢
Q= S;Frlj}rgsup Ip — 7lly",

where the supremum is taken over all initial distributions pg. In fact, it 1s easily
seen that the supremum is attained on a great many distributions, and in this
definition we may take any norm on Co{G) instead of the £2-norm. As we shall
see shortly, the mixing rate i is easily described in terms of the eigenvalues of P.

By definition, P = A/d, where A = (q;j )Ej=l is the adjacency matrix of G,
i.e., fori # j, ai; is the number of edges from / to j, and a;; is the number of
loops at i. Let A} = Az = -+« = A, be the eigenvalues of the hermitian matrix
P, enumerated with multiplicittes. We know from Theorem VIILS5 that A; =
1 > Xy = -+ > Ay > —1. The space Cp{C} has an orthogonal basis w| = m,
w1, ..., W, consisting of eigenvectorsof P, sothat w; P = d;wi,i =1,..- 2 ln
particular, the subspace xl of Cy(G), orthogonal to 7 = (%, R nl) is ipvariant
under P, and the restriction of P to ! is a hermitian operator with eigenvalues
Ay = ... > Apand norm A = max{Az, |An|}.

Theorem 26 The mixing rate p is precisely A = max{iz, |Aq|}.
Proof Given a distrihution pyp, set
po = ¥ + pj.
where
(pg. T} =10,
Then | = (pg, nx) = a{x, nx) =, so
Po = T + Pp.

Hence
ip; — )z = Ipo P’ ~w P*ly = ll(po — ) P'Jl2
= lpy P2 < Alippll < X

Therefore, i = supp, limsup,_, oo llpr — 7 Hé‘“ < A
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The converse inequality is just as simple. Assuming that |A;| = A, pick a
probability distribution pg such that

Po= i%’f“’f,
=1

with £; # 0. In fact, we can find such a pg = (p::m), even among the distributions
such that piﬂ) = | for some A and pfm = 0 for i # h. But if for our py we have
& # (O then

P - xlz = l{po ~ ) P lia = A NEpw;lt
implies that i > A, as claimed. d

More ofien than not, it is not easy to determine or estimate A = max{in, (Anl}.
In fact, the crucial quantity here is Ao, rather than JA,{. This can be made sure by
“slowing down" our RW, as we shall do below. Let then & = (V, E} be a fixed
d-regular graph. The tazy random walk (LRW) on G with initial random variable
X¢ is a Markov chain X = (X.--),f',,'0 such that the random variables X, take values
inV = V(G) = [n], and for i, j € V we have

i
— f=,
3 ii=jy
TP B
Jﬂ*()if.u,l---,rl«‘f:~—f)'—*E ifi ~ j,

0 otherwise.

Putting it slightly differently, we attach o loops to each vertex and run the simple

random walk on this multigraph.
Note that if Py is the transition matrix of the SRW on ¢ then the LRW has

transition matrix Py = (Ps + 7}/2. In particular, if Pg has eigenvalues ) =1 >
Az = -+ > Ay then P has eigenvalues %{ll +D=1= %(}Lz +1)=.-.-=
%(ln + 1) = 0. Hence the mixing rate of the LRW is %(lz + 1), the second-largest
gigenvalue of Py . In particular, if A is close to | then the SRW converges at most
about twice as fast as the LRW.

In fact, rather than giving an upper bound for %(Az + 1), we shall estimate the
speed of convergence to the stationary distribution in terms of the conductance

$; of the graph G, defined as

. e(U, 1)
min —,
UV d min{|U], (U}
where [/ = V \ U and e(UJ, U} is the number of edges from U to /. Note that if
U] < n/2, as we may assume, then d}{/| = Y, d(u) is the maximal number
of edges that may leave {/, so e(U/, N /d|U| is the proportion of “half-edges”

leaving U/ that go to U.
Clearly, 0 < ®¢ < 1, but if n is large then ¢ can hardly be bigger than 1/2

(see Exercises 26-28). Clearly, & = 0 if and only if & is disconnected. More

G =
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generally, when is ®¢ small? If for some set &/ C V' there are relatively few
{/ — U edges; that js, if there is a “bottleneck™ in the graph. It is precisely the
existence of such a boitleneck that slows down the convergence p; — 7.

Given an RW X = (X,)§° on a graph G = (V, E} with V = [n] as before,
we write pf” = P(X; = i). Define the excess probability at vertex { at time 1 as
€ = pﬁ” — 1/n and set

dy(t) = ||p: — s = ) _ei,.

Note that the excess probabilities satisfy

g+ 1 I v, ¢ Yy 1
€+l = Py “;:(ipf "“53_):?;' “n

Jerd)
=3 (0= 3 (o-5) eIp
2\ 2d L / n
=21€:r+§ f;r=$2(€;r+3;r)
Jertd) Jer{)

We are ready to state the main result of this section, establishing a close rela-
tionship between the conductance of a graph and the speed of convergence of lazy
random walks.

Theorem 27 Let G be a non-trivial regular graph with conductance ®g. Then
every LRW on G is such that

dyt + 1) < (1 —~ %d‘%) da(1).

We shall deduce Theorem 27 from two lemmas that are of interest in their own
right.

Lemma 28 Let G be a d-regular graph with d > 1. Then, with the notation as
above,

]
ol + 1) < dy() ~ o E (e —€j.1)%
ifeE

Proof. By relation (31),

2
l "
da{t + 1) = a2 Z Z (eis + ej,r)} .

i=1 jeT)
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Since |['(i)| = 4 for every i, applying the Cauchy—-Schwarz inequality to the inner
sum, we find that

I n
Bt +1) < 5 ) l Y cei +ej,,>2] d

i=l |jel(}
! 1
= 2d E (i + ej")z = 2_1'2'— Z {2 (et;’.l + e_f_r) — (eiq — é',',r)z}
ifjeE ijeE
I
=dy(t) — = 3 (eir — €)%
as claimed. '

The second lemma needs a little more work.

Lemma 29 Let G = (V, E) be a d-regular graph with conductance $¢, and let
x:V > Riv x, besuchthat ¥ i x = 0. Then

d n
D Gi~xp) 2 S0 Y % (32)
ijeE i=1
Proof. Set m = [n/2]. We shall prove thatif y; = y2 = .-+ > y,, with y, = 0,
then
2, 92 v 2

D 0i =y > 593 0 (33)

ek i=1
It is easily seen that this inequality is stronger than (32). Indeed, in (32) we may
assume that x| > x2 > - .- = x,. Setting ¥; = x; — X,q, inequality (33) gives

Z(xi —x) = E(}’i —y)t= ;‘b%; Z(xi — Xm)?

ijeE {jeE p
d 1 nd
2 2 2 _2
> —¢ E xF 4+ —Dhxs,
) o — i 2 G'm

since ¥ iy X = 0,
Now, in order to prove (33), set

y; ifi <m,
M =
0 ifi >m,

0 ifi<m,
v o= _
y; ifi>m.

Thus y; = u; + v for every {. Also, if u; # Othen u; > Oandi < m, and
if o, # Othen vy < Oandi > m. Since (y; — )% = (5 —uj + v; —v;)? =

= e ————1 o s it
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(uj — u_,-}2 -+ (v; — v_,-}2 for every edge { j, it suffices to prove that
Z
Y (i—up) _2¢ Zu (34)
ijeE
and
Y -y ¢. Z ;. (35)
ijeE

Furthermore, as m > n — m, it suffices to prove (34). In our proof of (34) we may
assume that u; > 0. By the Cauchy—Schwarz inequality,

2 2
Z (uf: - uf)l = Z(u:‘ ~ ) (u; +uj}}

ek ek
< 3 (i —up)? Y (u o+ ue)
ijek kel (36)
_ 2 2,2
<3 (wi—u)® Yy 2(":;'*‘“:)
ifjeE kickE
n
= EdZuf Z {u; — uj)z.
k=1  ijeE

In what follows, our summations are over all edges ij € E with{ < j. Clearly,

Z (u ] ) Z Z (“t "£+1) ; (“% - “%H)E(Uz. Up.

ek
where Uy = [£land Ty = V —Uy = [n]—-[£].Since tty = 1 = =up, =0,
this gives
m—1

i Ma

Z (“rz *“%) = Z ("% - “§+1)€(Uz. Uy 2

JeE =1

m—} #
=ddc Y up =d®c Y _u;.
(=1 =1

(37N
Inequalities (36) and (37) give
" 2 H d
O E o) WA O 3 B o
BeE i=t i=l i=]
as desired. O

Armed with these two lemmas, it is easy to prove Theorem 27.
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Proof of Theorem 27. By Lemma 28,

i
dit) —dat + 1) 2 5 Y (eis — e
2d ijek

Applying Lemma 29 with x; = e, ;, we find that
l n
doft) — ot + 1) 2 79 3 el = - vhda),
i=1

completing the proof. {J

The distance of the distribution p; at time ¢ from the stationary distribution
x 1s usually measured by the £;-norm of the difference, which is twice the so-
called total variation distance: d1(t) = 2dry(p,, ®) = |p; — x!|\. If we wish to
emphasize the dependence of 4, (1) on the RW Y= (X,)S" then we write d; (X, )
instead of d,(¢). By the Cauchy-Schwarz inequality,

" " vz ;. 1/2
dl(r)=Z|e;,;|5(Zeﬁ,) (212) = (ndp(1))'/%.

i=1 i=1
Also, trivially, d2(0) =< 2 for every distribution. Hence Theorem 27 has the
following important consequence.

Corollary 30 Every LRW on a regular graph G of order n and conductance ®g
is such that

1 /2 1 ¢
di(t) < (nd3(0)'/* < (2n)'/? ( I - Z“’%) < (2m'/? (1 - E“’é) .
Furthermore, the mixing rate y satisfies

1 172 1
nf(l—zd’f}) El—zq’%‘- H

We know that if A» is the second-largest eigenvalue of the SRW on a regu-
lar graph then thé second-largest eigenvalue of the LRW is (A3 + 1). Hence
Corollary 30 has the following consequence.

Corollary 31 The second eigenvalue of the SRW on a regular graph with
conductance ®¢ is ar most 1 — 1132

Proof. With the notation as above, E(Ag+ N<1-— éﬁ%, soAz <1 —¢(2;. O

Corollaries 30 and 31 can frequently be used to prove that certain random walks
converge very fast to the stationary disiribution. Given a sequence G, Gz, ...
of graphs, with |G;{ = n; — oo, we say that the lazy random walks on this
sequence are rapidly mixing random walks if there is a polynomial f, depending
only on the sequence (G;), such thatif 0 < € < 1 andt = f(logn,)log{l/e€)
thend) (X;, 1) < € whenever Xiisa lazy random walk on G;. Thus, if our random
walks are rapidly mixing then we are within € of the stationary distribution after
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polynomially many steps in the logarithm of the order! This is fast indeed: it
suffices to take far fewer steps than the order of the graph.

The larger the conductance, the faster convergence is guaranteed but, in fact,
fairly small conductance suffices to ensure rapid mixing. Indeed, if & is connected
and has arder n = 2, so that &5 = 0, and

1> 80 [1og(1/.s) + %log(Zn}]
forsome () < ¢ < |, then
1, \"? i l
diit) < 2n)'/? (1 - Emg) < ﬁip[ilog(ln} — Ecb’;}:] <&,

In particular, if n > 3 andz > St'l!az log n fog(1/¢) then 4, (1) < ¢. This gives us
the following sufficient condition for rapid mixing.

Theorem 32 Let (G;)° be a sequence of regular graphs with |G| = n; — 0.
If there is a k € N such that

©g, > (logn) ™ (38)

for every sufficiently large i, then the lazy random walks on (G;){° are rapidly
mixing.

Proof We have just seen that if + > 8(logn;)¥*11log(1/¢) then d4\(1) < e,
provided n; is large enough. r

‘There are many families of regular graphs for which we can give a good lower
bound for the conductance. As a trivial example, take the complete graph X, It is
immediate that ®x, > % for n > 2 so the Iazy random walks on (K,,) are rapidly
mixing. Of course, this is very simple from first principles as well.

As a less trivial example, we 1ake the hypercubes or simply cubes @', 07, ...
Here 04 = {0, 1} is the d-dimensional cube: its vertex set is the set of all 2%
sequences x = (x;)7, x; = O or 1, with two sequences joined hy an edge if they
differ in only one term. Clearly, 07 is d-regular, and it is rather easy to prove that
® s = 1/d. The worst bottlenecks arise between the “top” and “bottom™ of Q":
for U = {{x;) € 09 ;. x; = 1} and U = {(x) € 0% : x| = 0}, say. Clearly,
e(U,TU) = [Ut =277, 50 that ®gn (U) = 1/d.

As @y = 1/d = 1/ logn, where n = 2¢ = | @), the lazy random walks on
(@*)$° are rapidly mixing.

#* The cube Qd is just Kf = K3 % ++. x K, that s, the product of J paths
of lengths 1. Taking the product of 4 cycles, each of length £, we get the forus
Tf. This graph has £¢ vertices, and it is 2d-regular. Also, one can show that for
G = T_f! we have g = % (Note that Tf is just the cube Q”.) Hence, for a
fixed value of £, the lazy random walks on (Tz‘i}j’;] are rapidly mixing.

It is easy o extend Theorem 27 to reversible random walks or, what amounts
to the same, to simple random walks on general multigraphs. Given a multigraph
G = (V, E) define the volume of aset U € V(GYtobevoll/ = 3~ ;s d{u). As

fe Tt r—— v kTl sl £ 1
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belore, in the degree d (w) of u we count | [or each loop at #. Then the conductance
of G is

. e(U, U}
®G = min — =
eV min{vol U, vol U}

where again 7 = V \ {J. With this definition of the conductance, it is easy to
prove the analogue of Theorem 27.

In conclusien, we remark thai rapidly mixing random walks have numerous
algorithmic applications. In particular, rapidly mixing random walks are frequently
used to generate approximately random elements in large sets that are not easily
described, such as the set of perfect matchings or spanning trees in a graph,
or the set of lattice potnts in a convex body. The generation of approximately
random elements enables one to enumerate the elements asymptotically. A striking
application of rapidly mixing random walks concerns randomized polynomial—
time algorithms giving precise estimates for the volume of a convex body in R*.

IX.5 Exercises

[. Let T be the rooted infinite tree with every vertex having & descendents. For
what values of £ 1s the SRW on T; recurrent?
Is there a subtree of Z* on which the SRW is transient?

2. Show that the SRW is recurrent on the hexagonal lattice and on the triangular

lattice.

Show also that if G is a graph whose vertex set is contained in the plane R?,
with any two vertices at distance at least I and no edge joining vertices at
distance greater than 10'0, then the SRW on & is recurrent.

3. Given areal number r > 0, construct a locally finite infinite graph & contain-
ing a vertex s such that in the network obtained from G by giving each edge
resistance 1, we have R.g (5, 00) =r.

4. Let N = (G, ¢) be an electrical network on a locally finite infinite graph G.
Let s € V() and let T be the set of subsets T of V(G) with s ¢ T and
V(GY\ T fimite. For T ¢ 7, let N/T be the network obtained from N by
fusing all the vertices of T 10 a single verfex oo. Write Ri? (5, o) for the
resistance of N/ T between s and oo. Finally, let T}, 75, ... € T be such that
d(s, Ty) = min{dg(s, 1): 1 € Ty} = 0. Show that limg,oo R (5, 06) =
infrer REE (s, 00).

5. Let N = ((, ¢) be an electrical nctwork on a locally finite infinite graph G,
and let s, N and #; be as after Theorem 10. Show that for every £ > ! there
is an €¢ > O such that if d(s, x) < £ then P(Tjqy < £) > €. Deduce from

this that P& = limgoy oo Pesc (8 = 1) = limy_ oo PR
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6.7 Consider the simple electrical network of the hypercube 0" with veriex set
{0, 1). Show that R (s, t) is a monotone increasing function of the distance

d(s, t).

7. Formalize the remarks at the beginning of Section 2 as follows. Let (G, a)
be a connected weighted graph, with weight function xy — a,y, and let
S € V(G). A function f : V(G) — Ris said to be harmonic on (G, a), with
boundary §, if

1
fx)y= A_x Zaxyf(}'}

yox

for every x € V(G) \ S, where A, = E},Wx dyy.

(i) Prove the maximum modulus principle that the maximum of a non-
constant harmonic function js attained on §; also, if G — § is connected then
the maximum is attained at some point of V(G )\ § if, and only if, the function
is constant,

(ii) Prove the superposition principle that if f| and f, are harmonic on
(G, a) with boundary § thensois ¢y fi +¢3 f2 forany c1,¢c2 € R.

(iit) Show that forevery g : § — R there is aunique function f : V(G) - R
which is harmonic on (C, a), with boundary 5, such that f(x) = g(x) for all
x € 8. [Hint. Consider the RW (X;)5° on (G, a) and, for x € V((7), define
f{x) = E;(g(&)), where tg is the hitting ime of the set § of states.]

In the next four exercises, we consider a Markov chain or a random walk
X = (X;)F° or a finite state space V with transition probability matrix
P = (Pyy)x,yev. Thus P is-a stochastic matrix: 3 Pry = 1 for every x.

8. A Markov chatn is ergodic if for any two states x and y, there is a positive
probability of going from x to ¥ in some number of steps. Show that a finite
MC is ergodic iff for some ¢t > |1, every entry of }:’-=] P is positive. Show
also that 2 weighted graph defines an ergodic RW iff the graph is connected.

9. {:probabi]ily distribution & = (73 )xev on V is stationaryif x P = x, i.e. if
X = (X,)g° is started with initial distribution & then each X, has distribution
x. Write S;(s — s) for the expected sojourn time in x € V during a tour
from 5 to s:

Se(s = 8) =Eeili < 75, : Xi = x)l),
so that S; (s — 5) = 1. Show that, for y # x,
Sy(s = 5) = E Py 8y (s = 5),

xeV

and deduce that (Sy(s — $))rcv is 2 positive multiple of a stationary dis-
tribution. Show also that if X is ergodic then the stationary distribution is
unigue.

[P,




10.

11

12.

13,

14,
15,

16.

17,

18.
19.
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An ergodic MC is reversible if there is a probability distribution & = (7. )zev
on V such that the detailed balance equations are satisfied: 7y Pry = my Pyx
for all x, v € V. Show that this disiribution # ts stationary.

Check that an RW on a weighted connected graph (G, a) is reversible, with
the stationary distribution given by r = Ax/ 3 ey Ay

Show also that every reversible ergodic MC on V is an RW on an appropriate
weighted graph (with loops). [Hint. Define G with V(G) = V by joining x
to y if Pyy > 0. For an edge (or loop) xy of G, set @y = 7y Pyy = 7y Pyx )

Show that an ergodic MC is reversible if, and only if, P, > O implies
Py, > 0 and, for every sequence X\, ..., Xn,Xn4+| = X of states, pc =
"1 Puxe > Oimplies that [T, Py Pr._, = pc.

Let P = (Pyy) be the ransition matrix of a finite Markov chain, and let
t be a state such that, for every state x # f, P'ff) > 0 for some £ > 1,
where PF = (Pf;)). Let 2 be the matrix obtained from F by deleting the
row and column corresponding to ¢. Prove that f — Q is invertible, and
(I — @)1 = (Nyy), where Ny = Sy(x — ), ie. Nyy is the expected
sojourn time in y in a chain started in state x and ending in f.

Show that the distribution of an SRW on a bipartite graph need not converge.

Let G be a connected non-bipartite graph of order n. Show that for any two
vertices x, y € V((), there is a walk of length 2» — 4 from x to ¥. Show also
that for £ < 2n — 4 there need not exist a walk of lengtb £ from x to y.

Let P be the transition matrix of an SRW on a connected non-bipartite graph
G of order n and size m. Show that every entry of P#*~* is stricily positive.
Deduce that for every probability distribution p on V(G), pP* tends to the
stationary distribution & = {d(x)/2m) ev(c)-

Let & and P be as in the previous exercise, and let @ = (g(x))xev(gy be
such that 3, .y ¢(x) = 0 and llqlls = 3., cv (g 19(x)| = 1. Show that

|iqP" l1 < 1fork = n — 2. Show also that & need not exist withk < n — 3.
Deduce again the result in Exercise 16, and give a bound for the speed of

CONvergence.
Prove directly that Pu(s — t) = 1/S;{(s = 1).

Let P be the transition probabitity matrix of the RW on a connected elecirical
network & = (G, ¢) with n vertices. Show that the stationary distribution
x = (7, ) and the expected hitting times H (x, y) satisfy

Z JTxPij(y,x)=ﬂ—l.
x. yeV{{)

207 Let G be a weighted triangle with vertex set {s, 7, x}, having weighted

loops ar the vertices. Show that the RW on & satisfies d{s)S:{s — ) =
dx)S:(x — 1).
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21+ In a game of patience, played on a finite set of counters on Z, there are 1wo

legal moves:
(a) tf there are two counters on the same integer £, we may move oneto k — 1

and the otherto k + 1,
(b) if there is a counter on & and another on m > k then we may move them

tok+landm—1.
Suarting with n counters, all on 0, what is the maximal distance between two

counters that can be achieved by a sequence of legal moves?
22. Let G be a graph with m edges, and let s, ¢t be distinct vertices at distance
d(s, 1). Show that C(s, 1} < 2md(s, t).

23. Let N = (G, r) be a connected electrical network with r vertices and
resistance function r,. Give two proofs of Fosier’s theorem that

Retr(x,
etf (X, y) —n—1.
xveB(G) A
24. Deduce from Theorem 23 that for every graph G there is an order on V()
such that if 5 precedes ¢ in the order then H (s, ) < H(t, 5).

25. Deduce from the result in the previous exercise that if the automorphism group
of a graph G is vertex-transitive then H (s, 1) = H{(¢, s) for any two vertices
5 and ¢.

26 Show that the only non-trivial graphs of conductance 1 are X7 and X3.

277 Let G be a regular graph of order £. Show that

1 1
Pg < anf'q'b((;) = §+ m

28" Show that if G is an incomplete regular graph of order n then ¢ < %

29. Let p be a probability distribution on [#]), and let x = (1/r, ..., 1/n). Show
that
lp—=lf <1—1/n.

30. Let G be a connected regular graph of order n, with stationary distribution
= (l/n, ... 1/n) Let X = (X,)§° be the SRW on G with X, having

distrihution p, = (pf”, e, ,(,”). Show that
. 1

lin supmax |p{? — =/
—=oa : R

is the modulus of an eigenvalue of the transition matrix. Which one?
31. Let G be ak-edge-connected d-regular of order n, Show that ®¢ > k/d|n/2].

32F The lollipep graph L; is a clique of order 2k to which a path of length & has
been attached (see Fig, 1X.2). Show that if 5 and ¢ are vertices of L such that

- B T I
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¥ 15 the endvertex of the path furthest from the clique and ¢ is not on the path
(and so ¢ is one of 2k — | vertices of the clique), then

His, 1) = 4k + o).

[In fact, for any two vertices s, ¢ of a connected graph of order n, H (s, 1) <
4n° /27 + o(n?), so the graph above is essentially worst possible for hitting

nmes. ]

FIGURE IX.2. The lollipop graph Ls.

337 Let 5 be a vertex of a connected graph & with n vertices and m edges. The

34,

35.

36.

37.

mean cover time, or simply cover time, C(s) 18 the expected number of steps
taken by the SRW on G started at 5 to visit gl vertices of &. Let T be a
spanning tree of G, and set

RI)= ) Realx,y).

rye (T}
Show that C(s) < 2mR(T). Deduce that C(s) < n{n — 1)*. [Hint. Show that
there is an enumeration x|, X3, ..., X Of the vertices, such that x; = s and
drixi, xig1) < 2,forf = 1, ..., n, where dr denotes the distance on T and

Xp41 is taken to be x).]

Show that the mixing rate of the SRW on a regular graph of ordern = 3 is at
least 1/(n — 1), with equality only for the complete graph X,.

Show that for n > 2 the mixing rate of the lazy random waik on the complete
graph K, is 1/2.

Compute the eigenvalues of the adjacency matrix of the (r — )n-regular
graph K,(r), and deduce that for r > 2 the mixing rate of the SRW on & is
1/(r — 1).

Let G be obtamed from K3, by deleting a 1-factor, with n > 2. Compute
the eigenvalues of the adjacency matrix of G and note that the mixing rate
of the SRW on G is 1/(n ~ 1}, over twice the mixing rate of Kz,. [Hin,
Let V(G) = [2n)], and for x = {(x;)] set X' = (xy,.... %5, X1,..., %),
X" == (x), ..., Xg, =X1, ..., —xp) € Co(G). Note that if 37 x; = Othen x’is
an eigenvector with eigenvalue —2 and x" is an eigenvector with eigenvalue
0.]

387 Let G be a connected regular graph of order n > 5 without loops. Show that

g = ETF:‘:*TF' Show also that if equality is attained then n = 4k + 2 for some
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39.
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k = 2; also, for every n = 2k + 2 there is a unique graph for which equality
holds {cf. Fig. IX.3).

FIGURE IX.3. A cubic graph of order 10 and conductance /15,

Consider the SRW on the path on length n, with vertex set {0, 1, ..., ).
(1) Note that H{0, ) = H{n, n) = 2n.

{ii) Deduce that H{s, s + 1) =25 + 1.

(iti) Show that for 0 < s <t < n we have H(s, £} = 1% — 5.

401 Given a graph G and a vertex 5§ € V((), the mean cover time starting from

41,

5, C(s), is the expected number of steps to visit every vertex if cur SRW on
G starts at 5. Let G be the path of length#n on {0, 1, . .., n}, as in the previous
exercise, and let C{s) be the mean cover ime from s, as in Exercise 33,

(i) Show that C(0) = C(n) = r2,

(ii) Check that C*(s) = C(s) — s{n — 5) is harmonic on G and deduce that
C(s) =nl+sn—s?=5n214—(nf2 —5)°

Let G be the cycle of length 2n, and write H (d) for the mean hiiting time
H (s, 1), where 5 and ¢ are vertices at distance d. Show that H(n} = H{n —
N+1,H(n—1) = H{n—2}4+3,and so on, and deduce that H (d} = d(2n—d)
for0 < d < n. Show also that if G is acycle of length 2n + 1 and H{d) 15 as
befere, then H(n) = Hin - 1Y+ 2, H(n — 1) = H{n - 2) + 4, and 50 on,
implying H(d) =d(2n+ | — d).

427 Prove that the mean cover time of a cycle of length » (starting from any

43,

45,

vertex)is n(n — 1) /2. [Hint, The expected number of steps to reach all butone
of the vertices is precisely the mean cover time of the cycle of lengthn — 1.
To cover the rest, we just have to hit a neighbouring vertex. Make use of the
result in the previous exercise. ]

Let 5 and 7 be distinct vertices of a complete graph of order #. Determinc
H(s, ). [Hint. Note that H(s, 1) = | + 2=2H (5. )]

Prove that the mean cover time of a complete graph of order n (from any
vertex)is (n—1I) Ek;]] 1/ k. [Hint. This is just the classical coupon collector’s
probiem. Having covered k vertices, what is the expected number of steps it
takes to get to a new vertex?]

Let P = {P:'j}? - be a stochastic matrix, i.e., the transition probability

matrix of a MC on [r]. Set ¢(P) = min; ; P;;. Show that if g = (g;}} is such
that 3 ] ¢; = O then {|qPJi; = (1 — ne)llql).
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461 Let T be a finite set of states of an RW, and let s be a state not in 7. For
0 <a < |, let 7j1.,4) be the first time we have visited more than /7| of the
states in T, when starting from 5, and let H (s; T, &) be the mean hitting time:
H(s; T, o) = E;(71.a1). Prove that

1
His: T, o) < —— max H (s, 1).
) —a teT

{Hint. Note that, at every point of our probability space, there are at least
(1 — o)|T| states t € T such that 1) > 7ir.09. Deduce that Ec(7jr.q)) <

]
=] Lrer H 5. 1)1
47. Deduce from the result in Exercise 46 that the main cover time of an RW witth
n states, started from any state is at most 2 log, » max,  H (s, £).

48. Let & be the n-dimensional cube %, as in Exercises 40and 41 in Chial:rter VIIL
By induction onn, show thatif U < V(Q™), U] < 2"~ thene(U, T) = |U/).
Deduce that ®g» = [/n.

49. Recail from Exercise 41 of Chapter VIII that the second largest eigenvalue of
the adjacency matrix of @< is 1 - 2/d. Deduce that the mixing rate of the LRW
on O is 1 — 1/d, considerably better than the rate given by Coroliary 30.

50+ Redefine the LRW on the cube Q7 as foilows: in each step chose a coordinate
(direction} at random, then change that coordinate or stay still, each with
probability 1/2. By considering the event that all directions have been picked,
show that dry{p;, ) < e~ fort > d{logd + ¢) for every LRW on 04, no
matter what the initial distribution is.

[IX.6 Notes

The connection between random walks and electrical networks was recognized
over fifty vears ago by S. Kakutani, Markov processes and the Dirichlet problem,
Proc. Jap. Acad. 21 (1945), 227-233, it seems that C.St.J.A. Nash-Williams was
the first to use it with great success, in Random walks and electric currents in
networks, Proc, Cambridge Phil. Soc. 55 (1959), 181-194. Nevertheless, the sub-
ject really took off only in the last two decades, especially after the publication
of a beautiful little book by P.G. Doyle and J.L.. Snell, Random Walks and Elec-
trical Networks, Carus Math. Monogr., vol. 22, Mathematical Assoc. of America,
Washington, 1984, xiii+159 pp.

For the dawn of the theory of electrical networks, see J.W.S. Raylcigh, On
the theory of resonance, in Collected Scientific Papers, vol. 1, Cambridge, 1899,
pp- 33-75. Pélya’s theorem on random walks on lattices is from G. Pélya, Uber
eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassen-
netz, Mathematische Annalen 84 (19213}, 149-160, and Foster’s theorem 1s from
R.M. Foster, The average impedance of an electric network, in Contributions to
Applied Mechanics (Reisser Anniv. Vol.}, Edwards Bros., Ann Arbar, pp. 333340,
The two beautiful proofs of Foster’s theorem are from P. Tetali, Random walks
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and effective resistance of networks, J. Theoretical Probab. 4 (1991), 101-109,
and An extension of Foster’s network theorem, Combinatorics, Probability and
Compauting 3 (1994), 421427,

The reader is encouraged to consult some of the beautiful papers on random
walks on graphs, including R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovdsz, and
C. Rackoff, Random walks, universal traversal sequences, and the complexity of
maze problems, in 20th Annual Symposium on Foundations of Computer Science,
San Juan, Puerto Rico, October 1979, pp. 218-223, A K. Chandra, P. Ragha-
van, W.L. Ruzzo, R. Smolensky and P. Tiwari, The electrical resistance of a
graph captures its commute and cover times, in Proceedings of the 215t Annual
ACM symposium on Theory of Computing, Sealtle, WA, May 1989, pp. 574-
586, G. Brightwell and P. Winkler, Maximum hitting times for random walks on
graphs, Random Structures and Algorithms 1 (1990), 263-276, and D. Copper-
smith, P. Tetali, and P. Winkler, Collisions among random walks on a graph, SIAM
J. Disc. Math. 6 (1993), 363-374. For numerous results presented as exercises,
see L. Lovdsz, Combinatorial Problems and Exercises, Elsevier Science, 1993,
635 pp.

Many results connecting the expansion properties of a graph to the speed of
convergence of random walks can be found in N, Alon and V.ID. Milman, At,
isoperimetric inequalities for graphs and superconcentrators, J. Combinatorial
Theory, Series B 38 (1985), 73-88, N. Alon, Eigenvalues and expanders, Combi-
natorica (2)6 (1986), 36-96, D. Aldous, On the Markov chain simulation method
for uniform combinatorial distributions and simulated annealing, Prob. in Eng.
and Inf, Sci. 1 (1987), 3346, ML.R. Jerrum and A.J. Sinclair, Conductance and
the rapidly mixing property for Markov chains: The approximation of the per-
manent resolved, Proceedings of the 20th Annual Symposium on the Theory of
Computing, 1988, pp. 235-244, Approximate counting, uniform generation and
rapidly mixing Markov chains, Information and Computation 82 (1989), 93—133,
Approximating the permanent, SIAM J. Computing 18 (1989), 11491178, and
M, Mihail, Conductance and convergence of Markov chains—A combinatonial
treatment of expanders, Proceedings of the 30th Annual Symposium on founda-
tions of Computer Science, 1989. In particular, the notion of conductance was
introduced by Jerrum and Sinclair. The presentation in Section 4 is based on
B. Bollobas, Volume estimates and rapid mixing, in Flavors of Geometry (8.
Levy, ed.), Cambridge University Press, 1997, pp. 151-180. For the problem of
estimating the volume of a convex body in R", see M.E. Dyer, A.M. Frieze and
R. Kannan, A random polynomial-time algorithm for approximating the volume
of convex bodies, J Assoc. Comput. Mach. 38 (1991), 1-17, M.E. Dyer and
A .M. Frieze, On the complexity of computing the volume of a polyhedron, SIAM
J. Computing 17 (1988), 967-974, and Computing the volume of convex bod-
ies; A case where randomness provably helps, in Probabilistic Combinatorics
and Its Applications, (B. Bollohas, ed.), Proc. Symp. Applied Math. 44 {1991},
pp. 123-169, and L. Lovdsz and M. Simonovits, Mixing rate of Markov chains,
an ispperimetric inequality, and computing the volume, Proc, 31st Annual Symp.
on Found. of Computer Science, IEEE Computer Soc., 1990, pp. 346-355.
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The Tutte Polynomial

So far we have encountered several polynornials associated with a graph, including
the chromatic polynomial, the characteristic polynomial and the minimal polyno-
mial. Our aim in this chapter is to study a polynomial that gives us much more
information about our graph than any of these.

This polynomial, a considerable generalization of the chromatic polynomial,
was constructed by Tutte in 1954, building on his work seven years earlier. Al-
though Tutte called this two-variable polynomial To(x, y) = T(G;x,y) the
dichromate of the graph G, by now it has come to be called the Tutte pelynomial
of G.

Similarly to the chromatic polynomial, the Tutte polynomial can be defined
recursively by the cut and fuse operations introduced in Section V.1. The main
virtue of the Tutte polynomial is that during the process much less information i1s
lost about the graph than in the case of the chromatic polynomial.

The first section is devoted to the introduction and simplest properties of the
Tutte polynomial, and in the second section we shall show that a certain universal
polynomial can easily be obtained from this polynomial. In order to illustrate the
ubiguitous nature of the Tutte polynomial, in Section 3 we shall iniroduce several
models of disordered systems used in statistical mechanics, and show that their so-
called partition functions are easy transforms of the Tutte polynomial. In Section 4
we shall show that the valnes of the Tutte polynomial at various places enumerate
certain natural structures associated with our graph. A fundamental property of
the Tutte polynomial is that it has a spanning tree expansion: we present this
1n Section 5.

It would take very little additional effort to define the Tutte polynomial on more
general structures, namely on mazroids, but we do not wish to burden the reader
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with more definitions. Anybody even only vaguely familiar with matroids will
find the extension to matroids child’s play.

The last section of the chapter concerns polynomials associated with (equiv-
alence classes of} knots, especially the Jones and Kauffman polynomials. These
polynomials, defined in terms of so-called diagrams of knats, were discovered
only in the mxd-1980s. This is rather surprising since these polynomials greatly
resemble the Tutte polynomial, which had been constructed over thirty years ear-
lier: in particular, they are naturally defined in terms of the obvious analogues of
the cut and fuse operations. In fact, the resemblance is not only skin deep: on some
classes of knots they are sumple functions of the Tutte polynomial.

The knot polynomials related to the Tutte polynomial made it possible to prove
several deep results about knots: we shall sketch a proof of one of these theorems.
Needless to say, our brief excursion into the theory of knot polynomials hardly
scratches the surface.

The natural setting for the polynomials to be studied in this chapter is the
class of finite multigraphs, accordingly, all graphs occurring in this chapter are
multigraphs with loops.

X.1 Basic Properties of the Tutte Polynomial

The Tutte polynomial is the best known member of a small family of equivalent
polynomials. There are several natural ways of intreducing these polynomials:
here we choose to start with the rank-generating polynomial.

To prepare the ground, let G be the class of all finite multigraphs with loops.
Swicdy speaking, G is the set of all isomorphism classes of finite multigraphs, but
it will be more convenient to consider the elements of G to be graphs rather than
isomorphism classes of graphs. Also, we shall frequently refer to the elements of
& as graphs.

For simplicity, we write G = (V, E) for a multigraph with vertex set V, in
which E is the set of multiple edges and loops. With a slight abuse of notation, we
call E = E{G) the set gf edges of G, although in fact an edge of G is an element
of E that is not a loop.

Let us define the cut and fuse operations, also called deletion and contraction,
for the class G. The cut operation is as before: given G = (V, E) and e € E, let
G - e =(V, E — {e]). Thus G — e is obtained from G by cutting (deleting) the
edge e. Also, let G /e be the multigraph obtained from G by fusing (contracting)
the edge e. Thus if e € E is incident with # and v (with u = v if e is a loop) then
in G/e the vertices u and v are replaced by a single vertex w = (uv), and each
element f € E — {e} that is incident with either & or v is replaced by an edge or
loop incident with w (see Fig. X.1).

Note that the edge e itself corresponds to no edge of G/e; in particular, if £ is
a loop then G/£ = G — £. It is important to observe that both G — e and G/e
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{uv)

N

G G-¢ Gle

FIGURE X.1. A graph G together with & — ¢ and G /e for an edge ¢ = uv.

have precisely one fewer multiple edge and loop than G: every element of E — {¢}

corresponds to a unique element of E{(G/e).
Given a mulugraph G = (V, E), we write k(G) for the number of components

of . The rank r(G) and nullity n(G) of G are defined as for graphs: r(G) =
V| — &(G) = |G| — k(G) and n{G)} = |E| - |V| + k({(G).

We shall work with spanning subgraphs of (+. These subgraphs are naturally
identified with their edge sets; for F < E we write (F} for the graph (V, F), and
r{F), n(F), k{F) for the rank, nullity and number of components of this graph.
In particular, r{E) = r{G), n{E} = n(G) and k{E} = k(G).

We are now ready to define the rank-generating polynomial 5(G; x, y) of a
graph G = (V, E}:

S(Gix,y) = Z xr(E}—r{F}yﬂ{F1= Z xk(F}—k{E}yn(F}‘
FCE(G) FCE(G)

Our convention is that ${(G) = S{G; x, y) is a polynomial in x and y and
this polynomial is a function of G. As for each G we have integer coefficients,
S(G; x,y) € Zfx, y) forevery G € §. We shall use the same convention for other
polynomials depending on a graph G, although we frequently prefer to write G as
a subscript rather than an argument of the function.

The basic properties of the rank-generating polynomial are given in our first
result. Although the proof is rather pedestrian, being only a sequence of formal
manipulations, because of the imporiance of the result we spell it out in great

detail.
Theorem 1 Let G = (V, E) be a graph withe € E. Then

(x + DNS(G —e;x,¥) if e is a bridge,
S(Gix,y) = (y+ DSG — e x,y) if e is a loop,
S(G ~e;x,¥v)+ 85(G/e; x,y} ifeisneitherabridge
nor a loop.

Furthermore, S(En; x, y) = | for the empty n-graph E‘,,. n> 1

Proof. Set G' = G — e, G" = G/e, and write r’ and ' for the rank and nullity

functions in (', and »” and n” for those in G”.
Let us collect the simple properties of these functions we shall use below. If

ec Eand F C E—ethen r{F) =r'{F), n{F) = n'{F), r{E} —r{F U¢) =
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r'(E = &) = r"(F) = r(G") ~ r"(F),
E) = {r {E—e)+1 ifeisabridge,

r'{E —e) otherwise,
and
"{F 1 ifeisal :
n(F Ue) = n”( Y4+ 1 elsa.oop
n{Fj otherwise.

Here, as in the future, F U e and £ — e stand for F U {¢} and E — {e}.
Let us sphit S(G; x, y) as folows:

S(Gix, )= S0(G; x, y) + S51(G: x, ¥),

where

SHGy x, y) = Z (B (F} yntF)
FCE edF

and

SIGix. )= Y xrET P iy,
FCE.eeF

Recail that the sets E — e, E(G') = E(G — ) and E(G") = E(G/e) are
naturally identifted. Hence, by the formulae above,

SGixiyy= Y artBr i)

FCE—e
xr’{E—c}+t—-r'(F} r'(F}

FCE(G")

¥ if £ is a bridge,

xr’(E—-e}—r'(F) n'{F
FCE(G"
le(G —e; x,y) if eis abridge,

S(G —e;x,y) otherwise,

¥ otherwise,

and

SI(G;x,y) = Z xF(E}-r('F'Uc}yn{FUe}
FCE—e

X7(G")—"(F}
FCE(G")

y" FHLif e is a loop,
IF(G")-—?"(FI n"(F}
FCE{GT)
y8(G/e;x,y) ifeisaloop,
B S(G/e; x,y) otherwise.

¥ otherwise,
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The result follows by adding together the expressions for Sg and S}, and noting
that if e is a bridge or a loop then S(G/e; x, y) = S(G —e; x, ¥). This is obviouns
if e is a loop since then G/e = G — ¢; if e 15 a bridge, the assertion holds since
r'E—e)—r'{F)=r'{E—e)—r'{Fyandn"{F)=n'{F}forall FC E —e.

Finally, the last part of the theorem is immediate from the definition of S. O

The Tutte polynomial T = T(G) = T(G;x,v) = Tg(x,y) is a simple
function of the rank-generating polynomial:

T, y)=8Gix—Ly— =) -7 OO
FckE

Most of the time we use T for the Tutte polynomial and write To(x, v) if
we wish to draw attention to the arguments; however, the notation T{() better
expresses the fact that 7 is a map from the set of {(equivalence classes of) finite
maultigraphs into Z{x, y]. Tatte himself used 7(G; x, y) for the ‘dichromate’. Note

that Tg, {(x, ¥} = | and

xTo_. if ¢ is a bnidge,
To = { yTo_- if ¢ is a loop,
Tg_. + Tgye  if € is nerther a bridge nor a loop.

The recursion above will be used over and over again to show that a good many
functions of graphs can be obtained by evaluating the Tutte polynomial at certain
places.

When applying the reduction formulae above, it is worth noting thatif e € E((G)
is a bridge or a loop then T;._, = T/, since the analogous relation holds for S.

The functions § and T are multiplicative in the sense that if G = G, U G
with the graphs | and G; sharing at most one vertex, then the value on G is
the product of the values on & and G (see Exercise 4). In fact, these functions
are determined by this multiplicativity condition, together with the recursion for
an edge e that is neither a loop nor a bridge, and the values of the functions on
K2 and L, where L is the *loop graph’, that is, the graph with one vertex and one
loop. By multiplicativity, S(K ) = T(K)) = 1, also, 8{(K2) = x + 1, T(K3) = x,
S(LY=y+1land T{L) = y.

There are numercus other variants of the last observation. For example, T is
also the unique function on graphs such that:

(i) if G has b bridges, / loops and no other edges then 7 = x?y!,

(i) if G is obtained from a graph #H by adding b bridges and / loops then
Te = x%y'Ty,

(i11) if G has no bridges or loops then the third recursion formula holds for some
edge e, that s, there is an edge ¢ € E(G) such that

T =Tg-¢ +Tgpe.

The reader is encouraged to check this simple assertion.

- = ST A ——daB L e g &
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X.2 The Universal Form of the Tutte Polynomial

Our next aim is to show that the Tutte polynomial is easily lifted to a seemingly
more general polynomial. In carrying out this task, we shall need that the maximum
degrees of x and y in Tg(x, y) can be read out of the definition of the Tutte

polynomial: as

To(x,y)= Y (x = 1) E= By i)
FCE

we have
deg, TG(x, y) = max{r(G) — r(F} : F C E(G)} = r(G),
and
deg, Tg(x, y) = max{n{F} : F C E(G}} = n(().
The following simple assertion is a slight extension of a result of Oxley and
Welsh.
Theorem 2 There is a uniqgue map U : G — Z[x, v, o, 0, T] such that
U(Ep) =U(Ep;x,y, 0,0, 1) ="
Jor every n = 1, and for every e € E(G) we have
x(G —e) if e is a bridge,
U(G)=3{yU(G —e) if e is a loop,
oU{G — e)+ tl/(G/e) ifeisneither a bridge nor a lvop.
Furthermore,
U(G) = oo™ OO o (ax /1, y/o). (2)
Proof. The uniqueness is immediate since if e € E(G) then U(G) is determined
by /(G — e} and U (G /¢). Hence all we have to prove is that the function I/ given
by (2) has the required propertics: 1.€., I/{G) is a polynomial for every graph

G, these polynomials satisfy the reduction formulae, and U/(E,;) = a” for every

n>l,
The fact that U(G) € Z[x, y, o, g, 1] follows from deg, Ta(x, ¥) = r(G) and
deg, T (x, y) = n(G). Also, as k(E,) = n and r(Ep,) = n{E,} = 0, we have

UCEp) =" Tg, (ux /T, y/o) =a",

Most importantly, [/ satisfies the reduction formulae since the Tutte polynomial
satisfies them withe = v = 1. To spell it out, if ¢ € E(G) i1s a bridge then
KMG—ey=k(iG)+ Ln(G-eY=n(G)and r(G—e)=r(G)— 1,50

U(G) = a*Clg G O To(axft, yjo)
= ot G- = 1gmG=ar{G-eltbyy (VT Aax /T, y/o) = xU(G — e).
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If e is a loop of G then k(G — e} = k(G), n{G —e) = n(G) — 1 and
riG — e} =r{G).s0

U(G) = X Do G O cax/r, yfo)
= @G- G=eltl G0y 13T (ax /T, y/o) = YU(G =€)

Finally, if ¢ € E(G) is neither a bridge nor a loop of G then k(G — ¢) =
k(G/le) =k(G), n(G —e) =n(G) ~ |,n(Gfe) = n(G), r{G — e) = r(G) and
r(G/e)=r(G)—1,s0

U(G) = X D™ O O e (ax /1, y/0)
= X O DT ax/z, y/0) + Torelax/z, y/o))
- ak(thja“(G“’)Htr(G‘f)Tgﬁg(&x,ff, }'fc’)
4 r GG Gl T vy, y/6)
=ol/(G —e)+1U(G/e),

completing the proof. N

We call the polynomial U/ in Theorem 2 the universal polynomial of graphs,
Theorem 2 implies that if R is a commutative ring and x, v, &, o, T € R then there
is a unique map G — R satisfying the conditions of the theorem: that map is
obtained by evaluating the polynomial &/ at the required place. In particular, there
1s a map for R = Z[x, y] and every choice of , o, T € Z. For example, the Tutte
polynomial itself is just U/ evaluatedatae =6 =17 = 1.

The polynomial {/ is also muitiplicative, but in a somewhat weaker sense than
S and T if G and G are vertex disjoint graphs then

UG VU Gy} = UG U (G),

and if G; and 5 share one vertex then

UG 0 Gy = VEDUEG)

(In particular, for & = [ the function {/ is multiplicative in the stronger sense of
S and T.) It is easily seen that {/ is determined by this multiplicativity property,
together with the conditions I/ (L) = oy and U/(K3) = ox. Once again, U{K 1) =

o follows from multiplicativity.
A word of caution: untess ¢ and t are both non-zero, we have to evaluate the

expanded polynomial in (2) rather than the factors one by one. In fact, a litile work
shows that if & = 0 or T = 0 then U takes a particularly pleasant form. Writing
&(G) for the number of loops of G, b{G) for the number of bridges and, as always,
|G| for the number of vertices,

and
U(G', X, v, 0, 0’ T} — a,k(G:l-{—b(G)rr(G]——b(G)xb(G}yﬂ{G). (4)
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Also,
wlGix? @y HE) g E(G) consists of loops and bridges,

UG x,y,2,0,0) =
Y {0 otherwise.

(5}
In §4 we shall show that a good many values of the Tutte polynomial have

considerably more interesting interpretations.
Let us mention two more members of the family of polynomials related to

the Tutte polynomial. The first, Q¢ = Qq(t.z) € Z[t, 2], we shall call the
Whitney-Tutte polynomial. 1t 1s defined as

Oc(r,z) = Z k() (FY
FCE{G)

so that
Qclt.z) = HO5G; 1, 2)

and
Tox,y) = -1)*"D0sx -1,y -1

We shall call the second, Zg = Zg{q, v) € Z[g, v), the dichromatic polynomial.
It is the unique polynomial such that Zg, = ¢" for every n > 1, and

L =Zg—+vig, (6)

for every edge e € E(G), whether ¢ is a bridge, a loop or neither. It is easily
checked (see Exercise 6) that Z is just / evalvated at ¢ = g, ¢ = 1, v = v,
x = (g +v)/gand y = | + v, that is,

Zg(q, v) = " T (g + v)/v, L+ o).

As we shall see in the next section, it is precisely the incamation Zg of the
Tutte polynomial that appears in statistical physics.

X.3 The Tutte Polynomial in Statistical Mechanics

In statistical mechanics we wish to study random disordered systems, especially
in the neighbourhood of their phase transitions. In many instances, even before we
start our investigations, we have to overcome the somewhat unexpected difficulty
that although it is easy to give a measure proportional to the probability measure
we wish to study, it is not easy to normalize it so that it becomnes a probability
measure. The total measure of the space (and so our normalizing factor) is the
partition function. As we shall see now, in several important cases the partition
functions are simple variants of the Tutte polynomial.

Let us start with the g-state Potts model, where ¢ > 1 is an integer. To inroduce
this model, let G = (V, £) be a multigraph, We call a function w : V — [g],
a — wy, a state of the g-state Potis ferromagnetic model on G. The value wy is

i e ——— mmr . 11 e b s



X.3 The Tutte Pelynomial in Statistical Mechanics 343

the stare of @ or the spin at a. To define a measure on the set @ = [q}v of all
states, we need the Hamiltonian H{w) of a state w:
Hw)= ) (1 - wq, o))
abeE

Here and in what follows, we consider the set £ of edges to be a multiset, so that in
asum ).z f(x, y) the multiplicity of £(x, y) is precisely the number of edges
or loops with endvertices x and y. The Potts measure on §2 = [q]V is defined by

ﬂf;'ﬁ(w) = ¢~ H@YaT _ —BH@)
where kg is the Boltzmann constant (1.38 x 10723 joules/Kelvin), T is the tem-
perature of the system, and § is the inverse temperature. The partition function
of the g-state Potts model on G is

Po(g. B) = ulP ) = Y ulf (),

well

and the probability of a state w is p,qa'ﬂ(w) /FPc(q, B). Note that at high tem-
peratures all states have about the same probability, while at low temperatures a
small change in the Hamiltonian changes the probability a great deal. Much of
our interest in the system is due to the fact that the structure of a ‘typical’ systemn
changes suddenly as the temperature passes through a certain critical value. This
phase transifion is reminiscent of the phenomenon in the evolution of random
graphs we discussed in Section VII.5.

Theorem 3 Let G = (V, E) be a multigraph, q = | an integer and B € R. Then
the partition function of the g-state Potts model on G, with inverse temperature B,
¥

Polg, By = e PFlZgiq. v),
where Zg is the dichromatic polynomial and v = £P — 1.
Proof. Set

Po(g. B) = !\ Ps(q. B),

so that we have to show that Polg.B)=2Z5(g,v).I[IG = E, then H(w) = O for
every state w, so Pg, = Pg, = q". In order to prove that Pg(q, 8) = Zp(q,v),
all we have to check is that Pg (g, B) satisfies the reduction formula (6). Note that

F(g, ) = eFIEI 3 o Luper Gl

wefl

= Z l_'[ eBd{ea,wp)

wellabeE

= E ]_[ (1 4 v8{wy, wp)).

well gbel

To prove the reduction formula, let e be an edge from ¢ to d. Let us split the
sum above: first let us sum over the states & with w. ¥ @y, and then over the
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states with @, = wy. Thus

Polg,By=Y_ [] (1 +vé@,, an))
@y HEog abek—e

+ua+v) Yo ] 0+ vslws, @)

we =g abeE—e

=Y [l a+vs@wemn+v Y [1 O+ véwa wp))

weil ghcE—e e =awy abe k—e
= ﬁG“C(Q! ﬂ) + UPG_,IE(Q! ﬂ)'
Hence (6) is satisfied, and we are done. 1

The Potts model is a generalization of the Ising model, which is just the case
g = 2. In fact, Fortuin and Kasteleyn constructed an extension of the Potts model
itself: our next aim is to introduce this extension, the so-called random cluster
model. Let G = (V, E) be a multigraph, and let 0 < p < 1 and g > 0 be fixed.
Most importantly, we do not take ¢ to be an integer. The random cluster model
on G, with parameters g and p, is a probability space on all spanning subgraphs
of 7. As before, such a subgraph will be identified with its edge set F C E. The
measure of a subgraph {F) is

ng(F) = plfl(l - p)lEl—tquHF},
and so the partition function of the random cluster model 1s

Re(g. p) = Z pIFl(1 = pylEI=IFI gAY
FCE

To turn v 7 into a probability measure, we have to divide it by Rg(q, p}.

The random ciuster model is not too far from the standard random graph model
G(G, p), in which we obtain a random subgraph of G by selecting the edges
of G (and only those!) with probability p, independently of each other. (Thus,
G(n, p) = G(K,, p).) To get a random graph in a random cluster model, we
bias the standard probability of a graph with X components by a factor of g*.
So, if g = 1, we get precisely G(G, p}, but if g is large then we heavily favour
graphs with many components. Nevertheless, the similatity to the standard model
G(G, p) occasionally allows one to use the methods and results of the theory of

random graphs to study random cluster models.

Theorem 4 The partition function of the random cluster model is
Re(q, p) = (1= p)FZg(g, v,

where v = p/(1 — p).

Proof. Set Rglg, py=(1— Yy B R (g, P), so that

Ra(q, py= Y _ v'Fighh, (7
fcE
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and we have to show that Rgig, p) = Zg(q, v). Clearly, Rg, = ¢", so all we
have to check is that the reduction formula holds. To this end, let ¢ € E. Let us

partition the subsets of £ into pairs,

(E:FCEy= ] (F.FU(el},
FCE-e

and let us split (7) accordingly:
Ro(g. py= Y {plfight?h 4 olFIH gkiFuey

FCE—e
— Z vlf-lqk{!"}_'_v Z vlquk(FUe}-
FCE-e FCcE—e

The first sum is precisely ﬁ.:;_e(q, p). As (FFU{e}) has precisely as many compo-

nents in G as (F} has in G /e, the second sum is Rg/.{q. p}, and we are finished.
O

Needless to say, these partition functions are easily expressed in terms of the
Tutte polynomial (see Exercise 42}, but the expressions are not too edifying. How-
evet, formula (7) gives yet another very simple way of defining the dichromatic
polynomial Zg, and so the Tutte polynomial {see Exercise 44).

k]

X.4 Special Values of the Tutte Polynomial

As we remarked earlier, the Tutte polynomial of a graph camries much more
information about the graph than the chromatic polynomial. In particular, as we
shall soon see, the chromatic polynomial is simply the Tutte polynomial with
y = 0, suitably normalized. But first let us note thatif x, ¥ € {1, 2} then T (x, ¥)
is the number of certain simple subgraphs of G.

Theorem S Let G be a connected graph. Then T (1, 1) is the number of spanning
trees of G, Tg(2, 1) is the number of (edge seis forming) forests in G, Tg(1,2)
is the number of connected spanning subgraphs, and Tg(2, 2) is the number of

spanning subgraphs.
Proof. Bach of these assertions is immediate from the definition (1) of T. Thus,

TG(I, = Z Ur(G]—r{F:lOn{F}
FCE(G)

=HF: FCE(G),r{F}=r(G)andn{F} =0},
and F ¢ E{(G) is the edge set of a spanning tree iff ¥ (F} = r(G) and n{F} = 0.
Similarly,

g2, )= Y 1O FeF —((F: Fc E@G) and n{F)=0)
' FCE(G)
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is the number of edge sets F forming forests, and

Te(l, D= Y 0@ O P S {F FCEG) and r{F)=r(G)

FCE(G)
is the number of connected spanning subgraphs of G.
Finally,
=Y rOPP _ip FC EG) =259,
FCE(G)
as claimed. 0

Let us turn to families of values of the Tutte polynomial. As our first general
result, we shall show that the chromatic polynomial is just the Tutte polynomial
with ¥ = 0, suitably normalized.

In keeping with our earlier notation, given a multigraph G with loops and a
positive integer x, let us write pg(x) for the number of proper vertex-colourings
of G, that is for the numberof mapsc¢ : V(G) — {1, 2, ..., x}suchthatif u and v
are adjacent vertices then c(u) # c(v). Clearly pg,(x) = x" and as in Chapter V,
for every edge ¢ € £(G) we have

Pa(x) = pe—e(x) — pGre(x).

In particular, pg (x) is a polynomial in x, the chromatic polynomial of G. Let us
note two more simple properties of the chromatic polynomial. First, if there is a
loop at a vertex then the vertex is adjacent to itself, so pg(x) = 0 if G contains
a loop. Clearly, if H is the graph obtained from G by replacing the multiple
edges by simple edges then pg(x) = py(x). Secondly, recail from Exercise 48
of Chapter V that if e is a bridge of G then

x—1
PG—efX).

pelx) =
X

Theorem 6 The chromatic polynomial pc(x) of a graph G is
pe(x) = (-1 xHOTe(1 - x, 0).

Proof. The result is immediate from Theorem 2 and the properties of the chromatic
polynomial mentioned above. Indeed, pg, (x) = x*, and forevery edge ¢ € E(G),

x—1

PG—el(X) if e is a bridge,
X

Po(x) =1 if e is a loop,
PG—e(X) — pGre(x) if e is neither a bndge nor a loop.
Hence, by Theorem 2, pg(x) = UG, “"x;l,(),:c. 1,-1) = O )rG) x
T (1 — x, 0), as claimed. U

Setting x = 0 in the Tutte polynomial, the polynomial in y we obtain also has
a natural interpretation: it is the so-called flow polynomial of the graph, suitably
normalized.
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To define the flow polynomial, we shall consider flows in our graphs (multi-
graphs with loops) with values in a finite additively writien Abelian group A. We
call such a flow an A-flow if it satisfies Kirchhoff’s current law at each vertex.
Thus an A-flow is really a circulation (see Exercise 7 in Chapter I}, but it would
be wrong not to use the accepted terminelogy.

As in our study of flows in graphs in Chapters IT and III, one may pick an
orientation of the edges, giving a set E of directed edges and loops, and then an
A-flowisamap f : £ — A such that the total flow cut of a vertex is equal (o the
total flow into the vertex. Equivalently, each edge e = xy has a cettain flow f,, in
it from x to y, with the convention that it is the same as a flow — f,, in the same
edge from y to x.

An A-flow is said to be nowhere-zero if it has a non-zero valuc in every edge.
Let us write gg(A) for the number of nowhere-zero A-flows in . As we shall see
shortly, gg(A) is a polynomial in the order of the group A, so we are justified in
calling it the flow polynomial.

Occasionally, g (A) is easily determined. For example, gg,{4) = 1 for every
n > | since there is only one A-flow in E,, the unique map from the empty set
into A, and that A-flow is nowhere-zero. If G = C, 1s an n-cycle x1x2 . . . x,, with
n > | then g (A) = |A] — 1, since an A-flow assigns the same current to each of
X|X2,X2X3, ..., XpX].

Let us see what we can say about gg(A), g6 -.(A) and g¢/.(A) for an edge
e € E.TFirst, if e is a bridge then gg(A) = 0. Indeed, suppose that e is the only
edge from V) 10 V2 = V(G) — V}. In an A-flow the total current from V to V2 is
0, so there is no current in the bridge e. Hence gg(A) = 0.

Secondly, if e is a loop then every A-flow on G is obtained from an A-flow
on G — e by sending an arbitrary current through the loop e. In order to obtain
a nowhere-zero A-flow on G, we have 1o start with a nowhere-zero A-flow on
¢ — & and then choose one of |A] — 1 non-zero values for the current in the loop

¢. Consequently,
qc(4) = (JA] — Dge-(A).

Finally, suppose that ¢ is neither a loop nor a bridge, and joins i to v. Consider
a nowhere-zero A-flow f on G/e. As the edge sets E{(G/e) and E(G — e) are
naturally identified, f can be viewed as a flow f' on G — e. Clearly, either f’
is a nowhere-zero A-flow on G — e, or else f' fails Kirchhoff’s current law at u
and v, and nowhere else. In the latter case, there is a unique extension of this flow
10 a nowhere-zero A-flow f” on G: the current in e has to be chosen 1o make
Kirchhoff's current law hold at u (and then it holds at v as well). Furthermore,
every nowhere-zeto A-flow f' on G — e is obtained in this way and so is cvery
nowhere-zero A-flow ' on G, Consequently,

GG 1e(A) = qe--e(A} + gG(4).

A priori, g¢; (A) seems to depend on the structure of A; as the next result implies,
rather surprisingly, this is not the case: g (A} depends onrly on the order of A.



348 X. The Tutte Polynomial

Theorem 7 Let A be a finite Abelian group and G a muitigraph. Then
gc(A) = (— 1O T50, 1 — 1AD.

Proof. The result 1s, once again, immed:ate from Theorem 2 and the properties
of the flow polynomial noted above. Indeed, we have shown that gg, (A) = 1 for
everyn > 1, and if ¢ € E(G) then

{] if ¢ 15 a bridge,

gc(A) = { (Al — DDgg—.(A) if ¢ is a loop,
—qG-¢{A) + gGe(A) 1f e 15 neither a bridge nor a loop.

Hence, by Theorem 2,
go(A) = U(G; 0,141 - 1,1, =1, 1) = (=" TG0, 1 — |AD,
as required. ]

As an easy consequence of Theorem 7, we see that g (A) depends only on the
order of A and not on its structure. In view of this, we denote g (A) by g {1 A]).
Furthermore, this function g (k) is a polynomial ink € N, so it gives a polynomial
qgc(x) € Z[x]. We call gz (x) the flow polynomial of G. As qg(A) depends only
on |Al, it is customary to talk of a k-flow, meaning an A-flow with |A] = & or
simply a Z-flow.

It 1s natural to consider the flow polynomial as the dual of the chromatic
polynomial (see Exercise 16). In particular, the four colour theorem is equivalent to
the fact that every bridgeless planar graph has a nowhere-zero 4-flow. Furthermore,
corresponding to Hadwiger’s conjecture concerning colourings, Tutte conjectured
in 1954 that every bridgeless graph has a nowhere-zero S-flow. In fact, it is far
from obvious that one can even guarantee a nowhere-zero k-flow for some k. This
was proved by Jaeger in 1979 when he showed that one can guarantee a nowhere-
zero §8-flow. A little later, Seymour proved that, in fact, every bridgeless graph has
a nowhere-zero 6-flow. This remarkable result is still rather far from a proof of
Tutte’s 5-flow conjecture.

Our penultimate example resembles the last result: as a byproduct of the
evaluation of a function, we shall obtain its independence from one of its variables.

We know from Exercise 52 of Chapter V that the number a{G} of acyciic
orientations of a graph & is given by the chromatic polynomial at x = —1:
a{G) = |pg(—1)| = (-D!% pg(—1). Hence, by Theorem 6, a(G) = T(2,0).
As we.are about to see, Tz (1, 0) counts certain acyclic orientations of connected
graphs. Given a connected graph G and a veriex « of &, write a,(G) for the
numtber of acyclic orientations of G in which there is only one source, and that

source is u.
Theorem 8 For every connected graph G and every vertex u € V() we have
2,{G) = Tg(1,0}).

Proof. We shail deduce the assertion from the following four properties of the
function a, ().
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(i) If G = E; then a,(G) = 1.
(if) If G contains a toop ¢ then G has no acyclic onentation 5o 4,{(G) = 0.
(iif) Suppose that ¢ = uv is a bridge of &, and consider an acyclic orientation
of G, with i the only source. Then in the component of G — ¢ containing v, the
only source has to be v, so the acyclic orientations of &G with u the only source are
in 1-to-1 correspondence with the acyclic onentations of G /e, with ¥ (which I
G /e is the same as v or (zv)}) the only source. Hence

ay(U) = ay(G/e).

(iv) Finally, suppose that ¢ = wv € E{(G) is neither a loop nor a bridge.
Consider an acyclic orentation of &, with u the only source. Let us ask the
question: is uv the only edge directed into v? If it is, then our orientation gives
an acyclic orientation of G /¢ in which u is the only source; otherwise, it gives an
onentation of G —e in which u is the only source. Also, all appropriate orientations
of G /e and G — ¢ arise in this way. Conseguently, in this case we have

(G = ay (G — e+ a,(G/e).

Note now that if » is a vertex of a connected graph G with ¢(G) > 0 then there
is an edge e € E(() incident with «. But then g, (&) is determined by the ‘nature’
of this edge (loop, bridge or neither) and the vaiues a, (G — ) and a, (G /¢). Hence
there is a unigue function a,(G) on the set of (equivaience classes of) connecred
graphs G with a distinguished vertex u that has properties (i) - (iv). Recalling that
TG-e¢ = Ty whenever ¢ is a bridge or a loop, we see that Tg(1, 0) is such a
function, so a,{(G) = T(l, 0), as claimed. 0

As our final example, we shall show that the Tuite polynomial can be used to
determine the probability of connectedness of a random subgraph of a connected
graph. In fact, a slightly more general assertion will be an immediate consequence
of Theorem 2.

Let G = (V,E) be a graph, and let 0 < p « 1. With a slight abuse of
notation, we shall write £, for a random subset of E obtained by retaining the
edges with probability p, independently of each other (and so deleting them with
probability g = 1 — p). Thus if G = K, then (E,) is precisely an element of
G(n, P(edge) = p), studied in Chapter VII; in generai, {Ep) is a random subgraph
of G. We write I for the probability on these random subgraphs {Ep).

Theorem 9 Let G =(V,E) 0 < p < g=1- pandE, be as above. Then

P(r{Ep} = r(G)) = p" D" T501,1/¢).

Proof. In view of Theorem 2, it suffices to check that the function C(G) =
P(r(Ep) = r(()) satisfies the conditions of Theorem 2 with x = p, y = 1,
g=l,o=qgandt = p.

Although this is very easily seen, we shall spell it out.

If G is the empty graph £, then r{Ep) = r{G) =0, s0 C(E,;) = 1.

Ife € Eisabridge of G thenr{E,} = r{E) impliesthate € E,. Consequently,
C(G) = pC(G —¢).
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If ¢ € E is not a bridge of G then r(G) = r(G — ¢}, 50 C(G) = pC(G/e) +
qC(G — e), Also, if ¢ is a loop then G /e = G — e, 30 C(G) = C(G — &), a fact
obvious from first principles as well. O

Among the exercises we give two other beautiful instances of enumeration by
the Tutte polynomial (see Exercises [0-11).

X.5 A Spanning Tree Expansion of the Tutte Polynomial

In this section we shall give Tutte’s original definition of his polynomial, and we
shall show that it agrees with our definition. As we know the basic properties of
the Tutte polynomtal, our task witl be much easier than it would be if we started
from first principles.

Although one tends to talk of writing the Tutte polynomial as a sum over all
spanning trees, this is possible only it our graph is connected. (Surprise, surprise!')
As the Tutte polynomial of a graph is the product of the Tutte polynomials of its
components, we are led 1o an expansion in terms of forests whose components are
spanning trees of the components of the graph. With a slight (but definite) abuse
of terminology, we call such a forest a spanning forest.

Thus a graph F = (V’, E'} is a spanning fores: of a graph G = (V, E) if
V' =V, E' € E, and cach component of F is a spanning tree of a component of
. Equivalently, V' = V, E' C E, r(F) = r(G) and n(F) = 0. Putting it slightly
differently, a spanning forest of a graph is a subforest with the same number of
vertices and the same number of components as the original graph.

Let G be a graph and let us consider an order on its edge set: say, E(G) =
{e1,e2,.... em}, with g; preceding ¢; if i < j. Also, let F be a spanning forest of
¢;. Following the terminology in Section II. 1, fore; € E(F) we call Ur(e,) =
{e; € E(G) : (F —e;)+e; is aspanning forest} the cut defined by ¢;. Furthermore,
fore; € E(G) — E(F), the cycle defined by e; is the unique cycle of F + ¢;; we
write Zp(e;) for the edge set of this cycle,

Call an edge ¢; € E(F) an internally active edge {(of F, with respect to the
ordering of the edges of () if ¢; is the smallest edge of the cut it defines. Thus
e; € E(F) is internally active if i < j whenever e; € Ug(e;), that is, if ¢; €
Zp(e;) implies i < j. Similarly, call ¢; € E(G) — E(F) externally active if ¢, is
the smallest edge of the cycle 1t defines, that is, if { > j whenever ¢; € Zp(e;).
For an illustration, see Fig. X.2.

We say that a spanning forest has internal activity | and external activity j
if there are precisely i internally active edges and precisely j externally active
edges. Also, as a shorthand, by an (i, j)-forest we mean a spanning forest of
internal acuvity i and external activity j (with respect to some given ordering of
the edges.) If we know that our forest is, in fact, a spanning tree, then we shall tatk
of an (i, j)-tree.

Note that, upholding the ancient tradition of pure mathematicians, we use the
same generic indices in two different contexts: we have edges e; on a forest, edges
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FIGURE X.2. The subgraph in bold 1s a spanning ttee with internally active edges
€1, €7, 5 and externally active edges 3, #s.

e; not on a forest, and we also have (i, j)-forests, that is, spanning forests with
¢ special edges of one kind {denoted by ¢;} and j special edges of another kind
(denoted by ¢;). Hopefully, this does not lead to any confusion.

Theorem 10 Let G be a graph with an ordering of its edges. Write 1; for the
number of spanning forests with internal activity i and external activity j. Then
2 jhijx ivJ is precisely the Tutte polynomial Tg{x, y) of G.

in particular, t;; = 1;(G) is independent of the ordering of the edges and
depends only on the graph G,

Proof. We shall prove the assertion by induction on the number of edges of G.
ForG=E,wehavetoo = landt;; =0ifi+j > 0,50 ), t,jxyf 1 =
Tg,(x, y).

LetG=(V, E),e=le1....,em}, m = |, and assume that the assertion holds
© for graphs with at most m — 1 edges. Set ¢’ = G — ey and G = G/ep, so
that E(G") = E(G") = {e1,..., em-1}. This is the order we shall take on the
edge sets of G’ and G” which, as usual. we take to be identical. Let ¢ ; be the

anumber of (i, j}- ft)rests in &', and let I" be the number in G”. By the 1nduct10n

hypothesis, 37, ¢/ x'y/) = Tg_.(x. y) and ), ; t”x v = Tgje, (X, ¥). We
shall distinguish the three usual cases according to the nature of ey, The arguments
in (1), when ey, is 2 bridge, and (ii), when e, is a loop, agree almost verbatim,
and so do the arguments in {ii1) for G — ep, and &/ey; nevertheless, due to the
importance of the resuit, we give all the details of this practically trivial proof.

(1} Suppose that ey is a bridge. Then ¢,, is in every spanning forest of &, and
a subgraph F of G is a spanning forest iff e, € E(F) and F — &5, is a spanning
forest of G — ey Also, e, is internally active in every spanning forest F of G,
since it is 1n no cycle Zp{e;).

Clearly, for 1 < i < m — | the edge e; is internally (externally) active in G
with respect to F iff it is internally (externally) active in G — e, with respect
to F — e, since in checking the activity of ¢; exactly the same set of edges is
involved in each case. Hence F is an (i, j)-forestof G iffe, € E(F)and F — ¢,
isan (i — 1, j)-forest of G — em, and so, a fortiori t;; = ‘;nl.j' Therefore, by the
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induction hypothesis and a basic property of the Tutte polynomial,
Saxiyl =3 iy = 3 u XTI e 3y
G g [ j o i J
= xTG—en(x, ¥) = Tg(x, ¥),

as required.

(ii) Suppose that ep, is a loop. Then e, is tn no spanning forest of &, and a
subgraph F of (4 is a spanning forest of & iff it is a spanning forest of & —e,,,. Also,
em is externally active in every spanning forest F of G since it is the only edge
of Zr(er). In addition, for 1 < { < m — | the edge ¢; is internally (externally)
active in G with respect to F iff it is internally (externally) active in G — ¢, with
respect to the same spanning forest F. Hence F is an (i, j)-forestof G iffitis an
(i, j -~ l)-forestof G — em. Consequendly, 1;; = ﬂij—-]! SO

i J__ / ) LI I |
Jouxyl=3a xy =y} ity
i i i

= ¥T6 e, (x, ¥) = Tg(x, ¥).

(tii) Suppose that e, is neither a bridge nor a loop. Trivially, F is a spanning
forest of G — e, T 1t is & spanning forest of G and e,, ¢ E(F). Also, if F is
an (i, j)-forest of G — ey, then it is an (i, j)-forest of G, since every other edge
precedes e, and, as e, is not a loop, Z p(en) has other edges in addition to ¢,,.

Sinlariy, F 1s a spanning forest of G/ep, iff e,, ¢ E(F) and F + ¢,; is a
spanning forest of G. Also, if F is an (i, j)-forest of G /ey then F + e, is an
(i, j)-forest of (7, since every other edge precedes e, and, as ¢,, is not a bridge,
U F te,, (€m) has other edges in addition 10 ep,.

From these it follows that #;; = 1}; +1; and 5o, by the induction hypothesis and
a basic property of the Tutte polynomial,

iJ ] i J
= [Guen (X, ¥) + TG e (x, ¥) = T(x, y),

as claimed.
This completes the proof of the induction step. O

The theorem above can be taken to be another definition of the Tutte polynomial.
As we have already mentioned, precisely this was Tutte's original definition; for
a connected graph G with an order on the edges,

To(x, y) = Zfijfyf,
L j

where #;; = #;{G) is the number of spanning trees of G with internal activity i
and external activity j. It is trivial that for every order < on the edges there is a
polynomial 7, but it is remarkable that this polynomial T is independent of the
order on the edges we take. In proving Theorem 10, we were greatly helped by
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the earlier definition of the polynomial, that is, by the knowledge that there /s a
polynomial with appropriate properties.

To gain more insight into the nature of internal and external activities, let us see
how Theorem 10 can be proved from first principles, without appealing to any of
the earlier results.

Second proof of Theorem 10. Let us start with the independence of 7T from the
order < on the edges. To simplify the notation, we shall assume that our graph is
connected, as the extension to the general case is trivial.

Let < bethe ordere; < ey <+« - < e, where E{G) = {e;.e2,...,en}, andlet
~’ be the order obtained from - by interchanging ey and £,4.1. Thus in the order <*
wehavee) < ez <" <"ep_) <" eppy < ep CEppr < - ey < .

Let us define weights w and w’ on the set T of spanning treesof G: for T € 7
set w(T) = x'y} if T is an @i, j)-tree with respect to <, and w'(T) = x'y/ if
T is an (§, j)-tree with respect to <'. Then T<(G) and T+(G) are the sums of
the w-weights and w'-weights: T7.(G) = 3, w(T) and T (G) = J . w'(T).
We shall partition 7 into small sets (into sets of sizes one and two) and show that
for each set the total w-weight of the set is precisely its total w'-weight. Then, a
fortiori, T (G) = T (G).

The small sets in question are precisely the orbits of an involution 7 — 77,
T v T, given as follows, For T € T, if one of e, and ex is in the cycle set of
the other (that is, ex € Z7{(ep+1) or en41 € Z1(€n)), then let T' be obtained from
T by interchanging e; and ep1; otherwise, set T' = T, It is immediate that the
map T — T given by T ++ T is indeed an involution, that is, (T") = T'.

An edge e different from ey, and e has the same activity for T in < as in </,
so w(T) = w'(T) unless at least one of ¢, and ez has different activities for T
in < and <’, which can happen only if T # T'. Consequently, in order to prove
that T (G = T(G), it suffices to show that

w(T) +w(T) = (T)+w' (T (8)

when7T e T, T#T.

Suppose that every edge ¢ # ej. ep+| has the same activity for T as for 7.
Note that it is irrelevant whether we take < or <’, ase < f ifandonly if e <’ f.
Since the cuts and cycles are the same, the activittes of e for T and T’ in < are the
same as the activities of ex4y for 7/ and T in </, so in this case w(T) = w'(T’)
and w(T’") = w'(T). Therefore, we may assume that some edge € # e, €541 IS
active for T and inactive for 7’. By interchanging the labels of e, and e, and
swapping < with <’, we may also assumne that ey € E(T), ex+1 € E(T').

Suppose then that e € E(T'), e # ¢3, is active for T but not for T/, Thus ¢ is the
minimal element of Uy (e), but the minimal element f of Ur(e) is sinaller than
e. Thus Uy (e) # Uri(e), s0 e € Urie), and as e is active for T, e < ep4).
Now, as f is in one of Ut (e), Ur/(e) but not the other, f € Ur(en) = Urdent1),
while ep4 1 € Ur(e) is equivaleni to e € Zr(ear1) = Zy:(ex). But then ey, ep4 1
are inactive for T, T’ in cither order, as ¢, f precede ep, ept in either order, and
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e lies in the relevant cycles and f in the relevant cuts. Thus w(T) = w'(T) and
w(T" = w{(T"}.

Finally, suppose that e ¢ E(T), ¢ # €p41, is active for T but not for 77. Thus e
is the minimal element of Z7 (¢}, but the minimal element f of Zr:(¢e)} is smaller
than e. Then ey € Zr(e), 1.e., e € Ur(ep) = Upi(epy1), and f € Zr{epy1) =
Z7:(ey). Therefore, as before, ey, en41 are inactive in all cases, so w(T) = w'(T)
and w(T") = w'(T"), proving (8). This completes the proof of T.(G) = T+(G).

Having proved the independence of #; of the order, so that #; = #;(G)
is only a function of the graph G, let us see that the graph polynomial
T(G) = it (G)x'y/ satisfies the appropriate recumence relations and
boundary conditions, 5o T(G) is indeed the Tutte polynomial 7.

As 190(En) == | and t;;(E,) = 0if i + j > 0, we do have T(E,) = I.

Now let us turn to the recurrence relations, Let us pick an element of E{G),
and let us distinguish three cases according to the nature of this element. We
shall greatly benefit from the order independence of #;(G): given ¢ € E{(G),
we may and shall assume that ¢ is the very last element in the order, that is
E(G) = {e1,ea,...,en} and the edge we are interested in is precisely ¢ = e,.

{i) Suppose that e,, is a bridge. Then &,, is in every spanning forest of G, and it
ts an active edge in every sparning forest. Hence the spanning forests of & — ¢y,
are in 1-to—1 correspondence with the spanning forests of &, with an (i, j)-forest
of G — e, comesponding to an (i + 1, j}-forest of &. But then

T(G) =D 41, Oy =x D " 1(G — em)x'y) = xT(G - em).

(1} Suppose that ey, Is a loop. Then ey, is an externally active edge with respect
to every spanning forest of G, so the spanning forests of G — e, are in 1-to—1
correspondence with the spanning forests of G, with an (i, j)-forest of G — ey
corresponding to an (¢, j -+ 1)-forest of . But then

TG =Y 41, j+ {(GOx'y ™+ = 3 Y " 1;(G — em)x'y! = yT(G — em).

(iii} Suppose that e,, is neither a bridge nor 2 loop. Then partition the set
Fi; of (i, j)-forests as .?-:'J U.Z‘-"L’-, with .?‘-";j = {F € Fij : em € E(F)}. Then
IF —en: F € .}‘-',fj} corresponds (o the set of (¢, j)-forests of G /ey, since e, is
not internally active 1n any forest F € }-:; Also, ey, is not externally active with
respect to any forest F € F}[, so F;; corresponds to the set of (i, j)-forests of
G — en. Consequently,

T(G) = T(G — em) +T(G/em),
50 we are done. [

The new definition, the spanning forest expansion, has several advantages over
the old one, namely

Tolx, W=8(G,x~1,y-1= E (x — DHEIT(Fr gy _ yntF),
FckE

First, the new sum has (usually) many fewer terms than the old one. Secondly,
and more importantly, in the new expansion the coefficient of x*y7, rather than
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the coefficient of (x — 1)*(y — 1)/, is defined explicitly, and turns out to be non-
negative. (We do know this from the recursive definition, but that does not give us
an explicit expression for the coefficients.) Thirdly, a judicious choice of the order
on the edges is frequently advantageous in proving results about the coefficients
hij = 4;(G).

As a simple application of Theorem 10, let us see what we can say about the
coefficients of the lowest terms, namely tgo, #10 and #o;. Firstof all, as Tg_{x, v) =
1, let us assume that £{G) = {e}, ..., em} with m > 1, this being also the order
on E{G). Note that whatever our spanning forest F 13, €; is certainly an active
edge: internally active if e) € E(F), and externally active otherwise. In particular,
tog = 0. As, trivially, 115(K2) = | and 10:(K37) = 0, let us assume that m > 2. If
G has at least two blocks containing at least one edge each then we can choose an
order on E(() such that ¢; and ey belong to distinct blocks of GG. Then both ¢
and e; are active with respect to every spanning forest, 5o t1g = g1 = 0.

Suppose then that & consists of a2 2-connected graph and isolated vertices. Since
the addition of isolated vertices does not alter the Tutte pelynomial, in our study of
t1p and 101 we may assume that (& itself is 2-connected. This 1s only so that we can
call a spade a spade: 1;; 1s the pumber of (i, j)-trees of & rather than the number
of (i, j)-forests. However, as far as the argument is concerned, this is irrelevant.

As noted earljer, ) is active with respect o every spanning tree. Furthermore,
the edge €3 is also active unless its cut or cycle (whichever is appropriate) contains
e1.Henceif T isa(l, 0)-treethene; € E(F)ande; € Ur(e;). Let T* be obtained
from T by interchanging ey and ey: as ez € Ur(er) (that is, e) € Zy(e3)), T* is
also a spanning tree. Clearly, T* is a {0, 1)-tree: its only active edge is ¢;, and
that edge is externally active.

It is immediate that the process above can be reversed: a (0, 1)-tree T does
not contain e; but contains e, and interchanging ¢; and e; we get a (1, 0)-tree
T*. Hence the map T +» T* gives a 1-to—1 correspondence between the set of
{1, O)-trees and the set of (0, 1)-trees. In particular, this gives the following result.

Theorem 11 Let ), it jx" y/ be the Tutte polynomial of a graph G with at least
two edges. Then tyo = fo1. B

The identity t1g = fg) is one of an infinite family of identities helding for the
coefficients #; of the Tutte polynomial. Brylawsk: proved that if e(G) > & then

A h—i .
3y =1y (h . '):;J,- = 0.
=0 j—0 J
Thus if e{G)} > O then 1g = O; if e{G) > 1 then t19 = fg1; tf €(G) > 2 then
ta0 — 1 + to2 = tio; and so on (see Exercise 8).

In fact, #10 = #10(G) is a sigmificant graph invariant in its own right: it is usually
called the chromatic invariant of G and is denoted by 6(G). The terminoclogy
is justified by the following simnple theorem. The first part shows the connection
with the chromatic polynomial, and the second shows that @ is invariant under
subdivisions of graphs with at least two edges.

TR ¢ s esusemas rea o
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Theorem 12 (i) For every graph G the derivative p(;(1) of the chromatic
polynomial p(x) satisfies
pe(l) = (-1)"P+e(G).
(ii) Let G and H be homeomorphic graphs, each with at least two edges. Then
8(G) = 8(H).
Pmof. (i) This is immediate from
H—]
pG(x) = (1) OO Te(1 —x, 0) = (=) DD Y 01 —x)".
i={

(ii) We know that G and H have isomorphic subdivisions. Hence it suffices to
show that if H is obtained from G by subdividing an edge ¢ € E(G) into two
edges, ) and e, say, then 8(H) = 8(G).

If e is a bridge of G then #(G) = ¢(H) = 0 since the chromatic invarant of a

graph with at least two non-trivial blocks is 0. If ¢ is not a bridge of H then ¢ is
neither a bridge nor a loop of H so, from the recursion of the Tutte polynomial,

G(H)=80(H —e;)+6(H/ey).

Clearly, ez is a block of H — &, 50 this graph has at least two non-trivial blocks,
implyintg 6(H — 21) = 0. Also, H /e| = G, so we are done. O

The spanning tree expansion also gives some information about the sizes of the
coefficients of the chromatic polynomial.

Theorem 13 Let G be a connected graph of order n, with chromatic polynomial
poix) = z}';&(-l)»'ajx““f. Thenagg=1<a) <---<agforl = |n/2).

Proaf. We know that
n—1
po(xy = (-1""'x )" rio(—x + 1),
=0
SO
' = i—1 i
L= (=1} _1y—i-l,.
(=1 a; =(-1) _ Z (-1 f:o(n__j__ 1).
f=n—j—I
that is,
n—1 i
o= 3 wl,_jo0)
i
Henceif 1 < j < n/2then
Al i i
a—a; | = fn-j-1.0+i_§;fm I(" —j- l) - (ﬂ --j)] = In—j—1,0,
i

sincen—j—1>nf2—1>({—1)/2foralli < n-—-l,so(n_j._!) > ("i}) O
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The relations deg, Tg(x, ¥) = r{G) and degyT(;(x, y) = n{() that we en-
countered earlier are also immediate from the fact that £; (G) is the number of
spanning forests of internal activity i and external activity j. Furthermore, if G is
loopless and F is a spanning forest of G then with respect to an order in which
every edge of F comes before every other edge, F has internal activity r(G)
and external activity 0. Similarly, if G is bridgeless and F 1s a spanning forest
of G then with respect to an order in which every edge of F comes after every
other edge, F has internal activity 0 and external activity #(G). In particular,
triy.0 = 1 and 2 06 (G) = 1. Consequently, maxfi - j : £;(G) # 0} = r(G)
and max{j —i : t;;{(G) # 0} = n(G). By considering less obvious orders on the
edges, one can show that several other coefficients are non-zero. We shall give
two examples of this.

Theorem 14 Let & be a 2-connected loopless graph with n vertices and m edges,
andletTg(x, y) = )_tyx'y!. Thentyy > Oforeachi, 1 <i <n—1,andr,; > 0
Joreachj, 1 < j<sm—n+1

Proaf. Given a spanning tree T, for Eg € E(G) let yr{Ep) be the set of chords
whose cycles meet Ep, together with the set of tree-edges whose cuts meet Eg:

yr(Ee) =lec E{G): Zr(e)NEg# B U {e € E(G): Ur(e) N Ep # @}.

Note that pr(Eg) O Eg. Let ¥7{¥£g) be the closure of Ey with respect to this
y-operation;

Yr(Eg)=EgUE L. -,

where E; ) = yr(E). As G is 2-connected, ¥y (Ep) = E(G) whenever Epis a
non-empty set of edges (see Exercise 18), sothat Eg C E1 C ... C E; = E(G)
for some 1,

(DForl <i<n-—1let Egbeasetofiedgesof T, and let E; = yr(Ey),
E3 = yr(E}), and s0 on. We know that E; == E(G) for some . Let < be an order
compatible with the sequence Eg C Ey C --- C E} = E(G) , that is, an order
in which the edges of Ep come first, followed by the edges of £ \ Eg, the edges
of E5 \ E|, and so on, ending with the edges of E; \ E;_.,. Then each edge of Eg
is active, and no other edge is active. Hence T is an (i, 0)-tree in the order <, so
tip > (.

(ii)For1 < j <m —n+ 1 we start with a set £y of j chords of T, that 1s with
aset Eg C E(G)\ E(T), and proceed as in (i). Once again, the active edges are
preciscly the edges of Eg, so T is a (O, j)-tree, proving #; > €.

To see the last assertion, recall that deg Ta(x,y) = r(G} = n — 1 and
degy']"(;(x,y) =n{Gy=m—n+1. 0

What about the coefficient #11? By Exercise 1, for a cycle C, we have Te, =
y4x4x24o o x" s0111(Cy) = 0. Also, for the thick edge I consisting of two
vertices joined by k > 2edges, by Exercise 2wehave Ty, = x+y+y+- -y 1,
50 111 {fi) = O as well. As we shall show now, for every other 2-connected loopless

graph G we have t;; > 1.
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Theorem 15 Let G be a 2-connected loopless graph that is netther a cycle nor
a thick edge. Then 111(G) > (.

Proof. 1t is easily seen that G contains a cycle C and an edge e; joining a vertex
of C toa vertex not on C. Let T be a spanning tree that contains ¢; and all edges of
C except for an edge o, and set Ep = {e1, €2} Let Eo C Ey C ... C Er == E(G)
be as in the proof of Theorem 14, with E;,1 = yr{Ez), and let < be an order
compatible with this nested sequence. It is immediate that, with respect o this
order, T has precisely one internally active edge, namely ¢, and precisely one
externally active edge, namely e2. Hence #1(G) = 0, as claimed. O

Read conjectured in 1968 that the sequence of moduli of the coefficients of
the chromatic polynomial is unimodal, i.e., with the notation of Theorem 13,
apg £ ay £ LGy = dmy) = -+ = dy. for some m. This conjecture is still
open, although Theorem 13 goes some way towards proving it. A related conjecture
of Tutte, stating that the #; form unimodal sequences in § and j separately, and
the analogous conjecture of Seymour and Welsh for matroids, were disproved by

Schwirzler in 1993,

X.6 Polynomials of Knots and Links

Knots and links as mathematical objects were introduced by Listing in 1847 and,
independently, by Thomson in 1869. In his paper on vortex motion, Thomson
suggested that in order to understand space properly, we have to investigate knots
and links (see Fig. X.3). The challenge was taker up by Thomson’s collaborator,
Tait, in a lecture delivered in 1876, and in a subsequent series of papers. In
the 1880s, Tait, Kirkman and Little attempted to give a census of knots with
at most ten crossings. However, knot theory proper was really started only in
the 1920s, with the work of Dehn, Alexander and Reidemeister, who introduced a
variety of knot invariants. These knot invanants enabled Alexander and Briggs to
complete the rigorous classification of knots with up to nine crossings. Curiously,
a mistake in Little's table was corrected by Perko, an amateur mathernatician, only
in 1974, when he showed that two knots with ten crossings claimed to be different

%)

FIGURE X.3. Knots and links from Thomson’s 1869 paper; the first knot is the (right-
handed) trefoil knot, the two Jinks are the Hopf link and the Borromean rings.
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by Little were, in fact, equivalent. The most commonly used notation for knots is
still the one introduced by Alexander and Briggs.

All this belongs to the classical period of knot theory, and we shall say very little
about it. Our interest in knot theory stems from the fact that in the 1980s Jones
started a revelution in knot theory by introducing a new pelynomial invanant,
which later was shown to be closely related to the Tutte polynomial. Our aim in
this section is to introduce this polynomial together with some related polynomials
and to indicate their connection to the Tutte polynomial.

Although in Section VIII.1 we fleetingly touched upon knots, when we discussed
their fundamental groups, for this section we have to set the scene with a little more
care. A link L of n components is a subset of R? ¢ R3IU oo} = 83, consisting
of n disjoint piecewise linear simple closed curves. A knot is a connected link.
The 3-dimensional sphere S? is always oriented; occasionaily the components of
L are also ortented, in which case we have an oriented link. We demand that our
links are piecewise linear only to avoid infinite sequences of twists; it would be
equally good to assume that our links are smooth submanifolds of $? - in fact, in
our drawings we shall always follow this convention (see Fig. X.4).

(e w000 )

L, Ly Ly

FIGURE X.4. The knots L and L are equivalent; L3 is not a (tame) ink.

Two links L and Ly are equivalent if there exists an orientation-preserving
homeomorphism 4 : R — R? such that A(L|) = L. If L| and L; are oriented
then A(L 1) must be oriented the same way as L. Equivalence can also be defined
in terms of homotopy: two links are said to be equivalent or ambient isotopic if
they can be deformed into each other. For example, if L; and L2 are knots given
by piecewise-linear maps A; : [0, 1] — R with h;(0) = h;(1),i = 0, |, then
L and L; are equivalent iff there is a piecewise-linear map # : {0, 1> — R*
such that kg(x) = A(0, x), A1{x) = kh(l, x),and A,(x) = h{z, x) gives a knot for
every I, that is (¢, 0) = A(¢, 1) for every ¢.

In fact, no topological subtlety need enter knot theory, as it is very easy {o
view links as purely combinatorial objects. What we do is consider link diagrams:
projections of links into R%. We may assume that the projection is a 4-regular
plane multigraph with loops, with a loop adding 2 (o the degree of its vertex. At
each vertex the edges form strictly positive angles so that the projections of the
two parts of the link ‘cross cleanly’, rather than touch. Thus a link diagram is a
(finite) 4-regular plane graph with some extra structure, namely at each vertex the
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e

FIGURE X.5. Diagrams arising from the universe U of a triangic with doublc cdges; there
are four more that arise from the last two by rotation. The first is the standard diagram of
the right-handed trefoil knot, and the second is the standard diagram of the left-handed
trefoil knot.

two pairs of edges cross in one of two ways: one goes either under or over the
other (see L in Fig. X.4). Note that a 4-regular plane graph of order n gives rise
to 2" link diagrams; the 4-regular graph is the universe of the link diagrams that
arise from it (see Fig. X.5).

Throughout our study of link diagrams, we do not distinguish between planar
isotopic link diagrams; thus twe link diagrams are considered to be the same if
they come from isomorphic plane graphs with the same extra structure. For the
sake of convenience, the same letter is used for a link and its diagram.

Reidemeister proved in the 1920s that two links are ambient isotopic iff their
diagrams can be transformed into each other by planar isotopy and the three
Reidemeister moves illustrated in Fig. X.6. The Reidemeister moves are used also
to define a finer equivalence of link diagrams: two link diagrams are said to be
regularly isotopic if they can be transformed into each other by planar isotopy and

moves of Types 11 and TI1.
0-w=0
XX XX
. 7

FIGURE X.6. The three Reidemeister moves. A move of Type I adds or removes a curl,
a move of Type II removes or adds two consecutive undercrossings or overcrossings,
and a move of Type IlI, a triangle move, changes the position of two undercrossings or

overcrossings.
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Ideally, one would like to find a simple and complete classification of knots and
links. In theory, knots were classified by Haken in 1962, but that classification is
in terms of a very elaborate algorithm which is too unwieldy to use in practice.

Lowering our sights a little, instead of trying to come up with a simple complete
classification, we may try to introduce link invariants that are fairly simple to
calculate and yet are fine enough to distinguish ‘many’ knots and links. Thas is the
approach we shall adopt here. In particular, we would like our invariants to help
us to answer the following basic questions. Is a link of several components really
linked or is it (equivalent to) a link with a diagram having at least two components?
Is a knot really ‘knotted’ or 1s it (equivalent to} the unknot, the trivial knot whose
diagram has no crossings? More generally, does a link have a diagram with no
crossings? Is a link equivalent to its mirror image?

A trivial invariant of links is the number of componenis: it is easily read out of a
diagram of a link. The non-trivial invarianis we shall find are defined as invariants
of link diagrams, and they are ail based on examining and possibly changing a
crossing in a link diagram, while keeping the diagram unchanged outside a small
neighbourhood of this crossing.

Some beautiful combinatorial invariants of links are based on colouring their
‘strands’, the arcs from one undercrossing to another. Although this approach is
outside the main thrust of this section, let us describe briefly the simplest of these
invariants. Call a 3-colouring of the strands of a diagram proper if at no crossing
do we find precisely two colours. A 3-colouring is non-frivial if at least two
colours are used (see Fig. X.7). Now it is easily seen that if a Reidemeister move
transforms a diagram L into L', and L has a non-trivial proper 3-colouring, then
s0 does L’. Hence the existence of a non-trivial proper 3-colouring is an ambient
isotopy invariant. The unknot does not have a non-trivial proper 3-colouring,
and therefore a knot whose diagram has a non-trivial proper 3-colouring is not
equivalent to the unknot. In particular, the knot in X.7 is knotted, and so is the
(right-handed) trefoil knot in Fig.X.3 (and also in Fig. VIII.4). For extensions of
these ideas, seec Exercises 25-33.

But let us turn to the main thread of this section.

FIGURE X.7. A non-trivial proper 3-colouring of a knot diagram (namely, of a diagram
of the knot 85 in the Alexander-Briggs notation).
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FIGURE X.8. The A and B regions in a diagram of the knot 8g.

The Tutte polynomial was defined by ‘resolving’ an edge in two different ways:
deleting it and contracting it. There are also two ways of resolving a crossing
in an (unoriented) link diagram, as we shall see now. Every unoriented crossing
distinguishes two out of the four regions incident at its vertex. Rotate the over-
crossing arc counterclockwise until the under-crossing arc is reached, and call the
two regions swept out the A regions and the other two the B regions (see Fig. X.8).
Sometimes instead of regions one talks about channels.

What are the two ways of resolving a crossing? We may slice it open at the A
regions, so that the two A regions unite, or we may slice it open at the B regions,
so that the two B regions unite. Briefly, at every crossing we may have an A-slice
or a H-slice.

As a self-explanatory shorthand, let us write )\ for a link diagram, with empha-
sis on a particular crossing in it. After an A-siice we get =, after a B-slice we get
(. If we wish to be a little more rigorous (and avoid typographical difficultes),
given a link diagram L with a crossing at v, we write L7} for the link diagram
obtained from L by an A-slice at v, and L? for the link diagram obtained by a
B-slice at v (see Fig. X.9).

& B &

LE

FIGURE X.9. A diagram L (of the knot 63} with a crossing at v, and the diagrams L
and L2,
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Imitating the Tutte polynomial and its variants, we shall define a polynomial, the
Kauffman bracket, or just bracket, whose value on a link diagram L is a fixed linear
combination of its values on L4 and LZ. The polynomial is uniquely determined
by this and some natural boundary conditions but, just like the Tutte polynomial,
it can also be given explicitly. In order to give this explicit expression, we need
some more definttions.

A state S of a link diagram is a choice of slicing for each crossing of the
diagram; thus a diagram with n crossings has 27 states. The §-splitting of a link
diagram L 15 the result of slicing all crossings according to the state §; clearly
a splitting is a collection of unlinked trivial knots, that is a link without any
crossings (see Fig. X.10). Writing V for the set of crossings, a state § s a function
5:V — {4, B}, with S(v) = A meaning that at v we take an A-slice. Thus the

set of all states is {4, B}V.
B
ﬁ{/’jh
A

FIGURE X.10. A state § of the standard diagram, X, of the figure of eight, and the
splitting it gives; ag (SY =3, bg(S) = 1 and cx (5) = 2.

Given a link diagram L, and a state S of L, write a; (8) for the number of
A-slices in S, and by (S) for the number of B-slices. Also, let ¢z (5) be the number
of components of the S-splitting of L,

After all this preparation, the Kauffiman square bracket [L] of a link diagram L,
with value in Z[A, B, d], is easily defined:

[L] = zAﬂL{S}BbL(S)dCL{S}—l’
3

where the summation is over all states of the diagram L.

The basic properties of the Kauffman square bracket are given in the theorem
below, reminiscent of Theorem 2. Let us write O for a connected link diagram
without crossings, and L U L1 for a diagram which 1s a disjoint union of L and
La. Let L be the set of link diagrams.

Theorem 16 There is a unique map ¢ : £ — Z[A, B, d] such that

(1) if L and L' are planar homotopic link diagrams then ¢(L) = (L"),

() p(O) =1,

{ii} o (LU Q) =de(L) for every link diagram 1,

(iv) p(L) = Ap (L3} + Bo (L) for every link diagram L with a crossing at
v. Furthermore, (L} = [L].
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Proof. 1tis clear that conditions (i) - (1v} determine a unique map, if there is such
a map. Hence all we have to check is that the Kauffman square bracket [.] has
properties (i}-(iv). The first three are immediate from the definition,
Property (iv) is also almost immediate. Indeed, let v be a crossing of L. Then,
writing L' = L2 and L” = LB,
(L] = ATL(8) gbr(8) gor($)-1
%

ABL(S]BbL(S)dCL (5 -1 + Z AﬂL(S)BbL(SJdCL(S)'-I
5. S{vi=A S, Siv)=H8

! 1
=A E Aﬂ[,f(S’] BbL’(S’)dCLJfSJ)“I 4+ B ZAatuI:S'”)BbLir(S”}dr_‘La-{S”)-—-l
S!

S.F.f
A B
=A[‘Lu]+3[‘{‘u]v

where 3}, denotes summation over all states §' of L’ and §_s» denates summation
over all states §” of L”, »

An equivalent form of Theorem 16 is that if R is a commutative ring and
A, B,d € R then the Kauffman square bracket with parameters A, B and 4
satisfies conditions (i)-{iv). In general, the square bracket is far from being invariant
under ambient isotopy or even regular isotopy, but if A, B and 4 satisfy certain
conditions then it is a regular isotopy invariant. To be precise, define the Kauffman
angle bracket or simply Kauffman bracket (L) € Z[A, A~'] of alink L by setting

{LY(A) = [L)(A, AY, -A% — 479,

Thus (L} is a Laurent polynomial in A, and it is simply the evaluation of [L] at
A, B and 4 satisfying the conditions AB = 1 andd = —A2 — 42,

Lemma 17 The Kaufftnan bracket is invariant under regular isotopy.

Proof Let B and d be as above, sothat AB = 1 and d = —A2 — A2 and, under
these conditions, {L){A) = [L]{A, B, ). First, let us evaluate the effect of a Type
II move on the angle bracket by resolving crossings by (iv) and applying (iii):

()= A(37) 30
- A= ofg)] 5 40+ o)
— [Az 4+ ABd + Bz} (ﬁ) + ABO (}

As AB = 1 and A? + ABd + B? = 0, the right-hand side is {}{), so the bracket

is invariant under Type II moves.
To complete the proof, we shall show that Type Il invariance implies Type 111

invapance, Indeed, by (iv),

(X} = (%)= 50()
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and

(X = A0+

and the two right-hand sides are equal by Type Il invariance. Invariance under the
other Type HI move 1s checked similarly. 0

As it happens, it is easy to alter slightly the Kauffman (angle) bracket {L) to
turn it into an ambient isotopy invariant of links. In order to do this, we make use
of a simple invariant of oriented link diagrams. Oriented crossings can be assigned
values of £ 1, usually called signs, according to the rules in Fig. X.11. The sum
of the signs of all the crossings in an oriented link diagram L js the twist number
or writhe w(L) of L. The writhe is not an ambient 1sotopy invariant, but it is a
regular Isotopy invariant, as can be seen instantly by inspecting the effect of the

Reidemeister moves of Types I and IT1.

FIGURE X.11. The convention of signs and the writhe of a diagram (of the knot 6;).

In fact, as we are mainly interested in unoriented links rather than oriented ones,
we shall use the self-writhe rather than the writhe. Given an oriented link diagram L
with components L), ..., L, theselfwritheof Liss(L) = w(L+.. . +w(Ly).
Since the sign of a crossing does not change if we change the orientations of both
arcs at the crossing, the self-writhe 15 independent of the orientation. Therefore we
may define the self-writhe s{L) of an unoriented link diagram as the self-wnithe
of any orientation of L. As the next result shows, if we multiply (L) by a simple
function of the self-writhe then we obtain an ambient isotopy invariant.

Theorem 18 The Laurent polynomial f{L] = (=AY 3Ly € ZIA, A~ 1] is
an invariant of ambient isotopy for unovriented links.

Proaf. Since s(L) and (L) are invariants of regular isotopy, so is f[L]. Thus all
we have to check is that f{L] is invariant under Type I Reidemeister moves.
Note first that

(3)=A{g) + B{~)
= (Ad+ B = (A3 — A"+ A~ D)
= (=A%) ().

L e e e e
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A similar expansion gives
(G = (=47~

Since s(3) = s(~)+1ands(y) = 5(~)—1, independently of the orientation,
the Laurent polynomuial f[L] is invariant under Type I moves as well:

SIS = (—A) F@ () = (—Ay I+ 43y
= (—A) V) = f]

and, analogously, f[3) = f[~1. ]

Stmilar functions can be defined for oriented links, Thus, the Kauffman bracket
{L) of an oriented link L is simply the Kauffman bracket of the link without its
orientation. This is agan a reguiar isotopy invariant of oriented links: to turn it into
an ambient isotopy invariant f[L), we usually multiply it by (—A) ™%} rather
than by (—A)~ (L)

The Laurent polynomial f[L], which we shall call the one-variable Kauffman
polynomial of a link or an oriented link, is perhaps the nicest of many closely
refated link polynomtials. The first member of this family, the Jones polynomial
Vi (t), constructed by Vaughn Jones in 1985, is an ambient isotopy invariant of
oriented links defined by the identities VO = 1and

1

r‘vx — Vg = (ﬁ— ﬁ) Vs. (9)

It is easily seen that there is at most one Laurent polynomial Vi, e Z[¢'/2, 1~/
satisfying the relations above: the problem is to show that there is such a
polynomial. In fact, a simple change of variable turns f[L] into the Jones

polynomial.

Theorem 19 The Jones polynomial Vi (t) of an oriented link L is given by
Vide) = FIL] (e71/%), where fIL]) = (—A) " DUL)(A).

Proof. Since f[((3] = |, all we have to check is that f[L] (¢~'/%) satisfies (9).
By property (iv) of the bracket polynomial, as B = A~! we have

NY=A+ 47100

and
OO =A00+AT .
Hence
A —ATIC O = (A7 - ATHE,
and so

AYFINI] = AT = A= A) PG D N
_ A_“(—A)'““"ﬁ)'”(X)
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= (a2 -4%) f121
On substitating A = 11/, we find that
. 1
XN -1 14 = («ﬁ - E) f131

as required. U

The Jones polynomial, especially in its form as the one-variable Kauffman
polynomial, can be used to show the inequivalence of many knots and links. For
exarnple, the bracket of the right-handed trefoil knot is A7 - A3~ A% and as
its writhe is +3, its Kauffman polynomial is —A~19 4+ A~12 £ A=* In particular,
the right-handed trefoil knot is not (equivalent to) the unknot (the trivial knot): it is
knotted. As it happens, this particular assertion is easier proved by other means, for
example, by the colouring argument mentioned above (see Exercise 26). However,
as we shall see in a moment, the Kauffman polynomial of the right-handed wrefoil
knot can also be used to show that the right-handed trefoil knot is not amphicheiral
(also said to be chiral): it is not equivalent to its mirror image, the left-handed
trefoil knot.

Given a link diagram L, let us write L* for its reflection or mirror image
obtained by reversing all the crossings (and keeping the orientation the same if L

is onented).

Theorem 20 The bracket and one-variable Kauffman polynomial of the mirror
image L* of a link diagram L are

(L*HA) = (L)(A™Y
and

filAl = filA™).
The same holds for oriented link diagrams.

Proof. Note that reversing all the crossings results in swapping A and B, that is
A and A™, in the expansion of the bracket. Hence (L*}(A) = (L)(A™'). Also,
s{L*) = —s(L) and w(L*) = —w(L), so the second assertion follows. O

As the une-variable Kauffman polynomial of the trefoil knot does not remain
invariant if A is replaced by A, the trefoil knot is not amphicheiral, as claimed.
(It is for this reason that we have to distinguish between a right-handed trefoil
knot and a left-handed treferl knot.)

The pronounced similarity between ‘resolving’ an edge of a graph in defining
the Tutte polynomial and ‘resolving’ a crossing of a link diagram in defining the
Kauffrnan bracket is far from superficial: the link polynomials described above can
easily be obtained from the Tutte polynomials of certain coloured graphs associated
with the diagrams. As we shall see, this connection is especially striking in the
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case of the so-called alternating link diagrams since then we need only the Tutte
polynomials of uncoloured graphs.

To conclude this chapter, we discuss the correspondence between link diagrams
and signed plane graphs, iniroduce altemmating diagrams and show that for an
alternating diagram the Kauffman bracket is easily expressed in terms of the Tutte
polynomuial of the associated graph.

Recall that the map of the universe of a link 18 two-colourable (see Exer-
cise V.24). It is customary to take a black and white colouring of the faces, call
those coloured black shaded. A shaded link diagram is a link diagram with such a
proper two-colouring of the faces, i.¢., with alternate regions shaded. Note that ev-
ery plane diagram has precisely two shadings. Also, in the neighbourhood of every
crossing there are two shaded regions and two unshaded regions, although these
regions are not necessarily different (see Fig. X.12). To each connected shaded
plane diagram D we associate an edge-coloured multigraph G (D) as follows. For
each shaded face F, take a vertex vr in F, and for each crossing at which F| and
F; meet, take an edge vr, vr,. Thus, if F| = F; = F then the crossing contributes
a loop at vp. Furthermore, colour each edge 4+ or — according to the type of the
crossing, as shown in Fig. X.12. We call the graph obtained a signed plane graph.

FIGURE X.12. A shading of the first diagram in Fig. X.4, the two types of crossings, and
the signed graph associated to the shaded diagram.

Conversely, every connected shaded plane diagram can be reconstructed from
G(D). To see this, we just construct the medial graph of G(D), and assign
crossing information to it according to the colouring of G{D). The medial graph
is particularly easily defined for a plane graph in which every face is a polygon
with at least three sides. For such a plane graph G, the medial graph M{G) of G
is obtained by inserting a vertex on every edge of G, and joining two new vertices
by an edge lying in a face of G if the vertices are on adjacent edges of the face.
Thus M{(G) is a 4-regular plane graph whose alternate faces contain vertices of
{+. The construction of M (G} is similar for any plane multigraph, as illustrated in
Fig. X.13.

Now, given a signed plane graph G with medial graph M (G}, shade those faces
of M{(G) that contain vertices of G. To turn M{G) into alink diagram D) = D{G),
define the crossings to be over or under according to the colour of the edge at that
crossing (see Fig. X.14). For disconnected diagrams, the correspondence is a little
more complicated, and we shall not go info it.
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FIGURE X.13. A multigraph and its medial graph.

_l + + + | (/il%;i :

FIGURE X.14. A signed plane graph, and its link diagram, a diagram of 83.

Call two signed plane graphs equivalent if they are the signed graphs of equiv-
alent link diagrams. By Reidemeister's Theorem, two signed plane graphs are
equivalent if they can be obtained from each other by a sequence of transforma-
tions corresponding to Reidemeister moves; as our graphs are signed, there are, in
fact, six so-called graph Reidemeister moves.

Having reduced the study of {(equivalence classes of) link diagrams to the study
of (equivalence classes of) signed plane graphs, we are interested in invariants
of signed plane graphs which are constant on equivalence classes. The simplest
ways of assigning signs to the edges of a plane graph are making them all + or
making thetn all —. The diagrams corresponding to these assignments are said to
be aiternasing. Equivalently, a link diagram is alternating if its crossings alternate
as one travels along the arcs of the link: over, under, over, under, . ... Thus the
diagrams of the trefoil and the figure of eight in Fig. VII1.4 are both alternating,
and so are the diagrams of the Hopf link and the Borromean rings in Fig. X.3.
However, the diagrams of the two knots in Fig. X.4 are not aiternating,

It is easily seen that every 4-regular plane multigraph is the universe of an
alternating link diagram (see Exercise V.24). Also, if L is a diagram of a k-
component link then the universe of L is the universe of at least 2 and at most 2¥

alternating diagrams,
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FIGURE X.15. The shaded diagrams of the Whitchead link and of the knot 7.

Clearly, a connected link diagram is alternating if, and only if, each of its regions
has only A-channels or only B-channels. Calling a region an A-region if all its
channels are A-channels, and a B-region if all its channels are B channels, there
are two ways of shading a connected alternating link diagram L: we may shade
all the A-regions, or we may shade all the B-regions. Let us write Gt (L) for the
graph obtained from the first shading, and G~{L) for the second. As a signed
graph, G+ (L) will be taken with + signs, and G~ (L) with — signs.

Conversely, given a connected plane graph G, let D* (G) he the alternating link
diagram obtained from G by taking each edge with -+, and lei D~ (G) be obtained
by taking each edge with —. By construction, for every connected alternating link
diagram L we have DY (GT(L)) = D (G~ (L) = L.

By a careful examination of the effect of the resolution of a crossing on the
associated signed graph, from Theorem 16 one can show that for an alternating
diagram the Kauffman polynomial and so the Jones polynomial are determined
by the Tutte polynomial of the associated graph. In particular, one can prove the
following result,

Theorem 21 Let L be a connected alternating oriented link diagram with a
A-regions, b B-regions, and writhe w. Then the Jones polynomial of L is given by
the Tutte polynomial of G+ (L):
Viit) = (—l)wt{brd+3w”4TG+{L)(—I, —1/1). |
A crossing is said to be an isthmus or a nugatory crossing if some two of the
local regions appearing at the crossing are parts of the same region in the whole
diagram, as in Fig. X.16. A nugatory crossing appears as a loop or bridge in
G*(L) and G~(L); for example, in the diagram in Fig. X 16, the crossing at

v gives a bridge of GT(L) and a loop of G~{L). As nugatory crossings makc
no contribution to ‘knottedness’, it is preferable to study diagrams withou! any

)
Q.

FIGURE X.16. A diagram with a nugatory crossing af v
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of these crossings. The following result was conjectured by Tait, and proved by
Murasugi and Thistlethwaite independently about one hundred years later.

Theorem 22 The number of crossings of a connected aitemating link diugram
without nugatory crossings is an ambient isotopy invariant.

Proof. Let L be a connected alternating link diagram with = crossings, none of
which is nugatory. We claim that m is precisely the breadth of the Laurent poly-
nomial Vi (1}, i.e. the difference between the maximum degree and the minimum
degree. As the Jones polynomial is ambient isotopy invanant, this is, in fact, more
than our theorem claims.

To prove our ¢laim, denote by a = a(L) the number of A-regions. Then
G = G*(L) has g vertices and m edges; also, there are no loops or bridges since
L has no nugatory crossings. By Theorem 21, the breadth of Vi (¢) is

breadth Vi (¢t} = maxdeg V; (¢} — min deg V(1)
=max{i — J : ;(G) # 0} —minf{f — j : 4;;(G) # 0}
=@g—1)—(-m+a—-1=m,
as claimed. The penultimate equality followed from Theorem 14. )

In fact, it is clear from the proof that if a connected alternating diagram L has
m crossings, m’ of which are nugatory, then m — m’ is the breadth of the Jones
polynomial Vi (1), so m — m' is an ambient isotopy invarjant.

In fact, using similar methods, Murasugi and Thistlethwaite proved another
classical conjecture of Tait: every alternating link has an alternating link diagram
with the minimal number of crossings.

To conclude this section, ket us remark that, in over a century, knot theory has
come full circle. It started out with Thomson’s hope of applying it to the study of
space, and now it is of great importance in the study of the knots formed by DNA
molecules, in the synthesis of various knotted molecules, and, through the Tutte
polynomial, in statistical mechanics and topological quanium field theory.

X.7 Exercises

I. Use the contraction-deletion formula to compute the Tuite polynomial of the
n-cycle: Te, (%, y) = y + x + x4+ - - - + %"~ 1. Note that this holds for» = 1
and 2 as well, with the appropriate interpretation of Cy and ;.

2. Use the contraction-deletion formula to show that 7y, = x+y-+y*+ - -+y£ 1,
where /; is the thick edge consisting of two vertices joined by & edges.

3. Let Ty, k. &; be the ‘thick triangle’ consisting of three vertices and k) +42 +43
edges, with k), k2 and k3 edges joining the three pairs of vertices. Show that
if k1, k3, k3 > 1 then the Tutte polynomial of T, &, &, is

x% - 2x 4 x{y" + 2 +y8 =3}/ - D)
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Show that if By, Bz, ..., By are the blocks of a graph & with e(G) > 0 then

!
Totx,y) = [ [ Ta(x. ».
i=l
Check that the universal polynomial I7 satisfies formulae {3)-(5) when at least
one of o and r 1s zero.

Check that the dichromatic polynomial Z¢g (g, v} introduced after Theorem 2
can be obtained from I/ and T, as claimed there.

Show that for each enumeration of the edges of C there are spanning trees T}
angd T such that every edge of T is internally active in T}, and every edge of
G not in Ty is externally active in T,

Show that if G is a graph with at least three edges then its tree-numbers £; (G)
satisfy 20 — f11 + fo2 = f10.

Let x and y be distinct vertices of a graph g, and let 4 and v be distinct
vertices of a graph G which is vertex-disjoint from Ggo. Let G’ be obtained
from G U G by identifying x with # and y with v, and let G” be ohtained
from Gp U G by identifying x with v and y with u. Prove that T = Tg».

An orientation of a graph is rotally cyclic if every edge iscontained in some ori-
ented cycle. Prove that the number of totally cyclic orientations of a bridgeless

graph is Tz (0, 2).

Let G be a graph with vertex set {v(, v2, ..., vy}. Given an orientation of ¢,
let 5; be the score of v;: the number of edges incident with v; that are directed
away from vy, and let 5 = (5;)} be the score vector of the orientation. Show
that the total number 5(G) of score vectors is T (2, 1), the number of foresis
in .

fHint. Show first that the set S(G) of score vectors 1s “convex” in the following
sense: if (s1,52,53,....5) and (s, 55, 53, ..., 5,) are score vectors with
s1 > 51 and s0 53 < 52, then (st + 1,5 — 1,53,..., 55) is a score vector as
well, Use this to prove that if ¢ € E({) is neither a loop nor a bridge then
5(G)=5(G —e) + e(G/e).]

Let G be a graph on which there is a nowhere-zerc Z,-flow. Show that there
1s also a nowhere-zero Z-flow such that in each edge the value of the flow is
at most & — 1 in modulus. Deduce that if G has a nowhere-zero k-flow then it

also has a nowhere-zero (k + 1)-fiow.

Show that the Petersen graph does not have a nowhere-zero 4-flow. {Hint. The
edge-chromatic number of the Petersen graph is 4.]

Let G be a connected plane graph (with multiple edges and loops), with
edgese;, ez, ..., em and faces Fi, F,, ..., Fg. The dual G* of G has vertices

o b — e = = daceHiHeRE ek
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U, V2, ..., v andedges fi, fr, ..., Jm, with f; joining v; 10 vy if F; and F;
have e; in their boundaries (see Fig. X.17). Check that the dual of the ¢ycle
Cy 1s the thick edge [,. What can you say about (the graphs of) the Platonic

solids?

FIGURE X.17. A plane graph and its dual.

Let GG be a connected plane graph with dual G*. Prove that
Tg-(x.y) = Tg(y, x).
Show that the chromatic polynomial and the flow polynomial are related by
duality:
PG (x) = gg-(x)x"®
whenever G is a connected plane graph with dval G*,

Show that the four colour theorem is equivalent to the assertion that every
bridgeless planar graph has a nowhere-zero 4-flow.

Let T be a spanning tree of a 2-connected loopless graph G = (V, E}, and let
Eg be a non-empty subset of E. Show that the closure yr(Ep) of Eg defined
in the proof of Theorem 14 is the whole of E.

Determine the class of graphs G such that T11(G) > Q.

Let G be a 2-connected loopless graph of order n and girth g. Show that
t1(G) > 0for0<i<n-—g.

Use Reidemeister moves and planar isotopy to show that the knots of the
diagrams L and Ly in Fig. X.4 are ambient isotopic.

Let K be the knot given by a continuous function & : [0, n) ~ R3 A(r) =
(x{t), y{(¥), z(z}), which is linear on each interval [k, £+ 1), such that {0} =
hiny = (0,0, 00, A(t) = (0,0, ) for 0 < ¢t < 1 and z(2) > z(') if
1 <7 <t < n Show that X is (equivalent to} the trivial knot, that is to the
unknotted circle.
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Let L be a knot diagram obtained in the simplest way we could draw it on a
piece of paper: we start at a point P and lift our pencil only when we have to
in order to get across a previously drawn line. Thus, starting at P in a certain
direction, at every crossing first we go over (5o that at a later stage we go
under at that crossing). Show that L is equivalent to the trivial (unknotted

circle) diagram.

A link L is said to be split if it has a diagram whose universe is a disconnected
graph. The components of a link L with at least two components are said to
be linked if L is not split.

Given an oriented link diagram with two sets of components C; and C3, let
C) N be the set of crossings of C; and C;. The linking number Ik(Cy, C3)
of Cy and C» is

1
Ik(C1, ) = > Z £(v).
vel 1Nz

Check that the linking number is an ambient isotopy invariant. Deduce that
the Hopf link is indeed linked, and it has two orientations that are not ambient

isotopic.

For a link diagram L, denote by ca(L} the number of non-trivial proper
colourings of L with colours 1, 2 and 3. Thus ¢3(L}) is the number of ways of
colouring the strands with colours 1, 2 and 3 such that (i) at no crossing do
we have precisely two colours, and (i1} at least two colours are used. Show
that ca1(.) is an ambient isotopy invariant.

Check that the diagram of the trefoil knot in Fig. X.5 has a non-trivial proper
3-colouring. Deduce that the trefoil is knotted: it is a non-trivial knot.

Give a non-trivial proper 3-colouring of the diagram of the knot 74 in Fig. X.15,
and deduce that 74 is a non-trivial knot.

Show that neither the Hopf link in Fig. X.3, nor the Whitehead link in Fig. X.15
has a non-trivial proper 3-colouring, and deduce that the components are
indeed linked in each.

Show that the diagram of the Borromean rings in Fig. X.3 does not have a
non-trivial proper 3-colouring, so the rings are indeed linked, although no two
of them are linked.

Show that the link of Dt (Cy), the alternating link diagram obtained from the
4-cycle, has two linked components.

Use the invariant c3(L) of Exercise 25 to prove that the connected sum of two
trefoil knots in Fig. X.18 is knotted and it is not equivalent to a trefoil knot.
Show also that there are infinitely many pairwise inequivalent knots.

For aprmme p > 3, amod p labelling of a link diagram L is a labelling of the
strands of L by the elements of Z, such that (i) if at a crossing the over-pass
15 labelled x and the other two labels are y and z, ther 2x = y + z, and (ii) at
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=3 @j

FIGURE X.18. The connected sum of two trefoil knots.

least two labels are used. Denote by ¢p (L) the number of med p labellings of
L. Show that for p = 3 this definition coincides with the definition of c3(L)
above, and that ¢, (L) 1s an ambient isotopy invariant.

Let L be the quinquefoil in Fig. VIIL.13. Show that c3(L) = G, c5(L) = 20
and ¢, (L) = 0 for every prime p > 7.

Show that the figure of eight knot in Fig. VIII.4 is amphicheiral, that is it is
ambient isotopic to its mirror image.

Prove that if we redraw a link diagram by turning one of its regions into the
outside region then we obtain an ambient isotopic link diagram.

Show that we need not have B = A=l andd = —A%Z — A~Z o make the
Kauffman square bracket [ L] a regular isotopy invariant.

Calculate the Jones polynomial of the Hopf link and deduce that the two
circles are indeed linked.

Calculate the Jones polynomial of the Whitehead link and deduce that the two
components are indeed linked.

Calculate the Jones polynomial of the Borromean rings and deduce that the
rings are indeed linked although no two of them are linked.

Calculate the Jones polynomials of the right-handed trefoil knot and of the
figure of eight knot and check that your answers tally with the ones obtained
from the result of Exercise 3.

The knots 83 and 10;29 in Fig. X.19 are not equivalent. Calculate their Jones
polynomials and note that they are equal.

Show that the partition function Rg (g, p) of the random cluster model is

+q-— 1
Rota. ) = g9 O = pr T (EELEE ).

Consider the random cluster model on G, with parameters ¢ and p. Show that
for ¢ > 1 new edges joining vertices in the same component are more likely
than those uniting two old components. To be precise, given Fg C E(G) and

ab= f € E\Fy,

p iHk(F U ) = k{F},
B(f € FIF\{fl=Fy) = p
p+q—pg

otherwise,
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L 1034

FIGURE X.19. Diagrams of the knots 8 and 10y29.

Note that the proof of Theorcmn 4 shows that

Y ulFight)

FcKE

is precisely the dichromatic polynomial Zg (g, v), and so give another proof
that the Tutte polynomial is well defined.

Prove the theorem of Conway and Gordon that every embedding of K¢ into
RR? is intrinsically linked: there are two triangles forming a non-trivial link.
[#int. Note first that any embedding of K¢ can be changed to any other
embedding by changing some crossings from ‘over’ to ‘under’ and vice versa.
Let (7;, T). i = 1,..., 10, be the ten pairs of disjoins triangles in K, and
orient each triangle in an arbitrary way, With a slight abuse of notation, for
a given embedding of K¢, set IkKg = 3 [Ik(T;, T,)|, where Ik(T;, T} is the
linking number of T; and 7/, as in Exercise 24. Prove that the parity of IkKs
is independent of the parucula.r embedding. Deduce from the embedding in

Fig. X.20 that Ik(T;, T} 3 0 for some i }

FIGURE X.20. An cmbcdding of X4 with [kKe = 3.

Construct an embedding of K¢ into R? in which there is only one pair of
linked triangles.

Prove that every embedding of the Petersen graph into R? contains two linked
pentagons.
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X.8 Notes

W.T. Tutte constructed the dichromate of a graph, the polynomial we know as
the Tutte polynomial, in A contribution to the theory of chromatic polynomials,
Canad. J. Math, 6 (1954) 80-91. This paper contains the spanning tree expan-
sion of the polynomial as well. In fact, Tutte constructed and studied similar
polynomials in A ring in graph theory, Proc. Cambridge Phil. Soc. 43 (1947),
2640, building on H. Whitney, The coloring of graphs, Ann. Marh. 33 (1932)
688-718. Theorem 2 is essentially from F.G. Oxley and D.J.A. Welsh, The Tutte
polynomial and percolation, in Graph Theory and Related Topics (J.A. Bondy and
U.S.R. Murty, eds), Academic Press, London, 1979, pp. 329-339.
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