Chapter 8
Reducibility Among Combinatorial Problems

Richard M. Karp

Introduction by Richard M. Karp

Throughout the 1960s I worked on combinatorial optimization problems includ-
ing logic circuit design with Paul Roth and assembly line balancing and the traveling
salesman problem with Mike Held. These experiences made me aware that seem-
ingly simple discrete optimization problems could hold the seeds of combinatorial
explosions. The work of Dantzig, Fulkerson, Hoffman, Edmonds, Lawler and other
pioneers on network flows, matching and matroids acquainted me with the elegant
and efficient algorithms that were sometimes possible. Jack Edmonds’ papers and
a few key discussions with him drew my attention to the crucial distinction be-
tween polynomial-time and superpolynomial-time solvability. I was also influenced
by Jack’s emphasis on min-max theorems as a tool for fast verification of optimal
solutions, which foreshadowed Steve Cook’s definition of the complexity class NP.
Another influence was George Dantzig’s suggestion that integer programming could
serve as a universal format for combinatorial optimization problems.

Throughout the *60s I followed developments in computational complexity the-
ory, pioneered by Rabin, Blum, Hartmanis, Stearns and others. In the late *60s
I studied Hartley Rogers’ beautiful book on recursive function theory while teach-
ing a course on the subject at the Polytechnic Institute of Brooklyn. This experience
brought home to me the key role of reducibilities in recursive function theory, and
started me wondering whether subrecursive reducibilities could play a similar role
in complexity theory, but I did not yet pursue the analogy.

Cook’s 1971 paper [1], in which he defined the class NP and showed that propo-
sitional satisfiability was an NP-complete problem, brought together for me the two
strands of complexity theory and combinatorial optimization. It was immediately
apparent to me that many familiar combinatorial problems were likely to have the

Richard M. Karp
The University of California at Berkeley, USA
e-mail: karp@icsi.berkeley.edu

M. Jiinger et al. (eds.), 50 Years of Integer Programming 1958-2008, 219
DOI 10.1007/978-3-540-68279-0 8, © Springer-Verlag Berlin Heidelberg 2010

220 Richard M. Karp

same universal role as satisfiability. I enjoyed constructing the polynomial-time re-
ductions that verified this intuition. Most of them were easy to find, but I failed to
prove the NP-completeness of the undirected hamiltonian circuit problem; that re-
duction was provided independently by Lawler and Tarjan. I was also frustrated by
my inability to classify linear programming, graph isomorphism and primality.

As I recall I first presented my results at an informal seminar at Don Knuth’s
home, and a few months later, in April 1972, I exposed the work more broadly at
an IBM symposium. In the next couple of years many results more refined than
my own were added to the accumulation of NP-completeness proofs, and later the
Garey-Johnson book [2] presented the concepts to a wide audience.

Heuristic algorithms often find near-optimal solutions to NP-hard optimization
problems. For some time in the mid-1970s I tried to explain this phenomenon by
departing from worst-case analysis, and instead analyzing the performance of sim-
ple heuristics on instances drawn from simple probability distributions. This work
was technically successful but gained limited traction, because there was no way
to show that the problem instances drawn from these probability distributions are
representative of those arising in practice. The surprising success of many heuristics
remains a mystery.

References

1. S.A. Cook, The complexity of theorem proving procedures, Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing, 1971, pp. 151-158.

2. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman & Co., 1979.

8 Reducibility Among Combinatorial Problems 221

222 Richard M. Karp

The following article originally appeared as:

R.M. Karp, Reducibility Among Combinatorial Problems, Complexity of Computer
Computations (R.E. Miller and J.W. Thatcher, eds.), Plenum Press, 1972, pp. 85—
103.

Copyright (©) 1972 Plenum Press.

Reprinted by permission from Kluwer Academic Publishers.

8 Reducibility Among Combinatorial Problems 223

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS+

Richard M. Karp

University of California at Berkeley

Abstract: A large class of computational problems involve the
determination of properties of graphs, digraphs, integers, arrays
of integers, finite families of finite sets, boolean formulas and
elements of other countable domains. Through simple encodings

from such domains into the set of words over a finite alphabet
these problems can be converted into language recognition problems,
and we can inquire into their computational complexity. It is
reasonable to consider such a problem satisfactorily solved when
an algorithm for its solution is found which terminates within a
number of steps bounded by a polynomial in the length of the input.
We show that a large number of classic unsolved problems of cover-
ing, matching, packing, routing, assignment and sequencing are
equivalent, in the sense that either each of them possesses a
polynomial-bounded algorithm or none of them does.

1. INTRODUCTION

All the general methods presently known for computing the
chromatic number of a graph, deciding whether a graph has a
Hamilton circuit, or solving a system of linear inequalities in
which the variables are constrained to be 0 or 1, require a
combinatorial search for which the worst case time requirement
grows exponentially with the length of the input. In this paper
we give theorems which strongly suggest, but do not imply, that
these problems, as well as many others, will remain intractable
perpetually.

+'I‘his research was partially supported by National Science Founda-
tion Grant GJ-474.

85

224 Richard M. Karp

86 RICHARD M. KARP

We are specifically interested in the existence of algorithms
that are guaranteed to terminate in a number of steps bounded by a
polynomial in the length of the input. We exhibit a class of well-
known combinatorial problems, including those mentioned above,
which are equivalent, in the sense that a polynomial-bounded algo-
rithm for any one of them would effectively yield a polynomial-
bounded algorithm for all. We also show that, if these problems
do possess polynomial-bounded algorithms then all the problems in
an unexpectedly wide class (roughly speaking, the class of problems
solvable by polynomial-depth backtrack search) possess polynomial-
bounded algorithms.

The following is a brief summary of the contents of the paper.
For the sake of definiteness our technical development is carried
out in terms of the recognition of languages by one-tape Turing
machines, but any of a wide variety of other abstract models of
computation would yield the same theory. Let I* be the set of
all finite strings of 0's and 1's. A subset of I*¥ is called
a language. Let P be the class of languages recognizable in
polynomial time by one-tape deterministic Turing machines, and let
NP be the class of languages recognizable in polynomial time by
one-tape nondeterministic Turing machines. Let II be the class
of functions from I* into I* computable in polynomial time by
one-tape Turing machines. Let L and M be languages. We say
that L «M (L is reducible to M) if there is a function f € II
such that f(x) € M®x € L. If Me P and L« M then L € P.
We call L and M equivalent if L« M and M « L. Call L
(polynomial) complete if L € NP and every language in NP is
reducible to L. Either all complete languages are in P, or none
of them are. The former alternative holds if and only if P = NP.

The main contribution of this paper is the demonstration that
a large number of classic difficult computational problems, arising
in fields such as mathematical programming, graph theory, combina-
torics, computational logic and switching theory, are complete
(and hence equivalent) when expressed in a natural way as language
recognition problems.

This paper was stimulated by the work of Stephen Cook (1971),
and rests on an important theorem which appears in his paper. The
author also wishes to acknowledge the substantial contributions of
Eugene Lawler and Robert Tarjan.

2. THE CLASS P

There is a large class of important computational problems
which involve the determination of properties of graphs, digraphs,
integers, finite families of finite sets, boolean formulas and

8 Reducibility Among Combinatorial Problems 225

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS 87

elements of other countable domains. It is a reasonable working
hypothesis, championed originally by Jack Edmonds (1965) in connec-
tion with problems in graph theory and integer programming, and by
now widely accepted, that such a problem can be regarded as tract-
able if and only if there is an algorithm for its solution whose
running time is bounded by a polynomial in the size of the input.
In this section we introduce and begin to investigate the class of
problems solvable in polynomial time.

We begin by giving an extremely general definition of 'deter-
ministic algorithm'", computing a function from a countable domain
D into a countable range R.

For any finite alphabet A, let A* be the set of finite
strings of elements of A; for x € A¥*, 1let 1g(x) denote the
length of x.

A deterministic algorithm A is specified by:

a countable set D (the domain)

a countable set R (the range)

a finite alphabet A such that A*AR = ¢
an encoding function E: D »> A*

a transition function T: A¥ >~ A*¥UR .

The computation of A on input x € D is the unique sequence
Yys¥gsees such that v, = E(x), Yit1 = T(yi) for all i and,

if the sequence is finite and ends with Vi s then y, € R. Any
string occurring as an element of a computation is caEled an
instantaneous description. If the computation of A on input x
is finite and of length t(x), then t(x) is the running time of
A on input x. A is terminating if all its computations are
finite. A terminating algorithm A computes the function

fA: D - R such that fA(x) is the last element of the computation

of A on x.

If R = {ACCEPT,REJECT} then A is called a recognition
algorithm. A recognition algorithm in which D = is called a
string recognition algorithm. If A is a string recognition
algorithm then the language recognized by A is {x € Z*I fA(x) =
ACCEPT}. If D =R =1* then A is called a string mapping
algorithm. A terminating algorithm A with domain D = r*
operates in polynomial time if there is a polynomial p(+) such
that, for every x € TE t(x) < p(lg(x)).

To discuss algorithms in any practical context we must spe-
cialize the concept of deterministic algorithm. Various well
known classes of string recognition algorithms (Markov algorithms,
one-tape Turing machines, multitape and multihead Turing machines,

226

Richard M. Karp

88

RICHARD M. KARP

random access machines, etc.) are delineated by restricting the func-
tions E and T to be of certain very simple types. These definitions
are standard [Hopcroft & Ullman (1969)] and will not be repeated here.
It is by now commonplace to observe that many such classes are equi-
valent in their capability to recognize languages; for each such
class of algorithms, the class of languages recognized is the

class of recursive languages. This invariance under changes in
definition is part of the evidence that recursiveness is the cor-
rect technical formulation of the concept of decidability.

The class of languages recognizable by string recognition

algorithms which operate in polynomial time is also invariant
under a wide range of changes in the class of algorithms. For
example, any language recognizable in time p(*) by a multihead
or multitape Turing machine is recognizable in time p2(:) by a
one-tape Turing machine. Thus the class of languages recognizable
in polynomial time by one-tape Turing machines is the same as the
class recognizable by the ostensibly more powerful multihead or
multitape Turing machines. Similar remarks apply to random access
machines.

Definition 1. P 1is the class of languages recognizable by

one-tape Turing machines which operate in polynomial time.

Definition 2. I is the class of functions from I* into I*

defined by one-tape Turing machines which operate in polynomial
time.

The reader will not go wrong by identifying P with the class

of languages recognizable by digital computers (with unbounded
backup storage) which operate in polynomial time and II with the
class of string mappings performed in polynomial time by such
computers.

p(+)

Remark. If f: Z* > I* 4is in I then there is a polynomial
such that 1g(f(x)) < p(lg(x)).

We next introduce a concept of reducibility which is of cen-

tral importance in this paper.

(L

Definition 3. Let L and M be languages. Then L = M
is reducible to M) if there is a function f € I such that

f(x) e M®x € L.

Lemma 1. If L«M and M€ P then L € P.

Proof. The following is a polynomial-time bounded algorithm

to decide if x € L: compute f(x); then test in polynomial time
whether f(x) € M.

We will be interested in the difficulty of recognizing subsets

of countable domains other than I*. Given such a domain D,

8 Reducibility Among Combinatorial Problems 227

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS 89

there is usually a natural one-one encoding e: D - £*, For exam-
ple we can represent a positive integer by the string of 0's and
1's comprising its binary representation, a l-dimensional integer
array as a list of integers, a matrix as a list of 1l-dimensional
arrays, etc.; and there are standard techniques for encoding lists
into strings over a finite alphabet, and strings over an arbitrary
finite alphabet as strings of 0's and 1's. Given such an encod-
ing e: D > I¥, e say that a set T CD 1is recognizable in poly-
nomial time if e(T) € P. Also, given sets T CD and U E?b',
and encoding functions e: D > I* and e': D' > I* wesay T<xU
if e(T) « e'(U).

As a rule several natural encodings of a given domain are
possible. For instance a graph can be represented by its adjacency
matrix, by its incidence matrix, or by a list of unordered pairs
of nodes, corresponding to the arcs. Given one of these represen-
tations, there remain a number of arbitrary decisions as to format
and punctuation. Fortunately, it is almost always obvious that
any two ''reasonable'" encodings e, and e; of a given problem are
equivalent; i.e., e,(S) € P e;(S) € P. One important exception
concerns the representation of positive integers; we stipulate
that a positive integer is encoded in a binary, rather than unary,
representation. In view of the invariance of recognizability in
polynomial time and reducibility under reasonable encodings, we
discuss problems in terms of their original domains, without speci-
fying an encoding into o*.

We complete this section by listing a sampling of problems
which are solvable in polynomial time. In the next section we exa-
mine a number of close relatives of these problems which are not
known to be solvable in polynomial time. Appendix 1 establishes
our notation.

Each problem is specified by giving (under the heading
"INPUT") a generic element of its domain of definition and (under
the heading "PROPERTY") the property which causes an input to be
accepted.

SATISFIABILITY WITH AT MOST 2 LITERALS PER CLAUSE [Cook (1971)]

INPUT: Clauses Cl,C ,+..,C , each containing at most 2 literals

PROPERTY: The conjunction of the given clauses is_satisfiable;

i.e., there is a set S C {xl,xz,...,xn,xl,xz,...,xn} such that
a) S does not contain a complementary pair of literals and
b) S"‘Ck ¢, k=1,2,...,p .

MINIMUM SPANNING TREE [Kruskal (1956)]
INPUT: G, w, W
PROPERTY: There exists a spanning tree of weight < W.

228

Richard M. Karp

90 RICHARD M. KARP

SHORTEST PATH [Dijkstra (1959)]
INPUT: G, w, W, s, t
PROPERTY: There is a path between s and t of weight < W.

MINIMUM CUT [Edmonds & Karp (1972)]
INPUT: G, w, W, s, t
PROPERTY: There is an s,t cut of weight < W.

ARC COVER [Edmonds (1965)]

INPUT: G, k

PROPERTY: There is a set Y C A such that]Y] < k and every
node is incident with an arc in Y.

ARC DELETION

INPUT: G, k

PROPERTY: There is a set of k arcs whose deletion breaks all
cycles.

BIPARTITE MATCHING [Hall (1948)]

INPUT: S C 2z xz

PROPERTY: There are p elements of S, no two of which are
equal in either component.

SEQUENCING WITH DEADLINES

INPUT: (Tl,...,Tn) €z, (Dl,...,Dn) € z%, k

PROPERTY: Starting at time O, one can execute jobs 1,2,...,n,
with execution times Ty and deadlines Dj, 1in some order such
that not more than k jobs miss their deadlines.

SOLVABILITY OF LINEAR EQUATIONS
INPUT: (Cij) N (ai)
PROPERTY: There exists a vector (yj) such that, for each i,

? Cijyj =a; .

3. NONDETERMINISTIC ALGORITHMS AND COOK'S THEOREM

In this section we state an important theorem due to Cook (1971)
which asserts that any language in a certain wide class NP is
reducible to a specific set S, which corresponds to the problem
of deciding whether a boolean formula in conjunctive normal form
is satisfiable.

Let P(z) denote the class of subsets of I*¥xI* which are
recognizable in polynomial time. Given L 2) € P(z) and a poly-
nomial p, we define a language L as follows:

(2)

L= {xl there exists y such that <x,y> € L and 1g(y) < p(lg(x))}.

8 Reducibility Among Combinatorial Problems 229

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS 9N

(2)

We refer to L as the language derived from L by

p-bounded existential quantification.

Definition 4. NP is the set of languages derived from ele-
ments of P by polynomial-bounded existential quantification.

There is an alternative characterization of NP in terms of
nondeterministic Turing machines. A nondeterministic recognition
algorithm A is specified by:

a countable set D (the domain)

a finite alphabet A such that A* N{ACCEPT,REJECT} = ¢
an encoding function E: D - A¥

a transition relation T C A*x (A*U {ACCEPT,REJECT})

such that, for every vy, € A*, the set {<yo,y>| <y,»y> € T} has
fewer than kj, elements, where kg 1is a constant. A computation
of A on input x € D is a sequence yj,yp,... such that

y1 = E(x), <y;,yj41> € T for all i, and, if the sequence is
finite and ends with yy, then y, € {ACCEPT,REJECT}. A string
y € A* which occurs in some computation is an instantaneous
description. A finite computation ending in ACCEPT is an
accepting computation. Input x 1is accepted if there is an
accepting computation for x. If D=1 then A is a nondeter-
ministic string recognition algorithm and we say that A operates
in polynomial time if there is a polynomial p(-) such that, when-
ever A accepts x, there is an accepting computation for x of
length < p(lg(x)).

A nondeterministic algorithm can be regarded as a process
which, when confronted with a choice between (say) two alternatives,
can create two copies of itself, and follow up the consequences of
both courses of action. Repeated splitting may lead to an exponen-
tially growing number of copies; the input is accepted if any
sequence of choices leads to acceptance.

The nondeterministic 1l-tape Turing machines, multitape
Turing machines, random-access machines, etc. define classes of
nondeterministic string recognition algorithms by restricting the
encoding function E and transition relation T to particularly
simple forms. All these classes of algorithms, restricted to oper-
ate in polynomial time, define the same class of languages. More-
over, this class is NP.

Theorem 1. L € NP if and only if L is accepted by a non-
deterministic Turing machine which operates in polynomial time.

Proof. = Suppose L € NP. Then, for some L(2) ¢ P(2) and
some polynomial p, L is obtained from L 2) by p-bounded exis-
tential quantification. We can construct a nondeterministic

230 Richard M. Karp

92 RICHARD M. KARP

machine which first guesses the successive digits of a string vy
of length i_p(lg(y)) and then tests whether <x,y> € 1(2 . Such
a machine clearly recognizes L in polynomial time.

< Suppose L 1is accepted by a nondeterministic Turing
machine T which operates in time p. Assume without loss of
generality that, for any instantaneous description Z, there are
at most two instantaneous descriptions that may follow Z (i.e.,
at most two primitive transitions are applicable). Then the se-
quence of choices of instantaneous descriptions made by T in a
given computation can be encoded as a string y of 0's and 1's,
such that 1g(y) < p(lg(x)).

Thus we can construct a deterministic Turing machine T',
with Z*xZ* as its domain of inputs, which, on input <x,y>,
simulates the action of T on input x with the sequence of
choices y. Clearly T' operates in polynomial time, and L is
obtained by polynomial bounded existential quantification from the
set of pairs of strings accepted by T'.

The class NP is very extensive. Loosely, a recognition
problem is in NP if and only if it can be solved by a backtrack
search of polynomial bounded depth. A wide range of important
computational problems which are not known to be in P are obvious-
ly in NP. For example, consider the problem of determining whe-
ther the nodes of a graph G can be colored with k colors so
that no two adjacent nodes have the same color. A nondeterministic
algorithm can simply guess an assignment of colors to the nodes and
then check (in polynomial time) whether all pairs of adjacent nodes
have distinct colors.

In view of the wide extent of NP, the following theorem due
to Cook is remarkable. We define the satisfiability problem as
follows:

SATISFIABILITY

INPUT: Clauses Cp,Cp,...,C

PROPERTY: The conjunction o? the given clauses is satisfiable;

i.e., there is a set S C {x,X9,...,%X;X1,X9,...,%,} such that
a) S does not contain a complementary pair of literals

and b) SN Cr # ¢, k=1,2,...,p.

Theorem 2 (Cook). If L € NP then L « SATISFIABILITY.

The theorem stated by Cook (1971) uses a weaker notion of
reducibility than the one used here, but Cook's proof supports the
present statement.

Corollary 1. P = NP © SATISFIABILITY € P.

8 Reducibility Among Combinatorial Problems 231

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS 93

Proof. If SATISFIABILITY € P then, for each L € NP, L € P,
since L « SATISFIABILITY. If SATISFIABILITY ¢ P, then, since
clearly SATISFIABILITY € NP, P # NP

Remark. If P = NP then NP 1is closed under complementation
and polynomial-bounded existential quantification. Hence it is
also closed under polynomial-bounded universal quantification. It
follows that a polynomial-bounded analogue of Kleene's Arithmetic
Hierarchy [Rogers (1967)] becomes trivial if P = NP.

Theorem 2 shows that, if there were a polynomial-time algo-
rithm to decide membership in SATISFIABILITY then every problem
solvable by a polynomial-depth backtrack search would also be
solvable by a polynomial-time algorithm. This is strong circum-
stantial evidence that SATISFIABILITY ¢ P.

4, COMPLETE PROBLEMS

The main object of this paper is to establish that a large
number of important computational problems can play the role of
SATISFIABILITY in Cook's theorem. Such problems will be called
complete.

Definition 5. The language L is (polynomial) complete if
a) L € NP
and b) SATISFIABILITY « L.

Theorem 3. Either all complete languages are in P, or none
of them are. The former alternative holds if and only if P = NP.

We can extend the concept of completeness to problems defined
over countable domains other than I*.

Definition 6. Let D be a countable domain, e a 'standard"
one-one encoding e: D > I* and T a subset of D. Then T is
complete if and only if e(D) is complete.

Lemma 2. Let D and D' be countable domains, with one-one
encoding functions e and e'. Let TCD and T' CD'. Then
T « T' if there is a function F: D > D' such that
a) F(x) eT'®x€eT -1
and b) there is a function f € II such that £(x) = e'(F(e "(x)))
whenever e'(F(e'l(x))) is defined.

The rest of the paper is mainly devoted to the proof of the
following theorem.

232 Richard M. Karp
94 RICHARD M. KARP
Main Theorem. All the problems on the following list are
complete.
1. SATISFIABILITY
COMMENT: By duality, this problem is equivalent to deter-
mining whether a disjunctive normal form expression is a
tautology.
2. 0-1 INTEGER PROGRAMMING
INPUT: integer matrix C and integer vector d
PROPERTY: There exists a 0-1 vector x such that Cx = d.
3. CLIQUE
INPUT: graph G, positive integer k
PROPERTY: G has a set of k mutually adjacent nodes.
4, SET PACKING
INPUT: Family of sets {S.}, positive integer £
PROPERTY : {Sj} contains “£ mutually disjoint sets.
5. NODE COVER
INPUT: graph G', positive integer 2%
PROPERTY: There is a set R C N' such that |R| < & and
every arc is incident with some node in R.
6. SET COVERING .
INPUT: finite family of finite sets {Sj}, positive integer k
PROPERTY: There is a subfamily {T,} C {Sj} containing < k
sets such that LTh =Us .
J
7. FEEDBACK NODE SET
INPUT: digraph H, positive integer k
PROPERTY: There is a set R CV such that every (directed)
cycle of H contains a node in R.
8. FEEDBACK ARC SET
INPUT: digraph H, positive integer k
PROPERTY: There is a set S CE such that every (directed)
cycle of H contains an arc in S.
9. DIRECTED HAMILTON CIRCUIT
INPUT: digraph H
PROPERTY: H has a directed cycle which includes each node
exactly once.
10. UNDIRECTED HAMILTON CIRCUIT
INPUT: graph G
PROPERTY: G has a cycle which includes each node exactly
once.

8 Reducibility Among Combinatorial Problems

233

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS
11. SATISFIABILITY WITH AT MOST 3 LITERALS PER CLAUSE

literals from the set {ul,uz,...,um} U {Gl,ﬁz,...,um}
PROPERTY: The set {Dl,Dz,...,Dr} is satisfiable.

12. CHROMATIC NUMBER
INPUT: graph G, positive integer k
PROPERTY: There is a function ¢: N > Z, such that, if u
and v are adjacent, then ¢(u) # ¢(v).

13. CLIQUE COVER
INPUT: graph G', positive integer £
PROPERTY: N' is the union of £ or fewer cliques.

14, EXACT COVER
INPUT: family {Sj} of subsets of a set {uj, i = 1,2,...
PROPERTY: There i5 a subfamily {T,} C {S.} such that the

h h

15. HITTING SET
INPUT: family {Uj} of subsets of {s;, j = 1,2,...,r}
PROPERTY: There is a set W such that, for each i,
lwnu | =1.

16. STEINER TREE
INPUT: graph G, R C N, weighting function w: A > Z,
positive integer k

of nodes in R.

17. 3-DIMENSIONAL MATCHING
INPUT: set UC TXTxT, where T is a finite set
PROPERTY: There is a set W C U such that |W| = |T| and
no two elements of W agree in any coordinate.

18. KNAPSACK +1
INPUT: (a1,ap,...,ap,b) € 2"
PROPERTY: I ajxj =b has a 0-1 solution.

19. JOB SEQUENCING
INPUT: 'execution time vector" (Tl,...,g%) € Zp,
"deadline vector" (Dy,...,D) € Z
"penalty vector" (Pl""’Pp e zP
positive integer k
PROPERTY: There is a permutation 7 of {1,2,...,p} such
that
P
(jzl[lf Tyt gy > Prggy them Brgy else 01) <k

95

INPUT: Clauses D1,D9,...5Dp, each consisting of at most 3

,t}

sets T. are disjoint and UT, = USj = {ui, i=1,2,...,t}.

PROPERTY: G has a subtree of weight < k containing the set

Richard M. Karp

234

o
o
N
< swaTqoad @3a7dwo) - T FINOIA
[a)
o
£ 100 XVK
9]
oz
NOIIIINVA ONIONANDIS
1I00¥ID
NOLTIWVH
TAAL R A ONTHOIVK JaLOZIIANA
¥ANIZLS ONIIIIH \ TYNOISNINIA-E
// \ 1I0D¥ID
AIAOD YAAOD UZwamoo NOITINVH IS 0¥V 1dS HAON
ANDITO 10VXdE QEIOMIIC MOVEQdad NOvEqadd
HNINOVA mm;oo\
YADION DIIVROYHD LS 200N
qSAVID ¥Ad STVYEIIT € ISOW ONIWAVED0Ed 40010
IV HIIM ALITIGVIASIIVS YADIINI T-0
ALITISVIISILYS
0
o

8 Reducibility Among Combinatorial Problems

235

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS 97

20. PARTITION .
INPUT: (c1,Cps...5Cg) € Z
PROPERTY: There is a set I C {1,2,...,s} such that
C = C .
her P hgl b

21, MAX CUT
INPUT: graph G, weighting function w: A > Z, positive
integer W
PROPERTY: There is a set S C N such that

Y ow({u,wh) >wo .
{u,v}eA
u€s

V¢S

It is clear that these problems (or, more precisely, their
encodings into I¥*), are all in NP. We proceed to give a series
of explicit reductions, showing that SATISFIABILITY is reducible
to each of the problems listed. Figure 1 shows the structure of
the set of reductions. Each line in the figure indicates a reduc-
tion of the upper problem to the lower one.

To exhibit a reduction of a set TCD to aset T'CD',
we specify a function F: D > D' which satisfies the conditions
of Lemma 2. In each case, the reader should have little difficulty
in verifying that F does satisfy these conditions.

SATISFIABILITY « 0-1 INTEGER PROGRAMMING
1 if x, € C,
j i
c. . -1 if X, € C,
ij i i
0 otherwise

i=1,2,...,p

j=12,...,n

o
]

1 - (the number of complemented variables in Ci) .
i=1,2,...,pP.
SATISFIABILITY « CLIQUE

N = {<0,i>| o is a literal and occurs in Ci}

A= {{<0,i>,<8,j>}| i # j and o # &}

k = p, the number of clauses.

CLIQUE « SET PACKING

Assume N = {1,2,...,n}. The elements of the sets
$15S95...,8, are those two-element sets of nodes {i,j} not in A.

s; ={{1,3} {1,531 ¢ &, i=1,2,...,n
%=k .

236 Richard M. Karp

98 RICHARD M. KARP

CLIQUE « NODE COVER

G' 1is the complement of G.
2= |N| -k

NODE COVER « SET COVERING

Assume N' = {l,2,...,n}. The elements are the arcs of G'.
Sj is the set of arcs incident with node j. k = L.
NODE COVER « FEEDBACK NODE SET

vV =N'

E

{<u,v>| {u,v} € A"}
k 2

NODE COVER « FEEDBACK ARC SET

v =N'"x{0,1}
E = {<<u,0>,<u,1>>| u & N'} U {<<u,1>,<v,0>>| {u,v} € A"}
k= 2.

NODE COVER <« DIRECTED HAMILTON CIRCUIT

Without loss of generality assume A' = Zp.
V = {aj,a9,...,a9} U {<u,i,a>| u € N' is incident with i € A’
and o € {0,1}}
E = {<<u,i,0>,<u;i,1>>| <u,i,0> € V}
U {<<u,i,0>,<v,i,0>>| i € A", u and v are incident with i,
a e {0,1}}
U {<<u,i,1>,<u,j,0>>| u is incident with i and j and #h,
i < h < j, such that u is incident
with h}
U {<<u,i,1>,a¢>| 1 < £ < & and ¥h > i such that u is inci-
dent with h}
U {<af,<u,i,0>>| 1 <f <4 and #h < i such that u is inci-
dent with h} .

DIRECTED HAMILTON CIRCUIT « UNDIRECTED HAMILTON CIRCUIT

N = vx {0,1,2}

A = {{<u,0>,<u,1>},{<u,1>,<u,2>}| u € v}

U {{<u,2>,<v,0>}| <u,v> € E}

SATISFIABILITY « SATISFIABILITY WITH AT MOST 3 LITERALS PER CLAUSE

Replace a clause o0yUo,U-.-Ug , where the 0; are literals
and m > 3, by

(03 Yoy Vuy) (03 Y- -+ Vo, VUp) (G3 Yup) -+ (G, Vup)

where wu; 1is a new variable. Repeat this transformation until no
clause has more than three literals.

8 Reducibility Among Combinatorial Problems 237

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS 99

SATISFIABILITY WITH AT MOST 3 LITERALS PER CLAUSE
« CHROMATIC NUMBER

Assume without loss of generality that m > 4.
N = {ul,uz,...,um} U {ﬁl,l_lz,...,ﬁm} U {Vl,Vz,-..,Vm}
U {Dy,Dp,...,D }

A= {{ui’ﬁi}l i=1,2,...,n} U {{vi,vj}, i#j} U {{vi,xj}l i#j}
U {{Vi,;(j}l i#j} v {{“i:Df}I uj ¢ Df}) {{Gi’Df}I l_li € Df}
k=r+1

CHROMATIC NUMBER « CLIQUE COVER
G' is the complement of G
L=k .
CHROMATIC NUMBER « EXACT COVER
The set of elements is
NUAU{<u,e,f>| u is incident with e and 1 < f < k} .
The sets S:; are the following:

J
for each f, 1< f <k, and each u €N,

{u} U{<u,e,f5T e is incident with u}

for each e € A and each pair f;, f, such that
1<fy) <k, 1<fy,<k and fy # f,
{e}U{<u,e,f>,f#f1} U{<v,e,g>| g#fr} ,

where u and v are the two nodes incident with e.

EXACT COVER « HITTING SET
The hitting set problem has sets Uj and elements Si» such

that Sj € Ui had u; € Sj.

EXACT COVER « STEINER TREE

N = {no}VU{sj} Ufus}
R = {ng} U{u;}
A= {{“o’sj}} U{{Sj’ui}l uy € SJ}

w({no,Sj}) = lsjl
w({Sj,ui}) 0
k = l{ui}l .

EXACT COVER « 3-DIMENSIONAL MATCHING

Without loss of generality assume lSj| > 2 for each j.
Let T = {<i,3j>] u € Sj}. Let o be an arbitrary one-one function

238

Richard M. Karp

100 RICHARD M. KARP

from {u;} into T. Let m: T > T be a permutation such that,
for each fixed j, {<i, J>I u; € S } is a cycle of .
U= {<a(ui)s<i:J>’<l9J>>l <i,j> € T}
U {<B,0,m(0)>| for all i, B # a(u;)}

EXACT COVER < KNAPSACK

Let d = [{Sj}|+1. Let e { i ulesJ
d
a-1

if uy Let

i-1 t

d-1
|{Sj}l, aj = Z ejid and b = T+

KNAPSACK « SEQUENCING
p=r, Ti=Pi=ai’ Di=b.

KNAPSACK « PARTITION

s =r+2
cy =aj , 1= 1,2,...,r
Cr+l = b‘;l
Crpp = ('Z ai)+l-b
i=1

PARTITION =« MAX CUT

N = {1,2,...,s}
{{1,J}| ieN, jeN, i#j}
w({l,j} = cjrey

W= [-—ZZ ci]

Some of the reductions exhibited here did not originate with
the present writer. Cook (1971) showed that SATISFIABILITY «
SATISFIABILITY WITH AT MOST 3 LITERALS PER CLAUSE. The reduction

SATISFIABILITY « CLIQUE

is implicit in Cook (1970), and was also known to Raymond Reiter.
The reduction

NODE COVER « FEEDBACK NODE SET

was found by the Algorithms Seminar at the Cornell University
Computer Science Department. The reduction

NODE COVER « FEEDBACK ARC SET
was found by Lawler and the writer, and Lawler discovered the
reduction

EXACT COVER « 3-DIMENSIONAL MATCHING

8 Reducibility Among Combinatorial Problems 239

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS 101

The writer discovered that the exact cover problem was redu-
cible to the directed traveling-salesman problem on a digraph in
which the arcs have weight zero or one. Using refinements of the
technique used in this construction, Tarjan showed that

EXACT COVER « DIRECTED HAMILTON CIRCUIT
and, independently, Lawler showed that
NODE COVER « DIRECTED HAMILTON CIRCUIT .

The reduction
DIRECTED HAMILTON CIRCUIT « UNDIRECTED HAMILTON CIRCUIT

was pointed out by Tarjan.

Below we list three problems in automata theory and language
theory to which every complete problem is reducible. These pro-
blems are not known to be complete, since their membership in NP
is presently in doubt. The reader unacquainted with automata and
language theory can find the necessary definitions in Hopcroft and
Ullman (1969).

EQUIVALENCE OF REGULAR EXPRESSIONS
INPUT: A pair of regular expressions over the alphabet {0,1}
PROPERTY: The two expressions define the same language.

EQUIVALENCE OF NONDETERMINISTIC FINITE AUTOMATA

INPUT: A pair of nondeterministic finite automata with input
alphabet {0,1}

PROPERTY: The two automata define the same language.

CONTEXT-SENSITIVE RECOGNITION
INPUT: A context-sensitive grammar I and a string x
PROPERTY: x 1is in the language generated by T.

First we show that

SATISFIABILITY WITH AT MOST 3 LITERALS PER CLAUSE
« EQUIVALENCE OF REGULAR EXPRESSIONS .
The reduction is made in two stages. In the first stage we con-
struct a pair of regular expressions over an alphabet A = {uj,up,
...,un,ﬁl,ﬁz,...,ﬁn}. We then convert these regular expressions to

regular expressions over {0,1}.

The first regular expression is ATA* (more exactly, A is
written out as (ul+u2+'"+un+ﬁl+---+ﬁn), and AR represents n
copies of the expression for A concatenated together). The se-
cond regular expression is

n 4
poa* U U a*u a*a 4% U akE A% 0% U O oeey)
i=1 i1 i 1 h=1

240

Richard M. Karp

102 RICHARD M. KARP
where
A*SIA* if Dy = 031
A*GA*G 0% U A*G,A*G (A% if Dy = 0] Vo
w= Ll am? ae (P akal ks ks 1772
0(D) = < A*GIA*GHA*G40* UTA*G ARG 30%5 50
h K= k=" k= A%k P N T
U A"G,A"G1A7G3AT U A*GZA*03A*01A*
U A*55A%0 A%050% U A%55A%0,0707A

if Dy = o01YoyVo,

Now let m be the least positive integer > log]Al, and let
¢ be a 1-1 function from A into {0,1}™. Replace?each regular
expression by a regular expression over {0,1}, by making the
substitution a =+ ¢(a) for each occurrence of each element of A.

EQUIVALENCE OF REGULAR EXPRESSIONS « EQUIVALENCE OF NONDETERMINISTIC
FINITE AUTOMATA

There are standard polynomial-time algorithms [Salomaa (1969)]

to convert a regular expression to an equivalent nondeterministic
automaton. Finally, we show that, for any L € NP,

L « CONTEXT-SENSITIVE RECOGNITION

Suppose L 1is recognized in time p() by a nondeterministic
Turing machine. Then the following language L over the alphabet
{0,1,#} 1is accepted by a nondeterministic linear bounded automaton
which simulates the Turing machine:

£ (4P (180 28| | ¢ 1)
Hence I is context-sensitive and has a context-sensitive grammar
T'. Thus x € L iff
7 g2 (18(0) 4 (18(x))

is an acceptable input to CONTEXT-SENSITIVE RECOGNITION.

We conclude by listing the following important problems in NP
which are not known to be complete.

GRAPH ISOMORPHISM
INPUT: graphs G and G'
PROPERTY: G is isomorphic to G'.

NONPRIMES
INPUT: positive integer k
PROPERTY: k is composite.

LINEAR INEQUALITIES
INPUT: integer matrix C, integer vector d
PROPERTY: Cx > d has a rational solution.

8 Reducibility Among Combinatorial Problems

241

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS 103

APPENDIX I

Notation and Terminology Used in Problem Specification

PROPOSITIONAL CALCULUS

Xl’XZ""’xn ul,uz,...,um propositional variables

§1,§2,...,§n ﬁl,ﬁz,...,ﬁm comple@e?ts of)
propositional variables

0,04 literals

C1,C2,...,Cp D1,D2,...,Dr clauses

Ck E {Xl9x2’ e ,Xn,)_(l,)_(z,. .. ,;<n}
Dy C {ug,ug,een,up,by,Tg,...,0,}

A clause contains no complementary pair of literals.

SCALARS, VECTORS, MATRICES

Z the positive integers
zP the set of p-tuples of positive integers
Z the set {0,1,...,p-1}

P

k,W elements of Z
<x,y> the ordered pair <x,y>
(ai) (yj) d vectors with nonnegative integer components
(cij) (o matrices with integer components

GRAPHS AND DIGRAPHS

G = (N,A) G' = (N',A") finite graphs

N,N' sets of nodes ALA' sets of arcs
s,t,u,v nodes e,{u,v} arcs
(X,X) = {{u,v}| ue X and veX} cut

If s €X and t € i, (X,i) is a s-t cut.

w:A>Z w':A'>2Z weight functions
The weight of a subgraph is the sum of the weights of its arcs.

H = (V,E) digraph V set of nodes, E set of arcs
e,<u,v> arcs

SETS
the empty set
’SI the number of elements in the finite set S

{Sj} {Th} {Ui} finite families of finite sets

