
7. Applications of RS Codes: Some Examples

126 / 168

Application: PDF417 bar code

PDF417: A multi-row, 1D bar code (PDF: Portable Data File).
127 / 168

PDF417 bar code structure

In bar-code jargon, the
whole array is referred
to as a symbol

3–90
rows

17 “slots”

2 111 2 3 3 4

Codeword: an alternating pattern of 4 bars and 4 spaces, of
varying widths, satisfying some constraints (e.g. width ≤ 6).
Total width: 17; 417 comes from 4+17.

• Basic global parameters (height, width, ECC level, etc.) are encoded in the left
and right row indicators. A form of repetition coding (one copy per row).

• Consecutive rows use different sets of bar/space patterns (codewords). Each set
has 929 codewords; 3 disjoint sets are used cyclically.

• Number of rows: 3 ≤ h ≤ 90. Number of codewords per row: 1 ≤ w ≤ 30 (all
rows have the same number of codewords).

• Total number of codewords (all rows): n ≤ 928.

• Using fixed tables, each codeword is mapped to a number in {0, 1, . . . , 928}, and
interpreted as an element of GF(929) (929 is prime).

128 / 168

PDF417: Codeword mapping

129 / 168

PDF417: Error correction

• An error correction level, s, 0 ≤ s ≤ 8, is defined.

• The sequence of codewords (all rows) is interpreted as a code block in a
[k + r, k, r + 1] shortened Reed Solomon code over GF(929), where

• k is the number of codewords used for actual data.

• Raw data is mapped to codewords using various efficient modes
depending on whether the data is numeric, text, binary, or mixed.

• One bar code can encode more than 1100 raw bytes, 1800 ASCII
characters, or 2700 decimal digits, depending on the mode.

• r = 2s+1, so r ∈ {2, 4, 8, 16, 32, 64, 128, 256, 512}.
• k + r ≤ 928.

• 2 check digits are reserved for detection; the rest (if any) are used for erasure
and full error correction.

• The generator polynomial of the RS code is

g(x) =
r∏

i=1

(x− 3i) ,

3 is primitive in GF(929).

130 / 168

Application: QR codes

Version 1: 21× 21

Version 3: 29× 29 Version 10: 57× 57 Version 40: 177× 177

A truly 2D, highly versatile bar code (array referred to as a symbol)

131 / 168

Application: QR codes

Widespread use

• Product or part tracking (original motivation)

• Web links

• Restaurant menus

• Tickets

• Document verification

• . . . etc.

Robust ECC allows for data recovery under significant damage, and also for
graphic art customization.

Fully recoverable symbols

132 / 168

QR codes: Versions (= Sizes)

Capacity = number of main data bytes (including ECC)

133 / 168

QR codes: masking

• An XOR mask is applied by the encoder to the raw data to minimize
undesirable features (large areas of the same color, etc.).

• Several masks are tried, and the resulting array is scored for bad features.
Mask with the best score is chosen.

• The choice is encoded in the symbol.

134 / 168

QR codes: structure

Version 1 symbol: 21×21

locator patterns
(larger symbols
have more)

locator patterns

timing
information

format
information
(2 copies)

Format areas (2 copies): 5 bits of information, encoded with a [15, 5, 7] binary
BCH code (small code, exhaustive decoding possible). Format info (5 bits):

• 2 bits: error correction level (4 levels: L, M, Q, H).

• 3 bits: masking pattern.

135 / 168

QR codes: structure

Version
information
(2 copies)

Larger symbols (Version 7: 45× 45 and higher) also carry version information:
6 bits, encoded with a binary [18, 6, 8] code.
The code is derived from the [23, 12, 7] (perfect) Golay code by taking the even
codewords ([23, 11, 8]) and shortening.

As with format information, two copies are written.

136 / 168

QR codes: main data with error correction

Data is encoded using shortened RS
codes over GF(256).

ECC n, n− k for redundancy in
Level 21×21 symbol general case
L 26, 7 ≈ 14%
M 26, 10 ≈ 30%
Q 26, 13 ≈ 50%
H 26, 17 ≈ 60%

For larger symbols:
• Data is broken up into multiple

RS blocks (41×41 and larger)
• RS block length is limited so that

n− k ≤ 30 (complexity)
• RS blocks are interleaved

Examples:
array ECC message num. blocks ECC message num. blocks

vers. size level bytes ×(n, n− k) level bytes ×(n, n− k)
10 57×57 L 274 2×(86, 18) Q 154 6×(43, 24)

2×(87, 18) 2×(44, 24)
40 177×177 L 2956 19×(148, 30) Q 1666 34×(54, 30)

6×(149, 30) 34×(55, 30)

137 / 168

Other applications

CD DVD Blu-ray

≈ 1mm-wide cut
CD still plays normally

138 / 168

Other applications

Magnetic tape data storage

HDMI protocol

Space communication

... and many more ...

139 / 168

Is coding any good?

• Coding protects bits against noise, but ...
• We need to send more bits, which are also exposed to noise.
• If we have a limited energy budget, each bit gets less energy than in the

uncoded case, which makes it more vulnerable to noise.
• Is the trade-off worth it?

• Simple physical model for BSC channel

• Each bit is sent as an electrical signal of amplitude S:
+S → 0
−S → 1

• The signal is affected by additive Gaussian noise of zero mean and
variance σ2 = 1 (by choosing appropriate scaling for S).

• A bit is flipped by the channel if the noise exceeds S in the “wrong
direction”. This has probability

pbit =
1− erf(S/

√
2)

2
.

+S

noise

=⇒

received

• The signal to noise ratio is given by

SNR = 10 log10
S2

2R
dB,

where R is the code rate. This takes into account the “energy dilution”
due to coding (S2 = 2R·10SNR/10, lower R =⇒ lower energy/bit).

140 / 168

Is coding any good?

pbit =
1− erf(S/

√
2)

2
, SNR = 10 log10

S2

2R
dB.

These equations allow us to express pbit as a function of SNR.

141 / 168

Is coding any good?

• Say we use an [n, n− r, r + 1] RS code over F2m , and we use a decoder that
corrects up to t = ⌊r/2⌋ symbol errors (this is often not the best code to use
for the BSC, but good enough for the point we are trying to make).

• The probability of a symbol being hit by noise is psymb = 1− (1− pbit)
m.

• The probability of a code block not being decoded correctly is

Pblock =
n∑

i=t+1

(
n

i

)
pisymb(1− psymb)

n−i = 1−
t∑

i=0

(
n

i

)
pisymb(1− psymb)

n−i.

These sums may be tricky to compute numerically. Suggestions:
• Compute terms in the log domain, exponentiate before adding.
• Use gamma and log-gamma functions for binomial coefficients (Γ(n+ 1) = n!).

• As before, we can express psymb and Pblock as functions of SNR.

• In the uncoded case, we send raw blocks of k = n− r symbols each, and the
probability of a block being hit is

PU
block = 1− (1− psymb)

k.

142 / 168

Is coding any good?

• Example: RS code with n = 128, r = 16 over F28 .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SNR (dB)

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

Pblock

coded uncoded

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SNR (dB)

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

Pblock

coded uncoded

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SNR (dB)

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

Pblock

coded uncoded

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SNR (dB)

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

Pblock

coded uncoded

coding gain

7dB ≈ 5× energy

Yes, coding is very good!

143 / 168

