7. Codes Related to GRS Codes #### Alternant Codes • Let $\mathbb{F} = \mathbb{F}_q$ and let \mathcal{C}_{GRS} be an [N,K,D] GRS code over $\Phi = \mathbb{F}_{q^m}$. The set of codewords of \mathcal{C}_{GRS} with coordinates in \mathbb{F} , is called an alternant code, $\mathcal{C}_{\text{alt}} = \mathcal{C}_{\text{GRS}} \cap \mathbb{F}^N$. For a PCM H_{GRS} of \mathcal{C}_{GRS} , we have $$\mathbf{c} \in \mathcal{C}_{\mathrm{alt}} \quad \Longleftrightarrow \quad \mathbf{c} \in \mathbb{F}^N \text{ and } H_{\scriptscriptstyle\mathrm{GRS}} \mathbf{c}^T = \mathbf{0}.$$ This is also called a *sub-field sub-code*. $$H_{\text{GRS}} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_N \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_N^2 \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_1^{N-K-1} & \alpha_2^{N-K-1} & \dots & \alpha_n^{N-K-1} \end{pmatrix} \begin{pmatrix} v_1 & & & \\ & v_2 & & 0 \\ 0 & & \ddots & \\ & & & v_N \end{pmatrix}.$$ #### Alternant Codes $$H_{\text{GRS}} = \begin{pmatrix} v_1 & v_2 & \dots & v_N \\ v_1 \alpha_1 & v_2 \alpha_2 & \dots & v_n \alpha_N \\ v_1 \alpha_1^2 & v_2 \alpha_2^2 & \dots & v_n \alpha_N^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ v_1 \alpha_1^{N-K-1} & v_2 \alpha_2^{N-K-1} & \dots & v_n \alpha_n^{N-K-1} \end{pmatrix}.$$ • Let [n, k, d] be the parameters of \mathcal{C}_{alt} . Clearly, n = N, and $d \geq D$; D is called the *designed distance*. Each row of $H_{ ext{GRS}}$ translates to $\leq m$ independent rows over \mathbb{F} , so $$n-k \leq (N-K)m = (D-1)m \quad \implies \quad k \geq n-(D-1)m$$ Decoding: can be done with the same algorithm that decodes $\mathcal{C}_{\text{GRS}}.$ # Binary Narrow-Sense Alternant Codes • Consider $F = \mathbb{F}_2$ and \mathcal{C}_{GRS} narrow sense $(v_j = \alpha_j)$ over \mathbb{F}_{2^m} , with odd D and $N < 2^m - 1$. $$H_{\text{GRS}} = \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ \alpha_1^3 & \alpha_2^3 & \dots & \alpha_n^3 \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_1^{D-1} & \alpha_2^{D-1} & \dots & \alpha_n^{D-1} \end{pmatrix}$$ For $\mathbf{c} \in \mathbb{F}_2^N$, $$\mathbf{c} \in \mathcal{C}_{\mathrm{alt}} \iff \sum_{j=1}^{n} c_j \alpha_j^i = 0 \quad \text{for } i = 1, 2, 3, \dots, D-1.$$ Over \mathbb{F}_2 , $$\sum_{j=1}^{n} c_j \alpha_j^i = 0 \quad \iff \quad \sum_{j=1}^{n} c_j \alpha_j^{2i} = 0$$ Therefore, check equations for even values of i are dependent, and the redundancy bound can be improved to $$n-k \le \frac{(D-1)m}{2} \ .$$ # Binary Narrow-Sense Alternant Codes A more compact PCM for binary narrow-sense Calt: $$\begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^3 & \alpha_2^3 & \dots & \alpha_n^3 \\ \alpha_1^5 & \alpha_2^5 & \dots & \alpha_n^5 \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_1^{D-2} & \alpha_2^{D-2} & \dots & \alpha_n^{D-2} \end{pmatrix}$$ Decoding: same as C_{GRS}, but error values not needed ⇒ simpler key equation algorithm. #### BCH Codes Bose-Chaudhuri-Hocquenghem (BCH) codes are alternant codes that correspond to conventional RS codes. For $\mathcal{C}_{RS}:[N,K,D]$ over \mathbb{F}_{a^m} , we have $\mathcal{C}_{BCH}=\mathbb{F}_a^N\cap\mathcal{C}_{RS}$. $$H_{\mathrm{RS}} = \begin{pmatrix} 1 & \alpha^b & \alpha^{2b} & \cdots & \alpha^{(N-1)b} \\ 1 & \alpha^{b+1} & \alpha^{2(b+1)} & \cdots & \alpha^{(N-1)(b+1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha^{b+D-2} & \alpha^{2(b+D-2)} & \cdots & \alpha^{(N-1)(b+D-2)} \end{pmatrix}$$ As before, when $b=1$, we can eliminate evennumbered rows As with RS codes, to obtain a cyclic code, we choose N a divisor of q^m-1 . More often, we use a shortened code, where $N \leq q^m-1$ is arbitrary. We lose the cyclic property, but all other properties hold. #### BCH Codes For \mathcal{C}_{RS} : [N, K, D] over \mathbb{F}_{q^m} , $\mathcal{C}_{BCH} = \mathbb{F}_q^N \cap \mathcal{C}_{RS}$. $$H_{\mathrm{RS}} = \begin{pmatrix} 1 & \alpha^b & \alpha^{2b} & \cdots & \alpha^{(N-1)b} \\ 1 & \alpha^{b+1} & \alpha^{2(b+1)} & \cdots & \alpha^{(N-1)(b+1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha^{b+D-2} & \alpha^{2(b+D-2)} & \cdots & \alpha^{(N-1)(b+D-2)} \end{pmatrix} \qquad \begin{array}{c} \text{As before, when} \\ b=1, & \text{we can} \\ \text{eliminate even-numbered rows} \\ \end{array}$$ #### Summary of BCH (and shortened BCH) code definition - Code of length $1 \le n \le q^m 1$ over \mathbb{F}_q for some choice of m. If we want a cyclic code, we pick m to be the smallest integer such that $n|(q^m-1)$. - Let $\alpha \in \mathbb{F}_{q^m}$ be an element of order $n' \geq n$ (n' = n for a cyclic code). - D > 0, b: design parameters $$C_{\text{BCH}} \ = \ \left\{ c(x) \in (\mathbb{F}_q)_n[x] \, : \, c(\alpha^{\ell}) = 0, \ \ell = b, b+1, \dots, b+D-2 \right\}$$ - BCH codes are widely used in practice, for example, in *flash memories*. - BCH codes are often superior to RS codes on the BSC. ## BCH Code Example We design a BCH code of length n=15 over \mathbb{F}_2 that can correct 3 errors. The code is primitive, of length 15 with roots in \mathbb{F}_{2^4} . - m = 4. - $b = 1 \implies$ narrow-sense - D = 7 \implies 3-error correcting - $n-k \le (D-1)m/2 = 12$ - resulting $\mathcal{C}_{\scriptscriptstyle \mathrm{BCH}}$ is $[15,\,\geq 3,\,\geq 7]$ over \mathbb{F}_2 - Let α be a primitive element of $\Phi = \mathbb{F}_{2^4}$, which we choose as a root of $p(x) = x^4 + x + 1$ (primitive polynomial). - a 12 × 15 binary PCM of the code can be obtained by representing the entries in H_Φ below as column vectors in F⁴₂. $$H_{\Phi} = \begin{pmatrix} 1 & \alpha & \alpha^2 & \dots & \alpha^j & \dots & \alpha^{13} & \alpha^{14} \\ 1 & \alpha^3 & \alpha^6 & \dots & \alpha^{3j} & \dots & \alpha^{39} & \alpha^{42} \\ 1 & \alpha^5 & \alpha^{10} & \dots & \alpha^{5j} & \dots & \alpha^{65} & \alpha^{70} \end{pmatrix}$$ Notice that $\alpha^{15} = 1$, so $\alpha^{39} = \alpha^9$, etc. # BCH Code Example (continued) • A codeword $\mathbf{c} \in \mathcal{C}_{\mathrm{BCH}}$ satisfies $c(\alpha) = 0$. Therefore, $$0 = c(\alpha)^2 = \left(\sum_{i=0}^{n-1} c_i x^i\right)^2 = \sum_{i=0}^{n-1} c_i^2 x^{2i} = \sum_{i=0}^{n-1} c_i x^{2i} = c(\alpha^2).$$ For the same reason, $c(\alpha) = c(\alpha^2) = c(\alpha^4) = c(\alpha^8) = 0$ $\Rightarrow M_1(x)$, the minimal polynomial of α , divides c(x). - Similarly for $M_3(x)$ and $M_5(x)$, the min. polys. of α^3 and α^5 resp. - Let $g(x) = M_1(x)M_3(x)M_5(x)$. Then, $$\mathbf{c} \in \mathcal{C}_{\mathrm{BCH}} \iff g(x)|c(x).$$ - g(x) is the generator polynomial of C_{BCH}, which is presented as a (shortened) cyclic binary code. - In the example, $$M_1(x) = x^4 + x + 1,$$ $M_3(x) = x^4 + x^3 + x^2 + x + 1,$ $M_5(x) = x^2 + x + 1.$ $$\Rightarrow g(x) = x^{10} + x^8 + x^5 + x^4 + x^2 + x + 1.$$ # BCH Code Example (continued) • As with RS codes, we have the polynomial (cyclic) interpretation of BCH codes: $u(x) \mapsto c(x) = u(x)g(x)$, with $u(x) \in \mathbb{F}_2[x]$ (a binary polynomial of degree < k), corresponding to a non-systematic binary generator matrix $$G = \begin{pmatrix} g_0 & g_1 & \dots & g_{n-k} \\ & g_0 & g_1 & \dots & g_{n-k} & & 0 \\ 0 & & \ddots & \ddots & & \ddots & \\ & & g_0 & g_1 & \dots & g_{n-k} \end{pmatrix} \quad (g_{n-k}=1, k \text{ rows})$$ - In the example, this representation also implies that $k_{BCH}=15-10=5$, the rank of G. - Codes with dimension better than the bound are obtained when some of the minimal polynomials M_i are of degree less than m. This happened, in our example, for M₅. - As in the RS case, we can construct a *systematic encoder* based on g(x) and using a *binary* feedback shift-register. The [15,5,7] BCH code in the example is used for format information in QR codes. ## Interleaving and Burst Error Correction Burst errors - *Interleaving* spreads bursts of errors among codewords, so that each codeword is affected by a small number of errors. - Cost: increased *latency* ## Product codes Let C_1 and C_2 be $[n_1, k_1, d_1]$ and $[n_2, k_2, d_2]$ (usually RS) codes, resp. # Decoding product codes - A decoding strategy: - Use a (small) part of the C_1 redundancy to correct random errors, and the rest for robust error detection (so that burst errors in rows will be detected with high probability). - Mark detected corrupted rows as erased. - Use the column code \mathcal{C}_2 to correct the erasures (and remaining random errors, if any, and if possible). Recall that erasures are "cheaper" to correct than full errors. - Other strategies are possible, including row/column iterations. ### Concatenated Codes - Let $\mathbb{F} = \mathbb{F}_q$ and $\Phi = \mathbb{F}_{q^k}$, k > 1. - Let $\mathcal{C}_{\mathrm{out}}$ be an [N, K, D] code over Φ (the *outer code*). - Let \mathcal{C}_{in} be an [n, k, d] code over \mathbb{F} (the *inner code*). - Notice that the dimension k of $C_{\rm in}$ is the same as the extension degree of Φ over \mathbb{F} . - Represent Φ as vectors in \mathbb{F}^k using a fixed basis of Φ over \mathbb{F} . - ullet A concatenated code $\mathcal{C}_{\mathrm{cct}}$ is defined by the following #### **Encoding Procedure:** **Input:** A *message* \mathbf{u} of length K over Φ . **Output:** A *codeword* \mathbf{c}_{cct} of length nN over \mathbb{F} . - Step 1: Encode \mathbf{u} into a codeword $\mathbf{c}_{\mathrm{out}} \in \mathcal{C}_{\mathrm{out}}$. - Step 2: Interpret each of the N symbols of $\mathbf{c}_{\mathrm{out}}$ as a word of length k over \mathbb{F} . Encode it with $\mathcal{C}_{\mathrm{in}}$. ### Concatenated Codes - \mathcal{C}_{cct} has parameters $[n_{\text{cct}}, k_{\text{cct}}, d_{\text{cct}}] = [nN, kK, \geq dD]$ over F. - As with product codes, different decoding strategies are possible. - Typically, we use C_{in} for combined error correction/detection. When errors are detected without correction, the symbol is marked as erased for C_{out}. - \bullet Then we use $\mathcal{C}_{\mathrm{out}}$ to correct erasures and errors. The process may be iterative. - Forney's *Generalized Minimum Distance* decoding can correct up to (dD-1)/2 errors. #### Concatenated Codes - $\mathcal{C}_{\mathrm{out}}$ is typically taken to be a GRS code. - By letting k grow, we can obtain arbitrarily long codes over \mathbb{F}_q , for fixed q. - By careful choice of $\mathcal{C}_{\mathrm{in}}$, very good codes can be constructed this way. - Codes with $R_{\rm cct}$ and $d_{\rm cct}/n_{\rm cct}$ bounded away from zero as $k \to \infty$, which can be constructed *explicitly* and have efficient encoding/decoding algorithms. - Even better, codes that achieve channel capacity for the QSC channel, still with explicit constructions and efficient encoding/decoding algorithms. - Variant: use a different $C_{\rm in}$ for each coordinate of $C_{\rm out}$. - Notice that what is exponential in k may be linear in N: ML decoding for C_{in} may be affordable.