7. Codes Related to GRS Codes
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Alternant Codes

® Let F =T, and let Cors be an [N, K, D] GRS code over & = Fm.
The set of codewords of C.s with coordinates in I, is called an
alternant code, Coiy = Cons NFN. For a PCM H s of Cans, we have

ceCy <= ceFYand Hypsc! = 0.

This is also called a sub-field sub-code.

1 1 1

v1
1 a2 anN 0
o2 o2 o2 V2
Hgrs = ! 2 N 0
K- Kk ‘ k- UN
aN-K-1 G N-K-1 o N-K-1
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Alternant Codes

U1 V2 e UN
V101 Va2 P Un XN
2 2 2
V1 V2 (v L. Upo
HGR.S — 11 2o nt N
N—-K-1 N—-K-1 N—-—K-1
V10 V20y P UnQp,

® let [n,k,d] be the parameters of C,;. Clearly, n = N, and d > D;
D is called the designed distance.
Each row of Hg s translates to < m independent rows over I, so

n—k<(N—-Km=(D-1m = k>n—(D—-1)m

Decoding: can be done with the same algorithm that decodes Cqys.
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Binary Narrow-Sense Alternant Codes

® Consider F' = F3 and Cgrs narrow sense (v; = ;) over Fam, with odd D
and N < 2™ — 1.

(e5] (%) - [07%)
2 2 2
a7 Qo N (077
3 3 3
HGRS — (%1 (6% N Q.
-1 -1 D-1
o) oy [emy

For c € FY,

cECa = > caj=0 for i=1,23,... D-1.

Jj=1

n n

i 20 _
g cja; =0 <= g cja; =0
j=1 j=1

Therefore, check equations for even values of i are dependent, and the
redundancy bound can be improved to

(D-1)m

-

Over s,

n—k<

139 /159



Binary Narrow-Sense Alternant Codes

® A more compact PCM for binary narrow-sense C,j;:

Qq Q2 . (679
3 3 3
[e%] (6] e Ay
n
ol a . «a,
-2 —2 —2
o) a; gy

® Decoding: same as Cgrs, but error values not needed
= simpler key equation algorithm.
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BCH Codes

® Bose-Chaudhuri-Hocquenghem (BCH) codes are alternant codes that
correspond to conventional RS codes.

For CRS : [N, K, D} over ]qu, we have CBCH = ]F(IZV N CRS-

ab a? L As before, when
1 abtt Q2(0+1) o a(N=D(041) b=1, we can
Hrs=| . . . . eliminate even-
s . : numbered rows
1 abtD—2 20b+D=2) . (N=1)(b+D-2)

® As with RS codes, to obtain a cyclic code, we choose N a divisor of
q™ — 1. More often, we use a shortened code, where N < ¢™ —1is
arbitrary. We lose the cyclic property, but all other properties hold.
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BCH Codes

For Crs : [N, K, D] over Fym, Cpcn = FY N Crs.

N—
1 aZ a%b a(N l)bb As before, when
1 abt? a2(b+1) S aN=D(0+D b=1, we «can
Hgrgs = : : : eliminate even-
Lo : . bered
1 abtD—2 42(+D-2) ... (N-1)(b+D-2) numbered rows

Summary of BCH (and shortened BCH) code definition

® Code of length 1 < n < ¢™ — 1 over F, for some choice of m. If we want
a cyclic code, we pick m to be the smallest integer such that n|(¢™ — 1).

® Let o € Fym be an element of order n’ > n (n’ = n for a cyclic code).

® D >0, b: design parameters

Coon = {c(x)e(ﬁq)n[x] : e(al) = 0, e:b,b+1,...,b+p_2}

® BCH codes are widely used in practice, for example, in flash memories.
® BCH codes are often superior to RS codes on the BSC.
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BCH Code Example

We design a BCH code of length n = 15 over F5 that can correct 3 errors. The
code is primitive, of length 15 with roots in Fya.

* m=4.

® b=1 = narrow-sense

® D=7 = 3-error correcting
n—k<(D-1)m/2=12

resulting Cgcn is [15, >3, >7] over

Let « be a primitive element of & = [F,4, which we choose as a root of
p(x) = z* + 2 + 1 (primitive polynomial).

a 12 x 15 binary PCM of the code can be obtained by representing the
entries in Hg below as column vectors in Fa.

1 a o ... o ... o ot

He = 1 o o .. oa¥ . o a*?
| )

1 o ' .. ¥ .. a% Q"

Notice that a!® = 1, so & = o, etc.
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BCH Code Example (continued)

A codeword ¢ € Cpcn satisfies ¢(a)) = 0. Therefore,
n—1 ) 2 n—1
i=0 i=0

For the same reason, c(a) = c(a?) = c¢(a?) = c(as) =0
= M, (z), the minimal polynomial of «, divides ¢(x).

® Similarly for M3(z) and Ms(x), the min. polys. of a® and o resp.

Let g(x) = M1 (x)Ms(x)Ms(z). Then,
Cc Ec CBCH = g(I)|C(I)
g(z) is the generator polynomial of Crcy, which is presented as a
(shortened) cyclic binary code.
In the example,
M (z) = 2+ +1,
Mi(z)=a"+2° + 2+ +1,
Ms(z) = 2 +z + 1.

= g@)=2""+2 +2°+2 +P 41,
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BCH Code Example (continued)

® As with RS codes, we have the polynomial (cyclic) interpretation of BCH
codes: u(z) — c(z)=u(z)g(x), with u(z) € Faz[z] (a binary polynomial
of degree < k), corresponding to a non-systematic binary generator matrix

go g1 “ee gn—k

go g1 gn—k 0
G = . . . (gn-r=1, krows)

go g1 coo On—k

® |n the example, this representation also implies that kpcy = 15— 10 = 5,
the rank of G.

® Codes with dimension better than the bound are obtained when some of
the minimal polynomials M; are of degree less than m.
This happened, in our example, for Ms.

® As in the RS case, we can construct a systematic encoder based on g(x)
and using a binary feedback shift-register.

The [15,5,7) BCH code in the example is used for format information in
QR codes.
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Interleaving and Burst Error Correction

YFFFFFFFFY

e Burst errors |

code words

VY

burst

< depth >
e Interleaving spreads bursts of errors among codewords, so that each
codeword is affected by a small number of errors.

e Cost: increased latency
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Product codes

Let C1 and Cy be [n1, k1, d1] and [ne, ks, ds] (usually RS) codes, resp.

¢ m »|
[ kl " |
K=
= ¥~ | " burst
I error
|
O Raw
ez o Data C, checks
7N \ on rows
< [} [N———
1 o
" \
checks
v X 1 \ on checks
random C2 checks

error on columns
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Decoding product codes

e A decoding strategy:

® Use a (small) part of the C;
— w | " burst redundancy to correct random

: e errors, and the rest for robust
error detection (so that burst

= Data C, checks errors in rows will be detected
m \{_enrows with high probability).
® Mark detected corrupted rows as

o erased.
\ ® Use the column code C> to correct

| 1 AL hecke the erasures (and remaining

ra}‘dom C. checks random errors, if any, and if
2

error on columns possible). Recall that erasures are
“cheaper” to correct than full
errors.
® Other strategies are possible,
including row/column iterations.

| .0

1§}
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Concatenated Codes

o letF=TF,and ® =F,, k> 1.
o Let Coyt be an [N, K, D] code over ® (the outer code).

Let Cip, be an [n, k, d] code over TF (the inner code).

® Notice that the dimension k of C;, is the same as the extension
degree of ® over F.

Represent ® as vectors in ¥ using a fixed basis of ® over F.

A concatenated code C..; is defined by the following
Encoding Procedure:

Input: A message u of length K over ®.
Output: A codeword c..; of length nN over F.

® Step 1: Encode u into a codeword cout € Cout.

® Step 2: Interpret each of the N symbols of ¢yt
as a word of length k over F. Encode it with Cj;,.
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Concatenated Codes

-— K — 5 message
encode I‘_ . _J [ I ] | in ®F
with Cout
[N, K] codeword in
en.code L T - I | Cout C N
with C, ’7 \
Cin -
[ | — I | codeword in
N
:—k -n>—>- [nN, kK] Ccct cFn

o C.ct has parameters [ncet, kect, dect] = [N, kK, > dD] over F.
e As with product codes, different decoding strategies are possible.

® Typically, we use Cin for combined error correction/detection. When errors
are detected without correction, the symbol is marked as erased for Coys.-

® Then we use Cout to correct erasures and errors. The process may be
iterative.

® Forney's Generalized Minimum Distance decoding can correct up to
(dD—1)/2 errors.
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Concatenated Codes

o Coyt is typically taken to be a GRS code.
® By letting k£ grow, we can obtain arbitrarily long codes over F,, for
fixed q.
® By careful choice of Cy,, very good codes can be constructed this
way.
® Codes with Rect and dect/nect bounded away from zero as k — oo,
which can be constructed explicitly and have efficient
encoding/decoding algorithms.
® Even better, codes that achieve channel capacity for the QSC
channel, still with explicit constructions and efficient
encoding/decoding algorithms.
® Variant: use a different C;,, for each coordinate of Co;.
® Notice that what is exponential in & may be linear in N: ML
decoding for Cy,, may be affordable.
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