
7. Codes Related to GRS Codes

136 / 159



Alternant Codes

• Let F = Fq and let CGRS be an [N,K,D] GRS code over Φ = Fqm .
The set of codewords of CGRS with coordinates in F, is called an
alternant code, Calt = CGRS ∩FN . For a PCM HGRS of CGRS, we have

c ∈ Calt ⇐⇒ c ∈ FN and HGRSc
T = 0.

This is also called a sub-field sub-code.

HGRS =


1 1 . . . 1
α1 α2 . . . αN

α2
1 α2

2 . . . α2
N

...
...

...
...

αN−K−1
1 αN−K−1

2 . . . αN−K−1
n




v1
v2 0

0
. . .

vN

 .

137 / 159



Alternant Codes

HGRS =


v1 v2 . . . vN
v1α1 v2α2 . . . vnαN

v1α
2
1 v2α

2
2 . . . vnα

2
N

...
...

...
...

v1α
N−K−1
1 v2α

N−K−1
2 . . . vnα

N−K−1
n

 .

• Let [n, k, d] be the parameters of Calt. Clearly, n = N , and d ≥ D;
D is called the designed distance.
Each row of HGRS translates to ≤ m independent rows over F, so

n− k ≤ (N −K)m = (D − 1)m =⇒ k ≥ n− (D − 1)m

Decoding: can be done with the same algorithm that decodes CGRS.

138 / 159



Binary Narrow-Sense Alternant Codes

• Consider F = F2 and CGRS narrow sense (vj = αj) over F2m , with odd D
and N ≤ 2m − 1.

HGRS =


α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

α3
1 α3

2 . . . α3
n

...
...

...
...

αD−1
1 αD−1

2 . . . αD−1
n


For c ∈ FN

2 ,

c ∈ Calt ⇐⇒
n∑

j=1

cjα
i
j = 0 for i = 1, 2, 3, . . . , D−1 .

Over F2, n∑
j=1

cjα
i
j = 0 ⇐⇒

n∑
j=1

cjα
2i
j = 0

Therefore, check equations for even values of i are dependent, and the
redundancy bound can be improved to

n− k ≤ (D−1)m
2

.

139 / 159



Binary Narrow-Sense Alternant Codes

• A more compact PCM for binary narrow-sense Calt:
α1 α2 . . . αn

α3
1 α3

2 . . . α3
n

α5
1 α5

2 . . . α5
n

...
...

...
...

αD−2
1 αD−2

2 . . . αD−2
n


• Decoding: same as CGRS, but error values not needed
⇒ simpler key equation algorithm.

140 / 159



BCH Codes

• Bose-Chaudhuri-Hocquenghem (BCH) codes are alternant codes that
correspond to conventional RS codes.

For CRS : [N,K,D] over Fqm , we have CBCH = FN
q ∩ CRS.

HRS =


1 αb α2b · · · α(N−1)b

1 αb+1 α2(b+1) · · · α(N−1)(b+1)

...
...

...
...

1 αb+D−2 α2(b+D−2) · · · α(N−1)(b+D−2)


As before, when
b=1, we can
eliminate even-
numbered rows

• As with RS codes, to obtain a cyclic code, we choose N a divisor of
qm − 1. More often, we use a shortened code, where N ≤ qm − 1 is
arbitrary. We lose the cyclic property, but all other properties hold.

141 / 159



BCH Codes

For CRS : [N,K,D] over Fqm , CBCH = FN
q ∩ CRS.

HRS =


1 αb α2b · · · α(N−1)b

1 αb+1 α2(b+1) · · · α(N−1)(b+1)

...
...

...
...

1 αb+D−2 α2(b+D−2) · · · α(N−1)(b+D−2)


As before, when
b=1, we can
eliminate even-
numbered rows

Summary of BCH (and shortened BCH) code definition

• Code of length 1 ≤ n ≤ qm − 1 over Fq for some choice of m. If we want
a cyclic code, we pick m to be the smallest integer such that n|(qm − 1).

• Let α ∈ Fqm be an element of order n′ ≥ n (n′ = n for a cyclic code).

• D > 0, b: design parameters

CBCH =
{
c(x) ∈ (Fq)n[x] : c(α

ℓ) = 0, ℓ = b, b+ 1, . . . , b+D − 2
}

• BCH codes are widely used in practice, for example, in flash memories.

• BCH codes are often superior to RS codes on the BSC.
142 / 159



BCH Code Example

We design a BCH code of length n = 15 over F2 that can correct 3 errors. The
code is primitive, of length 15 with roots in F24 .

• m = 4.

• b = 1 =⇒ narrow-sense

• D = 7 =⇒ 3-error correcting

• n− k ≤ (D−1)m/2 = 12

• resulting CBCH is [15, ≥3, ≥7] over F2

• Let α be a primitive element of Φ = F24 , which we choose as a root of
p(x) = x4 + x+ 1 (primitive polynomial).

• a 12× 15 binary PCM of the code can be obtained by representing the
entries in HΦ below as column vectors in F4

2.

HΦ =

 1 α α2 . . . αj . . . α13 α14

1 α3 α6 . . . α3j . . . α39 α42

1 α5 α10 . . . α5j . . . α65 α70


Notice that α15 = 1, so α39 = α9, etc.

143 / 159



BCH Code Example (continued)

• A codeword c ∈ CBCH satisfies c(α) = 0. Therefore,

0 = c(α)2 =

(
n−1∑
i=0

cix
i

)2

=

n−1∑
i=0

c2ix
2i =

n−1∑
i=0

cix
2i = c(α2).

For the same reason, c(α) = c(α2) = c(α4) = c(α8) = 0
⇒ M1(x), the minimal polynomial of α, divides c(x).

• Similarly for M3(x) and M5(x), the min. polys. of α3 and α5 resp.
• Let g(x) = M1(x)M3(x)M5(x). Then,

c ∈ CBCH ⇔ g(x)|c(x).

• g(x) is the generator polynomial of CBCH, which is presented as a
(shortened) cyclic binary code.

• In the example,
M1(x) = x4 + x+ 1,
M3(x) = x4 + x3 + x2 + x+ 1,
M5(x) = x2 + x+ 1.

⇒ g(x) = x10 + x8 + x5 + x4 + x2 + x+ 1 .

144 / 159



BCH Code Example (continued)

• As with RS codes, we have the polynomial (cyclic) interpretation of BCH
codes: u(x) 7→ c(x)=u(x)g(x), with u(x) ∈ F2[x] (a binary polynomial
of degree < k), corresponding to a non-systematic binary generator matrix

G =


g0 g1 . . . gn−k

g0 g1 . . . gn−k 0

0 . . .
. . . · · ·

. . .

g0 g1 . . . gn−k

 (gn−k=1, k rows)

• In the example, this representation also implies that kBCH = 15− 10 = 5,
the rank of G.

• Codes with dimension better than the bound are obtained when some of
the minimal polynomials Mi are of degree less than m.
This happened, in our example, for M5.

• As in the RS case, we can construct a systematic encoder based on g(x)
and using a binary feedback shift-register.

The [15, 5, 7] BCH code in the example is used for format information in
QR codes.

145 / 159



Interleaving and Burst Error Correction

• Burst errors

... ...
code words

n
burst

depth

• Interleaving spreads bursts of errors among codewords, so that each
codeword is affected by a small number of errors.

• Cost: increased latency

146 / 159



Product codes

Let C1 and C2 be [n1, k1, d1] and [n2, k2, d2] (usually RS) codes, resp.

147 / 159



Decoding product codes

• A decoding strategy:

• Use a (small) part of the C1
redundancy to correct random
errors, and the rest for robust
error detection (so that burst
errors in rows will be detected
with high probability).

• Mark detected corrupted rows as
erased.

• Use the column code C2 to correct
the erasures (and remaining
random errors, if any, and if
possible). Recall that erasures are
“cheaper” to correct than full
errors.

• Other strategies are possible,
including row/column iterations.

148 / 159



Concatenated Codes

• Let F = Fq and Φ = Fqk , k > 1.

• Let Cout be an [N,K,D] code over Φ (the outer code).

• Let Cin be an [n, k, d] code over F (the inner code).

• Notice that the dimension k of Cin is the same as the extension
degree of Φ over F.

• Represent Φ as vectors in Fk using a fixed basis of Φ over F.

• A concatenated code Ccct is defined by the following

Encoding Procedure:

Input: A message u of length K over Φ.
Output: A codeword ccct of length nN over F.
• Step 1: Encode u into a codeword cout ∈ Cout.
• Step 2: Interpret each of the N symbols of cout

as a word of length k over F. Encode it with Cin.

149 / 159



Concatenated Codes

message
in ΦKencode

with Cout
codeword in
Cout ⊆ ΦNencode

with Cin

codeword in
Cout ⊆ ΦN

codeword in
Ccct ⊆ FnN

• Ccct has parameters [ncct, kcct, dcct] = [nN, kK,≥ dD] over F .

• As with product codes, different decoding strategies are possible.
• Typically, we use Cin for combined error correction/detection. When errors

are detected without correction, the symbol is marked as erased for Cout.
• Then we use Cout to correct erasures and errors. The process may be

iterative.
• Forney’s Generalized Minimum Distance decoding can correct up to

(dD−1)/2 errors.

150 / 159



Concatenated Codes

• Cout is typically taken to be a GRS code.

• By letting k grow, we can obtain arbitrarily long codes over Fq, for
fixed q.

• By careful choice of Cin, very good codes can be constructed this
way.
• Codes with Rcct and dcct/ncct bounded away from zero as k →∞,

which can be constructed explicitly and have efficient
encoding/decoding algorithms.

• Even better, codes that achieve channel capacity for the QSC
channel, still with explicit constructions and efficient
encoding/decoding algorithms.

• Variant: use a different Cin for each coordinate of Cout.
• Notice that what is exponential in k may be linear in N : ML
decoding for Cin may be affordable.

151 / 159




