7. Codes Related to GRS Codes

Alternant Codes

- Let $\mathbb{F}=\mathbb{F}_{q}$ and let $\mathcal{C}_{\text {GRS }}$ be an $[N, K, D]$ GRS code over $\Phi=\mathbb{F}_{q^{m}}$. The set of codewords of $\mathcal{C}_{\text {GRS }}$ with coordinates in \mathbb{F}, is called an alternant code, $\mathcal{C}_{\text {alt }}=\mathcal{C}_{\text {GRS }} \cap \mathbb{F}^{N}$. For a PCM $H_{\text {GRS }}$ of $\mathcal{C}_{\text {GRS }}$, we have

$$
\mathbf{c} \in \mathcal{C}_{\mathrm{alt}} \quad \Longleftrightarrow \quad \mathbf{c} \in \mathbb{F}^{N} \text { and } H_{\mathrm{GRS}} \mathbf{c}^{T}=\mathbf{0}
$$

This is also called a sub-field sub-code.

$$
H_{\mathrm{GRS}}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{N} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \ldots & \alpha_{N}^{2} \\
\vdots & \vdots & \vdots & \vdots \\
\alpha_{1}^{N-K-1} & \alpha_{2}^{N-K-1} & \ldots & \alpha_{n}^{N-K-1}
\end{array}\right)\left(\begin{array}{llll}
v_{1} & & & \\
& v_{2} & & 0 \\
0 & & \ddots & \\
& & & v_{N}
\end{array}\right)
$$

Alternant Codes

$$
H_{\mathrm{GRS}}=\left(\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{N} \\
v_{1} \alpha_{1} & v_{2} \alpha_{2} & \ldots & v_{n} \alpha_{N} \\
v_{1} \alpha_{1}^{2} & v_{2} \alpha_{2}^{2} & \ldots & v_{n} \alpha_{N}^{2} \\
\vdots & \vdots & \vdots & \vdots \\
v_{1} \alpha_{1}^{N-K-1} & v_{2} \alpha_{2}^{N-K-1} & \ldots & v_{n} \alpha_{n}^{N-K-1}
\end{array}\right)
$$

- Let $[n, k, d]$ be the parameters of $\mathcal{C}_{\text {alt }}$. Clearly, $n=N$, and $d \geq D$; D is called the designed distance.
Each row of $H_{\text {GRS }}$ translates to $\leq m$ independent rows over \mathbb{F}, so

$$
n-k \leq(N-K) m=(D-1) m \quad \Longrightarrow \quad k \geq n-(D-1) m
$$

Decoding: can be done with the same algorithm that decodes $\mathcal{C}_{\text {GRS }}$.

Binary Narrow-Sense Alternant Codes

- Consider $F=\mathbb{F}_{2}$ and $\mathcal{C}_{\text {GRS }}$ narrow sense $\left(v_{j}=\alpha_{j}\right)$ over $\mathbb{F}_{2^{m}}$, with odd D and $N \leq 2^{m}-1$.

$$
H_{\mathrm{GRS}}=\left(\begin{array}{cccc}
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \ldots & \alpha_{n}^{2} \\
\alpha_{1}^{3} & \alpha_{2}^{3} & \ldots & \alpha_{n}^{3} \\
\vdots & \vdots & \vdots & \vdots \\
\alpha_{1}^{D-1} & \alpha_{2}^{D-1} & \ldots & \alpha_{n}^{D-1}
\end{array}\right)
$$

For $\mathbf{c} \in \mathbb{F}_{2}^{N}$,

$$
\mathbf{c} \in \mathcal{C}_{\mathrm{alt}} \quad \Longleftrightarrow \quad \sum_{j=1}^{n} c_{j} \alpha_{j}^{i}=0 \quad \text { for } i=1,2,3, \ldots, D-1
$$

Over \mathbb{F}_{2},

$$
\sum_{j=1}^{n} c_{j} \alpha_{j}^{i}=0 \quad \Longleftrightarrow \quad \sum_{j=1}^{n} c_{j} \alpha_{j}^{2 i}=0
$$

Therefore, check equations for even values of i are dependent, and the redundancy bound can be improved to

$$
n-k \leq \frac{(D-1) m}{2}
$$

Binary Narrow-Sense Alternant Codes

- A more compact PCM for binary narrow-sense $\mathcal{C}_{\text {alt }}$:

$$
\left(\begin{array}{cccc}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
\alpha_{1}^{3} & \alpha_{2}^{3} & \cdots & \alpha_{n}^{3} \\
\alpha_{1}^{5} & \alpha_{2}^{5} & \cdots & \alpha_{n}^{5} \\
\vdots & \vdots & \vdots & \vdots \\
\alpha_{1}^{D-2} & \alpha_{2}^{D-2} & \cdots & \alpha_{n}^{D-2}
\end{array}\right)
$$

- Decoding: same as $\mathcal{C}_{\text {GRS }}$, but error values not needed \Rightarrow simpler key equation algorithm.

BCH Codes

- Bose-Chaudhuri-Hocquenghem (BCH) codes are alternant codes that correspond to conventional RS codes.

For $\mathcal{C}_{\mathrm{RS}}:[N, K, D]$ over $\mathbb{F}_{q^{m}}$, we have $\mathcal{C}_{\mathrm{BCH}}=\mathbb{F}_{q}^{N} \cap \mathcal{C}_{\mathrm{RS}}$.

$$
H_{\mathrm{RS}}=\left(\begin{array}{lllll}
1 & \alpha^{b} & \alpha^{2 b} & \cdots & \alpha^{(N-1) b} \\
1 & \alpha^{b+1} & \alpha^{2(b+1)} & \cdots & \alpha^{(N-1)(b+1)} \\
\vdots & \vdots & \vdots & \vdots & \\
1 & \alpha^{b+D-2} & \alpha^{2(b+D-2)} & \cdots & \alpha^{(N-1)(b+D-2)}
\end{array}\right)
$$

As before, when $b=1$, we can eliminate evennumbered rows

- As with RS codes, to obtain a cyclic code, we choose N a divisor of $q^{m}-1$. More often, we use a shortened code, where $N \leq q^{m}-1$ is arbitrary. We lose the cyclic property, but all other properties hold.

BCH Codes

For $\mathcal{C}_{\mathrm{RS}}:[N, K, D]$ over $\mathbb{F}_{q^{m}}, \mathcal{C}_{\mathrm{BCH}}=\mathbb{F}_{q}^{N} \cap \mathcal{C}_{\mathrm{RS}}$.

$$
H_{\mathrm{RS}}=\left(\begin{array}{lllll}
1 & \alpha^{b} & \alpha^{2 b} & \cdots & \alpha^{(N-1) b} \\
1 & \alpha^{b+1} & \alpha^{2(b+1)} & \cdots & \alpha^{(N-1)(b+1)} \\
\vdots & \vdots & \vdots & \vdots & \\
1 & \alpha^{b+D-2} & \alpha^{2(b+D-2)} & \cdots & \alpha^{(N-1)(b+D-2)}
\end{array}\right) \quad \begin{aligned}
& \text { As before, when } \\
& b=1, \text { we can } \\
& \text { eliminate even- } \\
& \text { numbered rows }
\end{aligned}
$$

Summary of BCH (and shortened BCH) code definition

- Code of length $1 \leq n \leq q^{m}-1$ over \mathbb{F}_{q} for some choice of m. If we want a cyclic code, we pick m to be the smallest integer such that $n \mid\left(q^{m}-1\right)$.
- Let $\alpha \in \mathbb{F}_{q^{m}}$ be an element of order $n^{\prime} \geq n\left(n^{\prime}=n\right.$ for a cyclic code).
- $D>0, b$: design parameters

$$
\mathcal{C}_{\mathrm{BCH}}=\left\{c(x) \in\left(\mathbb{F}_{q}\right)_{n}[x]: c\left(\alpha^{\ell}\right)=0, \ell=b, b+1, \ldots, b+D-2\right\}
$$

- BCH codes are widely used in practice, for example, in flash memories.
- BCH codes are often superior to RS codes on the BSC.

BCH Code Example

We design a BCH code of length $n=15$ over \mathbb{F}_{2} that can correct 3 errors. The code is primitive, of length 15 with roots in $\mathbb{F}_{2^{4}}$.

- $m=4$.
- $b=1 \quad \Longrightarrow$ narrow-sense
- $D=7 \quad \Longrightarrow$ 3-error correcting
- $n-k \leq(D-1) m / 2=12$
- resulting $\mathcal{C}_{\mathrm{BCH}}$ is $[15, \geq 3, \geq 7]$ over \mathbb{F}_{2}
- Let α be a primitive element of $\Phi=\mathbb{F}_{2^{4}}$, which we choose as a root of $p(x)=x^{4}+x+1$ (primitive polynomial).
- a 12×15 binary PCM of the code can be obtained by representing the entries in H_{Φ} below as column vectors in \mathbb{F}_{2}^{4}.

$$
H_{\Phi}=\left(\begin{array}{cccccccc}
1 & \alpha & \alpha^{2} & \ldots & \alpha^{j} & \ldots & \alpha^{13} & \alpha^{14} \\
1 & \alpha^{3} & \alpha^{6} & \ldots & \alpha^{3 j} & \ldots & \alpha^{39} & \alpha^{42} \\
1 & \alpha^{5} & \alpha^{10} & \ldots & \alpha^{5 j} & \ldots & \alpha^{65} & \alpha^{70}
\end{array}\right)
$$

Notice that $\alpha^{15}=1$, so $\alpha^{39}=\alpha^{9}$, etc.

BCH Code Example (continued)

- A codeword $\mathbf{c} \in \mathcal{C}_{B C H}$ satisfies $c(\alpha)=0$. Therefore,

$$
0=c(\alpha)^{2}=\left(\sum_{i=0}^{n-1} c_{i} x^{i}\right)^{2}=\sum_{i=0}^{n-1} c_{i}^{2} x^{2 i}=\sum_{i=0}^{n-1} c_{i} x^{2 i}=c\left(\alpha^{2}\right)
$$

For the same reason, $c(\alpha)=c\left(\alpha^{2}\right)=c\left(\alpha^{4}\right)=c\left(\alpha^{8}\right)=0$
$\Rightarrow M_{1}(x)$, the minimal polynomial of α, divides $c(x)$.

- Similarly for $M_{3}(x)$ and $M_{5}(x)$, the min. polys. of α^{3} and α^{5} resp.
- Let $g(x)=M_{1}(x) M_{3}(x) M_{5}(x)$. Then,

$$
\mathbf{c} \in \mathcal{C}_{\mathrm{BCH}} \Leftrightarrow g(x) \mid c(x)
$$

- $g(x)$ is the generator polynomial of $\mathcal{C}_{\mathrm{BCH}}$, which is presented as a (shortened) cyclic binary code.
- In the example,

$$
\begin{aligned}
& M_{1}(x)=x^{4}+x+1 \\
& M_{3}(x)=x^{4}+x^{3}+x^{2}+x+1 \\
& M_{5}(x)=x^{2}+x+1
\end{aligned}
$$

$$
\Rightarrow \quad g(x)=x^{10}+x^{8}+x^{5}+x^{4}+x^{2}+x+1
$$

BCH Code Example (continued)

- As with RS codes, we have the polynomial (cyclic) interpretation of BCH codes: $u(x) \mapsto c(x)=u(x) g(x)$, with $u(x) \in \mathbb{F}_{2}[x]$ (a binary polynomial of degree $<k$), corresponding to a non-systematic binary generator matrix

$$
G=\left(\begin{array}{ccccccc}
g_{0} & g_{1} & \ldots & g_{n-k} & & & 0 \\
& g_{0} & g_{1} & \ldots & g_{n-k} & & 0 \\
0 & & \ddots & \ddots & \ldots & \ddots & \\
& & & g_{0} & g_{1} & \cdots & g_{n-k}
\end{array}\right) \quad\left(g_{n-k}=1, k \text { rows }\right)
$$

- In the example, this representation also implies that $k_{B C H}=15-10=5$, the rank of G.
- Codes with dimension better than the bound are obtained when some of the minimal polynomials M_{i} are of degree less than m.
This happened, in our example, for M_{5}.
- As in the RS case, we can construct a systematic encoder based on $g(x)$ and using a binary feedback shift-register.

The $[15,5,7] B C H$ code in the example is used for format information in QR codes.

Interleaving and Burst Error Correction

- Burst errors

- Interleaving spreads bursts of errors among codewords, so that each codeword is affected by a small number of errors.
- Cost: increased latency

Product codes

Let \mathcal{C}_{1} and \mathcal{C}_{2} be $\left[n_{1}, k_{1}, d_{1}\right]$ and $\left[n_{2}, k_{2}, d_{2}\right]$ (usually RS) codes, resp.

Decoding product codes

- A decoding strategy:
- Use a (small) part of the \mathcal{C}_{1} redundancy to correct random errors, and the rest for robust error detection (so that burst errors in rows will be detected with high probability).
- Mark detected corrupted rows as erased.
- Use the column code \mathcal{C}_{2} to correct the erasures (and remaining random errors, if any, and if possible). Recall that erasures are "cheaper" to correct than full errors.
- Other strategies are possible, including row/column iterations.

Concatenated Codes

- Let $\mathbb{F}=\mathbb{F}_{q}$ and $\Phi=\mathbb{F}_{q^{k}}, k>1$.
- Let $\mathcal{C}_{\text {out }}$ be an $[N, K, D]$ code over Φ (the outer code).
- Let $\mathcal{C}_{\text {in }}$ be an $[n, k, d]$ code over \mathbb{F} (the inner code).
- Notice that the dimension k of $\mathcal{C}_{\text {in }}$ is the same as the extension degree of Φ over \mathbb{F}.
- Represent Φ as vectors in \mathbb{F}^{k} using a fixed basis of Φ over \mathbb{F}.
- A concatenated code $\mathcal{C}_{\text {cct }}$ is defined by the following

Encoding Procedure:

Input: A message \mathbf{u} of length K over Φ.
Output: A codeword $\mathbf{c}_{\text {cct }}$ of length $n N$ over \mathbb{F}.

- Step 1: Encode \mathbf{u} into a codeword $\mathbf{c}_{\text {out }} \in \mathcal{C}_{\text {out }}$.
- Step 2: Interpret each of the N symbols of $\mathbf{c}_{\text {out }}$ as a word of length k over \mathbb{F}. Encode it with $\mathcal{C}_{\text {in }}$.

Concatenated Codes

- $\mathcal{C}_{\text {cct }}$ has parameters $\left[n_{\mathrm{cct}}, k_{\mathrm{cct}}, d_{\mathrm{cct}}\right]=[n N, k K, \geq d D]$ over F.
- As with product codes, different decoding strategies are possible.
- Typically, we use $\mathcal{C}_{\text {in }}$ for combined error correction/detection. When errors are detected without correction, the symbol is marked as erased for $\mathcal{C}_{\text {out }}$.
- Then we use $\mathcal{C}_{\text {out }}$ to correct erasures and errors. The process may be iterative.
- Forney's Generalized Minimum Distance decoding can correct up to (dD-1)/2 errors.

Concatenated Codes

- $\mathcal{C}_{\text {out }}$ is typically taken to be a GRS code.
- By letting k grow, we can obtain arbitrarily long codes over \mathbb{F}_{q}, for fixed q.
- By careful choice of $\mathcal{C}_{\text {in }}$, very good codes can be constructed this way.
- Codes with $R_{\text {cct }}$ and $d_{\text {cct }} / n_{\text {cct }}$ bounded away from zero as $k \rightarrow \infty$, which can be constructed explicitly and have efficient encoding/decoding algorithms.
- Even better, codes that achieve channel capacity for the QSC channel, still with explicit constructions and efficient encoding/decoding algorithms.
- Variant: use a different $\mathcal{C}_{\text {in }}$ for each coordinate of $\mathcal{C}_{\text {out }}$.
- Notice that what is exponential in k may be linear in N : ML decoding for $\mathcal{C}_{\text {in }}$ may be affordable.

