7. Codes Related to GRS Codes

Alternant Codes

• Let $\mathbb{F} = \mathbb{F}_q$ and let \mathcal{C}_{GRS} be an [N,K,D] GRS code over $\Phi = \mathbb{F}_{q^m}$. The set of codewords of \mathcal{C}_{GRS} with coordinates in \mathbb{F} , is called an alternant code, $\mathcal{C}_{\text{alt}} = \mathcal{C}_{\text{GRS}} \cap \mathbb{F}^N$. For a PCM H_{GRS} of \mathcal{C}_{GRS} , we have

$$\mathbf{c} \in \mathcal{C}_{\mathrm{alt}} \quad \Longleftrightarrow \quad \mathbf{c} \in \mathbb{F}^N \text{ and } H_{\scriptscriptstyle\mathrm{GRS}} \mathbf{c}^T = \mathbf{0}.$$

This is also called a *sub-field sub-code*.

$$H_{\text{GRS}} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_N \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_N^2 \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_1^{N-K-1} & \alpha_2^{N-K-1} & \dots & \alpha_n^{N-K-1} \end{pmatrix} \begin{pmatrix} v_1 & & & \\ & v_2 & & 0 \\ 0 & & \ddots & \\ & & & v_N \end{pmatrix}.$$

Alternant Codes

$$H_{\text{GRS}} = \begin{pmatrix} v_1 & v_2 & \dots & v_N \\ v_1 \alpha_1 & v_2 \alpha_2 & \dots & v_n \alpha_N \\ v_1 \alpha_1^2 & v_2 \alpha_2^2 & \dots & v_n \alpha_N^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ v_1 \alpha_1^{N-K-1} & v_2 \alpha_2^{N-K-1} & \dots & v_n \alpha_n^{N-K-1} \end{pmatrix}.$$

• Let [n, k, d] be the parameters of \mathcal{C}_{alt} . Clearly, n = N, and $d \geq D$; D is called the *designed distance*.

Each row of $H_{ ext{GRS}}$ translates to $\leq m$ independent rows over \mathbb{F} , so

$$n-k \leq (N-K)m = (D-1)m \quad \implies \quad k \geq n-(D-1)m$$

Decoding: can be done with the same algorithm that decodes $\mathcal{C}_{\text{GRS}}.$

Binary Narrow-Sense Alternant Codes

• Consider $F = \mathbb{F}_2$ and \mathcal{C}_{GRS} narrow sense $(v_j = \alpha_j)$ over \mathbb{F}_{2^m} , with odd D and $N < 2^m - 1$.

$$H_{\text{GRS}} = \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ \alpha_1^3 & \alpha_2^3 & \dots & \alpha_n^3 \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_1^{D-1} & \alpha_2^{D-1} & \dots & \alpha_n^{D-1} \end{pmatrix}$$

For $\mathbf{c} \in \mathbb{F}_2^N$,

$$\mathbf{c} \in \mathcal{C}_{\mathrm{alt}} \iff \sum_{j=1}^{n} c_j \alpha_j^i = 0 \quad \text{for } i = 1, 2, 3, \dots, D-1.$$

Over \mathbb{F}_2 ,

$$\sum_{j=1}^{n} c_j \alpha_j^i = 0 \quad \iff \quad \sum_{j=1}^{n} c_j \alpha_j^{2i} = 0$$

Therefore, check equations for even values of i are dependent, and the redundancy bound can be improved to

$$n-k \le \frac{(D-1)m}{2} \ .$$

Binary Narrow-Sense Alternant Codes

A more compact PCM for binary narrow-sense Calt:

$$\begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^3 & \alpha_2^3 & \dots & \alpha_n^3 \\ \alpha_1^5 & \alpha_2^5 & \dots & \alpha_n^5 \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_1^{D-2} & \alpha_2^{D-2} & \dots & \alpha_n^{D-2} \end{pmatrix}$$

Decoding: same as C_{GRS}, but error values not needed
 ⇒ simpler key equation algorithm.

BCH Codes

 Bose-Chaudhuri-Hocquenghem (BCH) codes are alternant codes that correspond to conventional RS codes.

For $\mathcal{C}_{RS}:[N,K,D]$ over \mathbb{F}_{a^m} , we have $\mathcal{C}_{BCH}=\mathbb{F}_a^N\cap\mathcal{C}_{RS}$.

$$H_{\mathrm{RS}} = \begin{pmatrix} 1 & \alpha^b & \alpha^{2b} & \cdots & \alpha^{(N-1)b} \\ 1 & \alpha^{b+1} & \alpha^{2(b+1)} & \cdots & \alpha^{(N-1)(b+1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha^{b+D-2} & \alpha^{2(b+D-2)} & \cdots & \alpha^{(N-1)(b+D-2)} \end{pmatrix}$$
 As before, when $b=1$, we can eliminate evennumbered rows

 As with RS codes, to obtain a cyclic code, we choose N a divisor of q^m-1 . More often, we use a shortened code, where $N \leq q^m-1$ is arbitrary. We lose the cyclic property, but all other properties hold.

BCH Codes

For \mathcal{C}_{RS} : [N, K, D] over \mathbb{F}_{q^m} , $\mathcal{C}_{BCH} = \mathbb{F}_q^N \cap \mathcal{C}_{RS}$.

$$H_{\mathrm{RS}} = \begin{pmatrix} 1 & \alpha^b & \alpha^{2b} & \cdots & \alpha^{(N-1)b} \\ 1 & \alpha^{b+1} & \alpha^{2(b+1)} & \cdots & \alpha^{(N-1)(b+1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha^{b+D-2} & \alpha^{2(b+D-2)} & \cdots & \alpha^{(N-1)(b+D-2)} \end{pmatrix} \qquad \begin{array}{c} \text{As before, when} \\ b=1, & \text{we can} \\ \text{eliminate even-numbered rows} \\ \end{array}$$

Summary of BCH (and shortened BCH) code definition

- Code of length $1 \le n \le q^m 1$ over \mathbb{F}_q for some choice of m. If we want a cyclic code, we pick m to be the smallest integer such that $n|(q^m-1)$.
- Let $\alpha \in \mathbb{F}_{q^m}$ be an element of order $n' \geq n$ (n' = n for a cyclic code).
- D > 0, b: design parameters

$$C_{\text{BCH}} \ = \ \left\{ c(x) \in (\mathbb{F}_q)_n[x] \, : \, c(\alpha^{\ell}) = 0, \ \ell = b, b+1, \dots, b+D-2 \right\}$$

- BCH codes are widely used in practice, for example, in *flash memories*.
- BCH codes are often superior to RS codes on the BSC.

BCH Code Example

We design a BCH code of length n=15 over \mathbb{F}_2 that can correct 3 errors. The code is primitive, of length 15 with roots in \mathbb{F}_{2^4} .

- m = 4.
- $b = 1 \implies$ narrow-sense
- D = 7 \implies 3-error correcting
- $n-k \le (D-1)m/2 = 12$
- resulting $\mathcal{C}_{\scriptscriptstyle \mathrm{BCH}}$ is $[15,\,\geq 3,\,\geq 7]$ over \mathbb{F}_2
- Let α be a primitive element of $\Phi = \mathbb{F}_{2^4}$, which we choose as a root of $p(x) = x^4 + x + 1$ (primitive polynomial).
- a 12 × 15 binary PCM of the code can be obtained by representing the entries in H_Φ below as column vectors in F⁴₂.

$$H_{\Phi} = \begin{pmatrix} 1 & \alpha & \alpha^2 & \dots & \alpha^j & \dots & \alpha^{13} & \alpha^{14} \\ 1 & \alpha^3 & \alpha^6 & \dots & \alpha^{3j} & \dots & \alpha^{39} & \alpha^{42} \\ 1 & \alpha^5 & \alpha^{10} & \dots & \alpha^{5j} & \dots & \alpha^{65} & \alpha^{70} \end{pmatrix}$$

Notice that $\alpha^{15} = 1$, so $\alpha^{39} = \alpha^9$, etc.

BCH Code Example (continued)

• A codeword $\mathbf{c} \in \mathcal{C}_{\mathrm{BCH}}$ satisfies $c(\alpha) = 0$. Therefore,

$$0 = c(\alpha)^2 = \left(\sum_{i=0}^{n-1} c_i x^i\right)^2 = \sum_{i=0}^{n-1} c_i^2 x^{2i} = \sum_{i=0}^{n-1} c_i x^{2i} = c(\alpha^2).$$

For the same reason, $c(\alpha) = c(\alpha^2) = c(\alpha^4) = c(\alpha^8) = 0$ $\Rightarrow M_1(x)$, the minimal polynomial of α , divides c(x).

- Similarly for $M_3(x)$ and $M_5(x)$, the min. polys. of α^3 and α^5 resp.
- Let $g(x) = M_1(x)M_3(x)M_5(x)$. Then,

$$\mathbf{c} \in \mathcal{C}_{\mathrm{BCH}} \iff g(x)|c(x).$$

- g(x) is the generator polynomial of C_{BCH}, which is presented as a (shortened) cyclic binary code.
- In the example,

$$M_1(x) = x^4 + x + 1,$$

 $M_3(x) = x^4 + x^3 + x^2 + x + 1,$
 $M_5(x) = x^2 + x + 1.$

$$\Rightarrow g(x) = x^{10} + x^8 + x^5 + x^4 + x^2 + x + 1.$$

BCH Code Example (continued)

• As with RS codes, we have the polynomial (cyclic) interpretation of BCH codes: $u(x) \mapsto c(x) = u(x)g(x)$, with $u(x) \in \mathbb{F}_2[x]$ (a binary polynomial of degree < k), corresponding to a non-systematic binary generator matrix

$$G = \begin{pmatrix} g_0 & g_1 & \dots & g_{n-k} \\ & g_0 & g_1 & \dots & g_{n-k} & & 0 \\ 0 & & \ddots & \ddots & & \ddots & \\ & & g_0 & g_1 & \dots & g_{n-k} \end{pmatrix} \quad (g_{n-k}=1, k \text{ rows})$$

- In the example, this representation also implies that $k_{BCH}=15-10=5$, the rank of G.
- Codes with dimension better than the bound are obtained when some of the minimal polynomials M_i are of degree less than m.
 This happened, in our example, for M₅.
- As in the RS case, we can construct a *systematic encoder* based on g(x) and using a *binary* feedback shift-register.

The [15,5,7] BCH code in the example is used for format information in QR codes.

Interleaving and Burst Error Correction

Burst errors

- *Interleaving* spreads bursts of errors among codewords, so that each codeword is affected by a small number of errors.
- Cost: increased *latency*

Product codes

Let C_1 and C_2 be $[n_1, k_1, d_1]$ and $[n_2, k_2, d_2]$ (usually RS) codes, resp.

Decoding product codes

- A decoding strategy:
 - Use a (small) part of the C_1 redundancy to correct random errors, and the rest for robust error detection (so that burst errors in rows will be detected with high probability).
 - Mark detected corrupted rows as erased.
 - Use the column code \mathcal{C}_2 to correct the erasures (and remaining random errors, if any, and if possible). Recall that erasures are "cheaper" to correct than full errors.
 - Other strategies are possible, including row/column iterations.

Concatenated Codes

- Let $\mathbb{F} = \mathbb{F}_q$ and $\Phi = \mathbb{F}_{q^k}$, k > 1.
- Let $\mathcal{C}_{\mathrm{out}}$ be an [N, K, D] code over Φ (the *outer code*).
- Let \mathcal{C}_{in} be an [n, k, d] code over \mathbb{F} (the *inner code*).
 - Notice that the dimension k of $C_{\rm in}$ is the same as the extension degree of Φ over \mathbb{F} .
- Represent Φ as vectors in \mathbb{F}^k using a fixed basis of Φ over \mathbb{F} .
- ullet A concatenated code $\mathcal{C}_{\mathrm{cct}}$ is defined by the following

Encoding Procedure:

Input: A *message* \mathbf{u} of length K over Φ .

Output: A *codeword* \mathbf{c}_{cct} of length nN over \mathbb{F} .

- Step 1: Encode \mathbf{u} into a codeword $\mathbf{c}_{\mathrm{out}} \in \mathcal{C}_{\mathrm{out}}$.
- Step 2: Interpret each of the N symbols of $\mathbf{c}_{\mathrm{out}}$ as a word of length k over \mathbb{F} . Encode it with $\mathcal{C}_{\mathrm{in}}$.

Concatenated Codes

- \mathcal{C}_{cct} has parameters $[n_{\text{cct}}, k_{\text{cct}}, d_{\text{cct}}] = [nN, kK, \geq dD]$ over F.
- As with product codes, different decoding strategies are possible.
 - Typically, we use C_{in} for combined error correction/detection. When errors
 are detected without correction, the symbol is marked as erased for C_{out}.
 - \bullet Then we use $\mathcal{C}_{\mathrm{out}}$ to correct erasures and errors. The process may be iterative.
 - Forney's *Generalized Minimum Distance* decoding can correct up to (dD-1)/2 errors.

Concatenated Codes

- $\mathcal{C}_{\mathrm{out}}$ is typically taken to be a GRS code.
 - By letting k grow, we can obtain arbitrarily long codes over \mathbb{F}_q , for fixed q.
 - By careful choice of $\mathcal{C}_{\mathrm{in}}$, very good codes can be constructed this way.
 - Codes with $R_{\rm cct}$ and $d_{\rm cct}/n_{\rm cct}$ bounded away from zero as $k \to \infty$, which can be constructed *explicitly* and have efficient encoding/decoding algorithms.
 - Even better, codes that achieve channel capacity for the QSC channel, still with explicit constructions and efficient encoding/decoding algorithms.
 - Variant: use a different $C_{\rm in}$ for each coordinate of $C_{\rm out}$.
 - Notice that what is exponential in k may be linear in N: ML decoding for C_{in} may be affordable.