6. Decoding Generalized Reed-Solomon Codes

Decoding Generalized Reed-Solomon Codes

- We consider $\mathcal{C}_{\text {GRS }}$ over \mathbb{F}_{q} with PCM

$$
H_{\mathrm{GRS}}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \ldots & \alpha_{n}^{2} \\
\vdots & \vdots & \vdots & \vdots \\
\alpha_{1}^{\ell} & \alpha_{2}^{\ell} & \ldots & \alpha_{n}^{\ell} \\
\vdots & \vdots & \vdots & \vdots \\
\alpha_{1}^{r-1} & \alpha_{2}^{r-1} & \ldots & \alpha_{n}^{r-1}
\end{array}\right)\left(\begin{array}{cccc}
v_{1} & & & \\
& v_{2} & & 0 \\
0 & & \ddots & \\
& & & v_{n}
\end{array}\right)
$$

with $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{F}_{q}^{*}$ distinct, and $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{F}_{q}^{*}$ (recall that $r=n-k=d-1$).

- Codeword \mathbf{c} transmitted, word \mathbf{y} received, with error vector

$$
\mathbf{e}=\left(e_{1} e_{2} \ldots e_{n}\right)=\mathbf{y}-\mathbf{c} .
$$

- $J=\left\{\kappa: e_{\kappa} \neq 0\right\}$ set of error locations.
- We describe an algorithm that correctly decodes y to \mathbf{c}, under the assumption $|J| \leq \frac{1}{2}(d-1)$.

Syndrome Computation

- First step of the decoding algorithm: syndrome computation

$$
\begin{aligned}
\mathbf{S} & =\left(\begin{array}{c}
S_{0} \\
S_{1} \\
\vdots \\
S_{r-1}
\end{array}\right)=H_{\mathrm{GRS}} \mathbf{y}^{T}=H_{\mathrm{GRS}} \mathbf{e}^{T} \quad \begin{array}{c}
\ell \text { th row of } H_{\mathrm{GRS}}: \\
{\left[v_{1} \alpha_{1}^{\ell}, v_{2} \alpha_{2}^{\ell}, \ldots, v_{n} \alpha_{n}^{\ell}\right]}
\end{array} \\
S_{\ell} & =\sum_{j=1}^{n} y_{j} v_{j} \alpha_{j}^{\ell}=\sum_{j=1}^{n} e_{j} v_{j} \alpha_{j}^{\ell}=\sum_{j \in J} e_{j} v_{j} \alpha_{j}^{\ell}, \quad \ell=0,1, \ldots, r-1 .
\end{aligned}
$$

Example: For conventional RS codes, we have $\alpha_{j}=\alpha^{j-1}$ and $v_{j}=\alpha^{b(j-1)}$, so

$$
\begin{aligned}
S_{\ell}=\sum_{j=1}^{n} y_{j} \alpha^{(j-1)(b+\ell)}=y\left(\alpha^{b+\ell}\right), \quad \ell=0,1, \ldots, r-1 \\
\quad\left(\text { recall } \mathbf{c} \in \mathcal{C}_{\mathrm{RS}} \Leftrightarrow c\left(\alpha^{b+\ell}\right)=0, \ell=0,1, \ldots r-1\right)
\end{aligned}
$$

- Syndrome polynomial:

$$
S(x)=\sum_{\ell=0}^{r-1} S_{\ell} x^{\ell}=\sum_{\ell=0}^{r-1} x^{\ell} \sum_{j \in J} e_{j} v_{j} \alpha_{j}^{\ell}=\sum_{j \in J} e_{j} v_{j} \sum_{\ell=0}^{r-1}\left(\alpha_{j} x\right)^{\ell}
$$

A Congruence for the Syndrome Polynomial

$$
S(x)=\sum_{j \in J} e_{j} v_{j} \sum_{\ell=0}^{r-1}\left(\alpha_{j} x\right)^{\ell}
$$

- We have

$$
\left(1-\alpha_{j} x\right) \sum_{\ell=0}^{r-1}\left(\alpha_{j} x\right)^{\ell}=1-\left(\alpha_{j} x\right)^{r} \equiv 1\left(\bmod x^{r}\right)
$$

Therefore, we can write

$$
\sum_{\ell=0}^{r-1}\left(\alpha_{j} x\right)^{\ell} \equiv \frac{1}{1-\alpha_{j} x}\left(\bmod x^{r}\right)
$$

$$
\begin{gathered}
S(x) \equiv \sum_{j \in J} \frac{e_{j} v_{j}}{1-\alpha_{j} x} \quad\left(\bmod x^{r}\right) \\
\left(\sum_{\text {empty }} \square \triangleq 0\right)
\end{gathered}
$$

More Auxiliary Polynomials

- Error locator polynomial (ELP)

$$
\Lambda(x)=\prod_{j \in J}\left(1-\alpha_{j} x\right) \quad\left(\prod_{\text {empty }} \square \triangleq 1\right)
$$

- Error evaluator polynomial (EEP)

$$
\Gamma(x)=\sum_{j \in J} e_{j} v_{j} \prod_{m \in J \backslash\{j\}}\left(1-\alpha_{m} x\right)
$$

- $\Lambda\left(\alpha_{\kappa}^{-1}\right)=0 \quad \Longleftrightarrow \quad \kappa \in J \quad$ roots of EEP point to error locations
- $\Gamma\left(\alpha_{\kappa}^{-1}\right)=e_{\kappa} v_{\kappa} \prod_{m \in J \backslash\{\kappa\}}\left(1-\alpha_{m} \alpha_{\kappa}^{-1}\right) \neq 0$

$$
\Longrightarrow \quad \operatorname{gcd}(\Lambda(x), \Gamma(x))=1
$$

- The degrees of ELP and EEP satisfy

$$
\operatorname{deg} \Lambda=|J| \quad \text { and } \quad \operatorname{deg} \Gamma<|J|
$$

Of course, we don't know $\Lambda(x), \Gamma(x)$: our goal is to find them

Key Equation of GRS Decoding

Since $|J| \leq \frac{1}{2}(d-1)$, from $\operatorname{deg} \Lambda=|J|, \operatorname{deg} \Gamma<|J|$ we get
(1) $\operatorname{deg} \Lambda \leq \frac{1}{2}(d-1)$
and
(2) $\operatorname{deg} \Gamma<\frac{1}{2}(d-1)$

The ELP and the EEP are related by

$$
\begin{gathered}
\Gamma(x)=\sum_{j \in J} e_{j} v_{j} \prod_{m \in J \backslash\{j\}}\left(1-\alpha_{m} x\right)=\sum_{j \in J} e_{j} v_{j} \frac{\Lambda(x)}{1-\alpha_{j} x}=\Lambda\left(x \sum_{j \in J} \frac{e_{j} v_{j}}{1-\alpha_{j} x}\right) \\
\Longrightarrow(3) \quad \Lambda(x) S(x) \equiv \Gamma(x)\left(\bmod x^{d-1}\right)
\end{gathered}
$$

(1) $+(2)+(3)$: key equation of GRS decoding

We have $S(x)$, and we know d. We want to solve for $\Lambda(x)$ and $\Gamma(x)$ satisfying (1) $+(2)+(3)$.

Key Equation of GRS Decoding (cont.)

(1)
$\operatorname{deg} \Lambda \leq \frac{1}{2}(d-1)$
(2) $\operatorname{deg} \Gamma<\frac{1}{2}(d-1)$
(3)

$$
\Lambda(x) S(x) \equiv \Gamma(x) \quad\left(\bmod x^{d-1}\right)
$$

The coefficients of $\Lambda(x)$ and $\Gamma(x)$ solve the system of linear equations
$d-1\left(\begin{array}{ccccc}S_{0} & 0 & 0 & \cdots & 0 \\ S_{1} & S_{0} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ S_{\tau-1} & S_{\tau-2} & \cdots & S_{0} & 0 \\ \hline S_{\tau} & S_{\tau-1} & \cdots & S_{1} & S_{0} \\ S_{\tau+1} & S_{\tau} & \cdots & S_{2} & S_{1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ S_{d-2} & S_{d-3} & \cdots & S_{d-1-\tau} & S_{d-2-\tau}\end{array}\right)\left(\begin{array}{c}\lambda_{0} \\ \lambda_{1} \\ \lambda_{2} \\ \vdots \\ \lambda_{\tau}\end{array}\right)=\left(\begin{array}{c}\gamma_{0} \\ \gamma_{1} \\ \vdots \\ \gamma_{\tau-1} \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right)\left(\tau \triangleq\left\lfloor\frac{d-1}{2}\right\rfloor\right)$

- a set of $r=d-1$ linear equations in the coefficients of Λ and Γ
- the last $\left\lfloor\frac{1}{2}(d-1)\right\rfloor$ equations depend only on Λ
- we can solve for Λ, find its root set J, then solve linear equations for e_{j}
- straightforward solution leads to $O\left(d^{3}\right)$ algorithm - we'll present an $O\left(d^{2}\right)$ one

The Extended Euclidean Algorithm for polynomials

Given $a(x), b(x)$ over a field \mathbb{F}, with $a(x) \neq 0$ and $\operatorname{deg} a>\operatorname{deg} b$, the algorithm computes sequences of
remainders $r_{i}(x)$, quotients $q_{i}(x)$, and auxiliary polynomials $s_{i}(x), t_{i}(x)$

$$
\begin{aligned}
& r_{-1}(x) \leftarrow a(x) ; r_{0}(x) \leftarrow b(x) ; \\
& s_{-1}(x) \leftarrow 1 ; s_{0}(x) \leftarrow 0 ; \\
& t_{-1}(x) \leftarrow 0 ; t_{0}(x) \leftarrow 1 ; \\
& \text { for }\left(i \leftarrow 1 ; r_{i-1}(x) \neq 0 ; i++\right)\{ \\
& \quad q_{i}(x) \leftarrow r_{i-2}(x) \operatorname{div} r_{i-1}(x) ; \\
& \quad r_{i}(x) \leftarrow r_{i-2}(x)-q_{i}(x) r_{i-1}(x) ; \\
& \quad s_{i}(x) \leftarrow s_{i-2}(x)-q_{i}(x) s_{i-1}(x) ; \\
& \quad t_{i}(x) \leftarrow t_{i-2}(x)-q_{i}(x) t_{i-1}(x) ; \\
& \}
\end{aligned}
$$

- Let $\nu=$ largest i such that $r_{i} \neq 0$. Then, $r_{\nu}(x)=\operatorname{gcd}(a(x), b(x))$.
- We also know that $s_{\nu}(x) a(x)+t_{\nu}(x) b(x)=\operatorname{gcd}(a(x), b(x))$ (often used to compute modular inverses).

Properties of the Euclidean Algorithm Sequences

Proposition (E1)

The following relations hold:

$$
\begin{aligned}
& \text { (i) For } i=-1,0, \ldots, \nu+1: \quad s_{i}(x) a(x)+t_{i}(x) b(x)=r_{i}(x) \\
& \text { (ii) For } i=0,1, \ldots, \nu+1: \quad \operatorname{deg} t_{i}+\operatorname{deg} r_{i-1}=\operatorname{deg} a
\end{aligned}
$$

Proof. By induction on $i . \square$

Proposition (E2)

Suppose that $t(x), r(x) \in \mathbb{F}[x] \backslash\{0\}$ satisfy the following conditions:

$$
\begin{aligned}
& \text { (C1) } \operatorname{gcd}(t(x), r(x))=1 \\
& \text { (C2) } \operatorname{deg} t+\operatorname{deg} r<\operatorname{deg} a \\
& \text { (C3) } t(x) b(x) \equiv r(x)(\bmod a(x))
\end{aligned}
$$

Then, for some $h \in\{0,1, \ldots, \nu+1\}$ and a constant $c \in \mathbb{F}$, we have

$$
t(x)=c \cdot t_{h}(x) \quad \text { and } \quad r(x)=c \cdot r_{h}(x) .
$$

Proof. Standard polynomial manipulations, Proposition (E1), and recalling that the sequence $\operatorname{deg} r_{i}$ is strictly decreasing.

Solving the Key Equation

- Apply the Euclidean algorithm with $a(x)=x^{d-1}$ and $b(x)=S(x)$.
- Let $\Lambda(x)$ and $\Gamma(x)$ play the roles of $t(x)$ and $r(x)$, respectively, in Proposition (E2). The definitions of Λ and Γ, and the key equation, guarantee that conditions (C1)-(C3) are satisfied.
(C1) $\operatorname{gcd}(t(x), r(x))=\operatorname{gcd}(\Lambda(x), \Gamma(x))=1$
(C2) $\operatorname{deg} t+\operatorname{deg} r=\operatorname{deg} \Lambda+\operatorname{deg} \Gamma<\operatorname{deg} a=d-1$
(C3) $t(x) b(x) \equiv r(x) \bmod a(x) \Leftrightarrow \Lambda(x) S(x) \equiv \Gamma(x) \bmod x^{d-1}$
- By Proposition (E2), we have $\Lambda(x)=c \cdot t_{h}(x)$ and $\Gamma(x)=c \cdot r_{h}(x)$ for some index h and scalar constant c.
How do we find index h ?

Theorem

The solution to the key equation is unique up to a scalar constant, and it is obtained with the Euclidean algorithm by stopping at the unique index h such that

$$
\operatorname{deg} r_{h}<\frac{1}{2}(d-1) \leq \operatorname{deg} r_{h-1}
$$

Proof. Such an h exists because r_{i} is strictly decreasing. The degree properties follow from the propositions.

Finding the Error Values

- Formal derivatives in finite fields: $\left[\sum_{i=0}^{s} a_{i} x^{i}\right]^{\prime}=\sum_{i=1}^{s} i a_{i} x^{i-1}$ $(a(x) b(x))^{\prime}=a^{\prime}(x) b(x)+a(x) b^{\prime}(x) \quad$ (not surprising)
- For the ELP, we have

$$
\Lambda(x)=\prod_{j \in J}\left(1-\alpha_{j} x\right) \quad \Longrightarrow \quad \Lambda^{\prime}(x)=\sum_{j \in J}\left(-\alpha_{j}\right) \prod_{m \in J \backslash\{j\}}\left(1-\alpha_{m} x\right)
$$

and, for $\kappa \in J$,

$$
\begin{aligned}
\Lambda^{\prime}\left(\alpha_{\kappa}^{-1}\right) & =-\alpha_{\kappa} \prod_{m \in J \backslash\{\kappa\}}\left(1-\alpha_{m} \alpha_{\kappa}^{-1}\right), \\
\Gamma\left(\alpha_{\kappa}^{-1}\right) & =e_{\kappa} v_{\kappa} \prod_{m \in J \backslash\{\kappa\}}\left(1-\alpha_{m} \alpha_{\kappa}^{-1}\right)
\end{aligned}
$$

- Therefore, for all error locations $\kappa \in J$, we obtain

$$
e_{\kappa}=-\frac{\alpha_{\kappa}}{v_{\kappa}} \cdot \frac{\Gamma\left(\alpha_{\kappa}^{-1}\right)}{\Lambda^{\prime}\left(\alpha_{\kappa}^{-1}\right)}
$$

Forney's algorithm for error values

Summary of GRS Decoding

Input: received word $\left(y_{1} y_{2} \ldots y_{n}\right) \in \mathbb{F}_{q}^{n}$.
Output: error vector $\left(e_{1} e_{2} \ldots e_{n}\right) \in \mathbb{F}_{q}^{n}$.
(1) Syndrome computation: Compute the polynomial $S(x)=\sum_{\ell=0}^{d-2} S_{\ell} x^{\ell}$ by

$$
S_{\ell}=\sum_{j=1}^{n} y_{j} v_{j} \alpha_{j}^{\ell}, \quad \ell=0,1, \ldots, d-2
$$

(2) Solving the key equation: Apply Euclid's algorithm to $a(x) \leftarrow x^{d-1}$ and $b(x) \leftarrow S(x)$ to produce $\Lambda(x) \leftarrow t_{h}(x)$ and $\Gamma(x) \leftarrow r_{h}(x)$, where h is the smallest index i for which $\operatorname{deg} r_{i}<\frac{1}{2}(d-1)$.
(3) Forney's algorithm: Compute the error locations and values by

$$
e_{j}=\left\{\begin{array}{cl}
-\frac{\alpha_{j}}{v_{j}} \cdot \frac{\Gamma\left(\alpha_{j}^{-1}\right)}{\Lambda^{\prime}\left(\alpha_{j}^{-1}\right)} & \text { if } \Lambda\left(\alpha_{j}^{-1}\right)=0 \\
0 & \text { otherwise }
\end{array} \quad, \quad j=1,2, \ldots, n\right.
$$

Complexity: 1. $O(d n) \quad$ 2. $O((|J|+1) d) \quad$ 3. $O((|J|+1) n)$

Schematic for GRS Decoder

Finding Roots of the ELP (RS Codes)

Chien search for RS codes $\left(\alpha_{j}=\alpha^{j-1}, 1 \leq j \leq n\right)$

At clock cycle \#j, the cell labeled Λ_{i} contains

$$
\Lambda_{i} \alpha^{-i(j-1)}, 0 \leq i \leq \tau
$$

and the output of the circuit is

$$
\begin{aligned}
& \sum_{i=0}^{\tau} \Lambda_{i} \alpha^{-i(j-1)} \\
= & \Lambda\left(\alpha^{-(j-1)}\right)=\Lambda\left(\alpha_{j}^{-1}\right), 1 \leq j \leq n
\end{aligned}
$$

Other Decoding Algorithms

Many decoding algorithms and variants have been developed over the years. We mention a few of the most important ones.

- Berlekamp algorithm [1967] (also referred to as Berlekamp-Massey due to a clearer description and improvements by Massey [1969]): first efficient solution of the key equation, using Newton's identities and solving for shortest recurrence that generates the syndrome sequence. Complexity comparable to the Euclidean algorithm.
- Welch-Berlekamp [1986]: Solves key equation starting from remainder syndrome $y(x)(\bmod g(x))$, without computing power sums. Akin to continued fractions and Padé approximations.
- List decoding: Decodes beyond $\tau=\left\lfloor\frac{1}{2}(d-1)\right\rfloor$ errors, producing a list of candidate decoded codewords. Very often, the coset leader is unique even beyond τ. Dates back to the '50s, but has gotten recent focus due to elegant and efficient algorithms by Sudan ['97], Guruswami-Sudan ['99] and others.
- Soft decoding: Information on the reliability of the symbols is available. Can lead to significant gains in decoding performance.

Applications: PDF417 bar code

\square

PREFERACCESS

FREQUENT FLYER

ORDER ID: ACY1A1
ETICKET: 2302182845474
SEQ: 92

TERMINAL	GATE $* * * *$	GROUP 2	SEAT 2 E	BOARDING BEGINS AT $14: 43$

**gATE CLOSES 10 MINUTES PRIOR TO DEPARTURE// CIERRE DE PUERTA 10 HINUTOS ANTES DE LA SALIIAA DEL VUELO **

PDF417: A multi-row, 1D bar code (PDF: $\underline{\text { Portable } \underline{\text { Data }} \text { File). }}$

PDF417 bar code structure

Codeword: an alternating pattern of 4 bars and 4 spaces, of varying widths, satisfying some constraints (e.g. width ≤ 6). Total width: 17; 417 comes from $4+17$.

- Basic global parameters (height, width, ECC level, etc.) are encoded in the left and right row indicators. A form of repetition coding (one copy per row).
- Consecutive rows use different sets of bar/space patterns (codewords). Each set has 929 codewords; 3 disjoint sets are used cyclically.
- Number of rows: $3 \leq h \leq 90$. Number of codewords per row: $1 \leq w \leq 30$ (all rows have the same number of codewords).
- Total number of codewords (all rows): $n \leq 928$.
- Using fixed tables, each codeword is mapped to a number in $\{0,1, \ldots, 928\}$, and interpreted as an element of GF (929) (929 is prime).

PDF417: Codeword mapping

Table H1. The Bar-Space Sequence Table. Cluster 0

$\underline{\text { b }}$ bsbsbs	val	bsbsbsbs	val								
31111136	0	41111144	1	51111152	2	31111235	3	41111243	4	51111251	5
21111326	6	31111334	7	21111425	8	11111516	9	21111524	10	11111615	11
21112136	12	31112144	13	41112152	14	21112235	15	31112243	16	41112251	17
11112326	18	21112334	19	11112425	20	11113136	21	21113144	22	31113152	23
11113235	24	21113243	25	31113251	26	11113334	27	21113342	28	11114144	29
21114152	30	11114243	31	21114251	32	11115152	33	51116111	34	31121135	35
41121143	36	51121151	37	21121226	38	31121234	39	41121242	40	21121325	41
31121333	42	11121416	43	21121424	44	31121432	45	11121515	46	21121523	47
11121614	48	21122135	49	31122143	50	41122151	51	11122226	52	21122234	53
31122242	54	11122325	55	21122333	56	31122341	57	11122424	58	21122432	59
11123135	60	21123143	61	31123151	62	11123234	63	21123242	64	11123333	65
21123341	66	11124143	67	21124151	68	11124242	69	11124341	70	21131126	71
31131134	72	41131142	73	21131225	74	31131233	75	41131241	76	11131316	77
:	:	:	:	:	:	:	:	:	:	:	:

PDF417: Error correction

- An error correction level, $s, 0 \leq s \leq 8$, is defined.
- The sequence of codewords (all rows) is interpreted as a code block in a $[k+r, k, r+1]$ shortened Reed Solomon code over GF(929), where
- k is the number of codewords used for actual data.
- Raw data is mapped to codewords using various efficient modes depending on whether the data is numeric, text, binary, or mixed.
- One bar code can encode more than 1100 raw bytes, 1800 ASCII characters, or 2700 decimal digits, depending on the mode.
- $r=2^{s+1}$, so $r \in\{2,4,8,16,32,64,128,256,512\}$.
- $k+r \leq 928$.
- 2 check digits are reserved for detection; the rest (if any) are used for erasure and full error correction.
- The generator polynomial of the RS code is

$$
g(x)=\prod_{i=1}^{r}\left(x-3^{i}\right)
$$

3 is primitive in GF (929).

Application: QR codes

Version 1: 21×21

Version 3: 29×29

Version 10: 57×57

Version 40: 177×177

A truly 2D, highly versatile bar code (array referred to as a symbol)

Application: QR codes

Widespread use

- Product or part tracking (original motivation)
- Web links
- Restaurant menus
- Tickets
- Document verification
- ... etc.

Robust ECC allows for data recovery under significant damage, and also for graphic art customization.

Fully recoverable symbols

QR codes: Versions (= Sizes)

Version	Size	Capacity									
$\underline{\mathrm{M} 1}$	11	$41 / 2$	$\underline{8}$	49	242	$\underline{19}$	93	991	$\underline{30}$	137	2185
$\underline{\mathrm{M} 2}$	13	10	$\underline{9}$	53	292	$\underline{20}$	97	1085	$\underline{31}$	141	2323
$\underline{\mathrm{M} 3}$	15	$161 / 2$	$\underline{10}$	57	346	$\underline{21}$	101	1156	$\underline{32}$	145	2465
$\underline{\mathrm{M} 4}$	17	24	$\underline{11}$	61	404	$\underline{22}$	105	1258	$\underline{33}$	149	2611
$\underline{1}$	21	26	$\underline{12}$	65	466	$\underline{23}$	109	1364	$\underline{34}$	153	2761
$\underline{2}$	25	44	$\underline{13}$	69	532	$\underline{24}$	113	1474	$\underline{35}$	157	2876
$\underline{3}$	29	70	$\underline{14}$	73	581	$\underline{25}$	117	1588	$\underline{36}$	161	3034
$\underline{4}$	33	100	$\underline{15}$	77	655	$\underline{26}$	121	1706	$\underline{37}$	165	3196
$\underline{5}$	37	134	$\underline{16}$	81	733	$\underline{27}$	125	1828	$\underline{38}$	169	3362
$\underline{6}$	41	172	$\underline{17}$	85	815	$\underline{28}$	129	1921	$\underline{39}$	173	3532
$\underline{7}$	45	196	$\underline{18}$	89	901	$\underline{29}$	133	2051	$\underline{40}$	177	3706

Capacity $=$ number of main data bytes (including ECC)

QR codes: masking

- An XOR mask is applied by the encoder to the raw data to minimize undesirable features (large areas of the same color, etc.).
- Several masks are tried, and the resulting array is scored for bad features. Mask with the best score is chosen.
- The choice is encoded in the symbol.

QR codes: structure

Version 1 symbol: 21×21
locator patterns (larger symbols have more)

Format areas (2 copies): 5 bits of information, encoded with a [15, 5, 7] binary BCH code (small code, exhaustive decoding possible). Format info (5 bits):

- 2 bits: error correction level (4 levels: L, M, Q, H).
- 3 bits: masking pattern.

QR codes: structure

Larger symbols (Version 7: 45×45 and higher) also carry version information: 6 bits, encoded with a binary $[18,6,8]$ code.
The code is derived from the $[23,12,7]$ (perfect) Golay code by taking the even codewords ([23, 11, 8]) and shortening.
As with format information, two copies are written.

QR codes: main data with error correction

message bytes

Data is encoded using shortened $R S$ codes over GF(256).

ECC	$n, n-k$ for Level	redundancy in general case
L	21×21 symbol	7
M	26,10	$\approx 14 \%$
Q	26,13	$\approx 30 \%$
H	26,17	$\approx 50 \%$

For larger symbols:

- Data is broken up into multiple RS blocks (41×41 and larger)
- RS block length is limited so that $n-k \leq 30$ (complexity)
- RS blocks are interleaved

Examples:

vers.	array size	ECC level	message bytes	num. blocks $\times(n, n-k)$	ECC level	message bytes	num. blocks $\times(n, n-k)$
10	57×57	L	274	$2 \times(86,18)$ $2 \times(87,18)$	Q	154	$6 \times(43,24)$
				2956	$19 \times(148,30)$ $6 \times(149,30)$	Q	1666
40	177×177	L			$34 \times(54,30)$		
$34 \times(55,30)$							

