
6. Decoding Generalized Reed-Solomon Codes
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Decoding Generalized Reed-Solomon Codes

• We consider CGRS over Fq with PCM

HGRS =



1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αℓ
1 αℓ

2 . . . αℓ
n

...
...

...
...

αr−1
1 αr−1

2 . . . αr−1
n




v1

v2 0

0
. . .

vn



with α1, α2, . . . , αn ∈ F∗
q distinct, and v1, v2, . . . , vn ∈ F∗

q

(recall that r = n− k = d− 1).

• Codeword c transmitted, word y received, with error vector

e = (e1 e2 . . . en) = y − c .

• J = {κ : eκ ̸= 0} set of error locations .

• We describe an algorithm that correctly decodes y to c, under the
assumption |J | ≤ 1

2 (d−1).
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Syndrome Computation

• First step of the decoding algorithm: syndrome computation

S =


S0

S1

...
Sr−1

 = HGRSy
T = HGRSe

T

Sℓ =

n∑
j=1

yjvjα
ℓ
j =

n∑
j=1

ejvjα
ℓ
j =

∑
j∈J

ejvjα
ℓ
j , ℓ = 0, 1, . . . , r−1 .

ℓ th row of HGRS:[
v1α

ℓ
1, v2α

ℓ
2, . . . , vnα

ℓ
n

]

Example: For conventional RS codes, we have αj=αj−1 and vj=αb(j−1), so

Sℓ =
n∑

j=1

yjα
(j−1)(b+ℓ) = y(αb+ℓ) , ℓ = 0, 1, . . . , r−1 sum

(where y(x) =
∑n

j=1 yjx
j−1; recall c ∈ CRS ⇔ c(αb+ℓ) = 0, ℓ = 0, 1, . . . r−1).

• Syndrome polynomial:

S(x) =

r−1∑
ℓ=0

Sℓx
ℓ =

r−1∑
ℓ=0

xℓ
∑
j∈J

ejvjα
ℓ
j =

∑
j∈J

ejvj

r−1∑
ℓ=0

(αjx)
ℓ .
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A Congruence for the Syndrome Polynomial

S(x) =
∑
j∈J

ejvj

r−1∑
ℓ=0

(αjx)
ℓ .

(1− z)
∑r−1

ℓ=0 zℓ = 1− zr

any field
• We have

(1− αjx)

r−1∑
ℓ=0

(αjx)
ℓ = 1− (αjx)

r ≡ 1 (mod xr) .

Therefore, we can write

r−1∑
ℓ=0

(αjx)
ℓ ≡ 1

1− αjx
(mod xr)

=⇒ S(x) ≡
∑
j∈J

ejvj
1− αjx

(mod xr)

(∑
empty □

∆
= 0

)
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More Auxiliary Polynomials

• Error locator polynomial (ELP)

Λ(x) =
∏
j∈J

(1− αjx)

(∏
empty

□
∆
= 1, so Λ(x) ̸≡ 0

)

• Error evaluator polynomial (EEP)

Γ(x) =
∑
j∈J

ejvj
∏

m∈J\{j}

(1− αmx)

• Λ(α−1
κ ) = 0 ⇐⇒ κ ∈ J roots of ELP point to error locations

• Γ(α−1
κ ) = eκvκ

∏
m∈J\{κ}(1−αmα−1

κ ) ̸= 0, κ ∈ J

=⇒ gcd(Λ(x),Γ(x)) = 1

• The degrees of ELP and EEP satisfy

deg Λ = |J | and deg Γ < |J |

Of course, we don’t know Λ(x), Γ(x): our goal is to find them
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Key Equation of GRS Decoding

Since |J | ≤ 1
2 (d− 1), from deg Λ = |J |, deg Γ < |J | we get

(1) deg Λ ≤ 1
2 (d− 1) and (2) deg Γ < 1

2 (d− 1)

The ELP and the EEP are related by

Γ(x) =
∑
j∈J

ejvj
∏

m∈J\{j}

(1− αmx) =
∑
j∈J

ejvj
Λ(x)

1−αjx
= Λ(x)

∑
j∈J

ejvj
1−αjx

S(x) mod xd−1

(recall d−1 = r)

=⇒ (3) Λ(x)S(x) ≡ Γ(x) (mod xd−1)

(1)+(2)+(3): key equation of GRS decoding

We have S(x), and we know d. We want to solve for Λ(x) and Γ(x)
satisfying (1)+(2)+(3) (and hope the solution is unique).
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Key Equation of GRS Decoding (cont.)

(1) deg Λ ≤ 1
2 (d− 1) (2) deg Γ < 1

2 (d− 1)

(3) Λ(x)S(x) ≡ Γ(x) (mod xd−1)

Let τ = ⌊d−1
2 ⌋. Write

Λ(x) =

τ∑
i=0

λix
i,

Γ(x) =

τ−1∑
h=0

γhx
h ,

and recall

S(x) =

d−2∑
ℓ=0

Sℓx
ℓ .
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Key Equation of GRS Decoding (cont.)

(1) deg Λ ≤ 1
2 (d− 1) (2) deg Γ < 1

2 (d− 1)

(3) Λ(x)S(x) ≡ Γ(x) (mod xd−1)

Writing (3) explicitly (with τ = ⌊d−1
2 ⌋),

γ0 = S0λ0

γ1 = S1λ0 + S0λ1

...

γτ−1 = Sτ−1λ0 + Sτ−2λ1 + · · ·+ S0λτ−1

0 = Sτλ0 + Sτ−1λ1 + · · ·+ S0λτ

0 = Sτ+1λ0 + Sτλ1 + · · ·+ S1λτ

...

0 = Sd−2λ0 + Sd−3λ1 + · · ·+ Sd−2−τλτ
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Key Equation of GRS Decoding (cont.)

(1) deg Λ ≤ 1
2
(d− 1) (2) deg Γ < 1

2
(d− 1)

(3) Λ(x)S(x) ≡ Γ(x) (mod xd−1)

In matrix form,

S0 0 0 · · · 0
S1 S0 0 · · · 0
...

...
. . .

. . .
...

Sτ−1 Sτ−2 · · · S0 0
Sτ Sτ−1 · · · S1 S0

Sτ+1 Sτ · · · S2 S1

...
...

. . .
...

...
Sd−2 Sd−3 · · · Sd−1−τ Sd−2−τ




λ0

λ1

λ2

...
λτ

 =



γ0
γ1
...

γτ−1

0
0
...
0


(∗∗)d−1

τ+1

• (∗∗) is a set of r = d− 1 linear equations in the coefficients {λi}, {γh}.
• Let λ(x), γ(x) be generic solutions to (∗∗) (of which Λ(x),Γ(x) is one

instance).

• The last d− 1− τ = ⌈ 1
2
(d−1)⌉ equations depend only on the {λi} =⇒

we can solve for λ(x) from this system of homogeneous equations.
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Uniqueness of solution

Proposition

A solution (λ(x), γ(x)) to (∗∗), with λ(x) ̸= 0 of minimal degree is
unique up to multiplication by a scalar c ∈ Fq.
It is also the unique solution for which gcd(λ(x), γ(x)) = 1.

• Solving for the {λi} gives us the coefficients of Λ(x) (up to scalar
multiplication). We can find the roots {αj}, then solve linear
equations for the {ej}.

• A straightforward solution, e.g. by Gaussian elimination, leads to an
O(d3) algorithm—we’ll present an O(d2) one.
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The Extended Euclidean Algorithm for polynomials

Given a(x), b(x) over a field F, with a(x) ̸= 0 and deg a > deg b, the
algorithm computes sequences of
remainders ri(x), quotients qi(x), and auxiliary polynomials si(x), ti(x)

r−1(x)← a(x); r0(x)← b(x);
s−1(x)← 1; s0(x)← 0;
t−1(x)← 0; t0(x)← 1;
for (i← 1; ri−1(x) ̸= 0; i++) {

qi(x)← ri−2(x) div ri−1(x);
ri(x)← ri−2(x)− qi(x) ri−1(x);
si(x)← si−2(x)− qi(x) si−1(x);
ti(x)← ti−2(x)− qi(x) ti−1(x);

}

• Let ν = largest i such that ri ̸= 0. Then, rν(x) = gcd(a(x), b(x)).

• We also know that sν(x)a(x) + tν(x)b(x) = gcd(a(x), b(x)) (often used
to compute modular inverses).
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Properties of the Euclidean Algorithm Sequences

Proposition (E1)

The following relations hold:

(i) For i = −1, 0, . . . , ν + 1: si(x)a(x) + ti(x)b(x) = ri(x)

(ii) For i = 0, 1, . . . , ν + 1: deg ti + deg ri−1 = deg a

Proof. By induction on i.□

Proposition (E2)

Suppose that t(x), r(x) ∈ F[x] \ {0} satisfy the following conditions:

(C1) gcd(t(x), r(x)) = 1

(C2) deg t+ deg r < deg a

(C3) t(x)b(x) ≡ r(x) (mod a(x))

Then, for some h ∈ {0, 1, . . . , ν+1} and a constant c ∈ F, we have

t(x) = c · th(x) and r(x) = c · rh(x) .

Proof. Standard polynomial manipulations, Proposition (E1), and recalling

that the sequence deg ri is strictly decreasing. □
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Solving the Key Equation

• Apply the Euclidean algorithm with a(x) = xd−1 and b(x) = S(x).

• Let Λ(x) and Γ(x) play the roles of t(x) and r(x), respectively, in
Proposition (E2).The definitions of Λ and Γ, and the key equation,
guarantee that conditions (C1)–(C3) are satisfied.

(C1) gcd(t(x), r(x)) = gcd(Λ(x),Γ(x)) = 1
(C2) deg t+ deg r = degΛ + deg Γ < deg a = d− 1
(C3) t(x)b(x) ≡ r(x) mod a(x)⇔ Λ(x)S(x) ≡ Γ(x) mod xd−1

• By Proposition (E2), we have Λ(x) = c · th(x) and Γ(x) = c · rh(x) for
some index h and scalar constant c. How do we find the index h?

Theorem

The solution to the key equation is unique up to a scalar constant. It is
obtained with the Euclidean algorithm, by stopping at the unique index h such
that

deg rh < 1
2
(d−1) ≤ deg rh−1

Proof. Such an h exists because ri is strictly decreasing. The degree
properties (1), (2) follow from the definition of h, and Prop. (E1). □
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Finding the Error Values

• Formal derivatives in finite fields:
[∑s

i=0 aix
i
]′
=
∑s

i=1 iaix
i−1

(a(x)b(x))
′
= a′(x)b(x) + a(x)b′(x) (not surprising)

• For the ELP, we have

Λ(x) =
∏
j∈J

(1− αjx) =⇒ Λ′(x) =
∑
j∈J

(−αj)
∏

m∈J\{j}

(1− αmx) ,

and, for κ ∈ J ,

Λ′(α−1
κ ) = −ακ

∏
m∈J\{κ}

(1− αmα−1
κ ) ,

Γ(α−1
κ ) = eκvκ

∏
m∈J\{κ}

(1− αmα−1
κ )

• Therefore, for all error locations κ ∈ J , we obtain

eκ = −ακ

vκ
· Γ(α−1

κ )

Λ′(α−1
κ )

Forney’s algorithm for error
values
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Summary of GRS Decoding

Input: received word (y1 y2 . . . yn) ∈ Fn
q .

Output: error vector (e1 e2 . . . en) ∈ Fn
q .

1 Syndrome computation: Compute the polynomial S(x) =
∑d−2

ℓ=0 Sℓx
ℓ by

Sℓ =

n∑
j=1

yjvjα
ℓ
j , ℓ = 0, 1, . . . , d−2 .

2 Solving the key equation: Apply Euclid’s algorithm to a(x)← xd−1 and
b(x)← S(x) to produce Λ(x)← th(x) and Γ(x)← rh(x), where h is the
smallest index i for which deg ri <

1
2
(d−1).

3 Root search and Forney’s algorithm: Compute the error locations and
values. For j = 1, 2, . . . , n:

ej =


−αj

vj
·
Γ(α−1

j )

Λ′(α−1
j )

if Λ(α−1
j ) = 0

0 otherwise

.

Complexity: 1. O(dn) 2. O
(
(|J |+1) d

)
3. O

(
(|J |+1)n

)
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Decoding Failures and Decoding Errors

• The GRS decoding algorithm assumes several properties of the objects it
constructs, derived from the initial assumption that |J | ≤ 1

2 (d− 1).

• If the initial assumption is not true, then some of the derived properties
may not hold. When this is detected, we say there is a decoding failure:
we know errors have occurred, but we cannot correct them.

• Properties to check (assuming S ̸= 0):
• deg Γ < deg Λ ≤ 1

2
(d− 1) .

• The number of distinct roots of Λ in the set {α−1
i : 1 ≤ i ≤ n} is equal

to its degree.
• If Λ(α−1

i ) = 0, then Γ(α−1
i ) ̸= 0 (error values are nonzero).

• The ultimate test for decoding correctness is to check the syndrome of
the corrected “codeword” c̃ = y − e: HGRSc̃

T = 0 (after also verifying
that wt(e) ≤ 1

2 (d− 1)). This has a complexity cost.

• There will be cases where |J | > 1
2 (d− 1) but all the other assumptions

hold. In those cases, the decoder will proceed normally, and will output
the wrong codeword. This situation is referred to as a decoding error.
Decoding failures can (and should) be detected. Decoding errors cannot.
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Decoding Errors and Erasures

• Assume a codeword c = (c1, c2, . . . , cn) is sent through an errors/erasures
channel, and y = (y1, y2, . . . , yn) is received, yi ∈F∪{ ? }.

• Define the set of erasure locations as K = {j : yj =?}, and the set of
error locations as J = {j : j ̸∈ K, yj ̸= cj}.
The set K is known to the decoder. As before, the set J is not.

• Recall: an error/erasures pattern is correctable iff 2|J |+ |K| ≤ d−1.

• We modify the GRS decoding algorithm to handle errors and erasures.
• Syndrome computation: for j ∈ K, set yj = 0 (no ? in the computation).
• The syndrome polynomial S(x) and error locator polynomial Λ(x) are

defined as before. We also define the erasure locator polynomial

M(x) =
∏
j∈K

(1− αjx) .

• The definition of the error evaluator polynomial is modified as

Γ(x) =
∑

j∈K∪J

ejvj
∏

m∈(K∪J)\{j}

(1− αmx) .

S(x) and M(x) are known to the decoder.
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Decoding Errors and Erasures

With S(x) and M(x) at hand, the algorithm proceeds as follows:
1 Let ρ = |K|. If ρ > d− 1, stop. The error pattern is uncorrectable.

2 Compute a modified syndrome polynomial

S̃(x) = M(x)S(x) mod xd−1 .

3 Run the extended Euclidean algorithm starting with a(x) = xd−1 and
b(x) = S̃(x), keeping track of the polynomial sequences rh, th.

4 Stop at the unique index h such that

deg rh < 1
2
(d+ ρ− 1) ≤ deg rh−1 .

Then, Λ(x) = c · th(x) and Γ(x) = c · rh(x).
5 Compute the errors and erasures locator polynomial

Λ̃(x) = M(x)Λ(x) .

We use Λ̃(x) in lieu of Λ(x) for the rest of the computation.

6 Run the Chien search with Λ̃(x), and use Forney’s formula with Λ̃(x) and
Γ(x) to find the error and erasure locations and values. Notice that for
erased locations, it is possible to get an “error value” of zero, as the
erased location might have had an original value of zero.
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Other Decoding Algorithms

Many decoding algorithms and variants have been developed over the
years. We mention a few of the most important ones.

• Berlekamp algorithm [1967] (also referred to as Berlekamp-Massey due to
a clearer description and improvements by Massey [1969]): first efficient
solution of the key equation, using Newton’s identities and solving for
shortest recurrence that generates the syndrome sequence. Complexity
comparable to the Euclidean algorithm.

• Welch-Berlekamp [1986]: Solves key equation starting from remainder
syndrome y(x) (mod g(x)), without computing power sums. Akin to
continued fractions and Padé approximations.

• List decoding: Decodes beyond τ = ⌊ 1
2
(d− 1)⌋ errors, producing a list of

candidate decoded codewords. Very often, the coset leader is unique even
beyond τ . Dates back to the ’50s, but has gotten recent focus due to
elegant and efficient algorithms by Sudan [’97] , Guruswami-Sudan [’99]
and others.

• Soft decoding: Information on the reliability of the symbols is available.
Can lead to significant gains in decoding performance.
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