
6. Decoding Generalized Reed-Solomon Codes

106 / 153

Decoding Generalized Reed-Solomon Codes

• We consider CGRS over Fq with PCM

HGRS =



1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αℓ
1 αℓ

2 . . . αℓ
n

...
...

...
...

αr−1
1 αr−1

2 . . . αr−1
n




v1

v2 0

0
. . .

vn



with α1, α2, . . . , αn ∈ F∗
q distinct, and v1, v2, . . . , vn ∈ F∗

q

(recall that r = n− k = d− 1).

• Codeword c transmitted, word y received, with error vector

e = (e1 e2 . . . en) = y − c .

• J = {κ : eκ ̸= 0} set of error locations .

• We describe an algorithm that correctly decodes y to c, under the
assumption |J | ≤ 1

2 (d−1).

107 / 153

Syndrome Computation

• First step of the decoding algorithm: syndrome computation

S =


S0

S1

...
Sr−1

 = HGRSy
T = HGRSe

T

Sℓ =
n∑

j=1

yjvjα
ℓ
j =

n∑
j=1

ejvjα
ℓ
j =

∑
j∈J

ejvjα
ℓ
j , ℓ = 0, 1, . . . , r−1 .

ℓ th row of HGRS:[
v1α

ℓ
1, v2α

ℓ
2, . . . , vnα

ℓ
n

]

Example: For conventional RS codes, we have αj=αj−1 and vj=αb(j−1), so

Sℓ =
n∑

j=1

yjα
(j−1)(b+ℓ) = y(αb+ℓ) , ℓ = 0, 1, . . . , r−1

(recall c ∈ CRS ⇔ c(αb+ℓ) = 0, ℓ = 0, 1, . . . r−1).

• Syndrome polynomial:

S(x) =

r−1∑
ℓ=0

Sℓx
ℓ =

r−1∑
ℓ=0

xℓ
∑
j∈J

ejvjα
ℓ
j =

∑
j∈J

ejvj

r−1∑
ℓ=0

(αjx)
ℓ .

108 / 153

A Congruence for the Syndrome Polynomial

S(x) =
∑
j∈J

ejvj

r−1∑
ℓ=0

(αjx)
ℓ .

• We have

(1− αjx)

r−1∑
ℓ=0

(αjx)
ℓ = 1− (αjx)

r ≡ 1 (modxr) .

Therefore, we can write

r−1∑
ℓ=0

(αjx)
ℓ ≡ 1

1− αjx
(mod xr)

=⇒ S(x) ≡
∑
j∈J

ejvj
1− αjx

(mod xr)

(∑
empty □

∆
= 0
)

109 / 153

More Auxiliary Polynomials

• Error locator polynomial (ELP)

Λ(x) =
∏
j∈J

(1− αjx)

(∏
empty

□
∆
= 1

)

• Error evaluator polynomial (EEP)

Γ(x) =
∑
j∈J

ejvj
∏

m∈J\{j}

(1− αmx)

• Λ(α−1
κ) = 0 ⇐⇒ κ ∈ J roots of EEP point to error locations

• Γ(α−1
κ) = eκvκ

∏
m∈J\{κ}(1−αmα−1

κ) ̸= 0

=⇒ gcd(Λ(x),Γ(x)) = 1

• The degrees of ELP and EEP satisfy

deg Λ = |J | and deg Γ < |J |

Of course, we don’t know Λ(x), Γ(x): our goal is to find them

110 / 153

Key Equation of GRS Decoding

Since |J | ≤ 1
2 (d− 1), from deg Λ = |J |, deg Γ < |J | we get

(1) deg Λ ≤ 1
2 (d− 1) and (2) deg Γ < 1

2 (d− 1)

The ELP and the EEP are related by

Γ(x) =
∑
j∈J

ejvj
∏

m∈J\{j}

(1− αmx) =
∑
j∈J

ejvj
Λ(x)

1−αjx
= Λ(x)

∑
j∈J

ejvj
1−αjx

S(x) mod xd−1

(recall d−1 = r)

=⇒ (3) Λ(x)S(x) ≡ Γ(x) (mod xd−1)

(1)+(2)+(3): key equation of GRS decoding

We have S(x), and we know d. We want to solve for Λ(x) and Γ(x)
satisfying (1)+(2)+(3).

111 / 153

Key Equation of GRS Decoding (cont.)

(1) deg Λ ≤ 1
2
(d− 1) (2) deg Γ < 1

2
(d− 1)

(3) Λ(x)S(x) ≡ Γ(x) (mod xd−1)

The coefficients of Λ(x) and Γ(x) solve the system of linear equations

S0 0 0 · · · 0
S1 S0 0 · · · 0
...

...
. . .

. . .
...

Sτ−1 Sτ−2 · · · S0 0
Sτ Sτ−1 · · · S1 S0

Sτ+1 Sτ · · · S2 S1

...
...

. . .
...

...
Sd−2 Sd−3 · · · Sd−1−τ Sd−2−τ




λ0

λ1

λ2

...
λτ

 =



γ0
γ1
...

γτ−1

0
0
...
0



(
τ

∆
= ⌊ d−1

2
⌋
)

d−1

τ+1

• a set of r = d− 1 linear equations in the coefficients of Λ and Γ

• the last ⌊ 1
2
(d−1)⌋ equations depend only on Λ

• we can solve for Λ, find its root set J , then solve linear equations for ej
• straightforward solution leads to O(d3) algorithm — we’ll present an

O(d2) one

112 / 153

The Extended Euclidean Algorithm for polynomials

Given a(x), b(x) over a field F, with a(x) ̸= 0 and deg a > deg b, the
algorithm computes sequences of
remainders ri(x), quotients qi(x), and auxiliary polynomials si(x), ti(x)

r−1(x)← a(x); r0(x)← b(x);
s−1(x)← 1; s0(x)← 0;
t−1(x)← 0; t0(x)← 1;
for (i← 1; ri−1(x) ̸= 0; i++) {

qi(x)← ri−2(x) div ri−1(x);
ri(x)← ri−2(x)− qi(x) ri−1(x);
si(x)← si−2(x)− qi(x) si−1(x);
ti(x)← ti−2(x)− qi(x) ti−1(x);

}

• Let ν = largest i such that ri ̸= 0. Then, rν(x) = gcd(a(x), b(x)).

• We also know that sν(x)a(x) + tν(x)b(x) = gcd(a(x), b(x)) (often used
to compute modular inverses).

113 / 153

Properties of the Euclidean Algorithm Sequences

Proposition (E1)

The following relations hold:

(i) For i = −1, 0, . . . , ν + 1: si(x)a(x) + ti(x)b(x) = ri(x)

(ii) For i = 0, 1, . . . , ν + 1: deg ti + deg ri−1 = deg a

Proof. By induction on i.□

Proposition (E2)

Suppose that t(x), r(x) ∈ F[x] \ {0} satisfy the following conditions:

(C1) gcd(t(x), r(x)) = 1

(C2) deg t+ deg r < deg a

(C3) t(x)b(x) ≡ r(x) (mod a(x))

Then, for some h ∈ {0, 1, . . . , ν+1} and a constant c ∈ F, we have

t(x) = c · th(x) and r(x) = c · rh(x) .

Proof. Standard polynomial manipulations, Proposition (E1), and recalling

that the sequence deg ri is strictly decreasing. □
114 / 153

Solving the Key Equation

• Apply the Euclidean algorithm with a(x) = xd−1 and b(x) = S(x).

• Let Λ(x) and Γ(x) play the roles of t(x) and r(x), respectively, in
Proposition (E2).The definitions of Λ and Γ, and the key equation,
guarantee that conditions (C1)–(C3) are satisfied.

(C1) gcd(t(x), r(x)) = gcd(Λ(x),Γ(x)) = 1
(C2) deg t+ deg r = degΛ + deg Γ < deg a = d− 1
(C3) t(x)b(x) ≡ r(x) mod a(x)⇔ Λ(x)S(x) ≡ Γ(x) mod xd−1

• By Proposition (E2), we have Λ(x) = c · th(x) and Γ(x) = c · rh(x) for
some index h and scalar constant c.

How do we find index h?

Theorem

The solution to the key equation is unique up to a scalar constant, and it is
obtained with the Euclidean algorithm by stopping at the unique index h such
that

deg rh < 1
2
(d−1) ≤ deg rh−1

Proof. Such an h exists because ri is strictly decreasing. The degree
properties follow from the propositions. □

115 / 153

Finding the Error Values

• Formal derivatives in finite fields:
[∑s

i=0 aix
i
]′
=
∑s

i=1 iaix
i−1

(a(x)b(x))
′
= a′(x)b(x) + a(x)b′(x) (not surprising)

• For the ELP, we have

Λ(x) =
∏
j∈J

(1− αjx) =⇒ Λ′(x) =
∑
j∈J

(−αj)
∏

m∈J\{j}

(1− αmx) ,

and, for κ ∈ J ,

Λ′(α−1
κ) = −ακ

∏
m∈J\{κ}

(1− αmα−1
κ) ,

Γ(α−1
κ) = eκvκ

∏
m∈J\{κ}

(1− αmα−1
κ)

• Therefore, for all error locations κ ∈ J , we obtain

eκ = −ακ

vκ
· Γ(α−1

κ)

Λ′(α−1
κ)

Forney’s algorithm for error
values

116 / 153

Summary of GRS Decoding

Input: received word (y1 y2 . . . yn) ∈ Fn
q .

Output: error vector (e1 e2 . . . en) ∈ Fn
q .

1 Syndrome computation: Compute the polynomial S(x) =
∑d−2

ℓ=0 Sℓx
ℓ by

Sℓ =
n∑

j=1

yjvjα
ℓ
j , ℓ = 0, 1, . . . , d−2 .

2 Solving the key equation: Apply Euclid’s algorithm to a(x)← xd−1 and
b(x)← S(x) to produce Λ(x)← th(x) and Γ(x)← rh(x), where h is the
smallest index i for which deg ri <

1
2
(d−1).

3 Forney’s algorithm: Compute the error locations and values by

ej =


−αj

vj
·
Γ(α−1

j)

Λ′(α−1
j)

if Λ(α−1
j) = 0

0 otherwise

, j = 1, 2, . . . , n .

Complexity: 1. O(dn) 2. O
(
(|J |+1) d

)
3. O

(
(|J |+1)n

)
117 / 153

Schematic for GRS Decoder

yj
Buffer

yj
+

ĉj

× + S0

vj

× + S1

vjαj

× + Sd−2

vjα
d−2
j

Euclid’s
algorithm

Λ0

Λ1
...
Λτ

Γ0

Γ1
...

Γτ−1

Selector
True

∑
i Γiα

−i
j

vj
∑

i iΛiα
−i
j

False

0

∑
i

Λiα
−i
j

?
= 0

−ej

Syndrome
computation

Key equation
solver

Computing error
locations and values

τ = ⌊ 1
2
(d− 1)⌋

118 / 153

Finding Roots of the ELP (RS Codes)

Chien search for RS codes (αj = αj−1, 1 ≤ j ≤ n)

× Λτ +α−τ

× Λ1 +α−1

Λ0 +

...

Λ(α−(j−1))

At clock cycle #j, the cell labeled
Λi contains

Λiα
−i(j−1), 0 ≤ i ≤ τ,

and the output of the circuit is

τ∑
i=0

Λiα
−i(j−1)

= Λ(α−(j−1)) = Λ(α−1
j), 1 ≤ j ≤ n.

119 / 153

Other Decoding Algorithms

Many decoding algorithms and variants have been developed over the
years. We mention a few of the most important ones.

• Berlekamp algorithm [1967] (also referred to as Berlekamp-Massey due to
a clearer description and improvements by Massey [1969]): first efficient
solution of the key equation, using Newton’s identities and solving for
shortest recurrence that generates the syndrome sequence. Complexity
comparable to the Euclidean algorithm.

• Welch-Berlekamp [1986]: Solves key equation starting from remainder
syndrome y(x) (mod g(x)), without computing power sums. Akin to
continued fractions and Padé approximations.

• List decoding: Decodes beyond τ = ⌊ 1
2
(d− 1)⌋ errors, producing a list of

candidate decoded codewords. Very often, the coset leader is unique even
beyond τ . Dates back to the ’50s, but has gotten recent focus due to
elegant and efficient algorithms by Sudan [’97] , Guruswami-Sudan [’99]
and others.

• Soft decoding: Information on the reliability of the symbols is available.
Can lead to significant gains in decoding performance.

120 / 153

Applications: PDF417 bar code

PDF417: A multi-row, 1D bar code (PDF: Portable Data File).
121 / 153

PDF417 bar code structure

In bar-code jargon, the
whole array is referred
to as a symbol

3–90
rows

17 “slots”

2 111 2 3 3 4

Codeword: an alternating pattern of 4 bars and 4 spaces, of
varying widths, satisfying some constraints (e.g. width ≤ 6).
Total width: 17; 417 comes from 4+17.

• Basic global parameters (height, width, ECC level, etc.) are encoded in the left
and right row indicators. A form of repetition coding (one copy per row).

• Consecutive rows use different sets of bar/space patterns (codewords). Each set
has 929 codewords; 3 disjoint sets are used cyclically.

• Number of rows: 3 ≤ h ≤ 90. Number of codewords per row: 1 ≤ w ≤ 30 (all
rows have the same number of codewords).

• Total number of codewords (all rows): n ≤ 928.

• Using fixed tables, each codeword is mapped to a number in {0, 1, . . . , 928}, and
interpreted as an element of GF(929) (929 is prime).

122 / 153

PDF417: Codeword mapping

123 / 153

PDF417: Error correction

• An error correction level, s, 0 ≤ s ≤ 8, is defined.

• The sequence of codewords (all rows) is interpreted as a code block in a
[k + r, k, r + 1] shortened Reed Solomon code over GF(929), where

• k is the number of codewords used for actual data.

• Raw data is mapped to codewords using various efficient modes
depending on whether the data is numeric, text, binary, or mixed.

• One bar code can encode more than 1100 raw bytes, 1800 ASCII
characters, or 2700 decimal digits, depending on the mode.

• r = 2s+1, so r ∈ {2, 4, 8, 16, 32, 64, 128, 256, 512}.
• k + r ≤ 928.

• 2 check digits are reserved for detection; the rest (if any) are used for erasure
and full error correction.

• The generator polynomial of the RS code is

g(x) =
r∏

i=1

(x− 3i) ,

3 is primitive in GF(929).

124 / 153

Application: QR codes

Version 1: 21× 21

Version 3: 29× 29 Version 10: 57× 57 Version 40: 177× 177

A truly 2D, highly versatile bar code (array referred to as a symbol)

125 / 153

Application: QR codes

Widespread use

• Product or part tracking (original motivation)

• Web links

• Restaurant menus

• Tickets

• Document verification

• . . . etc.

Robust ECC allows for data recovery under significant damage, and also for
graphic art customization.

Fully recoverable symbols

126 / 153

QR codes: Versions (= Sizes)

Capacity = number of main data bytes (including ECC)

127 / 153

QR codes: masking

• An XOR mask is applied by the encoder to the raw data to minimize
undesirable features (large areas of the same color, etc.).

• Several masks are tried, and the resulting array is scored for bad features.
Mask with the best score is chosen.

• The choice is encoded in the symbol.

128 / 153

QR codes: structure

Version 1 symbol: 21×21

locator patterns
(larger symbols
have more)

locator patterns

timing
information

format
information
(2 copies)

Format areas (2 copies): 5 bits of information, encoded with a [15, 5, 7] binary
BCH code (small code, exhaustive decoding possible). Format info (5 bits):

• 2 bits: error correction level (4 levels: L, M, Q, H).

• 3 bits: masking pattern.

129 / 153

QR codes: structure

Version
information
(2 copies)

Larger symbols (Version 7: 45× 45 and higher) also carry version information:
6 bits, encoded with a binary [18, 6, 8] code.
The code is derived from the [23, 12, 7] (perfect) Golay code by taking the even
codewords ([23, 11, 8]) and shortening.

As with format information, two copies are written.

130 / 153

QR codes: main data with error correction

Data is encoded using shortened RS
codes over GF(256).

ECC n, n− k for redundancy in
Level 21×21 symbol general case
L 26, 7 ≈ 14%
M 26, 10 ≈ 30%
Q 26, 13 ≈ 50%
H 26, 17 ≈ 60%

For larger symbols:
• Data is broken up into multiple

RS blocks (41×41 and larger)
• RS block length is limited so that

n− k ≤ 30 (complexity)
• RS blocks are interleaved

Examples:
array ECC message num. blocks ECC message num. blocks

vers. size level bytes ×(n, n− k) level bytes ×(n, n− k)
10 57×57 L 274 2×(86, 18) Q 154 6×(43, 24)

2×(87, 18) 2×(44, 24)
40 177×177 L 2956 19×(148, 30) Q 1666 34×(54, 30)

6×(149, 30) 34×(55, 30)

131 / 153

