### 5. Reed-Solomon Codes

#### Generalized Reed-Solomon Codes

• Let  $\alpha_1, \alpha_2, \ldots, \alpha_n$ , n < q, be distinct nonzero elements of  $\mathbb{F}_q$ , and let  $v_1, v_2, \ldots, v_n$  be nonzero elements of  $\mathbb{F}_q$  (not necessarily distinct). A generalized Reed-Solomon (GRS) code is a linear [n, k, d] code  $\mathcal{C}_{\mathrm{GRS}}$  over  $\mathbb{F}_q$ , with PCM

$$H_{\text{GRS}} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_1^{n-k-1} & \alpha_2^{n-k-1} & \dots & \alpha_n^{n-k-1} \end{pmatrix} \begin{pmatrix} v_1 & & & \\ & v_2 & & 0 \\ & & & \ddots & \\ & & & & v_n \end{pmatrix} \,.$$

 $\alpha_j$ : column locators (distinct),  $v_j$ : column multipliers  $(\neq 0)$ 

#### Theorem

 $\mathcal{C}_{GRS}$  is an MDS code, namely, d=n-k+1.

**Proof.** Any subset of r=n-k distinct columns of the left part of  $H_{\rm GRS}$  has the form of a Vandermonde matrix defined by distinct elements, which is nonsingular. Hence,  $d \geq n-k+1$ . By Singleton's bound, d=n-k+1.  $\square$ 

$$X = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_r \\ x_1^2 & x_2^2 & \cdots & x_r^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{r-1} & x_2^{r-1} & \cdots & x_r^{r-1} \end{bmatrix}$$
$$|X| = \prod_{i < j} (x_j - x_i)$$

#### About column multipliers

Let  $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ ,  $\mathbf{v} = (v_1, v_2, \dots, v_n)$ , and define

$$M_{n-k}(\boldsymbol{\alpha}) = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_1^{n-k-1} & \alpha_2^{n-k-1} & \dots & \alpha_n^{n-k-1} \end{pmatrix}, \ D(\mathbf{v}) = \begin{pmatrix} v_1 & & & & \\ & v_2 & & 0 \\ 0 & & \ddots & & \\ & & & v_n \end{pmatrix}.$$

- We have  $H_{\text{GRS}} = M_{n-k}(\boldsymbol{\alpha})D(\mathbf{v})$ . Consider the code  $\mathcal{C}'_{\text{GRS}}$  with PCM  $H'_{\text{GRS}} = M_{n-k}(\boldsymbol{\alpha})$ .
- Clearly,  $H_{\rm GRS}\mathbf{c}^T=0 \Leftrightarrow H_{\rm GRS}'(D(\mathbf{v})\mathbf{c}^T))=0$ : the codewords of  $\mathcal{C}_{\rm GRS}'$  are the same as the codewords of  $\mathcal{C}_{\rm GRS}$ , but with the value in coordinate j multiplied by  $v_j$ ,  $1\leq j\leq n$ .
- $\mathcal{C}'_{GRS}$  has the same parameters [n, k, d] as  $\mathcal{C}_{GRS}$  (d is preserved since all  $v_i$  are nonzero). Column multipliers seem to make no difference (???).
- However, column multipliers do make a big difference on the properties of sub-field sub-codes of GRS codes. Also, certain choices of multipliers (and locators) have advantages when implementing encoders/decoders.

#### Duals of GRS codes

#### Theorem

The dual of a GRS code is a GRS code.

**Proof.** We show that  $G_{GRS}$  can have the form  $G = M_k(\alpha)D(\mathbf{v}')$  for an appropriate choice of column multipliers  $v_j'$  (but same column locators as H). Typical rows of such G, and of H, have the form

$$G_i = [v'_1 \alpha_1^i, v'_2 \alpha_2^i, \dots, v'_n \alpha_n^i], \ 0 \le i \le k - 1,$$
  

$$H_j = [v_1 \alpha_1^j, v_2 \alpha_2^j, \dots, v_n \alpha_n^j], \ 0 \le j \le n - k - 1.$$

We have

$$G_i \cdot H_j^T = \sum_{\ell=1}^n v_\ell v_\ell' \alpha_\ell^{i+j}, \ \ 0 \le i \le k-1, \ \ 0 \le j \le n-k-1,$$

with  $0 \le i + j \le n - 2$ . Therefore,  $GH^T = 0$  if and only if

$$\sum_{\ell=1}^{n} v_{\ell} v_{\ell}' \alpha_{\ell}^{t} = 0, \quad 0 \le t \le n-2.$$

These equations can be written in matrix form as  $M_{n-1}(\alpha)D(\mathbf{v})(\mathbf{v}')^T=0$ . Now,  $M_{n-1}(\alpha)D(\mathbf{v})$  is the PCM of an [n,1,n] GRS code, which has nonzero codewords. Taking  $\mathbf{v}'$  to be such a codeword, the equations are satisfied. This codeword has weight n, hence all  $v_i'$  are nonzero.  $\square$ 

### Distinguished Classes of GRS Codes

- Primitive GRS codes: n=q-1 and  $\{\alpha_1,\alpha_2,\ldots,\alpha_n\}=F^*$ ; usually  $\alpha_i=\alpha^{i-1}$  for a primitive  $\alpha\in\mathbb{F}$ .
- Normalized GRS codes:  $v_j = 1$  for all  $1 \le j \le n$ .
- Narrow-sense GRS codes:  $v_j = \alpha_j$  for all  $1 \le j \le n$ .
- Allowing one  $\alpha_i = 0$  (column  $[1 \ 0 \ \dots \ 0]^T$ , not in narrow sense GRS): (singly) extended GRS code  $\implies n \le q$
- Allowing one  $\alpha_i = \infty$  (column  $[0 \dots 0 \, 1]^T$ , not in narrow sense GRS): (doubly) extended GRS code  $\implies n \leq q+1$

**Example.** Let  $v_1, v_2, \ldots, v_n$  be the column multipliers of a primitive GRS code. We can verify that the dual GRS code has column multipliers  $\alpha_i/v_i$ 

```
\implies (normalized primitive GRS)^{\perp} = (narrow-sense primitive GRS).
```

## GRS Encoding as Polynomial Evaluation

• For  $\mathbf{u} = (u_0 \, u_1 \, \dots \, u_{k-1})$ , let  $u(x) = u_0 + u_1 x + u_2 x^2 + \dots + u_{k-1} x^{k-1}$ . Then,

$$\mathbf{c} = \mathbf{u} G_{GRS} = (u_0 u_1 \dots u_{k-1}) \cdot \begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \dots & \alpha_n^{k-1} \end{pmatrix} \begin{pmatrix} v_1' \\ v_2' & 0 \\ 0 & \ddots \\ v_n' \end{pmatrix}$$

$$= [v_1' u(\alpha_1) \ v_2' u(\alpha_2) \ \dots \ v_n' u(\alpha_n)]$$

- Minimum distance now follows from the fact that a polynomial of degree  $\leq k-1$  cannot have more than k-1 roots in  $\mathbb{F}_q \implies \operatorname{wt}(\mathbf{c}) \geq n-k+1$ .
- Decoding as *noisy interpolation*: reconstruct u(x) from (k+2t) noisy evaluations  $u(\alpha_1)+e_1,\ u(\alpha_2)+e_2,\dots,u(\alpha_{k+2t})+e_{k+2t}$ , possible if at most t evaluations are corrupted.

#### Refresher: shortening a linear code

Given an [n,k,d] code, we can obtain an  $[n-\ell,k-\ell,d]$  code,  $1\leq \ell \leq k$ , by

- $oldsymbol{0}$  selecting all the codewords that start with  $\ell$  zeros,
- ② deleting the first ℓ coordinates.

If the code is systematic, this can be visualized as follows

$$\mathbf{u} G = \mathbf{u} \left( I_{k \times k} | A_{k \times (n-k)} \right)$$

$$= \underbrace{[0, 0, \dots, 0, u_{k-\ell-1}, \dots, u_0]}_{\ell} \left( \begin{array}{c|c} I_{\ell} & \mathbf{0}_{\ell \times k-\ell} & A_{\ell \times (n-k)}^{U} \\ \hline \mathbf{0}_{(k-\ell) \times k} & I_{k-\ell} & A_{(k-\ell) \times (n-k)}^{L} \end{array} \right)$$

Generator matrix of the shortened code

Shortening is equivalent to setting the first  $\ell$  message symbols to zero and then ignoring them.

In terms of the systematic generator matrix, it is equivalent to taking the lower-right  $(k-\ell)\times (n-\ell)$  corner of the original matrix.

#### Conventional Reed-Solomon Codes

• Conventional Reed-Solomon (RS) code  $\mathcal{C}_{\mathrm{RS}}$ : GRS code with n|(q-1),  $\alpha \in \mathbb{F}^*$  with  $\mathcal{O}(\alpha) = n$ ,  $\alpha_j = \alpha^{j-1}$ ,  $1 \leq j \leq n$ ,  $v_j = \alpha^{b(j-1)}$ ,  $1 \leq j < n$ ,  $b \in \mathbb{Z}$ .

- Commonly, n = q 1: primitive code.
- Code can be shortened to any length  $n' \leq n$ .
  - Two ways to get shorter codes: choose n|(q-1), n < q-1, or shorten by setting message digits to zero (or do both).
- Canonical PCM of a RS code is given by

$$H_{\text{RS}} = \begin{pmatrix} 1 & \alpha^b & \alpha^{2b} & \cdots & \alpha^{(n-1)b} \\ 1 & \alpha^{b+1} & \alpha^{2(b+1)} & \cdots & \alpha^{(n-1)(b+1)} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha^{b+r-1} & \alpha^{2(b+r-1)} & \cdots & \alpha^{(n-1)(b+r-1)} \end{pmatrix}$$

#rows = r = n - k = d - 1

#### Conventional Reed-Solomon Codes

$$H_{\mathrm{RS}} = \begin{pmatrix} 1 & \alpha^b & \alpha^{2b} & \cdots & \alpha^{(n-1)b} \\ 1 & \alpha^{b+1} & \alpha^{2(b+1)} & \cdots & \alpha^{(n-1)(b+1)} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha^{b+r-1} & \alpha^{2(b+r-1)} & \cdots & \alpha^{(n-1)(b+r-1)} \end{pmatrix}$$

$$\#\mathsf{rows} = r = n - k = d - 1$$

- Associate  $\mathbf{c} = [c_0, c_1, \dots, c_{n-1}] \in \mathbb{F}^n$  with  $c(x) = \sum_{\ell=0}^{n-1} c_i x^i \in \mathbb{F}[x]$ .
- $\mathbf{c} \in \mathcal{C}_{\mathrm{RS}} \iff H_{\mathrm{RS}}\mathbf{c}^T = \mathbf{0}$ .
- For a typical row  $\bar{\mathbf{h}}_i$  of  $H_{\mathrm{RS}}$ ,  $\bar{\mathbf{h}}_i \mathbf{c}^T = \sum_{j=0}^{n-1} \left(\alpha^{b+i}\right)^j c_j = c(\alpha^{b+i})$ . Therefore,  $\mathbf{c} \in \mathcal{C}_{\mathrm{RS}} \iff c(\alpha^\ell) = 0, \ \ell = b, b+1, \dots, b+r-1$ .
- $\alpha^b, \alpha^{b+1}, \ldots, \alpha^{b+r-1}$ : roots of  $\mathcal{C}_{RS}$ .
- $g(x) = (x-\alpha^b)(x-\alpha^{b+1})\cdots(x-\alpha^{b+r-1})$ :

  generator polynomial of  $\mathcal{C}_{\mathrm{RS}}$ .  $\deg(q) = r = n k$

#### RS Codes as Cyclic codes (another polynomial characterization)

- $\mathbf{c} \in \mathcal{C}_{RS} \iff c(\alpha^{\ell}) = 0, \ \ell = b, b+1, \dots, b+r-1$
- $g(x) = (x \alpha^b)(x \alpha^{b+1}) \cdots (x \alpha^{b+r-1})$  (deg(g) = r)

Therefore,  $\mathbf{c} \in \mathcal{C}_{\mathtt{RS}} \iff g(x)|c(x)$  and

$$C_{RS} = \{ u(x)g(x) : \deg(u) < k \} \subseteq \mathbb{F}_q[x]_n$$

Every root of g(x) is also a root of  $x^n - 1 \implies g(x) \mid x^n - 1$ .

- $\mathcal{C}_{\mathrm{RS}}$  is the *ideal* generated by g(x) in the ring  $\mathbb{F}_q[x]/\langle x^n-1\rangle$ .
- RS codes are *cyclic*:  $c(x) \in \mathcal{C}_{RS} \implies xc(x) \mod (x^n 1) \in \mathcal{C}_{RS}$ , or  $\mathbf{c} = [c_0 c_1 \dots c_{n-1}] \in \mathcal{C}_{RS} \implies [c_{n-1} c_0 c_1 \dots c_{n-2}] \in \mathcal{C}_{RS}$
- Distinguished RS codes
  - Primitive RS: n=q-1,  $\alpha$  primitive element of  $\mathbb{F}_q$
  - Narrow-sense RS: b = 1 (common choice)
  - Normalized RS: b = 0
- Cyclic property is not preserved if we shorten the code, but the other properties are.

### **Encoding RS codes**

• We saw the *polynomial evaluation* interpretation of GRS encoding

$$\mathbf{c} = \mathbf{u}G_{\text{GRS}} = \mathbf{u} \cdot \begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \dots & \alpha_n^{k-1} \end{pmatrix} \begin{pmatrix} v_1' & & & \\ & v_2' & & 0 \\ 0 & & \ddots & \\ & & & v_n' \end{pmatrix}$$

$$= \begin{bmatrix} v_1' u(\alpha_1) & v_2' u(\alpha_2) & \dots & v_n' u(\alpha_n) \end{bmatrix} \qquad \text{non-systematic}$$

• In the *polynomial ideal* interpretation of RS codes:  $u(x) \mapsto u(x)g(x)$ , corresponds to a non-systematic generator matrix

$$G = \begin{pmatrix} g_0 & g_1 & \dots & g_{n-k} \\ & g_0 & g_1 & \dots & g_{n-k} & & 0 \\ & & \ddots & \ddots & \dots & \ddots & \\ & & & g_0 & g_1 & \dots & g_{n-k} \end{pmatrix} \qquad (g_{n-k} = 1)$$

How about a systematic encoding?

## Systematic Encoding of RS Codes

• For  $u(x)\in \mathbb{F}_q[x]_k$ , let  $r_u(x)$  be the unique polynomial in  $\mathbb{F}_q[x]_{n-k}$  such that

$$r_u(x) \equiv x^{n-k}u(x) \mod g(x)$$

• Let  $c(x)=x^{n-k}u(x)-r_u(x)$ . Clearly,  $g(x)\mid c(x)$ , and  $\deg(c(x))\leq n-1$ , so

$$c(x) \in \mathcal{C}_{\scriptscriptstyle{\mathrm{RS}}}$$

• The mapping  $\mathcal{E}_{RS}: u(x) \mapsto c(x) = x^{n-k}u(x) - r_u(x)$  is a linear, systematic encoding for  $\mathcal{C}_{RS}$ 

## Circuit elements for a systematic encoder



# Systematic Encoding Circuit



#### Switches:

- at A for k cycles
- at B for r=n-k cycles

#### Register contents:

$$R_{\ell}(x) = \sum_{i=0}^{r-1} R_{\ell,i} x^i, \quad 1 \le \ell \le k,$$

with initial condition

$$R_0(x) = 0$$

# Systematic Encoding Circuit



$$g(x) = x^r + g_{r-1}x^{r-1} + g_{r-2}x^{r-2} + \dots + g_1x + g_0 \stackrel{\Delta}{=} x^r + \bar{g}(x)$$

Notice:  $\bar{g}(x) \equiv -x^r \mod g(x)$ .

One step while switches are at A:

$$R_{\ell+1}(x) = xR_{\ell}(x) - R_{\ell,r-1}x^r + \bar{g}(x)f$$

$$= xR_{\ell}(x) \underbrace{-R_{\ell,r-1}x^r - \bar{g}(x)R_{\ell,r-1}}_{-R_{\ell,r-1}g(x)} \underbrace{-\bar{g}(x)u_{k-\ell-1}}_{x^ru_{k-\ell-1}}$$

$$\equiv \left(xR_{\ell}(x) + x^ru_{k-\ell-1}\right) \bmod g(x)$$

# Systematic Encoding Circuit



#### Switches:

- at A for k cycles
- at B for r=n-k cycles

$$\begin{array}{rcl} \text{Register contents:} & R_0(x) = 0 \\ R_{\ell+1}(x) & = & x R_{\ell}(x) + x^r u_{k-\ell-1} \\ & = & x^2 R_{\ell-1}(x) + x^r \left( x u_{k-\ell} + u_{k-\ell-1} \right) \\ & = & x^r \sum_{i=1}^{\ell+1} u_{k-i} x^{\ell+1-i} \mod g(x) \end{array}$$

 $\ell = 0, 1, \ldots, k-1$ 

$$R_k(x) = x^r \sum_{i=1}^k u_{k-i} x^{k-i} \mod g(x) = x^r u(x) \mod g(x)$$
.

### Shortened RS codes: Encoding Circuit



The "conceptual" zeros are never stored or manipulated. They do not participate in any computation.

### Constant multipliers

Assume  $q=2^m$ . Multiplying by a constant  $g_i\in \mathrm{GF}(2^m)$  is a linear transformation over  $\mathrm{GF}(2)$ .



• If elements are represented as m-vectors over  $\mathrm{GF}(2)$ , the transformation can be implemented via multiplication by an  $m \times m$  matrix with entries in  $\mathrm{GF}(2)$ , i.e., computing m XOR sums, each over a subset of the m input bits.

**Example:** Multiply generic  $\beta : [\beta_0 \beta_1 \beta_2 \beta_3]$  by  $\alpha^8$  in  $GF(2^4)$ .

$$\alpha^{8}\beta \quad \longleftrightarrow \quad \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \beta_{3} \end{bmatrix} = \begin{bmatrix} \beta_{0} + \beta_{2} \\ \beta_{1} + \beta_{2} + \beta_{3} \\ \beta_{0} + \beta_{2} + \beta_{3} \\ \beta_{1} + \beta_{3} \end{bmatrix}$$

• We have r such multipliers in the encoder, all sharing the same input. If we have  $g_i = g_j$  for some  $i \neq j$ , the output from the  $g_i$  multiplier can be re-used, and fed to the adder in the j-th stage of the register (eliminating the  $g_j$  multiplier). This would save hardware resources.

### Palindromic generator polynomial

$$g(x) = x^{r} + g_{r-1}x^{r-1} + \dots + g_{1}x + g_{0},$$

with  $g_0 \neq 0$ . Reversed:

$$\overleftarrow{g}(x) = g_0 x^r + g_1 x^{r-1} + \dots + g_{r-1} x + 1$$

We have  $\overleftarrow{g}(x) = x^r g(x^{-1})$ , so,  $\beta$  is a root of g(x) iff  $\beta^{-1}$  is a root of  $\overleftarrow{g}(x)$ . Can we make  $g(x) = \overleftarrow{g}(x)$  (palindromic)? This would make  $g_0 = 1$ ,

$$g_1 = g_{r-1}$$
,  $g_2 = g_{r-2}$ , ...

*Yes*, if the set of roots is closed under inversion. Assume  $q = 2^m$ .

If r is even, choose  $b = \frac{q}{2} - \frac{r}{2}$ .

If r is odd, choose  $b = -\frac{r-1}{2}$ 

(equivalently,  $b=q-1-\frac{r-1}{2}$  ).

