4. Brief Review of Finite Fields

Fields

- A field is a set \mathbb{F} with two operations, + (addition) and • (multiplication), satisfying the following properties:
- Associativity: $a+(b+c)=(a+b)+c$ and $a \cdot(b \cdot c)=(a \cdot b) \cdot c$
- Commutativity: $a+b=b+a$ and $a \cdot b=b \cdot a$.
- Identities: there exist two unique elements, $0,1 \in \mathbb{F}, 0 \neq 1$, such that $\forall a \in \mathbb{F}, a+0=a$ and $a \cdot 1=a$.
- Additive inverses: $\forall a \in \mathbb{F}, \exists b \in \mathbb{F}$ such that $a+b=0$ (b is denoted $-a$).
- Multiplicative inverses: $\forall a \in \mathbb{F} \backslash\{0\}, \exists b \in \mathbb{F}$ such that $a \cdot b=1$ (b is denoted a^{-1}).
- Distributivity of multiplication over addition: $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$.
- Other properties, such as $a \cdot 0=0$ or $a \cdot b=0 \Longrightarrow a=0$ or $b=0$ follow easily from the defining ones.
- A field has an additive group \mathbb{F}^{+}, and a multiplicative group \mathbb{F}^{*} (with underlying set $\mathbb{F} \backslash\{0\}$). Both groups are abelian (commutative).
- A finite field (or Galois field) is a field with a finite underlying set: $|\mathbb{F}|=q, \quad q \geq 2$. We denote such a field \mathbb{F}_{q}, or $\operatorname{GF}(q)$
(for the time being, this may be an abuse of notation, since there may be different fields of size q).

Fields: Examples

- Well known infinite fields: the rationals \mathbb{Q}, the reals \mathbb{R}, the complexes \mathbb{C}.
- Well known non-fields: the integers \mathbb{Z}, the naturals \mathbb{N}.
- The integers \mathbb{Z} form a commutative ring (all the properties hold except for multiplicative inverses).
- Given a field \mathbb{F} and an indeterminate symbol x, the field $\mathbb{F}(x)$ of all rational functions $f(x) / g(x)$, where $f(x), g(x)$ are polynomials over \mathbb{F}, $g(x) \neq 0, \operatorname{gcd}(f(x), g(x))=1$. This field is always infinite.
- Examples of finite fields:
- Smallest: $\mathbb{F}_{2}=\{0,1\}$ with $+=$ xor (addition modulo 2), $\cdot=$ AND.
- Next smallest: $\mathbb{F}_{3}=\{0,1,2\}$ with operations modulo 3

			+	0	1	2		.	0	1	2
			0	0	1	2		0	0	0	0
			1	1	2	0		1	0	1	2
			2	2	0	1		2	0	2	1
+	0	1	a	b		.	0	1	a	b	
0	0	1	a	b		0	0	0	0	0	
1	1	0	b	a		1	0	1	a	b	
a	a	b	0	1		a	0	a	b	1	
b	b	a	1	0		b	0	b	1	a	

- \mathbb{F}_{4} :
not integers modulo 4

Finite Field Basics

- For a prime p, let \mathbb{F}_{p} denote the ring of integers $\bmod p$, with underlying set $\{0,1, \ldots, p-1\}$.
- Claim: \mathbb{F}_{p} is a finite field.
- For every integer $a \in\{1,2, \ldots, p-1\}$, we have $\operatorname{gcd}(a, p)=1$. By Euclid's extended algorithm, there exist integers s, t such that $s \cdot a+t \cdot p=1$. The integer s, taken modulo p, is the multiplicative inverse of a in the field \mathbb{F}_{p}.
- Refresher: Euclid's gcd algorithm.
- To compute $\operatorname{gcd}(a, b), a, b \in \mathbb{N}$, we start with $r_{-1}=a, r_{0}=b$, and compute a sequence of remainders $r_{1}, r_{2}, \ldots, r_{m}$, where for $i \geq 1$,

$$
r_{i}=r_{i-2}-q_{i} r_{i-1}, \quad q_{i}=\left\lfloor\frac{r_{i-2}}{r_{i-1}}\right\rfloor, \quad 0 \leq r_{i}<r_{i-1}
$$

q_{i}, r_{i} are the quotient and remainder (resp.) of the integer division of r_{i-2} by r_{i-1}.

- The sequence r_{1}, r_{2}, \ldots is non-negative and strictly decreasing, so it must reach zero. Say, $r_{m}=0$. Then $r_{m-1}=\operatorname{gcd}(a, b)$.
- The extended Euclidean algorithm also keeps track of auxiliary sequences of integers s_{1}, s_{2}, \ldots and t_{1}, t_{2}, \ldots such that

$$
s_{i} a+t_{i} b=r_{i}, \quad i \geq 1
$$

Finite Field Basics

- Example: Inverse of 16 modulo 41 , start with $r_{-1}=41, r_{0}=16$:

$$
\begin{aligned}
i & r_{i}
\end{aligned}=r_{i-2}-q_{i} \cdot r_{i-1}=s_{i} \cdot a+r+t_{i} \cdot b
$$

Finite Field Basics

- Order of a finite group: number of elements in the group. The additive group of \mathbb{F}_{q} has order $\left|\mathbb{F}_{q}\right|=q$, the multiplicative group order $\left|\mathbb{F}^{*}\right|=q-1$.
- Order of an element $a \in \mathbb{F}_{q}$:
- Additive: least positive integer k such that

- Multiplicative (for $a \neq 0$): least positive integer m such that $a^{m}=1$.
- Lagrange's theorem for finite groups: If G is a finite group, and H is a subgroup of G, then $|H|$ divides $|G|$. It follows that the order of any $g \in G$ divides $|G|$.

Proposition

Let $a \in \mathbb{F}_{q}$. Then, $q \times a \triangleq \underbrace{a+a+\cdots+a}_{q}=0$ and $a^{q}=a$.
Proof. By Lagrange's theorem, the additive order of a divides q, and the multiplicative order divides $q-1$. Therefore $q \times a=0$ and $a^{q-1}=1$ for $a \neq 0$. Together with $0^{q}=0$, we get $a^{q}=a$ for all a in \mathbb{F}_{q}. \square

Field Characteristic

Let \mathbb{F} be a field, and let 1 be the identity in \mathbb{F}^{*}. The characteristic $\operatorname{char}(\mathbb{F})$ of \mathbb{F} is the least positive integer c, if any, such that

$$
c \times 1=\underbrace{1+1+1+\cdots+1}_{c}=0 .
$$

If c exists, it is the additive order of 1 in \mathbb{F}. If no such integer exists, we define $\operatorname{char}(\mathbb{F})=0$.

- If $c=\operatorname{char}(\mathbb{F})>0$, then for any $\alpha \in \mathbb{F}, c \times \alpha=0$.
- For a finite field \mathbb{F}, we always have $\operatorname{char}(\mathbb{F})>0$.
- Examples: $\operatorname{char}\left(\mathbb{F}_{7}\right)=7, \operatorname{char}\left(\mathbb{F}_{4}\right)=2$, $\operatorname{char}(\mathbb{Q})=\operatorname{char}(\mathbb{R})=\operatorname{char}(\mathbb{C})=0$.
- An infinite field can have a positive characteristic. For example, $\mathbb{F}_{2}(x)$ is infinite, with $\operatorname{char}\left(\mathbb{F}_{2}(x)\right)=2$.

Field Characteristic

Proposition

If char $(\mathbb{F})>0$ then it is a prime p. \mathbb{F} then contains a sub-field isomorphic to \mathbb{F}_{p}.

Proof. Assume $p=\operatorname{char}(\mathbb{F})>0$, and p factors as $p=a b$ with $1<a \leq b<p$.
Then, $0=p \times 1=(a \times 1) \cdot(b \times 1)$, which implies that either $a \times 1=0$ or
$b \times 1=0$, contradicting the minimality of p. The subset
$\{0,1,1+1, \ldots, \underbrace{1+1+\cdots+1}_{p-1}\} \subseteq \mathbb{F}$ is isomorphic to $\mathbb{F}_{p} . \square$

Proposition

Let \mathbb{F} be a finite field, let $a, b \in \mathbb{F}$, and let $p=\operatorname{char}(\mathbb{F})$. Then $(a+b)^{p}=a^{p}+b^{p}$.

Proof. The binomial coefficient $\binom{p}{i}=\frac{p(p-1)(p-2) \cdots(p-i+1)}{1 \cdot 2 \cdots(i-1) i}$ is a multiple of p for $0<i<p$.

Polynomials

- For a field \mathbb{F} and indeterminate x,
- $\mathbb{F}[x]$: ring of polynomials in x, with coefficients in \mathbb{F}. This is an Euclidean ring: degree, divisibility, division with reminder, GCD, etc. are well defined and "behave" as we're used to over \mathbb{R}.
- The extended Euclidean algorithm can be applied to elements of $\mathbb{F}[x]$, and for $a, b \in \mathbb{F}[x]$, not both zero, we have polynomials $s(x), t(x)$ such that

$$
s(x) \cdot a(x)+t(x) \cdot b(x)=\operatorname{gcd}(a(x), b(x))
$$

- $P(x) \in \mathbb{F}[x]$ is called irreducible if

$$
\operatorname{deg}(P(x))>0 \text { and } P(x)=a(x) b(x) \Longrightarrow \operatorname{deg}(a(x))=0 \text { or } \operatorname{deg}(b(x))=0
$$

- Example: $x^{2}+1$ is irreducible over \mathbb{R}.
- Example: irreducibles over \mathbb{F}_{2}
degree 1: $x, x+1 \quad$ degree 3: $x^{3}+x+1, x^{3}+x^{2}+1$
degree 2: $x^{2}+x+1$ degree 4: $x^{4}+x+1, x^{4}+x^{3}+1, x^{4}+x^{3}+x^{2}+x+1$
- $\mathbb{F}[x]$ is a unique factorization domain (factorization into irreducible polynomials is unique up to permutation and scalar multiples).

Arithmetic Modulo an Irreducible Polynomial

- Let \mathbb{F} be a field and $P(x)$ an irreducible polynomial of degree $h \geq 1$.
- The ring of residue classes of $\mathbb{F}[x]$ modulo $P(x)$ is denoted $\mathbb{F}[x] /\langle P(x)\rangle$.
- Let $\mathbb{F}[x]_{n}=$ set of polynomials of degree $<n$ in x over \mathbb{F}.
- $\mathbb{F}[x] /\langle P(x)\rangle$ can be represented by $\mathbb{F}[x]_{h}$ with arithmetic $\bmod P(x)$.

Theorem

$\mathbb{F}[x] /\langle P(x)\rangle$ is a field.

- This theorem, and the one saying \mathbb{F}_{p} is a field (p prime), are special cases of the same theorem on Euclidean rings.
- As with integers, inverses are found found using the Euclidean algorithm: $\operatorname{gcd}(a(x), P(x))=1 \Longrightarrow$
$\exists s(x), t(x): s(x) a(x)+t(x) P(x)=1 \Longrightarrow$ $s(x)$ is a multiplicative inverse of $a(x)$ in $\mathbb{F}[x] /\langle P(x)\rangle$.

Arithmetic Modulo an Irreducible Polynomial

Example: Inverse of x^{2} modulo $x^{3}+x+1$ over \mathbb{F}_{2} (recall that $z=-z$).

$$
\begin{array}{rlrlr}
r_{i}(x) & =r_{i-2}(x) & +q_{i}(x) \cdot r_{i-1}(x) & =t_{i}(x) \cdot P(x) & +s_{i}(x) \cdot a(x) \\
\hline x+1 & =x^{3}+x+1 & +x \cdot x^{2} & =1 \cdot\left(x^{3}+x+1\right) & +x \cdot\left(x^{2}\right) \\
x & =x^{2} & +x \cdot(x+1) & =x \cdot\left(x^{3}+x+1\right) & +\left(x^{2}+1\right) \cdot\left(x^{2}\right) \\
1 & =(x+1) & +1 \cdot x & = & (x+1) \cdot\left(x^{3}+x+1\right) \\
& \Rightarrow & x^{2}+x+1=\left(x^{2}+x+1\right) \cdot\left(x^{2}\right) \\
& & \left.x^{2}\right)^{-1} \text { in } \mathbb{F}_{2}[x] /\left\langle x^{3}+x+1\right\rangle &
\end{array}
$$

Sub-fields and Extension Fields

- Let \mathbb{K} be a field, and let \mathbb{F} be a subset of \mathbb{K}, such that \mathbb{F} is a field under the operations of \mathbb{K}. Then,
- \mathbb{F} is a sub-field of \mathbb{K}, and \mathbb{K} is an extension field of \mathbb{F}.
- \mathbb{K} is a vector space over $\mathbb{F}(\forall \alpha, \beta \in \mathbb{K}, a, b \in \mathbb{F}: a \alpha+b \beta \in \mathbb{K})$. The dimension $[\mathbb{K}: \mathbb{F}]$ of this vector space is referred to as the extension degree of \mathbb{K} over \mathbb{F}.
- If $[\mathbb{K}: \mathbb{F}]$ is finite, \mathbb{K} is called a finite extension of \mathbb{F}. A finite extension is not necessarily a finite field: \mathbb{C} is a finite extension of \mathbb{R}.
- $\mathbb{F}[x] /\langle P(x)\rangle$ is an extension of degree h of \mathbb{F}, where $h=\operatorname{deg}(P)$.
- If $|\mathbb{F}|=q$, then $\left|\mathbb{F}_{q}[x] /\langle P(x)\rangle\right|=q^{h}$.
- If $|\mathbb{F}|=q$, and $\operatorname{char}(\mathbb{F})=p$, then $q=p^{m}$ for some integer $m \geq 1$.
- We can also create an extension field by adjoining to \mathbb{F} a root α of an irreducible polynomial over \mathbb{F}. This algebraic extension is denoted $\mathbb{F}(\alpha)$.
- Examples:
- $\mathbb{C}=\mathbb{R}(i)$ (using the rule $i^{2}=-1$).
- $\mathbb{Q}(\sqrt{2})$, typical elements are of the form $a+b \sqrt{2}, a, b \in \mathbb{Q}$, and we use the rule $(\sqrt{2})^{2}=2$.
- $F_{2}(\alpha)$, where α is a root of $x^{3}+x+1 \in \mathbb{F}_{2}[x]$. Rule: $\alpha^{3}=\alpha+1$.
- The two ways of creating extensions are equivalent.

Finite Field Example (a)

$$
\begin{aligned}
& \mathbb{F}=\mathbb{F}_{2}, P(x)=x^{3}+x+1 . \text { Let }[f(x)] \text { represent the residue class } \\
& \left\{g(x) \in \mathbb{F}_{2}[x]: g(x) \equiv f(x)(\bmod P(x))\right\}
\end{aligned}
$$

Elements of $\mathbb{F}_{8}=\mathbb{F}_{2}[x] /\langle P(x)\rangle$ and their inverses

element	inverse
0	-
1	1
$[x]$	$\left[x^{2}+1\right]$
$[x+1]$	$\left[x^{2}+x\right]$
$\left[x^{2}\right]$	$\left[x^{2}+x+1\right]$
$\left[x^{2}+1\right]$	$[x]$
$\left[x^{2}+x\right]$	$[x+1]$
$\left[x^{2}+x+1\right]$	$\left[x^{2}\right]$

Examples:

- $[x] \cdot\left[x^{2}+1\right]=\left[x^{3}+x\right]=1$
- $[x] \cdot\left[x^{2}+x\right]=\left[x^{3}+x^{2}\right]=\left[x^{2}+x+1\right]$
- $\left[x^{2}+1\right] \cdot\left[x^{2}\right]=\left[x^{4}+x^{2}\right]$
$=\left[x^{2}+x+x^{2}\right]=[x]$
Facts (for general \mathbb{F} and $P(x)$):
- The element $[x] \in \mathbb{F}[x] /\langle P(x)\rangle$ is a root of $P(x)$.
- Denote $\alpha=[x]$. Then, $\mathbb{F}[x] /\langle P(x)\rangle$ is isomorphic to $\mathbb{F}(\alpha)$.
- If $\operatorname{deg}(P(x))=h$, then $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{h-1}\right\}$ is a basis of $\mathbb{F}(\alpha)$ over \mathbb{F}.

Finite Field Example (b)

$$
\begin{aligned}
& \mathbb{F}=\mathbb{F}_{2}, P(x)=x^{3}+x+1 . \text { Let }[f(x)] \text { represent the residue class } \\
& \left\{g(x) \in \mathbb{F}_{2}[x]: g(x) \equiv f(x)(\bmod P(x))\right\}
\end{aligned}
$$

Elements of $\mathbb{F}_{8}=\mathbb{F}(\alpha)$ and their inverses

element	inverse
0	-
1	1
α	$\alpha^{2}+1$
$\alpha+1$	$\alpha^{2}+\alpha$
α^{2}	$\alpha^{2}+\alpha+1$
$\alpha^{2}+1$	α
$\alpha^{2}+\alpha$	$\alpha+1$
$\alpha^{2}+\alpha+1$	α^{2}

Examples (rule: $\alpha^{3}=\alpha+1$):

- $\alpha \cdot\left(\alpha^{2}+1\right)=\alpha^{3}+\alpha=1$
- $\alpha \cdot\left(\alpha^{2}+\alpha\right)=\alpha^{3}+\alpha^{2}=\alpha^{2}+\alpha+1$
- $\alpha^{2}+1 \cdot \alpha^{2}=\alpha^{4}+\alpha^{2}$
$=\alpha^{2}+\alpha+\alpha^{2}=\alpha$
Facts (for general \mathbb{F} and irreducible $P(x)$):
- The element $[x] \in \mathbb{F}[x] /\langle P(x)\rangle$ is a root of $P(x)$.
- Denote $\alpha=[x]$. Then, $\mathbb{F}[x] /\langle P(x)\rangle$ is isomorphic to $\mathbb{F}(\alpha)$.
- If $\operatorname{deg}(P(x))=h$, then $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{h-1}\right\}$ is a basis of $\mathbb{F}(\alpha)$ over \mathbb{F}.

Roots of Polynomials

Proposition

A polynomial of degree $n \geq 0$ over a field \mathbb{F} has at most n roots in any extension of \mathbb{F}.

Proposition

Let \mathbb{F} be a finite field. Then, $x^{|\mathbb{F}|}-x=\prod_{\beta \in \mathbb{F}}(x-\beta)$.

Proposition

Let $\mathbb{F}=\mathbb{F}_{q}$, let $P(x)$ be an irreducible polynomial of degree h over \mathbb{F}. Let α be a root of $P(x)$. Then, $\alpha^{q}, \alpha^{q^{2}}, \ldots, \alpha^{q^{h-1}}$ are also roots of $P(x)$.

Proof. Recall that $a^{q}=a$ for all $a \in \mathbb{F}$. Thus, $0=P(\alpha)^{q}=\left(\sum_{i=0}^{h} P_{i} \alpha^{i}\right)^{q}=\sum_{i=0}^{h} P_{i}^{q} \alpha^{i q}=\sum_{i=0}^{h} P_{i} \cdot\left(\alpha^{q}\right)^{i}=P\left(\alpha^{q}\right)$.

Roots of Polynomial

Proposition

Let $\mathbb{F}=\mathbb{F}_{q}$, let $P(x)$ be an irreducible polynomial of degree h over \mathbb{F}. Let α be a root of $P(x)$. Then, $\alpha^{q}, \alpha^{q^{2}}, \ldots, \alpha^{q^{h-1}}$ are also roots of $P(x)$.

- $\left\{\alpha, \alpha^{q}, \alpha^{q^{2}}, \ldots, \alpha^{q^{h-1}}\right\}$ is the set of all roots of P; therefore,

$$
P(x)=\prod_{i=0}\left(x-\alpha^{q^{i}}\right)
$$

- $\varphi: x \mapsto x^{q}$ is called a Frobenius mapping. $\left\{\varphi^{i}\right\}_{i=0}^{h-1}$ are automorphisms of $\mathbb{F}(\alpha)$ that fix \mathbb{F}. They form the Galois group of $[\mathbb{F}(\alpha): \mathbb{F}]$.
- $\mathbb{F}(\alpha)$ is the splitting field of $P(x)$.
- $P(x)$ is the minimal polynomial of α.

Primitive Elements

Theorem

Let \mathbb{F} be a finite field. Then, \mathbb{F}^{*} is a cyclic group.

- Recall: \mathbb{F}^{*} is a cyclic group if there is an element $\alpha \in \mathbb{F}^{*}$ such that

$$
\mathbb{F}^{*}=\left\{\alpha^{0}, \alpha^{1}, \alpha^{2}, \ldots, \alpha^{\left|\mathbb{F}^{*}\right|-1}\right\} .
$$

- Such α is called a generator of the cyclic group. In our case, where \mathbb{F}^{*} is the multiplicative group of the finite field \mathbb{F}, we call α a primitive element of \mathbb{F}.
- The theorem says that every finite field has a primitive element.
- Let $\mathcal{O}(\beta)$ denote the multiplicative order of $\beta \in \mathbb{F}^{*}$. If $|\mathbb{F}|=q$, then $\mathcal{O}(\beta) \mid(q-1)$, and, for a primitive element $\alpha, \mathcal{O}(\alpha)=q-1$.
- If $\beta=\alpha^{k}$ then $\mathcal{O}(\beta)=(q-1) / \operatorname{gcd}(q-1, k)$ \Longrightarrow if $\operatorname{gcd}(q-1, k)=1, \beta$ is also primitive.
- Let $P(x)$ be an irreducible polynomial of degree h over \mathbb{F}, and α a root of $P(x) . P(x)$ is called a primitive polynomial if α is a primitive element of $\mathbb{F}(\alpha)$.
- A primitive polynomial is irreducible.

Minimal polynomial

- Let \mathbb{F} be a finite field, $|\mathbb{F}|=q$, and let \mathbb{K} be an extension of finite degree h of $\mathbb{F},|\mathbb{K}|=q^{h}$.
- Let $\beta \in \mathbb{K}$. The minimal polynomial of β with respect to \mathbb{F} is the monic polynomial $M_{\beta}(x) \in \mathbb{F}[x]$ of least degree such that $M_{\beta}(\beta)=0$. (Monic polynomial $=$ polynomial with leading coefficient equal to 1.)
- Why does such a polynomial exist? Recall that $x^{q^{h}}-x=\prod_{\gamma \in \mathbb{K}}(x-\gamma)$. In particular, β is a root of $x^{q^{h}}-x \Longrightarrow \beta$ is a root of a monic polynomial of degree q^{h} in $\mathbb{F}[x] \Longrightarrow$ there must be a monic polynomial of least degree in $\mathbb{F}[x]$ that β is a root of.
- $M_{\beta}(x)$ is irreducible in $\mathbb{F}[x]$.
- The degree of $M_{\beta}(x)$ is the least integer ℓ such that $\beta^{q^{\ell}}=\beta$. The integer ℓ satisfies $\ell \mid h$.
- $\beta, \beta^{q}, \beta^{q^{2}}, \ldots, \beta^{q^{\ell-1}}$ are all the roots of $M_{\beta}(x)$,

$$
M_{\beta}(x)=\prod_{i=0}^{\ell-1}\left(x-\beta^{q^{i}}\right)
$$

Characterization of Finite Fields

Let \mathbb{F} be a finite field with $|\mathbb{F}|=q$.

- $q=p^{n}$ for some prime p and integer $n \geq 1$.
- p is the characteristic of F.
- Let $Q(x)=x^{q^{h}}-x, h \geq 1$. There is an extension Φ of \mathbb{F} that contains all the roots of $Q(x)$ (its splitting field), and all the roots are distinct.
- The set of roots of $Q(x)$ in Φ forms an extension field \mathbb{K} of \mathbb{F}, with $[\mathbb{K}: \mathbb{F}]=h$.
(It will turn out that, in fact, Φ is unique, and $\Phi=\mathbb{K}$).

There is a finite field of size q for all q of the form $q=p^{n}, p$ prime, $n \geq 1$. All finite fields of size q are isomorphic.

The unique (up to isomorphism) field of size $q=p^{n}$ is denoted \mathbb{F}_{q} or $\mathrm{GF}(q)$.

- There are irreducible polynomials and primitive polynomials of any degree ≥ 1 over \mathbb{F}_{q}.

Finite Fields: Summary

- There is a unique finite field \mathbb{F}_{q}, of size q, for each q of the form $q=p^{m}$, where p is prime and $m \geq 1$.
- When p is prime, \mathbb{F}_{p} can be represented as the integers $\{0,1, \ldots, p-1\}$ with arithmetic modulo p.
- When $q=p^{m}, m>1, \mathbb{F}_{q}$ can be represented as $\mathbb{F}_{p}[x]_{m}$ (polynomials of degree $<m$ in $\mathbb{F}_{p}[x]$) with arithmetic modulo an irreducible polynomial $P(x)$ of degree m over $\mathbb{F}_{p}: \mathbb{F}_{q} \sim \mathbb{F}_{p}[x] /\langle P(x)\rangle$
- \mathbb{F}_{q} is an extension of degree m of \mathbb{F}_{p}
- here, p can be a prime or itself a power of a prime
- $P(x)$ has a root α in $\mathbb{F}_{q}, \alpha \sim[x] \in \mathbb{F}_{p}[x]_{m}$
- $\alpha, \alpha^{p}, \alpha^{p^{2}}, \ldots, \alpha^{p^{m-1}}$ are all the roots of $P(x)$; all are in \mathbb{F}_{q}
- $\alpha^{0}, \alpha^{1}, \ldots, \alpha^{m-1}$ is a basis of \mathbb{F}_{q} over \mathbb{F}_{p}.
- All irreducible polynomials of degree m over \mathbb{F}_{p} have all their roots in \mathbb{F}_{q}
- Every finite field \mathbb{F}_{q} has a primitive element $\alpha: \mathbb{F}_{q}=\left\{0,1, \alpha, \alpha^{2}, \ldots, \alpha^{q-2}\right\}$
- the minimal polynomial $P(x)$ of a primitive element α is a primitive polynomial
- every primitive polynomial is irreducible, but not every irreducible is primitive

Finite Field Example: GF(16)

α is a root of $P(x)=x^{4}+x+1 \in \mathbb{F}_{2}[x]$ (primitive). Rule: $\alpha^{4}=\alpha+1$.

i	α^{i}	binary in base $1, \alpha, \alpha^{2}, \alpha^{3}$	minimal polynomial
-	0	0000	x
0	1	1000	$x+1$
1	α	0100	$x^{4}+x+1$
2	α^{2}	0010	$x^{4}+x+1$
3	α^{3}	0001	$x^{4}+x^{3}+x^{2}+x+1$
4	$\alpha+1$	1100	$x^{4}+x+1$
5	$\alpha^{2}+\alpha$	0110	$x^{2}+x+1$
6	$\alpha^{3}+\alpha^{2}$	0011	$x^{4}+x^{3}+x^{2}+x+1$
7	$\alpha^{3}+\alpha+1$	1101	$x^{4}+x^{3}+1$
8	$\alpha^{2}+1$	1010	$x^{4}+x+1$
9	$\alpha^{3}+\alpha$	0101	$x^{4}+x^{3}+x^{2}+x+1$
10	$\alpha^{2}+\alpha+1$	1110	$x^{2}+x+1$
11	$\alpha^{3}+\alpha^{2}+\alpha$	0111	$x^{4}+x^{3}+1$
12	$\alpha^{3}+\alpha^{2}+\alpha+1$	1111	$x^{4}+x^{3}+x^{2}+x+1$
13	$\alpha^{3}+\alpha^{2}+1$	1011	$x^{4}+x^{3}+1$
14	$\alpha^{3}+1$	1001	$x^{4}+x^{3}+1$

For $\operatorname{GF}(q)$, we operate on logarithms modulo ($q-1$).

Examples:

- $\left(\alpha^{2}+\alpha\right) \cdot\left(\alpha^{3}+\alpha^{2}\right)=$ $\alpha^{5} \cdot \alpha^{6}=\alpha^{11}=$ $\alpha^{3}+\alpha^{2}+\alpha$
- $\left(\alpha^{3}+\alpha+1\right)^{-1}=$ $\alpha^{-7}=\alpha^{8}=\alpha^{2}+1$
- $\log _{\alpha}\left(\alpha^{3}+\alpha^{2}+1\right)=13$

Finite Field Example: GF(16)

α is a root of $P(x)=x^{4}+x+1 \in \mathbb{F}_{2}[x]$ (primitive). Rule: $\alpha^{4}=\alpha+1$.

i	α^{i}	binary in base $1, \alpha, \alpha^{2}, \alpha^{3}$	minimal polynomial
-	0	0000	x
0	1	1000	$x+1$
1	α	0100	$x^{4}+x+1$
2	α^{2}	0010	$x^{4}+x+1$
3	α^{3}	0001	$x^{4}+x^{3}+x^{2}+x+1$
4	$\alpha+1$	1100	$x^{4}+x+1$
5	$\alpha^{2}+\alpha$	0110	$x^{2}+x+1$
6	$\alpha^{3}+\alpha^{2}$	0011	$x^{4}+x^{3}+x^{2}+x+1$
7	$\alpha^{3}+\alpha+1$	1101	$x^{4}+x^{3}+1$
8	$\alpha^{2}+1$	1010	$x^{4}+x+1$
9	$\alpha^{3}+\alpha$	0101	$x^{4}+x^{3}+x^{2}+x+1$
10	$\alpha^{2}+\alpha+1$	1110	$x^{2}+x+1$
11	$\alpha^{3}+\alpha^{2}+\alpha$	0111	$x^{4}+x^{3}+1$
12	$\alpha^{3}+\alpha^{2}+\alpha+1$	1111	$x^{4}+x^{3}+x^{2}+x+1$
13	$\alpha^{3}+\alpha^{2}+1$	101	$x^{4}+x^{3}+1$
14	$\alpha^{3}+1$	1001	$x^{4}+x^{3}+1$

- Take $\beta=\alpha^{5}$.
$\beta+\beta^{2}=0110+$ $1110=1000=1$
$\beta * \beta^{2}=\alpha^{15}=1$
- $\left\{0,1, \beta, \beta^{2}\right\}=$ $\mathbb{F}_{2}(\beta) \simeq \mathbb{F}_{4}$
- β is a root of $x^{2}+x+1$

Field inclusions

We saw

$n=r s,(r, s)=1$,

In general, for $k<n$,

$$
\left.\begin{aligned}
& \mathbb{F}_{q^{n}} \\
& \bigcup^{U} \\
& \mathbb{F}_{q^{k}} \\
& \bigcup^{U} \\
& \mathbb{F}_{q}
\end{aligned} \quad \Leftrightarrow \quad k \right\rvert\, n
$$

Example

Application: Double-Error Correcting Codes

- The PCM of the $\left[2^{m}-1,2^{m}-1-m, 3\right]$ binary Hamming code is
$H_{m}=\left[\mathbf{h}_{1} \mathbf{h}_{2} \ldots \mathbf{h}_{2^{m}-1}\right]$, where the \mathbf{h}_{i} are all the nonzero m-tuples over \mathbb{F}_{2}.
This can be reinterpreted as

$$
H_{m}=\left(\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{2^{m}-1}
\end{array}\right)
$$

where α_{j} ranges over all the nonzero elements of $\mathbb{F}_{2^{m}}$.

- Example: $m=4, \alpha$ a root of $P(x)=x^{4}+x+1$. Take $\alpha_{j}=\alpha^{j-1}$, and

$$
H_{4}=\left(\begin{array}{ccccccccccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1
\end{array}\right) .
$$

- A vector $\mathbf{c}=\left(\begin{array}{llll}c_{1} & c_{2} & \ldots & c_{n}\end{array}\right)$ is a codeword of \mathcal{H}_{m} iff

$$
H_{m} \mathbf{c}^{T}=\sum_{j=1}^{n} c_{j} \alpha_{j}=0
$$

- If there is exactly one error, we receive $\mathbf{y}=\mathbf{c}+\mathbf{e}_{i}$ where $\mathbf{e}_{i}=\left[0^{i-1} 10^{n-i}\right]$.

The syndrome is

$$
s=H_{m} \mathbf{y}^{T}=\underbrace{H_{m} \mathbf{c}^{T}}_{0}+H_{m} \mathbf{e}_{i}^{T}=\alpha_{i}
$$

The syndrome gives us the error location directly (i such that $s=\alpha_{i}$).

Application: Double-Error Correcting Codes

What if there are two errors? Then, we get $\mathbf{e}=\mathbf{e}_{i}+\mathbf{e}_{j}$, and

$$
s=\alpha_{i}+\alpha_{j}, \text { for some } i, j, \quad 1 \leq i<j \leq n
$$

which is insufficient to solve for α_{i}, α_{j}.
We need more equations ...
Consider the PCM

$$
\hat{H}_{m}=\left(\begin{array}{cccc}
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{2^{m}-1} \\
\alpha_{1}^{3} & \alpha_{2}^{3} & \ldots & \alpha_{2^{m}-1}^{3}
\end{array}\right)
$$

Syndromes are of the form

$$
\mathbf{s}=\binom{s_{1}}{s_{3}}=\hat{H}_{m} \mathbf{y}^{T}=\hat{H}_{m} \mathbf{e}^{T}
$$

Assume that the number of errors is at most 2.

- Case 1: $\mathbf{e}=0$ (no errors). Then, $s_{1}=s_{3}=0$.
- Case 2: $\mathbf{e}=\mathbf{e}_{i}$ for some $i, 1 \leq i \leq n$ (one error). Then,

$$
\binom{s_{1}}{s_{3}}=\hat{H}_{m} \mathbf{e}^{T}=\binom{\alpha_{i}}{\alpha_{i}^{3}}
$$

namely, $s_{3}=s_{1}^{3} \neq 0$, and the error location is the index i such that $s_{1}=\alpha_{i}$.

Application: Double-Error Correcting Codes

- Case 3: $\mathbf{e}=\mathbf{e}_{i}+\mathbf{e}_{j}$ for some $i, j, 1 \leq i<j \leq n$ (two errors).

$$
\binom{s_{1}}{s_{3}}=\hat{H}_{m} \mathbf{e}^{T}=\binom{\alpha_{i}+\alpha_{j}}{\alpha_{i}^{3}+\alpha_{j}^{3}} .
$$

Since $s_{1}=\alpha_{i}+\alpha_{j} \neq 0$, we can write

$$
\frac{s_{3}}{s_{1}}=\frac{\alpha_{i}^{3}+\alpha_{j}^{3}}{\alpha_{i}+\alpha_{j}}=\alpha_{i}^{2}+\alpha_{i} \alpha_{j}+\alpha_{j}^{2}
$$

Also,

$$
s_{1}^{2}=\left(\alpha_{i}+\alpha_{j}\right)^{2}=\alpha_{i}^{2}+\alpha_{j}^{2}
$$

We add the two equations, and recall the definition of s_{1} to obtain

$$
\begin{align*}
\frac{s_{3}}{s_{1}}+s_{1}^{2} & =\alpha_{i} \alpha_{j} \\
s_{1} & =\alpha_{i}+\alpha_{j}
\end{align*}
$$

Notice that (\star) and $\alpha_{i} \alpha_{j} \neq 0 \Longrightarrow s_{3} \neq s_{1}^{3}$, separating Case 3 from Cases 1-2.

Application: Double-Error Correcting Codes

- Case 3 (cont.):

$$
\begin{align*}
\frac{s_{3}}{s_{1}}+s_{1}^{2} & =\alpha_{i} \alpha_{j} \\
s_{1} & =\alpha_{i}+\alpha_{j}
\end{align*}
$$

It follows from (\star) and $(\star \star)$ that α_{i} and α_{j} are the roots of the following quadratic equation in x over $\mathbb{F}_{2^{m}}$:

$$
x^{2}+s_{1} x+\left(\frac{s_{3}}{s_{1}}+s_{1}^{2}\right)=0 .
$$

s_{1} and s_{3} are fully known to the decoder (computed from the received word \mathbf{y}), and therefore so are the coefficients of the quadratic equation.

Assuming we know how to solve a quadratic equation, we have a decoding algorithm for up to

Two-error correcting BCH code. two errors.

Solving a quadratic equation

We want to find the two roots of the quadratic equation

$$
\Lambda(x) \triangleq x^{2}+s_{1} x+\left(\frac{s_{3}}{s_{1}}+s_{1}^{2}\right)=0
$$

over $\mathbb{F}_{2^{m}}$.

- What doesn't work: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ (in characteristic 2).
- Exhaustive search:

$$
\begin{gathered}
\text { for } \ell \text { in }[1,2, \ldots, n]: \\
\text { evaluate } \lambda=\Lambda\left(\alpha_{\ell}\right) \\
\text { if } \lambda==0: \\
\text { flip bit } \ell
\end{gathered}
$$

- Requires n evaluations of a quadratic function, time complexity is linear in n.
- Works also in te case of one error!
- There are ways to solve the equation explicitly, without search. However, search is good enough for us here!

Example: Double-Error Correcting Code

- As before, $\mathbb{F}=\mathbb{F}_{16}$, and α is a root of $P(x)=x^{4}+x+1$.
$\hat{H}_{4}=\left(\begin{array}{ccccccccccccccc}1 & \alpha & \alpha^{2} & \alpha^{3} & \alpha^{4} & \alpha^{5} & \alpha^{6} & \alpha^{7} & \alpha^{8} & \alpha^{9} & \alpha^{10} & \alpha^{11} & \alpha^{12} & \alpha^{13} & \alpha^{14} \\ 1 & \alpha^{3} & \alpha^{6} & \alpha^{9} & \alpha^{12} & 1 & \alpha^{3} & \alpha^{6} & \alpha^{9} & \alpha^{12} & 1 & \alpha^{3} & \alpha^{6} & \alpha^{9} & \alpha^{12}\end{array}\right)$
and, in binary form,

$$
\hat{H}_{4}=\left(\begin{array}{lllllllllllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
\hline 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

For this code, we know

- $k \geq 15-8=7$ (in fact, the dimension is exactly 7)
- $d \geq 5$ (in fact, $d=5$)
- $[n, k, d]=[15,7,5]$

Variations on the Double-error Correcting Code

- Add an overall parity bit

$$
\hat{H}_{4}=\left(\begin{array}{cccccccccccccccc}
1 & \alpha & \alpha^{2} & \alpha^{3} & \alpha^{4} & \alpha^{5} & \alpha^{6} & \alpha^{7} & \alpha^{8} & \alpha^{9} & \alpha^{10} & \alpha^{11} & \alpha^{12} & \alpha^{13} & \alpha^{14} & 0 \\
1 & \alpha^{3} & \alpha^{6} & \alpha^{9} & \alpha^{12} & 1 & \alpha^{3} & \alpha^{6} & \alpha^{9} & \alpha^{12} & 1 & \alpha^{3} & \alpha^{6} & \alpha^{9} & \alpha^{12} & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

For this code, we know

- $n=16$
- $k=7$ (same number of words)
- $d=6$
- corrects 2 errors, detects 3
- Expurgate words of odd weight

$$
\bar{H}_{4}=\left(\begin{array}{ccccccccccccccc}
1 & \alpha & \alpha^{2} & \alpha^{3} & \alpha^{4} & \alpha^{5} & \alpha^{6} & \alpha^{7} & \alpha^{8} & \alpha^{9} & \alpha^{10} & \alpha^{11} & \alpha^{12} & \alpha^{13} & \alpha^{14} \\
1 & \alpha^{3} & \alpha^{6} & \alpha^{9} & \alpha^{12} & 1 & \alpha^{3} & \alpha^{6} & \alpha^{9} & \alpha^{12} & 1 & \alpha^{3} & \alpha^{6} & \alpha^{9} & \alpha^{12} \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

- $n=15, k=6, d=6$: corrects 2 errors, detects 3

