4. Brief Review of Finite Fields
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e A field is a set F with two operations, + (addition)
and * (multiplication), satisfying the following properties:

® Associativity: a4+ (b+c¢)=(a+b)+canda-(b-c)=(a-b)-c

® Commutativity: a+b=b+aanda-b=5b-a.

® |dentities: there exist two unique elements, 0,1 € [F, 0 # 1, such that
Va€eF,a+0=aanda-1=a.

® Additive inverses: Ya € F, 3b € IF such that a + b =0 (b is denoted —a).

® Multiplicative inverses: Ya € F \ {0}, 3b € F such thata-b=1 (bis
denoted a™1).

® Distributivity of multiplication over addition: a - (b+c¢) = (a-b) + (a - ¢).

e Other properties, suchasa-0=0ora-b=0 = a=0orb =0 follow
easily from the defining ones.

e A field has an additive group F*, and a multiplicative group F* (with
underlying set '\ {0}). Both groups are abelian (commutative).

e A finite field (or Galois field) is a field with a finite underlying set:
IF| = ¢, g > 2. We denote such a field F,, or GF(q)
(for the time being, this may be an abuse of notation,
since there may be different fields of size ¢).
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Fields: Examples

e Well known infinite fields: the rationals Q, the reals R, the complexes C.
e Well known non-fields: the integers Z, the naturals N.

® The integers Z form a commutative ring (all the properties hold except for
multiplicative inverses).

e Given a field F and an indeterminate symbol z, the field F(z) of all

rational functions f(x)/g(z), where f(z), g(z) are polynomials over T,
g(x) # 0, ged(f(x),g(x)) = 1. This field is always infinite.

e Examples of finite fields:
® Smallest: Fo={0,1} with + = XOR (addition modulo 2), - = AND.
® Next smallest: F3 = {0, 1,2} with operations modulo 3

+]0 1 2 <o 1 2
00 1 2 0/0 0 0
111 2 o 110 1 2
202 0 1 200 2 1
+]0 1 a b |01 a b
0]0 1 a b 0]0 0 0 0 ,
o Fy: 111 0 b a 110 1 a b not integers
ala b 0 1 al0 a b 1 modulo 4
blb a 1 0 blo b 1 a
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Finite Field Basics

e For a prime p, let I, denote the ring of integers mod p, with underlying
set {0,1,...,p—1}.

e Claim: F, is a finite field.
® For every integer a € {1,2,...,p—1}, we have ged(a,p) = 1. By Euclid’s
extended algorithm, there exist integers s, t such that s-a +¢t-p=1. The
integer s, taken modulo p, is the multiplicative inverse of a in the field F,,.

e Refresher: Euclid's ged algorithm.

® To compute gcd(a,b), a,b € N, we start with r_1 = a, 70 = b, and

compute a sequence of remainders ri,72,...,7m, where for i > 1,
Ti=Tic2 — QiTio1, @i = U%fJ, 0<ri<ri

qi,r; are the quotient and remainder (resp.) of the integer division of 7;_
by Ti—1-.

® The sequence 1,732, ... is non-negative and strictly decreasing, so it must
reach zero. Say, r, = 0. Then r,,,—1 = ged(a, b).

® The extended Euclidean algorithm also keeps track of auxiliary sequences
of integers s1, 82, ... and t1,to, ... such that

sia+tib:7'i, Zzl
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Finite Field Basics

e Example: Inverse of 16 modulo 41, start with r_; = 41, rog = 16:

i ‘Ti = Ti2 — ¢i'Ti-1 = sica + t-b
119 = 41 - 2.16 = 1-41 — 2-16
217 = 16 — 1-9 = —-1-41 + 3-16
3|1 2 = 9 - 1.7 = 2-41 — 5-16
411 = 7T - 3-2 = —7-41 + 18-16

= 18-16=1mod 41 = 18 =16""1in Fy;.
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Finite Field Basics

e Order of a finite group: number of elements in the group. The additive group
of IF, has order |F,| = ¢, the multiplicative group order [F*| = ¢ — 1.
e Order of an element a € Fy:

® Additive: least positive integer k such that
ata+---+a=0.
| R G ———
k
® Multiplicative (for a # 0): least positive integer m such that " = 1.

e Lagrange's theorem for finite groups: If G is a finite group, and H is a subgroup
of G, then |H| divides |G/|. It follows that the order of any g € G divides |G|.

Proposition

Let a € Fy. Then,qxaéa+a+--~+a:()andaq:a.
N—————

q

Proof. By Lagrange's theorem, the additive order of a divides ¢, and the
multiplicative order divides ¢ — 1. Therefore ¢ x a = 0 and a?™' =1 for a # 0.
Together with 0 = 0, we get a? = a for all a in Fy. O
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Field Characteristic

Let IF be a field, and let 1 be the identity in [F*. The characteristic
char(IF) of IF is the least positive integer ¢, if any, such that

ex1=1+1+1+---+1=0.

(&

If c exists, it is the additive order of 1 in F. If no such integer exists, we
define char(IF)=0.
¢ |If ¢ = char(F) > 0, then for any « € F, ¢ x « = 0.
® For a finite field F, we always have char(F) > 0.
e Examples: char(F7) =7, char(Fy) = 2,
char(Q) = char(R) = char(C) = 0.
® An infinite field can have a positive characteristic. For example,
Fy(z) is infinite, with char(Fy(z)) = 2.
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Field Characteristic

Proposition

If char(IF) > 0 then it is a prime p. F then contains a sub-field
isomorphic to IF),.

Proof. Assume p = char(F) > 0, and p factors as p = ab with 1 < a < b < p.
Then, 0 =p x 1= (ax1)-(bx 1), which implies that either a x 1 =0 or

b x 1 =0, contradicting the minimality of p. The subset
{0,1,14+1,...,1+1+4---+ 1} C F is isomorphic to F,. O]

p—1

Proposition

Let F be a finite field, let a,b € F, and let p = char(F). Then
(a+b)P = aP +bP.

Proof. The binomial coefficient (¥) = p(pflifi?z;‘fﬁﬂﬂ) is a multiple of p

for0<i<p. O
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Polynomials

e For a field F and indeterminate z,
® F[z]: ring of polynomials in z, with coefficients in F. This is an
Euclidean ring: degree, divisibility, division with reminder, GCD, etc.
are well defined and “behave” as we're used to over R.
® The extended Euclidean algorithm can be applied to elements of
F[x], and for a,b € F[z], not both zero, we have polynomials
s(z),t(z) such that

s(x) - a(x) + t(z) - b(x) = ged(a(x), b(x))

e P(x) € Fx] is called irreducible if
deg(P(z))>0 and P(x)=a(z)b(z) = deg(a(z))=0 or deg(b(z))=0

e Example: 22 + 1 is irreducible over R.
® Example: irreducibles over Fo
degree 1: =, x+1 degree 3: zi4a+1, z34+z2+1
degree 2: z24x+1  degree 4: xt4x+1, xt+a3+1, at+ad+alta+1
® [F[z] is a unique factorization domain (factorization into irreducible
polynomials is unique up to permutation and scalar multiples).
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Arithmetic Modulo an Irreducible Polynomial

e Let F be a field and P(x) an irreducible polynomial of degree h>1.

e The ring of residue classes of F[x] modulo P(z) is denoted F[x]/(P(z)).

® Let Flz], = set of polynomials of degree < n in x over F.
® [F[x]/(P(x)) can be represented by F[z];, with arithmetic mod P(z).

Flx]/(P(x)) is a field.

® This theorem, and the one saying F), is a field (p prime), are special
cases of the same theorem on Euclidean rings.

® As with integers, inverses are found found using the Euclidean
algorithm: ged (a(x), P(z)) =1 =
Fs(x), t(x): s(z)a(z) + t(z)P(x) =1 =
s(z) is a multiplicative inverse of a(x) in F[z]/(P(z)).
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Arithmetic Modulo an Irreducible Polynomial

Example: Inverse of 22 modulo 2® + 2 + 1 over Fy (recall that z = —z).
ri(@) = ri2(z) 4+ qi(x) -rioa(z) = ti(z) - Pr) +si(z) - a(z)
z+1 = ¥ ratl tr-x? = 1- (3 +at1) +a - (%)

r= z° +z-(z4+1) = x- (234z+1) +(z241) - (z?)
1= (z+1) +1-z= (z+1)- (®+a+1) +(@*+z+1)- (2?)

(
=  2?+a+1 = (2?)7tin Fafz] /(23 +a+1)
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Sub-fields and Extension Fields

® | et K be a field, and let [ be a subset of K, such that IF is a field

under the operations of K. Then,
® [ is a sub-field of K, and K is an extension field of F.

e K is a vector space over F (Vo, 5 € K, a,b € F: aa + b € K). The
dimension [K : IF] of this vector space is referred to as the extension
degree of K over F.

® If [K: F] is finite, K is called a finite extension of F. A finite
extension is not necessarily a finite field: C is a finite extension of R.

® Flz]/(P(x)) is an extension of degree h of I, where h = deg(P).

® If |F| = g, then [Fy[z]/(P(2))| = ¢" .

® If |F| = ¢, and char(F) = p, then ¢ = p™ for some integer m > 1.

® We can also create an extension field by adjoining to F a root « of
an irreducible polynomial over F. This algebraic extension is denoted
F(a).

® Examples:
® C =R(i) (using the rule i2 = —1).
° Q(ﬂ), typical elements are of the form a + b\v/2, a,b € Q, and we
use the rule (v/2)% = 2.
® [(a), where ais a root of 23 + 2 + 1 € Fo[z]. Rule: a® = a+1.
® The two ways of creating extensions are equivalent.
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Finite Field Example (a)

F =Ts, P(x) = x® + x + 1. Let [f(z)] represent the residue class
g9(x) = f(x) (mod P(z))} .

{9(z) € F2[a] :

Elements of g
and their inverses

= Folz]/(P(z))

element inverse
0 —
1 1
[z] [z* +1]
[z +1] (2 + ]
[2?] [2? + 2+ 1]
[z* + 1] (2]
[? + 2] [z +1]
[x° + 2+ 1] [z?]

Examples:
* [o] [®+1=[2"+a] =1
* [z] [2* +a] = [¢° +2°] = [2* + 2 +1]
o (27 4 1] - [27] = [z* + 27]

= [2* + 2 +2%] = [z]
Facts (for general F and P(x)):

® The element [z] € Flz]/(P(z)) is a
root of P(x).

® Denote o = [z]. Then,
isomorphic to F(a).

o |f deg(P(z)) = h, then
{1,a,0?, ..., "1} is a basis of F(a)
over [F.

Flz]/(P(x)) is
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Finite Field Example (b)

F =Ts, P(x) = x® + x + 1. Let [f(z)] represent the residue class

{9(z) € Fa[z]
Elements of Fs = F(«)
and their inverses
element inverse
0 —_
1 1
« a?+1
a—+1 o+«
a? a?+a+1
a®+1 «
o+ a-+1
a?+a+1 a?

: g(x) = f(z) (mod P())} .

Examples (rule: o® = a + 1):
s -(P+l)=a*+a=1
o -(*+a)=c*+a’=a’+a+1
e’ 1-a’=a*+a?
=ad’+a+a’=a
Facts (for general IF and irreducible P(x)):

® The element [z] € Flz]/(P(z)) is a
root of P(z).

® Denote o = [z]. Then, F[z]/(P(z)) is
isomorphic to F(a).

® If deg(P(z)) = h, then

{1,a,a?, ...,a" '} is a basis of F(c)
over [F.
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Roots of Polynomials

Proposition

A polynomial of degree n > 0 over a field F has at most n roots in any

extension of IF. )
Let T be a finite field. Then, " —z =[] (= — B).
BEF

Proposition

Let F =TF,, let P(x) be an irreducible polynomial of degree h over F. Let
o be a root of P(x). Then, a?,a? ... ,a?""" are also roots of P(z).

Proof. Recall that a? = aqfor all a € F. Thus,
0="Pa)! = (Z?:o Pio‘i> = Z?:o Piqo‘iq = Zzh:() Pi'(aq)i = P(a"). O
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Roots of Polynomial

Proposition

Let F =TF,, let P(x) be an irreducible polynomial of degree h over F. Let

« be a root of P(z). Then, a4, a” .. a7 are also roots of P(z).
e {a,af, oﬂ2, ce ol } is the set of all roots of P; therefore,
h—1
P(z) = H(x —a).
i=0
® oz a7 is called a Frobenius mapping. {¢'}!= are

automorphisms of F(«) that fix F. They form the Galois group of
[F(a) : F].

® T(«) is the splitting field of P(x).

® P(zx) is the minimal polynomial of .
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Primitive Elements
Let ' be a finite field. Then, F* is a cyclic group.

® Recall: F* is a cyclic group if there is an element o € F* such that

F*={a° o', o?, ..., ol 1=t 1.

Such « is called a generator of the cyclic group. In our case, where
F~* is the multiplicative group of the finite field F, we call « a
primitive element of .
® The theorem says that every finite field has a primitive element.
® Let O(S) denote the multiplicative order of 3 € F*. If |F| = g, then
O(B)| (g —1), and, for a primitive element o, O(a) = ¢ — 1.
® If 8 =a" then O(B) = (¢ —1)/ged(q — 1, k)
= if ged(q — 1,k) =1, B is also primitive.
® Let P(x) be an irreducible polynomial of degree h over I, and « a
root of P(x). P(x) is called a primitive polynomial if « is a
primitive element of F(«).
® A primitive polynomial is irreducible.

76 /165



Minimal polynomial

e Let F be a finite field, |F| = ¢, and let K be an extension of finite degree
hof F, K| = ¢".

e Let g € K. The minimal polynomial of 3 with respect to I is the monic
polynomial Mpg(z) € F[z] of least degree such that Mz(5) = 0.
(Monic polynomial = polynomial with leading coefficient equal to 1.)

® Why does such a polynomial exist? Recall that 2" = [Lex(—).

h .
In particular, g is a root of zY —x = [ is a root of a monic
polynomial of degree ¢" in F[z] = there must be a monic polynomial
of least degree in IF[z] that § is a root of.

o Mg(x) is irreducible in F[z].

e The degree of Mg(x) is the least integer ¢ such that B = B.
The integer ¢ satisfies £|h.

8,B9,87,...,87 " are all the roots of Mp(z),

-1

My(2) = [J (- 87).

=0
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Characterization of Finite Fields

Let F be a finite field with |F| = q.
® g = p" for some prime p and integer n > 1.
® p is the characteristic of F.
® Let Q(x) = 27" — 2z, h > 1. There is an extension ® of [ that
contains all the roots of Q(x) (its splitting field), and all the roots
are distinct.
® The set of roots of Q(z) in ® forms an extension field K of IF, with
K:F = h.
(It will turn out that, in fact, ® is unique, and ® = K).

There is a finite field of size q for all q of the form ¢ = p™, p prime,
n > 1. All finite fields of size q are isomorphic.

The unique (up to isomorphism) field of size ¢ = p™ is denoted F, or
GF(q).

® There are irreducible polynomials and primitive polynomials of any
degree > 1 over F,.
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Finite Fields: Summary

m

® There is a unique finite field Fy, of size ¢, for each g of the form ¢ = p™,
where p is prime and m > 1.

® When p is prime, F,, can be represented as the integers {0,1,...,p—1}
with arithmetic modulo p.

® When g = p™, m>1, F, can be represented as F[z],, (polynomials of

degree <m in Fy[z]) with arithmetic modulo an irreducible polynomial
P(z) of degree m over Fj,: Fy~F,[z]/(P(x))

® [, is an extension of degree m of [,

® here, p can be a prime or itself a power of a prime

® P(x) hasaroot ain Fy, a ~ [z] € Fpz]m

o a,(x”,aPQ, e ,ocpnkl are all the roots of P(x); all are in Fy

e % al,... a™ ! is a basis of F, over .

® Allirreducible polynomials of degree m over F, have all their roots

in Iy
® Every finite field ', has a primitive element o: F,={0,1,,a?,..., a7 %}
® the minimal polynomial P(z) of a primitive element « is a primitive
polynomial
® every primitive polynomial is irreducible, but not every irreducible is
primitive
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Finite Field Example: GF(16)

ais a root of P(z) = 2* + x + 1 € Fy[x] (primitive). Rule: a* = a + 1.

binary

) in base minimal
i al 1,a,0%a® | polynomial
- |0 0000 | =z
0 1 1000 | z+1
1 o 0100 | a*+a+1
2 | a2 0010 | a%+a+1
3 ol 0001 ol rt1
4 a+1 1100 xta+1
5 | a2+« 0110 | a?4z+1
6 a’ 4+ a? 0011 234224 a+1
7 | P +a+1 1101 | 42341
8 o +1 1010 | a'4z+1
9 o’ 4« 0101 2234224 x+1
10| e +a+1 1110 | z24z+1
11 | &®+a?+a 0111 | z*+a3+1
12 | a?+a?2+a+1 1111 i+ 34224 x+1
13| a8 +a?+1 1011 | z%+z3+1
14 | o3 +1 1001 | z%+z3+1

If=0a’,0<i<(q—2),
we say that i is the discrete
logarithm of [ to base a.

For GF(q), we operate on
logarithms modulo (¢ — 1).
Examples:
* (@ +a)-(a®+a?) =
Qb ab = ll —
B +a?+a
o (a3+a+1)_1 =
aT=a%=a%+1

® log, (a®+a2+1) =13
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Finite Field Example: GF(16)

ais a root of P(z) = 2* + x + 1 € Fy[x] (primitive). Rule: a* = a + 1.

binary

) in base minimal
i al 1,a,0%a® | polynomial
- |0 0000 | =z
0 1 1000 | z+1
1 o 0100 | a*+a+1
2 | a2 0010 | a%+a+1
3 ol 0001 ol rt1
4 a+1 1100 xta+1
5 | a2+« 0110 | a?4z+1
6 a’ 4+ a? 0011 234224 a+1
7 | P +a+1 1101 | 42341
8 o +1 1010 | a'4z+1
9 o’ 4« 0101 2234224 x+1
10| e +a+1 1110 | z24z+1
11 | &®+a?+a 0111 | z*+a3+1
12 | a?+a?2+a+1 1111 i+ 34224 x+1
13| a8 +a?+1 1011 | z%+z3+1
14 | o3 +1 1001 | z%+z3+1

® Take 3 = ab.

B+ B2 =0110 +
1110 = 1000 = 1

BxpB2=al%=1

* {0,1,8,6%} =
]Fg(ﬁ) ~ ]F4

® (3 is a root of
22 4r+1
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Field inclusions

We saw In general, for k < n,
IE‘24 Fqn
U U
Fo2 Fqk = k|n
U U
Iy IF,
n=rs, (r,s) =1, Example
qus ]Fz(i
U U
/\ / \
FqT Fqs ]F22 IFQS
\ / \ /
U U

F Fo

q
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Application: Double-Error Correcting Codes

e The PCM of the [2"—1,2™ —1—m, 3] binary Hamming code is
H,, =[h; hy ... hom_1 |, where the h; are all the nonzero m-tuples over Fs.
This can be reinterpreted as

Hm:(a1a2 agm_1) 5

where «; ranges over all the nonzero elements of Fam.

e Example: m=4, o a root of P(z)=xz" 4+ = + 1. Take a;j =a’~*', and

10 001 0 0 1 1 0 1 0 1 1 1
go—| 0 100 1 1 0 1 0 1 1 1 1 00
10 0 1 00 1 1 0 1 0 1 1 1 1 0 :
00 o0 1 0 0 1 1 0 1 0 1 1 1 1
O(O ()(l Ot2 as (14 (15 LY() l;!7 (!S (!9 0(10 0(11 th2 (113 u14
e A vector c = (c1 c2 ... cyn) is a codeword of H., iff

n
T
Hpc' = E cja; = 0.
Jj=1

o If there is exactly one error, we receive y = ¢ + e; where e; = [0~ 10" 7.
The syndrome is
y s = HmyT = Hch +Hme;~‘r = .
——
0
The syndrome gives us the error location directly (i such that s = o).
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Application: Double-Error Correcting Codes

What if there are two errors? Then, we get e = e; + €5, and

s =a; +aj, forsomei,j, 1<i<j<n,

which is insufficient to solve for a;, a;. We need more equations ...
Consider the PCM
~ a1 (6] e Qom 1
Hp = 3 3 3 :
(%1 Qo e Qiom 1

Syndromes are of the form
51 T T
S:( >:Hmy = dme .
S3
Assume that the number of errors is at most 2.
® Case 1: e =0 (no errors). Then, s; = s3 = 0.

® Case 2: e = e; for some i, 1 < i <n (one error). Then,

(1) (3).
S3 Q;

namely, s3 = s7 # 0, and the error location is the index i such that
S1 = ;.
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Application: Double-Error Correcting Codes

® Case 3: e=e; + e, for some i,j, 1 <i<j<n (two errors).

S1 oy T [ aita
(33)*’{’”9 *(am?)'

Since s1 = «; + a; # 0, we can write

3 3
s3 oG o 2 2
— = —— =0 T aa; +aj.
S1 a; +

Also,

s%:(ai—kaj)Q:a?—l—a?.

We add the two equations, and recall the definition of s; to obtain

53 2
— + 81 = Q5
S1

S1 = q; + Qi

Notice that (*) and a;a; # 0 = s3 # s, separating Case 3 from
Cases 1-2.

(*)
(%)
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Application: Double-Error Correcting Codes

® Case 3 (cont.):

B isd= ooy (%)
S1

S1 =y + (x)

It follows from (%) and (xx) that a; and «; are the roots of the following
quadratic equation in x over Fom:

m2+31x+(8—3+s?) =0.
S1

s1 and s3 are fully known to the decoder (computed from the received
word y), and therefore so are the coefficients of the quadratic equation.

Assuming we know how to solve
a quadratic equation, we have
a decoding algorithm for up to
two errors.

| Two-error correcting BCH code.
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Solving a quadratic equation

We want to find the two roots of the quadratic equation

A(x) 2 x2+31x+<§3+s%> =0
1

over Fom.

—b+Vb? — 4ac

® What doesn't work: = = (in characteristic 2).

2a
® Exhaustive search:
for / in [1,2,...,n]:
evaluate A = A(ay)
if A==0:
flip bit ¢
® Requires n evaluations of a quadratic function, time complexity is
linear in n.

® Works also in te case of one error!

® There are ways to solve the equation explicitly, without search.
However, search is good enough for us here!
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Example: Double-Error Correcting Code

® As before, F = Fi6, and « is a root of P(x) = z* + z + 1.

o
o

R 1 « Oé2 Oé3 064 Oé5 OéG Oé7 OLS ch alO all 0612 13 14
1 a3 a6 a9 12 1 3 6 ‘9 a12

and, in binary form,

100 01001 1 010111
61001 1010111100
o601 0o001 101011110
i — o0 0100110101111
T 100 01 1 0001 1 0001
o0 6011 0O0O0O1 1000711
06606101001 0100101
0111101111501 111

For this code, we know
® k> 15— 8 =7 (in fact, the dimension is exactly 7)
® d>5 (in fact, d = 5)
® [n,k,d) =[15,7,5]
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Variations on the Double-error Correcting Code

® Add an overall parity bit

1T a o a® o a® o o a® o a'® ol a'2 o!3 o4 o
f]4: 1a®a®a® a2 1 a®a®a®a? 1 &% af o° 12 9
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

For this code, we know

® n=106

® k =7 (same number of words)

® d=6

[ )

corrects 2 errors, detects 3
® Expurgate words of odd weight

. ) . )

1 a a2 a® ot o o o o a® al® ol a!2 o3 o4

Hy = 1a®a®a® a? 1 a®afa®a? 1 o af o o'?
1 1 1 1 1 1 1 1 1 1 1 1 1

® n=15 k=6, d=06: corrects 2 errors, detects 3
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