4. Brief Review of Finite Fields

Fields

- A *field* is a set F with two operations, + (addition) and • (multiplication), satisfying the following properties:
 - Associativity: a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - Commutativity: a + b = b + a and $a \cdot b = b \cdot a$.
 - *Identities*: there exist two unique elements, $0, 1 \in \mathbb{F}$, $0 \neq 1$, such that $\forall a \in \mathbb{F}$, a + 0 = a and $a \cdot 1 = a$.
 - Additive inverses: $\forall a \in \mathbb{F}, \exists b \in \mathbb{F} \text{ such that } a + b = 0 \text{ (}b \text{ is denoted } -a\text{).}$
 - Multiplicative inverses: ∀a ∈ 𝔽 \ {0}, ∃b ∈ 𝔽 such that a ⋅ b = 1 (b is denoted a⁻¹).
 - *Distributivity* of multiplication over addition: $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$.
- Other properties, such as $a \cdot 0 = 0$ or $a \cdot b = 0 \implies a = 0$ or b = 0 follow easily from the defining ones.
- A field has an *additive group* 𝔽⁺, and a *multiplicative group* 𝔽^{*} (with underlying set 𝔽 \ {0}). Both groups are *abelian* (commutative).
- A finite field (or Galois field) is a field with a finite underlying set:
 |𝔅| = q, q ≥ 2. We denote such a field 𝔅_q, or GF(q) (for the time being, this may be an abuse of notation, since there may be different fields of size q).

Fields: Examples

- Well known infinite fields: the rationals \mathbb{Q} , the reals \mathbb{R} , the complexes \mathbb{C} .
- Well known *non-fields*: the integers \mathbb{Z} , the naturals \mathbb{N} .
 - The integers Z form a commutative ring (all the properties hold except for multiplicative inverses).
- Given a field \mathbb{F} and an indeterminate symbol x, the field $\mathbb{F}(x)$ of all rational functions f(x)/g(x), where f(x), g(x) are polynomials over \mathbb{F} , $g(x) \neq 0$, gcd(f(x), g(x)) = 1. This field is always infinite.
- Examples of finite fields:
 - Smallest: $\mathbb{F}_2 = \{0,1\}$ with + = XOR (addition modulo 2), $\cdot = AND$.
 - Next smallest: $\mathbb{F}_3 = \{0, 1, 2\}$ with operations modulo 3

Finite Field Basics

- For a prime p, let \mathbb{F}_p denote the ring of integers mod p, with underlying set $\{0, 1, \dots, p-1\}$.
- Claim: \mathbb{F}_p is a finite field.
 - For every integer a ∈ {1, 2, ..., p-1}, we have gcd(a, p) = 1. By Euclid's extended algorithm, there exist integers s, t such that s · a + t · p = 1. The integer s, taken modulo p, is the multiplicative inverse of a in the field F_p.
- **Refresher:** Euclid's gcd algorithm.
 - To compute gcd(a, b), $a, b \in \mathbb{N}$, we start with $r_{-1} = a$, $r_0 = b$, and compute a sequence of *remainders* r_1, r_2, \ldots, r_m , where for $i \ge 1$,

$$r_i = r_{i-2} - q_i r_{i-1}, \quad q_i = \left\lfloor \frac{r_{i-2}}{r_{i-1}} \right\rfloor, \quad 0 \le r_i < r_{i-1}$$

 q_i, r_i are the quotient and remainder (resp.) of the integer division of r_{i-2} by r_{i-1} .

- The sequence r_1, r_2, \ldots is non-negative and *strictly decreasing*, so it must reach zero. Say, $r_m = 0$. Then $r_{m-1} = \text{gcd}(a, b)$.
- The extended Euclidean algorithm also keeps track of auxiliary sequences of integers $s_1, s_2, ...$ and $t_1, t_2, ...$ such that

 $s_i a + t_i b = r_i, \quad i \ge 1.$

Finite Field Basics

• **Example:** Inverse of 16 modulo 41, start with $r_{-1} = 41$, $r_0 = 16$:

i	r_i	=	r_{i-2}	—	$q_i \cdot r_{i-1}$	=	$s_i \cdot a$	+	$t_i \cdot b$
1	9	=	41	_	$2 \cdot 16$	=	$1 \cdot 41$	_	$2 \cdot 16$
2	7	=	16	_	$1 \cdot 9$	=	$-1 \cdot 41$	+	$3 \cdot 16$
3	2	=	9	_			$2 \cdot 41$		
4	1	=	7	_	$3 \cdot 2$	=	$-7 \cdot 41$	+	$18 \cdot 16$

 $\Rightarrow \quad 18 \cdot 16 \equiv 1 \bmod 41 \qquad \Rightarrow \quad 18 = 16^{-1} \text{ in } \mathbb{F}_{41}.$

Finite Field Basics

- Order of a finite group: number of elements in the group. The additive group of 𝔽_q has order |𝔽_q| = q, the multiplicative group order |𝔽^{*}| = q − 1.
- Order of an element $a \in \mathbb{F}_q$:
 - Additive: least positive integer k such that

• *Multiplicative* (for
$$a \neq 0$$
): least positive integer m such that $a^m = 1$.

 $\underbrace{a+a+\cdots+a}_{a+a+\cdots+a}=0\,.$

 Lagrange's theorem for finite groups: If G is a finite group, and H is a subgroup of G, then |H| divides |G|. It follows that the order of any g∈G divides |G|.

Proposition

Let
$$a \in \mathbb{F}_q$$
. Then, $q \times a \stackrel{\Delta}{=} \underbrace{a + a + \dots + a}_q = 0$ and $a^q = a$.

Proof. By Lagrange's theorem, the additive order of a divides q, and the multiplicative order divides q-1. Therefore $q \times a = 0$ and $a^{q-1} = 1$ for $a \neq 0$. Together with $0^q = 0$, we get $a^q = a$ for all a in \mathbb{F}_q . \Box

Field Characteristic

Let \mathbb{F} be a field, and let 1 be the identity in \mathbb{F}^* . The *characteristic* $char(\mathbb{F})$ of \mathbb{F} is the least positive integer *c*, *if any*, such that

$$c \times 1 = \underbrace{1+1+1+\dots+1}_{c} = 0.$$

If c exists, it is the additive order of 1 in \mathbb{F} . If no such integer exists, we define $\operatorname{char}(\mathbb{F})=0$.

- If $c = \operatorname{char}(\mathbb{F}) > 0$, then for any $\alpha \in \mathbb{F}$, $c \times \alpha = 0$.
- For a finite field 𝔽, we always have char(𝔼) > 0.
- Examples: char(\mathbb{F}_7) = 7, char(\mathbb{F}_4) = 2, char(\mathbb{Q}) = char(\mathbb{R}) = char(\mathbb{C}) = 0.
- An infinite field can have a positive characteristic. For example, $\mathbb{F}_2(x)$ is infinite, with $\operatorname{char}(\mathbb{F}_2(x)) = 2$.

Proposition

If $char(\mathbb{F}) > 0$ then it is a prime p. \mathbb{F} then contains a sub-field isomorphic to \mathbb{F}_p .

Proof. Assume $p = \operatorname{char}(\mathbb{F}) > 0$, and p factors as p = ab with $1 < a \le b < p$. Then, $0 = p \times 1 = (a \times 1) \cdot (b \times 1)$, which implies that either $a \times 1 = 0$ or $b \times 1 = 0$, contradicting the minimality of p. The subset $\{0, 1, 1+1, \dots, \underbrace{1+1+\dots+1}_{p-1}\} \subseteq \mathbb{F}$ is isomorphic to \mathbb{F}_p . \Box

Proposition

Let \mathbb{F} be a finite field, let $a, b \in \mathbb{F}$, and let $p = char(\mathbb{F})$. Then $(a+b)^p = a^p + b^p$.

Proof. The binomial coefficient $\binom{p}{i} = \frac{p(p-1)(p-2)\cdots(p-i+1)}{1\cdot 2\cdots(i-1)i}$ is a multiple of p for 0 < i < p. \Box

Polynomials

- For a field \mathbb{F} and indeterminate x,
 - **F**[x]: ring of polynomials in x, with coefficients in **F**. This is an

 Euclidean ring: degree, divisibility, division with reminder, GCD, etc.
 are well defined and "behave" as we're used to over **R**.
 - The extended Euclidean algorithm can be applied to elements of $\mathbb{F}[x]$, and for $a, b \in \mathbb{F}[x]$, not both zero, we have polynomials s(x), t(x) such that

 $s(x) \cdot a(x) + t(x) \cdot b(x) = \gcd(a(x), b(x))$

• $P(x) \in \mathbb{F}[x]$ is called *irreducible* if

 $\deg(P(x))>0$ and $P(x)=a(x)b(x) \implies \deg(a(x))=0$ or $\deg(b(x))=0$

- **Example:** $x^2 + 1$ is irreducible over \mathbb{R} .
- Example: irreducibles over \mathbb{F}_2 degree 1: x, x+1 degree 3: x^3+x+1, x^3+x^2+1 degree 2: x^2+x+1 degree 4: $x^4+x+1, x^4+x^3+1, x^4+x^3+x^2+x+1$
- F[x] is a unique factorization domain (factorization into irreducible polynomials is unique up to permutation and scalar multiples).

Arithmetic Modulo an Irreducible Polynomial

- Let \mathbb{F} be a field and P(x) an *irreducible* polynomial of degree $h \ge 1$.
- The ring of residue classes of $\mathbb{F}[x]$ modulo P(x) is denoted $\mathbb{F}[x]/\langle P(x)\rangle$.
 - Let $\mathbb{F}[x]_n$ = set of polynomials of degree < n in x over \mathbb{F} .
 - $\mathbb{F}[x]/\langle P(x)\rangle$ can be represented by $\mathbb{F}[x]_h$ with arithmetic mod P(x).

Theorem

$\mathbb{F}[x]/\langle P(x)\rangle$ is a field.

- This theorem, and the one saying \mathbb{F}_p is a field (p prime), are special cases of the same theorem on Euclidean rings.
- As with integers, inverses are found found using the Euclidean algorithm: gcd (a(x), P(x)) = 1 ⇒ ∃s(x), t(x): s(x)a(x) + t(x)P(x) = 1 ⇒ s(x) is a multiplicative inverse of a(x) in F[x]/⟨P(x)⟩.

Arithmetic Modulo an Irreducible Polynomial

Example: Inverse of x^2 modulo $x^3 + x + 1$ over \mathbb{F}_2 (recall that z = -z). $r_i(x) = r_{i-2}(x) + q_i(x) \cdot r_{i-1}(x) = t_i(x) \cdot P(x) + s_i(x) \cdot a(x)$ $x+1 = x^3+x+1 + x \cdot x^2 = 1 \cdot (x^3+x+1) + x \cdot (x^2)$ $x = x^2 + x \cdot (x+1) = x \cdot (x^3+x+1) + (x^2+1) \cdot (x^2)$ $1 = (x+1) + 1 \cdot x = (x+1) \cdot (x^3+x+1) + (x^2+x+1) \cdot (x^2)$ $\Rightarrow x^2+x+1 = (x^2)^{-1} \text{ in } \mathbb{F}_2[x]/\langle x^3+x+1 \rangle$

Sub-fields and Extension Fields

- Let K be a field, and let F be a subset of K, such that F is a field under the operations of K. Then,
 - \mathbb{F} is a *sub-field* of \mathbb{K} , and \mathbb{K} is an *extension field* of \mathbb{F} .
- - If [K : F] is finite, K is called a *finite extension* of F. A finite extension is not necessarily a finite field: C is a finite extension of R.
 - $\mathbb{F}[x]/\langle P(x)\rangle$ is an extension of degree h of \mathbb{F} , where $h = \deg(P)$.
 - If $|\mathbb{F}| = q$, then $|\mathbb{F}_q[x]/\langle P(x) \rangle| = q^h$.
 - If $|\mathbb{F}| = q$, and $char(\mathbb{F}) = p$, then $q = p^m$ for some integer $m \ge 1$.
- We can also create an extension field by *adjoining* to F a root α of an irreducible polynomial over F. This *algebraic* extension is denoted F(α).

• Examples:

- $\mathbb{C} = \mathbb{R}(i)$ (using the rule $i^2 = -1$).
- $\mathbb{Q}(\sqrt{2})$, typical elements are of the form $a + b\sqrt{2}$, $a, b \in \mathbb{Q}$, and we use the rule $(\sqrt{2})^2 = 2$.
- $F_2(\alpha)$, where α is a root of $x^3 + x + 1 \in \mathbb{F}_2[x]$. Rule: $\alpha^3 = \alpha + 1$.
- The two ways of creating extensions are equivalent.

Finite Field Example (a)

$$\begin{split} \mathbb{F} &= \mathbb{F}_2, \ P(x) = x^3 + x + 1. \text{ Let } [f(x)] \text{ represent the residue class } \\ \{g(x) \in \mathbb{F}_2[x] \, : \, g(x) \equiv f(x) \; (\mod P(x)) \} \, . \end{split}$$

Elements of $\mathbb{F}_8 = \mathbb{F}_2[x]/\langle P(x) \rangle$ and their inverses

and then invers	
element	inverse
0	_
1	1
[x]	$[x^2 + 1]$
[x+1]	$[x^2 + x]$
$[x^2]$	$[x^2 + x + 1]$
$[x^2 + 1]$	[x]
$[x^2 + x]$	[x+1]
$[x^2 + x + 1]$	$[x^2]$

Examples:

- $[x] \cdot [x^2 + 1] = [x^3 + x] = 1$
- $[x] \cdot [x^2 + x] = [x^3 + x^2] = [x^2 + x + 1]$

•
$$[x^2 + 1] \cdot [x^2] = [x^4 + x^2]$$

= $[x^2 + x + x^2] = [x]$

Facts (for general \mathbb{F} and P(x)):

- The element $[x] \in \mathbb{F}[x]/\langle P(x) \rangle$ is a root of P(x).
- Denote $\alpha = [x]$. Then, $\mathbb{F}[x]/\langle P(x) \rangle$ is isomorphic to $\mathbb{F}(\alpha)$.
- If $\deg(P(x)) = h$, then $\{1, \alpha, \alpha^2, \dots, \alpha^{h-1}\}$ is a basis of $\mathbb{F}(\alpha)$ over \mathbb{F} .

Finite Field Example (b)

$$\begin{split} \mathbb{F} &= \mathbb{F}_2, \ P(x) = x^3 + x + 1. \text{ Let } [f(x)] \text{ represent the residue class } \\ \{g(x) \in \mathbb{F}_2[x] \, : \, g(x) \equiv f(x) \; (\mod P(x)) \} \, . \end{split}$$

Elements of $\mathbb{F}_8 = \mathbb{F}(\alpha)$

and their inverses

element	inverse
0	-
1	1
α	$\alpha^2 + 1$
$\alpha + 1$	$\alpha^2 + \alpha$
α^2	$\alpha^2 + \alpha + 1$
$\alpha^2 + 1$	α
$\alpha^2 + \alpha$	$\alpha + 1$
$\alpha^2 + \alpha + 1$	α^2

Examples (rule: $\alpha^3 = \alpha + 1$):

• $\alpha \cdot (\alpha^2 + 1) = \alpha^3 + \alpha = 1$

•
$$\alpha \cdot (\alpha^2 + \alpha) = \alpha^3 + \alpha^2 = \alpha^2 + \alpha + 1$$

•
$$\alpha^2 + 1 \cdot \alpha^2 = \alpha^4 + \alpha^2$$

= $\alpha^2 + \alpha + \alpha^2 = \alpha$

Facts (for general \mathbb{F} and irreducible P(x)):

- The element $[x] \in \mathbb{F}[x]/\langle P(x) \rangle$ is a root of P(x).
- Denote $\alpha = [x]$. Then, $\mathbb{F}[x]/\langle P(x) \rangle$ is isomorphic to $\mathbb{F}(\alpha)$.
- If $\deg(P(x)) = h$, then $\{1, \alpha, \alpha^2, \dots, \alpha^{h-1}\}$ is a basis of $\mathbb{F}(\alpha)$ over \mathbb{F} .

Roots of Polynomials

Proposition

A polynomial of degree $n \ge 0$ over a field \mathbb{F} has at most n roots in any extension of \mathbb{F} .

Proposition

Let
$$\mathbb{F}$$
 be a finite field. Then, $x^{|\mathbb{F}|} - x = \prod_{\beta \in \mathbb{F}} (x - \beta)$.

Proposition

Let $\mathbb{F} = \mathbb{F}_q$, let P(x) be an irreducible polynomial of degree h over \mathbb{F} . Let α be a root of P(x). Then, $\alpha^q, \alpha^{q^2}, \ldots, \alpha^{q^{h-1}}$ are also roots of P(x).

Proof. Recall that $a^q = a$ for all $a \in \mathbb{F}$. Thus, $0 = P(\alpha)^q = \left(\sum_{i=0}^h P_i \alpha^i\right)^q = \sum_{i=0}^h P_i^q \alpha^{iq} = \sum_{i=0}^h P_i \cdot (\alpha^q)^i = P(\alpha^q).$

Roots of Polynomial

Proposition

Let $\mathbb{F} = \mathbb{F}_q$, let P(x) be an irreducible polynomial of degree h over \mathbb{F} . Let α be a root of P(x). Then, $\alpha^q, \alpha^{q^2}, \ldots, \alpha^{q^{h-1}}$ are also roots of P(x).

- $\{\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{h-1}}\}$ is the set of *all* roots of *P*; therefore, $P(x) = \prod_{i=0}^{h-1} (x - \alpha^{q^i}).$
- φ : x → x^q is called a *Frobenius* mapping. {φⁱ}_{i=0}^{h-1} are automorphisms of 𝔽(α) that fix 𝔽. They form the *Galois group* of [𝔽(α) : 𝔽].
- $\mathbb{F}(\alpha)$ is the *splitting field* of P(x).
- P(x) is the minimal polynomial of α .

Theorem

Let \mathbb{F} be a finite field. Then, \mathbb{F}^* is a cyclic group.

• Recall: \mathbb{F}^* is a cyclic group if there is an element $\alpha \in \mathbb{F}^*$ such that

 $\mathbb{F}^* = \{ \alpha^0, \, \alpha^1, \, \alpha^2, \, \dots, \, \alpha^{|\mathbb{F}^*|-1} \, \}.$

- Such α is called a *generator* of the cyclic group. In our case, where

 𝔅^{*} is the multiplicative group of the finite field 𝔅, we call α a
 primitive element of 𝔅.
- The theorem says that every finite field has a primitive element.
- Let $\mathcal{O}(\beta)$ denote the multiplicative *order* of $\beta \in \mathbb{F}^*$. If $|\mathbb{F}| = q$, then $\mathcal{O}(\beta) | (q-1)$, and, for a primitive element α , $\mathcal{O}(\alpha) = q 1$.
- If $\beta = \alpha^k$ then $\mathcal{O}(\beta) = (q-1)/\gcd(q-1,k)$ \implies if $\gcd(q-1,k) = 1$, β is also primitive.
- Let P(x) be an irreducible polynomial of degree h over F, and α a root of P(x). P(x) is called a *primitive polynomial* if α is a primitive element of F(α).
 - A primitive polynomial is irreducible.

Minimal polynomial

- Let \mathbb{F} be a finite field, $|\mathbb{F}| = q$, and let \mathbb{K} be an extension of finite degree h of \mathbb{F} , $|\mathbb{K}| = q^h$.
- Let β ∈ K. The minimal polynomial of β with respect to F is the monic polynomial M_β(x) ∈ F[x] of least degree such that M_β(β) = 0.
 (Monic polynomial = polynomial with leading coefficient equal to 1.)
 - Why does such a polynomial exist? Recall that x^{q^h} x = Π_{γ∈K}(x γ). In particular, β is a root of x^{q^h} - x ⇒ β is a root of a monic polynomial of degree q^h in F[x] ⇒ there must be a monic polynomial of least degree in F[x] that β is a root of.
- $M_{\beta}(x)$ is *irreducible* in $\mathbb{F}[x]$.
- The degree of M_β(x) is the least integer ℓ such that β^{qℓ} = β. The integer ℓ satisfies ℓ|h.
- $\beta, \beta^q, \beta^{q^2}, \dots, \beta^{q^{\ell-1}}$ are all the roots of $M_\beta(x)$,

$$M_{\beta}(x) = \prod_{i=0}^{\ell-1} (x - \beta^{q^i}).$$

Characterization of Finite Fields

Let \mathbb{F} be a finite field with $|\mathbb{F}| = q$.

- $q = p^n$ for some prime p and integer $n \ge 1$.
 - p is the characteristic of F.
- Let $Q(x) = x^{q^h} x$, $h \ge 1$. There is an extension Φ of \mathbb{F} that contains all the roots of Q(x) (its *splitting field*), and all the roots are distinct.
- The set of roots of Q(x) in Φ forms an extension field K of F, with [K : F] = h.
 (It will turn out that, in fact, Φ is unique, and Φ = K).

There is a finite field of size q for all q of the form $q = p^n$, p prime, $n \ge 1$. All finite fields of size q are isomorphic.

The *unique* (up to isomorphism) field of size $q = p^n$ is denoted \mathbb{F}_q or GF(q).

• There are irreducible polynomials and primitive polynomials of any degree ≥ 1 over \mathbb{F}_q .

Finite Fields: Summary

- There is a *unique* finite field \mathbb{F}_q , of size q, for each q of the form $q = p^m$, where p is prime and $m \ge 1$.
- When p is prime, \mathbb{F}_p can be represented as the integers $\{0, 1, \dots, p-1\}$ with arithmetic modulo p.
- When $q = p^m$, m > 1, \mathbb{F}_q can be represented as $\mathbb{F}_p[x]_m$ (polynomials of degree < m in $\mathbb{F}_p[x]$) with arithmetic modulo an irreducible polynomial P(x) of degree m over \mathbb{F}_p : $\mathbb{F}_q \sim \mathbb{F}_p[x]/\langle P(x) \rangle$
 - \mathbb{F}_q is an *extension* of degree m of \mathbb{F}_p
 - here, p can be a prime or itself a power of a prime
 - P(x) has a root α in \mathbb{F}_q , $\alpha \sim [x] \in \mathbb{F}_p[x]_m$
 - $\alpha, \alpha^p, \alpha^{p^2}, \dots, \alpha^{p^{m-1}}$ are *all* the roots of P(x); all are in \mathbb{F}_q
 - $\alpha^0, \alpha^1, \dots, \alpha^{m-1}$ is a *basis* of \mathbb{F}_q over \mathbb{F}_p .
 - All irreducible polynomials of degree m over \mathbb{F}_p have all their roots in \mathbb{F}_q
- Every finite field \mathbb{F}_q has a *primitive* element α : $\mathbb{F}_q = \{0, 1, \alpha, \alpha^2, \dots, \alpha^{q-2}\}$
 - the minimal polynomial P(x) of a primitive element α is a *primitive polynomial*
 - every primitive polynomial is irreducible, but *not every irreducible is primitive*

Finite Field Example: GF(16)

 α is a root of $P(x) = x^4 + x + 1 \in \mathbb{F}_2[x]$ (primitive). Rule: $\alpha^4 = \alpha + 1$.

		binary in base	minimal
i	$lpha^i$	$_{1,lpha,lpha^2\!,lpha^3}$	polynomial
_	0	$0 \ 0 \ 0 \ 0$	x
0	1	$1 \ 0 \ 0 \ 0$	x + 1
1	α	$0\ 1\ 0\ 0$	$x^4 + x + 1$
2	α^2	$0 \ 0 \ 1 \ 0$	$x^4 + x + 1$
3	α^3	$0 \ 0 \ 0 \ 1$	$x^4 + x^3 + x^2 + x + 1$
4	$\alpha + 1$	$1 \ 1 \ 0 \ 0$	$x^4 + x + 1$
5	$\alpha^2 + \alpha$	$0\ 1\ 1\ 0$	$x^2 + x + 1$
6	$\alpha^3 + \alpha^2$	$0 \ 0 \ 1 \ 1$	$x^4 + x^3 + x^2 + x + 1$
7	$\alpha^3 + \alpha + 1$	$1 \ 1 \ 0 \ 1$	$x^4 + x^3 + 1$
8	$\alpha^2 + 1$	$1 \ 0 \ 1 \ 0$	$x^4 + x + 1$
9	$\alpha^3 + \alpha$	$0\ 1\ 0\ 1$	$x^4 + x^3 + x^2 + x + 1$
10	$\alpha^2 + \alpha + 1$	$1 \ 1 \ 1 \ 0$	$x^2 + x + 1$
11	$\alpha^3 + \alpha^2 + \alpha$	$0\ 1\ 1\ 1$	$x^4 + x^3 + 1$
12	$\alpha^3 + \alpha^2 + \alpha + 1$	1111	$x^4 + x^3 + x^2 + x + 1$
13	$\alpha^3 + \alpha^2 + 1$	$1 \ 0 \ 1 \ 1$	$x^4 + x^3 + 1$
14	$\alpha^3 + 1$	$1 \ 0 \ 0 \ 1$	$x^4 + x^3 + 1$

If $\beta = \alpha^i$, $0 \le i \le (q-2)$, we say that *i* is the *discrete logarithm* of β to base α .

For GF(q), we operate on logarithms modulo (q-1).

Examples:

- $(\alpha^2 + \alpha) \cdot (\alpha^3 + \alpha^2) =$ $\alpha^5 \cdot \alpha^6 = \alpha^{11} =$ $\alpha^3 + \alpha^2 + \alpha$
- $(\alpha^3 + \alpha + 1)^{-1} = \alpha^{-7} = \alpha^8 = \alpha^2 + 1$
- $\log_{\alpha}(\alpha^3 + \alpha^2 + 1) = 13$

Finite Field Example: GF(16)

 α is a root of $P(x) = x^4 + x + 1 \in \mathbb{F}_2[x]$ (primitive). Rule: $\alpha^4 = \alpha + 1$.

		binary in base	minimal
i	$lpha^i$	$1, \alpha, \alpha^2, \alpha^3$	polynomial
-	0	0 0 0 0	x
0	1	$1 \ 0 \ 0 \ 0$	x+1
1	α	$0\ 1\ 0\ 0$	$x^4 + x + 1$
2	α^2	$0 \ 0 \ 1 \ 0$	$x^4 + x + 1$
3	α^3	$0 \ 0 \ 0 \ 1$	$x^4 + x^3 + x^2 + x + 1$
4	$\alpha + 1$	$1 \ 1 \ 0 \ 0$	$x^4 + x + 1$
5	$\alpha^2 + \alpha$	0 1 1 0	$x^2 + x + 1$
6	$\alpha^3 + \alpha^2$	$0 \ 0 \ 1 \ 1$	$x^4 + x^3 + x^2 + x + 1$
7	$\alpha^3 + \alpha + 1$	$1 \ 1 \ 0 \ 1$	$x^4 + x^3 + 1$
8	$\alpha^{2} + 1$	$1 \ 0 \ 1 \ 0$	$x^4 + x + 1$
9	$\alpha^3 + \alpha$	0 1 0 1	$x^4 + x^3 + x^2 + x + 1$
10	$\alpha^2 + \alpha + 1$	$1 \ 1 \ 1 \ 0$	$x^2 + x + 1$
11	$\alpha^3 + \alpha^2 + \alpha$	0 1 1 1	$x^4 + x^3 + 1$
12	$\alpha^3 + \alpha^2 + \alpha + 1$	1111	$x^4 + x^3 + x^2 + x + 1$
13	$\alpha^3 + \alpha^2 + 1$	1011	$x^4 + x^3 + 1$
14	$\alpha^3 + 1$	$1 \ 0 \ 0 \ 1$	$x^4 + x^3 + 1$

Take
$$\beta = \alpha^5$$
.
 $\beta + \beta^2 = 0110 + 1110 = 1000 = 1$

$$\beta*\beta^2=\alpha^{15}=1$$

•
$$\{0, 1, \beta, \beta^2\} = \mathbb{F}_2(\beta) \simeq \mathbb{F}_4$$

•
$$\beta$$
 is a root of $x^2 + x + 1$

Field inclusions

We saw \mathbb{F}_{2^4} \mathbb{U} \mathbb{F}_{2^2} \mathbb{U} \mathbb{F}_2

$$n = rs$$
, $(r, s) = 1$,
 \mathbb{U}
 $\mathbb{F}_{q^r} \mathbb{F}_{q^s}$
 \mathbb{V}
 $\mathbb{F}_{q^r} \mathbb{F}_{q^s}$
 \mathbb{V}
 \mathbb{F}_{q}

In general, for k < n,

$$egin{array}{cccc} \mathbb{F}_{q^n} & & & \ & & \ & & \ & \mathbb{F}_{q^k} & \Leftrightarrow & k|n \ & & \ & & \ & \ & \mathbb{F}_q \end{array}$$

Example

• The PCM of the $[2^m-1, 2^m-1-m, 3]$ binary Hamming code is $H_m = [\mathbf{h}_1 \mathbf{h}_2 \dots \mathbf{h}_{2^m-1}]$, where the \mathbf{h}_i are all the nonzero *m*-tuples over \mathbb{F}_2 . This can be reinterpreted as

$$H_m = (\alpha_1 \ \alpha_2 \ \dots \ \alpha_{2^m-1}) ,$$

where α_j ranges over all the nonzero elements of \mathbb{F}_{2^m} .

• Example: m=4, α a root of $P(x)=x^4+x+1$. Take $\alpha_j = \alpha^{j-1}$, and

	/ 1	0	0	0	1	0	0	1	1	0	1	0	1	1	1	
$H_4 =$	0	1	0	0	1	1	0	1	0	1	1	1	1	0	0	
	0	0	1	0	0	1	1	0	1	0	1	1	1	1	0	1 .
	\ 0	0	0	1	0	0	1	1	0	1	0	1	1	1	1	
											α^{10}					

• A vector $\mathbf{c} = (c_1 \ c_2 \ \dots \ c_n)$ is a codeword of \mathcal{H}_m iff

$$H_m \mathbf{c}^T = \sum_{j=1}^n c_j \alpha_j = 0.$$

• If there is exactly one error, we receive $\mathbf{y} = \mathbf{c} + \mathbf{e}_i$ where $\mathbf{e}_i = [0^{i-1} 1 0^{n-i}]$. The syndrome is

$$s = H_m \mathbf{y}^T = \underbrace{H_m \mathbf{c}^T}_0 + H_m \mathbf{e}_i^T = \alpha_i.$$

The syndrome gives us the error location directly (*i* such that $s = \alpha_i$).

What if there are two errors? Then, we get $\mathbf{e} = \mathbf{e}_i + \mathbf{e}_j$, and

 $s = \alpha_i + \alpha_j$, for some $i, j, 1 \le i < j \le n$,

which is insufficient to solve for α_i, α_j . Consider the PCM

We need more equations ...

$$\hat{H}_m = \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_{2^m - 1} \\ \alpha_1^3 & \alpha_2^3 & \dots & \alpha_{2^m - 1}^3 \end{pmatrix} \,.$$

Syndromes are of the form

$$\mathbf{s} = \begin{pmatrix} s_1 \\ s_3 \end{pmatrix} = \hat{H}_m \mathbf{y}^T = \hat{H}_m \mathbf{e}^T .$$

Assume that the number of errors is at most 2.

- Case 1: $\mathbf{e} = 0$ (no errors). Then, $s_1 = s_3 = 0$.
- Case 2: $\mathbf{e} = \mathbf{e}_i$ for some $i, 1 \leq i \leq n$ (one error). Then,

$$\left(\begin{array}{c} s_1\\ s_3 \end{array}\right) = \hat{H}_m \mathbf{e}^T = \left(\begin{array}{c} \alpha_i\\ \alpha_i^3 \end{array}\right) \ ;$$

namely, $s_3 = s_1^3 \neq 0$, and the error location is the index i such that $s_1 = \alpha_i$.

• Case 3: $\mathbf{e} = \mathbf{e}_i + \mathbf{e}_j$ for some $i, j, 1 \le i < j \le n$ (two errors).

$$\begin{pmatrix} s_1 \\ s_3 \end{pmatrix} = \hat{H}_m \mathbf{e}^T = \begin{pmatrix} \alpha_i + \alpha_j \\ \alpha_i^3 + \alpha_j^3 \end{pmatrix} \,.$$

Since $s_1 = \alpha_i + \alpha_j \neq 0$, we can write

$$\frac{s_3}{s_1} = \frac{\alpha_i^3 + \alpha_j^3}{\alpha_i + \alpha_j} = \alpha_i^2 + \alpha_i \alpha_j + \alpha_j^2 .$$

Also,

$$s_1^2 = (\alpha_i + \alpha_j)^2 = \alpha_i^2 + \alpha_j^2$$
.

We add the two equations, and recall the definition of s_1 to obtain

$$\frac{s_3}{s_1} + s_1^2 = \alpha_i \alpha_j \tag{(\star)}$$
$$s_1 = \alpha_i + \alpha_j \tag{(\star)}$$

Notice that (*) and $\alpha_i \alpha_j \neq 0 \implies s_3 \neq s_1^3$, separating Case 3 from Cases 1–2.

• Case 3 (cont.):

$$\frac{s_3}{s_1} + s_1^2 = \alpha_i \alpha_j \tag{(\star)}$$
$$s_1 = \alpha_i + \alpha_j \tag{(\star)}$$

It follows from (*) and (**) that α_i and α_j are the roots of the following quadratic equation in x over \mathbb{F}_{2^m} :

$$x^{2} + s_{1}x + \left(\frac{s_{3}}{s_{1}} + s_{1}^{2}\right) = 0$$
.

 s_1 and s_3 are fully known to the decoder (computed from the received word **y**), and therefore so are the coefficients of the quadratic equation.

Assuming we know how to solve a quadratic equation, we have a decoding algorithm for up to two errors.

Two-error correcting BCH code.

Solving a quadratic equation

We want to find the two roots of the quadratic equation

$$\Lambda(x) \stackrel{\Delta}{=} x^2 + s_1 x + \left(\frac{s_3}{s_1} + s_1^2\right) = 0$$

over \mathbb{F}_{2^m} .

• What doesn't work:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 (in characteristic 2).

Exhaustive search:

for ℓ in [1, 2, ..., n]: evaluate $\lambda = \Lambda(\alpha_{\ell})$ if $\lambda == 0$: flip bit ℓ

- Requires n evaluations of a quadratic function, time complexity is *linear in* n.
- Works also in te case of one error!
- There are ways to solve the equation explicitly, without search. However, search is good enough for us here!

Example: Double-Error Correcting Code

• As before, $\mathbb{F} = \mathbb{F}_{16}$, and α is a root of $P(x) = x^4 + x + 1$.

and, in binary form,

	/ 1	0	0	0	1	0	0	1	1	0	1	0	1	1	1	
$\hat{H}_4 =$	0	1	0	0	1	1	0	1	0	1	1	1	1	0	0	
	0	0	1	0	0	1	1	0	1	0	1	1	1	1	0	
	$ \left(\begin{array}{c} 1\\ 0\\ 0\\ \hline 1\\ 0\\ 0\\ 0\\ 0 \end{array}\right) $	0	0	1	0	0	1	1	0	1	0	1	1	1	1	
	1	0	0	0	1	1	0	0	0	1	1	0	0	0	1	· ·
	0	0	0	1	1	0	0	0	1	1	0	0	0	1	1	
	0	0	1	0	1	0	0	1	0	1	0	0	1	0	1	
	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1 /	

For this code, we know

- $k \ge 15 8 = 7$ (in fact, the dimension is exactly 7)
- $d \geq 5$ (in fact, d = 5)
- [n, k, d] = [15, 7, 5]

Variations on the Double-error Correcting Code

• Add an overall parity bit

For this code, we know

- n = 16
- k = 7 (same number of words)
- *d* = 6
- corrects 2 errors, detects 3

Expurgate words of odd weight

• n = 15, k = 6, d = 6: corrects 2 errors, detects 3