
3. Bounds on Code Parameters
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The Singleton Bound

• The Singleton bound.

Theorem

For any (n,M, d) code over an alphabet of size q,

d ≤ n− (logq M) + 1 .

Proof. Let ℓ = ⌈logq M⌉ − 1. Since qℓ < M , there must be at least two

codewords that agree in their first ℓ coordinates. Hence, d ≤ n− ℓ. □

• For linear codes, we have d ≤ n− k + 1.

• C : (n,M, d) is called maximum distance separable (MDS) if it meets the
Singleton bound, namely d = n− (logq M) + 1.

50 / 162



MDS Code Examples

• Trivial and semi-trivial codes
• [n, n, 1] whole space Fn

q , [n, n− 1, 2] parity code, [n, 1, n] repetition
code

• Normalized generalized Reed-Solomon (RS) codes
Let α1, α2, . . . , αn be distinct elements of Fq, n ≤ q. The RS code has
PCM

HRS =


1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αn−k−1
1 αn−k−1

2 . . . αn−k−1
n

 .

Theorem

Every Reed-Solomon code is MDS.

Proof. Every (n−k)× (n−k) sub-matrix of HRS has a nonsingular

Vandermonde form. Hence, every (n−k) columns of HRS are l.i.

=⇒ d ≥ n− k + 1. □
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Vandermonde matrix

V =


1 1 . . . 1
x1 x2 . . . xr

x2
1 x2

2 . . . x2
r

...
...

...
...

xr−1
1 xr−1

2 . . . xr−1
r

 .

Square matrix, with determinant

det(V ) =
∏

1≤i<j≤r

(xj − xi)

Nonzero if and only if all xi are distinct.
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The Sphere-Packing Bound

The sphere of center c and radius t in Fn
q is the set of vectors at

Hamming distance t or less from c. Its volume (cardinality) is

Vq(n, t) =

t∑
i=0

(
n

i

)
(q − 1)i .

Theorem (The sphere-packing (SP) bound)

For any (n,M, d) code over Fq,

M · Vq(n, ⌊(d−1)/2⌋) ≤ qn .

Proof. Spheres of radius t = ⌊(d− 1)/2⌋ centered at codewords must be
disjoint. □

For a linear [n, k, d] code, the bound becomes
Vq(n, ⌊(d−1)/2⌋) ≤ qn−k . For q = 2,

⌊(d−1)/2⌋∑
i=0

(
n

i

)
≤ 2n−k

𝐜
𝐜′𝑑

𝜏 𝜏′
𝑟

𝑟

2r ≥ τ + τ ′ ≥ d

=⇒ r > ⌊(d−1)/2⌋

53 / 162



Perfect Codes

• A code meeting the SP bound is said to be perfect.

• Known perfect codes:

• [n, n, 1] whole space Fn
q ,

• [n, 1, n] repetition code for n odd
• Hq,m, q any GF size, m ≥ 1
• the [23, 12, 7] binary and [11, 6, 5] ternary Golay codes

In a well-defined sense, this is it!!!
Any perfect code must have parameters identical to one of the above

• Perfect packing codes are also perfect covering codes

packing covering application
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The Gilbert-Varshamov bound

The Singleton and SP bounds set necessary conditions on the parameters
of a code. The following is a sufficient condition:

Theorem (The Gilbert-Varshamov (GV) bound)

There exists an [n, k, d] code over the field Fq whenever
Vq(n−1, d−2) < qn−k.

Proof. Construct, iteratively, an (n− k)× n PCM where every d− 1 columns

are l.i., starting with an identity matrix, and adding a new column in each

iteration. Assume we’ve gotten ℓ−1 columns. There are at most Vq(ℓ−1, d−2)
linear combinations of d− 2 or fewer of these columns. As long as

Vq(ℓ−1, d−2) < qn−k , we can find a column we can add without creating a

dependence of d− 1 or fewer columns. □

n−k · · ·

ℓ−1
?

linear comb. of 0 columns:
(ℓ−1

0

)
(q − 1)0

linear comb. of 1 columns:
(ℓ−1

1

)
(q − 1)1

linear comb. of 2 columns:
(ℓ−1

2

)
(q − 1)2

...
...

linear comb. of d− 2 columns:
(ℓ−1
d−2

)
(q − 1)d−2

adds up to

Vq(ℓ−1, d−2)
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Examples

Consider a binary [10, 5] code. What’s the best possible d?

• Sphere packing:
∑⌊(d−1)/2⌋

i=0

(
n
i

)
≤ 2n−k

⌊(d−1)/2⌋∑
i=0

(
10

i

)
≤ 32

(
10
0

)
= 1,

(
10
1

)
= 10,

(
10
2

)
= 45 =⇒ ⌊(d− 1)/2⌋ ≤ 1 =⇒ d ≤ 4.

• Gilbert-Varshamov:
∑d−2

i=0

(
n−1
i

)
< 2n−k; ∃ [10, 5, d] whenever

d−2∑
i=0

(
9

i

)
< 32

(
9
0

)
= 1,

(
9
1

)
= 9,

(
9
2

)
= 36 =⇒ d−2 ≤ 1 =⇒ ∃ code with d = 3.

In fact, there exists a [10, 5, 4] code:

• Start with [15, 11, 3] Hamming code of order 4.
• Extend with overall parity check =⇒ [16, 11, 4].
• Shorten by 6 =⇒ [10, 5, 4].
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Asymptotic Bounds

• Definition: relative distance δ = d/n

• We are interested in the behavior of δ and R = (logq M)/n as n → ∞.

• Singleton bound: d ≤ n− ⌈logq M⌉+ 1 =⇒ R ≤ 1− δ + o(1)

• For the SP and GV bounds, we need estimates for Vq(n, t)

• Definition: symmetric q-ary entropy function Hq : [0, 1] → [0, 1]

Hq(x) = −x logq x− (1− x) logq(1− x) + x logq(q−1) ,

• Hq(0) = 0, Hq(1) = logq(q − 1), strictly ∩-convex,
max = 1 at x = 1− 1/q

• coincides with H(x) when q = 2

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0
H3(x) Example: q = 3
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Asymptotic Bounds (II)

Lemma. For 0 ≤ t/n ≤ 1− (1/q), we have

1

n+ 1
qnHq(t/n) ≤ Vq(n, t) ≤ qnHq(t/n) .

(lower bound holds more generally for 0 ≤ t ≤ n).

Theorem (Asymptotic SP bound)

For every (n, qnR, δn) code over Fq,
R ≤ 1− Hq(δ/2) + o(1) .

Theorem (Asymptotic GV bound)

Let n, nR, δn be positive integers such that δ ∈ (0, 1−(1/q)] and

R ≤ 1− Hq(δ) .

Then, there exists a linear [n, nR,≥δn] code over Fq.
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Plot of Asymptotic Bounds

R = k/n

0

1

1/2 1
δ = d/n

Singleton upper bound

Sphere-packing upper bound

Gilbert-Varshamov lower bound

MRRW upper bound
(McEliece, Rodemich,
Rumsey, Welch 1977)
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