3. Bounds on Code Parameters

The Singleton Bound

- The Singleton bound.

Theorem

For any (n, M, d) code over an alphabet of size q,

$$
d \leq n-\left(\log _{q} M\right)+1 .
$$

Proof. Let $\ell=\left\lceil\log _{q} M\right\rceil-1$. Since $q^{\ell}<M$, there must be at least two codewords that agree in their first ℓ coordinates. Hence, $d \leq n-\ell$. \square

- For linear codes, we have $d \leq n-k+1$.
- $\mathcal{C}:(n, M, d)$ is called maximum distance separable (MDS) if it meets the Singleton bound, namely $d=n-\left(\log _{q} M\right)+1$.

MDS Code Examples

- Trivial and semi-trivial codes
- $[n, n, 1]$ whole space \mathbb{F}_{q}^{n}, $[n, n-1,2]$ parity code, $[n, 1, n]$ repetition code
- Normalized generalized Reed-Solomon (RS) codes

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be distinct elements of $\mathbb{F}_{q}, n \leq q$. The RS code has PCM

$$
H_{\mathrm{RS}}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \ldots & \alpha_{n}^{2} \\
\vdots & \vdots & \vdots & \vdots \\
\alpha_{1}^{n-k-1} & \alpha_{2}^{n-k-1} & \ldots & \alpha_{n}^{n-k-1}
\end{array}\right)
$$

Theorem

Every Reed-Solomon code is MDS.
Proof. Every $(n-k) \times(n-k)$ sub-matrix of H_{RS} has a nonsingular Vandermonde form. Hence, every $(n-k)$ columns of H_{RS} are I.i.
$\Longrightarrow d \geq n-k+1$.

Vandermonde matrix

$$
V=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{r} \\
x_{1}^{2} & x_{2}^{2} & \ldots & x_{r}^{2} \\
\vdots & \vdots & \vdots & \vdots \\
x_{1}^{r-1} & x_{2}^{r-1} & \ldots & x_{r}^{r-1}
\end{array}\right)
$$

Square matrix, with determinant

$$
\operatorname{det}(V)=\prod_{1 \leq i<j \leq r}\left(x_{j}-x_{i}\right)
$$

Nonzero if and only if all x_{i} are distinct.

The Sphere-Packing Bound

The sphere of center \mathbf{c} and radius t in \mathbb{F}_{q}^{n} is the set of vectors at Hamming distance t or less from \mathbf{c}_{t} Its volume (cardinality) is

$$
V_{q}(n, t)=\sum_{i=0}^{i}\binom{n}{i}(q-1)^{i} .
$$

Theorem (The sphere-packing (SP) bound)

For any (n, M, d) code over \mathbb{F}_{q},

$$
M \cdot V_{q}(n,\lfloor(d-1) / 2\rfloor) \leq q^{n} .
$$

Proof. Spheres of radius $t=\lfloor(d-1) / 2\rfloor$ centered at codewords must be disjoint. \square

For a linear $[n, k, d]$ code, the bound becomes $V_{q}(n,\lfloor(d-1) / 2\rfloor) \leq q^{n-k}$. For $q=2$,

$$
\sum_{i=0}^{\lfloor(d-1) / 2\rfloor}\binom{n}{i} \leq 2^{n-k}
$$

Perfect Codes

- A code meeting the SP bound is said to be perfect.
- Known perfect codes:
- $[n, n, 1]$ whole space \mathbb{F}_{q}^{n},
- $[n, 1, n]$ repetition code for n odd
- $\mathcal{H}_{q, m}, q$ any GF size, $m \geq 1$
- the $[23,12,7]$ binary and $[11,6,5]$ ternary Golay codes

```
In a well-defined sense, this is it!!! Any perfect code must have parameters identical to one of the above
```

- Perfect packing codes are also perfect covering codes

The Gilbert-Varshamov bound

The Singleton and SP bounds set necessary conditions on the parameters of a code. The following is a sufficient condition:

Theorem (The Gilbert-Varshamov (GV) bound)

There exists an $[n, k, d]$ code over the field \mathbb{F}_{q} whenever

$$
V_{q}(n-1, d-2)<q^{n-k} .
$$

Proof. Construct, iteratively, an $(n-k) \times n$ PCM where every $d-1$ columns are I.i., starting with an identity matrix, and adding a new column in each iteration. Assume we've gotten $\ell-1$ columns. There are at most $V_{q}(\ell-1, d-2)$ linear combinations of $d-2$ or fewer of these columns. As long as $V_{q}(\ell-1, d-2)<q^{n-k}$, we can find a column we can add without creating a dependence of $d-1$ or fewer columns.

linear comb. of 0 columns: $\quad\binom{\ell-1}{0}(q-1)^{0}$
linear comb. of 1 columns: $\quad\binom{\ell-1}{1}(q-1)^{1}$
linear comb. of 2 columns: $\quad\binom{\ell-1}{2}(q-1)^{2}$

$$
\begin{aligned}
& \text { adds up to } \\
& V_{q}(\ell-1, d-2)
\end{aligned}
$$

linear comb. of $d-2$ columns: $\binom{\ell-1}{d-2}(q-1)^{d-2}$

Examples

Consider a binary $[10,5]$ code. What's the best possible d ?

- Sphere packing: $\sum_{i=0}^{\lfloor(d-1) / 2\rfloor}\binom{n}{i} \leq 2^{n-k}$

$$
\begin{gathered}
\sum_{i=0}^{\lfloor(d-1) / 2\rfloor}\binom{10}{i} \leq 32 \\
\binom{10}{0}=1,\binom{10}{1}=10,\binom{10}{2}=45 \Longrightarrow\lfloor(d-1) / 2\rfloor \leq 1 \Longrightarrow d \leq 4 .
\end{gathered}
$$

- Gilbert-Varshamov: $\sum_{i=0}^{d-2}\binom{n-1}{i}<2^{n-k} ; \exists[10,5, d]$ whenever

$$
\sum_{i=0}^{d-2}\binom{9}{i}<32
$$

$$
\binom{9}{0}=1,\binom{9}{1}=9,\binom{9}{2}=36 \Longrightarrow d-2 \leq 1 \Longrightarrow \exists \text { code with } d=3 .
$$

In fact, there exists a [10, 5, 4] code:

- Start with $[15,11,3]$ Hamming code of order 4.
- Extend with overall parity check $\Longrightarrow[16,11,4]$.
- Shorten by $6 \Longrightarrow[10,5,4]$.

Asymptotic Bounds

- Definition: relative distance $\delta=d / n$
- We are interested in the behavior of δ and $R=\left(\log _{q} M\right) / n$ as $n \rightarrow \infty$.
- Singleton bound: $d \leq n-\left\lceil\log _{q} M\right\rceil+1 \quad \Longrightarrow \quad R \leq 1-\delta+o(1)$
- For the SP and GV bounds, we need estimates for $V_{q}(n, t)$
- Definition: symmetric q-ary entropy function $\mathrm{H}_{q}:[0,1] \rightarrow[0,1]$

$$
\mathrm{H}_{q}(x)=-x \log _{q} x-(1-x) \log _{q}(1-x)+x \log _{q}(q-1),
$$

- $\mathrm{H}_{q}(0)=0, \mathrm{H}_{q}(1)=\log _{q}(q-1)$, strictly \cap-convex, $\max =1$ at $x=1-1 / q$
- coincides with $\mathrm{H}(x)$ when $q=2$

Asymptotic Bounds (II)

Lemma. For $0 \leq t / n \leq 1-(1 / q)$, we have

$$
\frac{1}{n+1} q^{n \mathrm{H}_{q}(t / n)} \leq V_{q}(n, t) \leq q^{n \mathrm{H}_{q}(t / n)}
$$

(lower bound holds more generally for $0 \leq t \leq n$).

Theorem (Asymptotic SP bound)

For every $\left(n, q^{n R}, \delta n\right)$ code over \mathbb{F}_{q},

$$
R \leq 1-\mathrm{H}_{q}(\delta / 2)+o(1) .
$$

Theorem (Asymptotic GV bound)

Let $n, n R, \delta n$ be positive integers such that $\delta \in(0,1-(1 / q)]$ and

$$
R \leq 1-\mathrm{H}_{q}(\delta)
$$

Then, there exists a linear $[n, n R, \geq \delta n]$ code over $F q$.

Plot of Asymptotic Bounds

$$
R=k / n
$$

