1. Introduction to Channel Coding
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Channel Coding

M Channel B
) _
u Encoder c

Discrete probabilistic channel: (F, ®, Prob)
e [ finite input alphabet,
® Prob: conditional probability distribution

Prob{ y received | x transmitted} x € F", y € ®" n>1

(noisy)
Channel

(D'n

®: finite output alphabet

y

Channel
Decoder

u: message word € M, set of M possible messages

c € F": codeword

€ :u =5 c encoding

C={&()|ue M} code

y € ®": received word
¢, u: decoded codeword, message word, y — ¢ (— 1) decoding

o>
o>
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Code Parameters
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C=&EM) CF", [Cl=M
® n: code length
® k= log p M = logp|[C|: code dimension
° R = %: code rate <1
® r =n — k: code redundancy

® We call C an (n, M) (block) code over F'
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Example: Memoryless Binary Symmetric Channel (BSC)

lL—p
0 0 BSC(p)
p p = crossover probability
p
1 T 1 (we can assume p < 1/2)
-p

o FF=0={0,1}
e Prob(0[1) = Prob(1|0) = p, Prob(0]0) = Prob(1|]1) =1—p
e Forxe F", y € d",

Prob{ y received | x transmitted } = [ ] Prob(y; | z; ) = p'(1—p)"~"
j=1

)

where t = [{ j | y; # x; }| (number of errors)
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Memoryless g-ary Symmetric Channel (QSC)

F=&, |[Fl=q>2

For z,y € F, 0 wl_pw 0
1—p, T =1y,

Prob(y | z)= !
mEp/g-1), w#y.

Assume F is an abelian (commutative) group,

e.g.: {0,1,...,¢g—1} with addition mod q. (g—1)

Ad(ditive channel (operating in the group F™) * _’C‘?_’ y=x+e
e

e =y — Xx: error word statistically independent of x

e:[OO, €iq ,0...0, €is 70...0, €4y 700]

i1,49,...,1¢ : error locations €iyyCiny .-y €i, o error values (# 0)
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The Hamming Metric

e Hamming distance
0, ==y,

1, x#uy.

For vectors x,y € F": d(x,y) = Z;:OI d(zj,y;)

For single-letters x,y € F: d(z,y) = {

number of locations where the vectors differ
x = (101101001) -
y = (110101110) 466¥) =5
e The Hamming distance defines a metric:
¢ d(x,y) > 0, with equality if and only if x =y
* Symmetry d(x,y) = d(y,x) z

® Triangle inequality: d(x,y) < d(x,z) +d(z,y) XA.y

Example:

e Hamming weight wt(e) = d(e, 0) number of nonzero entries

e When F'is an abelian group, d(x,y) = wt(x — y)
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Minimum Distance

e Let C be an (n, M) code over F, M > 1
d= min d(cy,c2)
cl,cz€c:c17€cz
is called the minimum distance of C
e We say that C is an (n, M, d) code.

e Example: C = {000,111} is the (3,2, 3) repetition code over F»={0,1}.
Dimension: k =log,2 =1, rate: R =k/n =1/3.
In general, C ={00...0, 11...1}: (n,2,n) repetition code, R = 1/n.

e Example: C = {000,011,101,110} is the (3,4,2) parity code of
dimension k = 2 and rate R = 2/3 over Fb;
in general, C={ (zo,z1,...,2p 2, — E;L:_OQ z;) b, (n,2"7 1 2) over Fy.
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e C:(n,M,d) over F, used on channel S = (F, ®, Prob)

e A decoder for C on S is a function

D:d" — C.

e Decoding error probability of D is

Perr = max Perr(c) 5
ce

where

Pyr(c) = Z Prob{ y received | ¢ transmitted } .
y: D(y)#e

‘ goal: find encoders (codes) and decoders that make Py small ‘
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Decoding example

e Example: C = {000,111}, (3,2,3) binary repetition code, channel
S = BSC(p). Decoder D defined by
D(000) = D(001) = D(010) = D(100) = 000
D(011) = D(101) = D(110) = D(111) = 111

(majority vote).

Error probability
Per = Pexe(000) = Pore(111) = (3)p°(1 = p) + (3)”
= 3p? =3’ +p* = p—p(1-p)(1-2p).

e P...<p for p<1/2 = coding improved message error probability
but information rate is 1/3!
In general, for the repetition code, we have Pe,r — 0 exponentially (provel),
but R=1/n — 0 as n — oo —can we do better?

goal: find encoders (codes) and decoders that make Py small
with minimal decrease in information rate
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Maximum Likelihood and Maximum a Posteriori Decoding

e C:(n,M,d), channel S : (F,®, Prob).
Maximum likelihood decoder (MLD):

Duvip(y) = arg macx Prob{ y received | ¢ transmitted }, Vy € ®"
ce

With a fixed tie resolution policy, Dyirp is well-defined for C and S.
e Maximum a posteriori (MAP) decoder:

Duap(y) = arg maéc Prob{ c transmitted | y received }, Vy € ®"
ce

But,
Prob{ c transmitted | y received }
Prob{ ¢ transmitted }
Prob{y received }
= MLD and MAP are the same when c is uniformly distributed

= Prob{y received | c transmitted } -
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MLD on the BSC

1—p

0 0
e C:(n,M,d), channel S : BSC(p) %pp
1 1

1-p
n

Prob{ y received| ¢ transmitted } = H Prob{ y, received | ¢; transmitted }
j=1

d(v.c) d(v.c) p \*

_ yi€) (] — n—d(y,c) _ (1 _ n

P (1 —p) (1-p) (1 p) :

where d(y, c) is the Hamming distance. Since p/(1 —p) < 1 for p < 1/2,
for all y € F3' we have

Dyip(y) = argmin d(y, c)
ce

‘ Dwip = nearest-codeword decoder‘

e True also for QSC(p) whenever p <1 —1/q
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Capacity of the BSC

, , H()
e Binary entropy function H: [0,1] — [0,1] 1

H(z) = —xlogyx — (1 — x)logy(1 — ), H(0)=H(1)=0

0= 17
C(p)
e Capacity of BSC(p) is given by C'(p) =1 — H(p)
0= TP

e A special case of the capacity of a probabilistic channel, as defined by
Shannon (1948)
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Shannon Coding Theorems for the BSC

Theorem (Shannon Coding Theorem for the BSC—1948)

Let S = BSC(p) and let R be a real number in the range 0 < R < C(p).
There exists an infinite sequence of (n;, M;) block codes over

Fy, i =1,2,---, such that (log, M;)/n; > R and, for MLD for those
codes (with respect to S), the probability P.,. — 0 asi — co.

Proof. By a random coding argument. Non-constructive!

Theorem (Shannon Converse Coding Theorem for the BSC—1948)

Let S = BSC(p) and let R > C(p). Consider any infinite sequence
{C; : (ni;, M;)} of block codes over Fy, i = 1,2, - -, such that

(logy M;)/n; > R andny <mng < ---<mn; <---. Then, for any
decoding scheme for {C;} (with respect to S), the probability Pey — 1
as i — o0.

Proof. (Loose argument.)
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Error Correction

X y=x+t+e

e=1[0...0,/e;, ,0...0, €5 ,0...0, ¢, ,0...0] ‘,6?_,
e

error values (# 0)

i1,12,...,%; . error locations €iysCigsenny €y -

Full error correction: the task of recovering all {i;} and {e;, } giveny

Let C be an (n, M, d) code over F. There is a decoder D : F™* — C that
recovers correctly every pattern of up to |(d—1)/2| errors for every
channel S = (F, F, Prob).

Proof. Let D be a nearest-codeword decoder.
Use triangle inequality.[]

Theorem is tight: For every D there is a
codeword ¢ € C and y € F" such that

d(y.c) < [(d+1)/2] and D(y) #c.
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Error Correction Examples

e Binary (n,2,n) repetition code. Nearest-codeword decoding corrects up
to [(n — 1)/2] errors (take majority vote).

e Binary (n,2"7! 2) parity code cannot correct single errors: (11100...0)
is at distance 1 from codewords (11000...0) and (10100...0)
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Error Detection

e Generalize the definition of a decoder to D : I — C U {‘E’}, where ‘E’
means ‘I found errors, but don’t know what they are”

Let C be an (n, M, d) code over F'. There is a decoder
D: F" — CU{‘E’} that detects (correctly) every pattern of up to d—1
errors.

Proof. D(y) *{ ‘E’  otherwise

Example: Binary (n,2" ! 2) parity code can detect single errors (a
single bit error maps an even parity word to an odd parity one)
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Combined correction /detection

Let 7 and o be nonnegative integers such that 27 + o < d—1 . There is a
decoder D : F™* — C U {‘E’} such that
® f the number of errors is T or less, then the errors will be recovered
correctly;
® otherwise, if the number of errors is T + o or less, then they will be
detected.

.

B c if there is ¢ € C such that d(y,c) <7
Proof.  Dly) = { ‘B’ otherwise
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Erasure Correction

e FErasure: an error of which we know the location but not the value
(Y1 Yir—15 25 Yis 41+ Yin—15 L 5 Yint1 o L5 Yipt1 - Yn |
e FErasure channel: S = (F,®,Prob) with ® = F'U {?}.

Let C be an (n, M,d) code over F and let ® = F U {?}. There is a
decoder D : " — C U {‘E’} that recovers every pattern of up to d—1
erasures.

Proof. On p < d — 1 erasures, try all |F'|” vectors that coincide with y in
non-erased locations. Find unique codeword, if any. Otherwise, fail (return
‘E).
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Combined correction /erasure/detection

Let C be an (n, M, d) code over F' and let S = (F, ®, Prob) be a channel
with ® = F' U {?}. For each number p of erasures in the range
0<p<d-1, let T =17, and 0 = 0, be nonnegative integers such that
21+ 0+p<d-1.ThereisaD: ®" — CU{‘E’} such that

® f the number of errors (excluding erasures) is T or less, then all the
errors and erasures will be recovered correctly;

® otherwise, if the number of errors is T + o or less, then the decoder
will return ‘E’.

.

® Full error correction “costs” twice as much as detection or erasure
correction. Price list:

® full error to correct: requires 2 units of distance
® erasure to correct: requires 1 unit of distance
® full error to detect: requires 1 unit of distance

® How does distance “cost” translate to redundancy “cost”?
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Channel
E——

ueM Encoder

(n, M,d) code over alphabet F"

ccCFm,

n: code length

I | | Channel ‘
oeC > anne yeq)n' Decoder é, u
IC| =M, d= min d(cy, co)

Cl,CQGC-,Cl#C2

k = logp| M: code dimension

r =n — k: code redundancy

R =k/n: code rate

Maximum likelihood decoding:

¢ = argmax Prob{y received | ¢ sent }

For QSC, equivalent to ¢=arg miéld(y7 ¢) nearest codeword decoding

ce

ce
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e Shannon: there are sequences of codes C;(n;, M;) that allow
Py (Cy) 2290 while keeping R; > R > 0, as long as R < C', where C'is
a number that depends solely on the channel (channel capacity)
Error-free communication is possible at positive information rates

(he just didn't tell us how to implement this in practice)

e Maximum likelihood decoding may be too complex: sometimes we need
to settle for less

e If 21+ p+0<d-—1,an (n,M,d) code can
® correct p erasures and T full errors
® detect between 7+ 1 and 7 + o errors (in addition to p erasures)

e Challenges: how to find good codes (codes with large d), how to
represent them compactly, how to encode, how to decode
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