
1. Introduction to Channel Coding
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Channel Coding
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Discrete probabilistic channel: (F,Φ,Prob)
• F : finite input alphabet, Φ: finite output alphabet
• Prob: conditional probability distribution

Prob{y received | x transmitted } x ∈ Fn, y ∈ Φn, n ≥ 1

M Fn Φn

• u: message word ∈ M, set of M possible messages
• c ∈ Fn: codeword
• E : u

1−1−→ c encoding
• C = {E(u) | u ∈ M} code
• y ∈ Φn: received word
• ĉ, û: decoded codeword, message word, y −→ ĉ (−→ û) decoding
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Code Parameters
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Channel
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C = E(M) ⊆ Fn, |C| = M

• n: code length

• k = log|F | M = log|F | |C|: code dimension

• R = k
n : code rate ≤ 1

• r = n− k: code redundancy

• We call C an (n,M) (block) code over F
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Example: Memoryless Binary Symmetric Channel (BSC)
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BSC(p)

p = crossover probability

(we can assume p ≤ 1/2)

• F = Φ = {0, 1}
• Prob(0|1) = Prob(1|0) = p, Prob(0|0) = Prob(1|1) = 1− p

• For x ∈ Fn, y ∈ Φn,

Prob{y received | x transmitted } =

n∏
j=1

Prob( yj | xj ) = pt(1− p)n−t,

where t = |{ j | yj ̸= xj }| (number of errors)
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Memoryless q-ary Symmetric Channel (QSC)

• F = Φ, |F | = q ≥ 2

• For x, y ∈ F ,

Prob(y |x)=


1− p, x = y,

π
∆
= p/(q − 1), x ̸= y.

• Assume F is an abelian (commutative) group,
e.g.: {0, 1, . . . , q−1} with addition mod q. (q−1)

1
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(q−1)

1

01− p

1− p

1− p

π π

π

π π

π=p/(q−1)

• Additive channel (operating in the group Fn) +x y = x+ e

e

• e = y − x: error word statistically independent of x

e = [ 0 . . . 0, ei1 , 0 . . . 0, ei2 , 0 . . . 0, eit , 0 . . . 0 ]

i1, i2, . . . , it : error locations ei1 , ei2 , . . . , eit : error values (̸= 0)
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The Hamming Metric

• Hamming distance

For single-letters x, y ∈ F : d(x, y) =

{
0, x = y,
1, x ̸= y.

For vectors x,y ∈ Fn: d(x,y) =
∑n−1

j=0 d(xj , yj)

number of locations where the vectors differ

Example:
x = (101101001)
y = (110101110)

d(x,y) = 5 .

• The Hamming distance defines a metric :

• d(x,y) ≥ 0, with equality if and only if x = y
• Symmetry d(x,y) = d(y,x)
• Triangle inequality: d(x,y) ≤ d(x, z) + d(z,y) x y

z

• Hamming weight wt(e) = d(e,0) number of nonzero entries

• When F is an abelian group, d(x,y) = wt(x− y)
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Minimum Distance

• Let C be an (n,M) code over F , M > 1

d = min
c1,c2∈C : c1 ̸=c2

d(c1, c2)

is called the minimum distance of C
• We say that C is an (n,M, d) code.

• Example: C = {000, 111} is the (3, 2, 3) repetition code over F2={0, 1}.
Dimension: k = log2 2 = 1, rate: R = k/n = 1/3.
In general, C = {00 . . . 0, 11 . . . 1}: (n, 2, n) repetition code, R = 1/n.

• Example: C = {000, 011, 101, 110} is the (3, 4, 2) parity code of
dimension k = 2 and rate R = 2/3 over F2;

in general, C={ (x0, x1, . . . , xn−2,−
∑n−2

i=0 xi) }, (n, 2n−1, 2) over F2.
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Decoding

• C : (n,M, d) over F , used on channel S = (F,Φ,Prob)

• A decoder for C on S is a function

D : Φn −→ C.

• Decoding error probability of D is

Perr = max
c∈C

Perr(c) ,

where

Perr(c) =
∑

y :D(y)̸=c

Prob{y received | c transmitted } .

goal: find encoders (codes) and decoders that make Perr small
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Decoding example

• Example: C = {000, 111}, (3, 2, 3) binary repetition code, channel
S = BSC(p). Decoder D defined by

D(000) = D(001) = D(010) = D(100) = 000

D(011) = D(101) = D(110) = D(111) = 111

(majority vote).

Error probability
Perr = Perr(000) = Perr(111) =

(
3
2

)
p2(1− p) +

(
3
3

)
p3

= 3p2 − 3p3 + p3 = p− p(1− p)(1− 2p) .

• Perr<p for p<1/2 ⇒ coding improved message error probability
but information rate is 1/3!

In general, for the repetition code, we have Perr → 0 exponentially (prove!),

but R = 1/n→ 0 as n→∞ —can we do better?

goal: find encoders (codes) and decoders that make Perr small
with minimal decrease in information rate
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Maximum Likelihood and Maximum a Posteriori Decoding

• C : (n,M, d), channel S : (F,Φ,Prob).
Maximum likelihood decoder (MLD):

DMLD(y) = argmax
c∈C

Prob{ y received | c transmitted }, ∀y ∈ Φn

With a fixed tie resolution policy, DMLD is well-defined for C and S.

• Maximum a posteriori (MAP) decoder:

DMAP(y) = argmax
c∈C

Prob{ c transmitted | y received }, ∀y ∈ Φn

But,
Prob{ c transmitted | y received }

= Prob{y received | c transmitted } · Prob{ c transmitted }
Prob{y received }

=⇒ MLD and MAP are the same when c is uniformly distributed
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MLD on the BSC

• C : (n,M, d), channel S : BSC(p)
1

0

1

0

1−p

1−p

p
p

Prob{y received| c transmitted } =

n∏
j=1

Prob{ yj received | cj transmitted }

= pd(y,c)(1− p)n−d(y,c) = (1− p)n ·
(

p

1− p

)d(y,c)

,

where d(y, c) is the Hamming distance. Since p/(1− p) < 1 for p < 1/2,
for all y ∈ Fn

2 we have

DMLD(y) = argmin
c∈C

d(y, c)

DMLD = nearest-codeword decoder

• True also for QSC(p) whenever p < 1− 1/q
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Capacity of the BSC

• Binary entropy function H : [0, 1] → [0, 1]
H(x) = −x log2 x− (1− x) log2(1− x), H(0)=H(1)=0

H(x)

0

1

1/2 1
x

• Capacity of BSC(p) is given by C(p) = 1− H(p)

C(p)

0

1

1/2 1
p

• A special case of the capacity of a probabilistic channel, as defined by
Shannon (1948)
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Shannon Coding Theorems for the BSC

Theorem (Shannon Coding Theorem for the BSC—1948)

Let S = BSC(p) and let R be a real number in the range 0 ≤ R < C(p).
There exists an infinite sequence of (ni,Mi) block codes over
F2, i = 1, 2, · · · , such that (log2 Mi)/ni ≥ R and, for MLD for those
codes (with respect to S), the probability Perr → 0 as i → ∞.

Proof. By a random coding argument. Non-constructive!

Theorem (Shannon Converse Coding Theorem for the BSC—1948)

Let S = BSC(p) and let R > C(p). Consider any infinite sequence
{Ci : (ni,Mi)} of block codes over F2, i = 1, 2, · · · , such that
(log2 Mi)/ni ≥ R and n1 < n2 < · · · < ni < · · · . Then, for any
decoding scheme for {Ci} (with respect to S), the probability Perr → 1
as i → ∞.

Proof. (Loose argument.)
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Error Correction

e = [0 . . . 0, ei1 , 0 . . . 0, ei2 , 0 . . . 0, eit , 0 . . . 0] +
x y = x+ e

e

i1, i2, . . . , it : error locations ei1 , ei2 , . . . , eit : error values (̸= 0)

Full error correction: the task of recovering all {ij} and {eij} given y

Theorem

Let C be an (n,M, d) code over F . There is a decoder D : Fn → C that
recovers correctly every pattern of up to ⌊(d−1)/2⌋ errors for every
channel S = (F, F,Prob).

Proof. Let D be a nearest-codeword decoder.

Use triangle inequality.□

Theorem is tight: For every D there is a
codeword c ∈ C and y ∈ Fn such that
d(y, c) ≤ ⌊(d+ 1)/2⌋ and D(y) ̸= c.
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Error Correction Examples

• Binary (n, 2, n) repetition code. Nearest-codeword decoding corrects up
to ⌊(n− 1)/2⌋ errors (take majority vote).

• Binary (n, 2n−1, 2) parity code cannot correct single errors: (11100 . . . 0)
is at distance 1 from codewords (11000 . . . 0) and (10100 . . . 0)
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Error Detection

• Generalize the definition of a decoder to D : Fn → C ∪ {‘E’}, where ‘E’
means “I found errors, but don’t know what they are”

Theorem

Let C be an (n,M, d) code over F . There is a decoder
D : Fn → C ∪ {‘E’} that detects (correctly) every pattern of up to d−1
errors.

Proof. D(y) =
{

y if y ∈ C
‘E’ otherwise

.

Example: Binary (n, 2n−1, 2) parity code can detect single errors (a
single bit error maps an even parity word to an odd parity one)
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Combined correction/detection

Theorem

Let τ and σ be nonnegative integers such that 2τ + σ ≤ d−1 . There is a
decoder D : Fn → C ∪ {‘E’} such that

• if the number of errors is τ or less, then the errors will be recovered
correctly;

• otherwise, if the number of errors is τ + σ or less, then they will be
detected.

Proof. D(y) =
{

c if there is c ∈ C such that d(y, c) ≤ τ
‘E’ otherwise

.
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Erasure Correction

• Erasure: an error of which we know the location but not the value
[ y1 . . . yi1−1, ? , yi1+1 . . . yi2−1, ? , yi2+1 . . . , ? , yit+1 . . . yn ]

• Erasure channel : S = (F,Φ,Prob) with Φ = F ∪ {?}.

1

0

1

?

0

1− p

1− p

p
p

Theorem

Let C be an (n,M, d) code over F and let Φ = F ∪ {?}. There is a
decoder D : Φn → C ∪ {‘E’} that recovers every pattern of up to d−1
erasures.

Proof. On ρ ≤ d− 1 erasures, try all |F |ρ vectors that coincide with y in

non-erased locations. Find unique codeword, if any. Otherwise, fail (return

‘E’).
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Combined correction/erasure/detection

Theorem

Let C be an (n,M, d) code over F and let S = (F,Φ,Prob) be a channel
with Φ = F ∪ {?}. For each number ρ of erasures in the range
0 ≤ ρ ≤ d−1, let τ = τρ and σ = σρ be nonnegative integers such that
2τ + σ + ρ ≤ d−1 .There is a D : Φn → C ∪ {‘E’} such that

• if the number of errors (excluding erasures) is τ or less, then all the
errors and erasures will be recovered correctly;

• otherwise, if the number of errors is τ + σ or less, then the decoder
will return ‘E’.

• Full error correction “costs” twice as much as detection or erasure
correction. Price list:
• full error to correct: requires 2 units of distance
• erasure to correct: requires 1 unit of distance
• full error to detect: requires 1 unit of distance

• How does distance “cost” translate to redundancy “cost”?
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Summary

u∈M
Channel
Encoder c∈C

Channel
y∈Φn

Channel
Decoder ĉ, û

• (n,M, d) code over alphabet F :

C ⊆ Fn, |C| = M, d= min
c1,c2∈C,c1 ̸=c2

d(c1, c2)

• n: code length

k = log|F | M : code dimension

r = n− k: code redundancy

R = k/n: code rate

• Maximum likelihood decoding:

ĉ = argmax
c∈C

Prob{y received | c sent }

• For QSC, equivalent to ĉ=argmin
c∈C

d(y, c) nearest codeword decoding
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Summary

• Shannon: there are sequences of codes Ci(ni,Mi) that allow

Perr(Ci)
i→∞→ 0 while keeping Ri ≥ R > 0, as long as R < C, where C is

a number that depends solely on the channel (channel capacity)
Error-free communication is possible at positive information rates
(he just didn’t tell us how to implement this in practice)

• Maximum likelihood decoding may be too complex: sometimes we need
to settle for less

• If 2τ + ρ+ σ ≤ d− 1, an (n,M, d) code can

• correct ρ erasures and τ full errors
• detect between τ + 1 and τ + σ errors (in addition to ρ erasures)

• Challenges: how to find good codes (codes with large d), how to
represent them compactly, how to encode, how to decode
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