1. Introduction to Channel Coding

Communication System

Communication System

Channel Coding

Discrete probabilistic channel: (F, Φ, Prob)

- F: finite input alphabet, Φ : finite output alphabet
- Prob: conditional probability distribution

$$
\operatorname{Prob}\{\mathbf{y} \text { received } \mid \mathbf{x} \text { transmitted }\} \quad \mathbf{x} \in F^{n}, \mathbf{y} \in \Phi^{n}, \quad n \geq 1
$$

- \mathbf{u} : message word $\in \mathcal{M}$, set of M possible messages
- $\mathbf{c} \in F^{n}$: codeword
- $\mathcal{E}: \mathbf{u} \xrightarrow{1-1} \mathbf{c}$ encoding
- $\mathcal{C}=\{\mathcal{E}(\mathbf{u}) \mid \mathbf{u} \in \mathcal{M}\}$ code
- $\mathrm{y} \in \Phi^{n}$: received word
- $\hat{\mathbf{c}}, \hat{\mathbf{u}}$: decoded codeword, message word, $\mathbf{y} \longrightarrow \hat{\mathbf{c}}(\longrightarrow \hat{\mathbf{u}})$ decoding

Code Parameters

$\mathcal{C}=\mathcal{E}(\mathcal{M}) \subseteq F^{n}, \quad|\mathcal{C}|=M$

- n : code length
- $k=\log _{|F|} M=\log _{|F|}|\mathcal{C}|$: code dimension
- $R=\frac{k}{n}$: code rate ≤ 1
- $r=n-k$: code redundancy
- We call \mathcal{C} an (n, M) (block) code over F

Example: Memoryless Binary Symmetric Channel (BSC)

$$
\begin{gathered}
\operatorname{BSC}(p) \\
p=\text { crossover probability } \\
(\text { we can assume } p \leq 1 / 2)
\end{gathered}
$$

- $F=\Phi=\{0,1\}$
- $\operatorname{Prob}(0 \mid 1)=\operatorname{Prob}(1 \mid 0)=p, \quad \operatorname{Prob}(0 \mid 0)=\operatorname{Prob}(1 \mid 1)=1-p$
- For $\mathbf{x} \in F^{n}, \mathbf{y} \in \Phi^{n}$,
$\operatorname{Prob}\{\mathbf{y}$ received $\mid \mathbf{x}$ transmitted $\}=\prod_{j=1}^{n} \operatorname{Prob}\left(y_{j} \mid x_{j}\right)=p^{t}(1-p)^{n-t}$,
where $t=\left|\left\{j \mid y_{j} \neq x_{j}\right\}\right|$ (number of errors)

Memoryless q-ary Symmetric Channel (QSC)

- $F=\Phi,|F|=q \geq 2$
- For $x, y \in F$,
$\operatorname{Prob}(y \mid x)= \begin{cases}1-p, & x=y, \\ \pi \triangleq p /(q-1), & x \neq y .\end{cases}$
- Assume F is an abelian (commutative) group, e.g.: $\{0,1, \ldots, q-1\}$ with addition $\bmod q$.

- Additive channel (operating in the group F^{n}) $\mathrm{x} \longrightarrow \mathrm{y}=\mathrm{x}+\mathrm{e}$
- $\mathbf{e}=\mathbf{y}-\mathbf{x}$: error word statistically independent of \mathbf{x}
$\mathbf{e}=\left[0 \ldots 0, e_{i_{1}}, 0 \ldots 0, e_{i_{2}}, 0 \ldots 0, e_{i_{t}}, 0 \ldots 0\right]$
$i_{1}, i_{2}, \ldots, i_{t}: \quad$ error locations $\quad e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{t}}$: error values $(\neq 0)$

The Hamming Metric

- Hamming distance

For single-letters $x, y \in F: \mathrm{d}(x, y)=\left\{\begin{array}{cc}0, & x=y, \\ 1, & x \neq y .\end{array}\right.$
For vectors $\mathbf{x}, \mathbf{y} \in F^{n}: \mathrm{d}(\mathbf{x}, \mathbf{y})=\sum_{j=0}^{n-1} \mathrm{~d}\left(x_{j}, y_{j}\right)$
number of locations where the vectors differ
Example:

$$
\begin{aligned}
& \mathbf{x}=(101101001) \\
& \mathbf{y}=(110101110)
\end{aligned} \quad \mathrm{d}(\mathbf{x}, \mathbf{y})=5 .
$$

- The Hamming distance defines a metric:
- $d(x, y) \geq 0$, with equality if and only if $x=y$
- Symmetry $d(x, y)=d(y, x)$
- Triangle inequality: $\mathrm{d}(\mathbf{x}, \mathbf{y}) \leq \mathrm{d}(\mathbf{x}, \mathbf{z})+\mathrm{d}(\mathbf{z}, \mathbf{y})$

- Hamming weight $\mathrm{wt}(\mathbf{e})=\mathrm{d}(\mathbf{e}, \mathbf{0})$ number of nonzero entries
- When F is an abelian group, $\mathrm{d}(\mathbf{x}, \mathbf{y})=\mathrm{wt}(\mathbf{x}-\mathbf{y})$

Minimum Distance

- Let \mathcal{C} be an (n, M) code over $F, M>1$

$$
d=\min _{\mathbf{c}_{1}, \mathbf{c}_{2} \in \mathcal{C}: \mathbf{c}_{1} \neq \mathbf{c}_{2}} \mathrm{~d}\left(\mathbf{c}_{1}, \mathbf{c}_{2}\right)
$$

is called the minimum distance of \mathcal{C}

- We say that \mathcal{C} is an (n, M, d) code.
- Example: $\mathcal{C}=\{000,111\}$ is the $(3,2,3)$ repetition code over $F_{2}=\{0,1\}$. Dimension: $k=\log _{2} 2=1$, rate: $R=k / n=1 / 3$. In general, $\mathcal{C}=\{00 \ldots 0,11 \ldots 1\}:(n, 2, n)$ repetition code, $R=1 / n$.
- Example: $\mathcal{C}=\{000,011,101,110\}$ is the $(3,4,2)$ parity code of dimension $k=2$ and rate $R=2 / 3$ over F_{2}; in general, $\mathcal{C}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n-2},-\sum_{i=0}^{n-2} x_{i}\right)\right\},\left(n, 2^{n-1}, 2\right)$ over F_{2}.

Decoding

- $\mathcal{C}:(n, M, d)$ over F, used on channel $S=(F, \Phi$, Prob $)$
- A decoder for \mathcal{C} on S is a function

$$
\mathcal{D}: \Phi^{n} \longrightarrow \mathcal{C} .
$$

- Decoding error probability of \mathcal{D} is

$$
P_{\text {err }}=\max _{\mathbf{c} \in \mathcal{C}} P_{\text {err }}(\mathbf{c}),
$$

where

$$
P_{\text {err }}(\mathbf{c})=\sum_{\mathbf{y}: \mathcal{D}(\mathbf{y}) \neq \mathbf{c}} \operatorname{Prob}\{\mathbf{y} \text { received } \mid \mathbf{c} \text { transmitted }\}
$$

goal: find encoders (codes) and decoders that make $P_{\text {err }}$ small

Decoding example

- Example: $\mathcal{C}=\{000,111\},(3,2,3)$ binary repetition code, channel $S=\operatorname{BSC}(p)$. Decoder \mathcal{D} defined by

$$
\begin{aligned}
& \mathcal{D}(000)=\mathcal{D}(001)=\mathcal{D}(010)=\mathcal{D}(100)=000 \\
& \mathcal{D}(011)=\mathcal{D}(101)=\mathcal{D}(110)=\mathcal{D}(111)=111
\end{aligned}
$$

(majority vote).
Error probability

$$
\begin{aligned}
P_{\text {err }} & =P_{\text {err }}(000)=P_{\text {err }}(111)=\binom{3}{2} p^{2}(1-p)+\binom{3}{3} p^{3} \\
& =3 p^{2}-3 p^{3}+p^{3}=p-p(1-p)(1-2 p) .
\end{aligned}
$$

- $P_{\text {err }}<p$ for $p<1 / 2 \Rightarrow$ coding improved message error probability but information rate is $1 / 3$!
In general, for the repetition code, we have $P_{\text {err }} \rightarrow 0$ exponentially (prove!), but $R=1 / n \rightarrow 0$ as $n \rightarrow \infty-$ can we do better?
goal: find encoders (codes) and decoders that make $P_{\text {err }}$ small with minimal decrease in information rate

Maximum Likelihood and Maximum a Posteriori Decoding

- $\mathcal{C}:(n, M, d)$, channel $S:(F, \Phi$, Prob $)$.

Maximum likelihood decoder (MLD):

With a fixed tie resolution policy, $\mathcal{D}_{\text {MLD }}$ is well-defined for \mathcal{C} and S.

- Maximum a posteriori (MAP) decoder:

$$
\mathcal{D}_{\mathrm{MAP}}(\mathbf{y})=\underset{\mathbf{c} \in \mathcal{C}}{\arg \max \operatorname{Prob}\{\mathbf{c} \text { transmitted } \mid \mathbf{y} \text { received }\}, \quad \forall \mathbf{y} \in \Phi^{n}, ~\left({ }^{n}\right)}
$$

But,
$\operatorname{Prob}\{\mathbf{c}$ transmitted $\mid \mathbf{y}$ received $\}$

$$
=\operatorname{Prob}\{\mathbf{y} \text { received } \mid \mathbf{c} \text { transmitted }\} \cdot \frac{\operatorname{Prob}\{\mathbf{c} \text { transmitted }\}}{\operatorname{Prob}\{\mathbf{y} \text { received }\}}
$$

\Longrightarrow MLD and MAP are the same when \mathbf{c} is uniformly distributed

MLD on the BSC

- $\mathcal{C}:(n, M, d)$, channel $S: \operatorname{BSC}(p)$

$$
\begin{aligned}
& \operatorname{Prob}\{\mathbf{y} \text { received } \mid \mathbf{c} \text { transmitted }\}=\prod_{j=1}^{n} \operatorname{Prob}\left\{y_{j} \text { received } \mid c_{j} \text { transmitted }\right\} \\
& =p^{\mathrm{d}(\mathbf{y}, \mathbf{c})}(1-p)^{n-\mathrm{d}(\mathbf{y}, \mathbf{c})}=(1-p)^{n} \cdot\left(\frac{p}{1-p}\right)^{\mathrm{d}(\mathbf{y}, \mathbf{c})}
\end{aligned}
$$

where $\mathrm{d}(\mathbf{y}, \mathbf{c})$ is the Hamming distance. Since $p /(1-p)<1$ for $p<1 / 2$, for all $\mathbf{y} \in F_{2}^{n}$ we have

$$
\begin{gathered}
\mathcal{D}_{\mathrm{MLD}}(\mathbf{y})=\underset{\mathbf{c} \in \mathcal{C}}{\arg \min } \mathrm{d}(\mathbf{y}, \mathbf{c}) \\
\mathcal{D}_{\mathrm{MLD}}=\text { nearest-codeword decoder }
\end{gathered}
$$

- True also for $\operatorname{QSC}(p)$ whenever $p<1-1 / q$

Capacity of the BSC

- Binary entropy function $\mathrm{H}:[0,1] \rightarrow[0,1]$

$$
\mathrm{H}(x)=-x \log _{2} x-(1-x) \log _{2}(1-x), \mathbf{H}(0)=\mathbf{H}(1)=0
$$

$$
\mathrm{H}
$$

- Capacity of $\operatorname{BSC}(p)$ is given by $C(p)=1-\mathrm{H}(p)$

- A special case of the capacity of a probabilistic channel, as defined by Shannon (1948)

Shannon Coding Theorems for the BSC

Theorem (Shannon Coding Theorem for the BSC—1948)

Let $S=B S C(p)$ and let R be a real number in the range $0 \leq R<C(p)$. There exists an infinite sequence of (n_{i}, M_{i}) block codes over $F_{2}, \quad i=1,2, \cdots$, such that $\left(\log _{2} M_{i}\right) / n_{i} \geq R$ and, for MLD for those codes (with respect to S), the probability $P_{\text {err }} \rightarrow 0$ as $i \rightarrow \infty$.

Proof. By a random coding argument. Non-constructive!

Theorem (Shannon Converse Coding Theorem for the BSC—1948)

Let $S=B S C(p)$ and let $R>C(p)$. Consider any infinite sequence $\left\{\mathcal{C}_{i}:\left(n_{i}, M_{i}\right)\right\}$ of block codes over $F_{2}, i=1,2, \cdots$, such that
$\left(\log _{2} M_{i}\right) / n_{i} \geq R$ and $n_{1}<n_{2}<\cdots<n_{i}<\cdots$. Then, for any decoding scheme for $\left\{\mathcal{C}_{i}\right\}$ (with respect to S), the probability $P_{\text {err }} \rightarrow 1$ as $i \rightarrow \infty$.

Proof. (Loose argument.)

Error Correction

$\mathbf{e}=\left[0 \ldots 0, e_{i_{1}}, 0 \ldots 0, e_{i_{2}}, 0 \ldots 0, e_{i_{t}}, 0 \ldots 0\right]$

$i_{1}, i_{2}, \ldots, i_{t}$: error locations $\quad e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{t}}$: error values $(\neq 0)$

Full error correction: the task of recovering all $\left\{i_{j}\right\}$ and $\left\{e_{i_{j}}\right\}$ given \mathbf{y}

Theorem

Let \mathcal{C} be an (n, M, d) code over F. There is a decoder $\mathcal{D}: F^{n} \rightarrow \mathcal{C}$ that recovers correctly every pattern of up to $\lfloor(d-1) / 2\rfloor$ errors for every channel $S=(F, F$, Prob $)$.

Proof. Let \mathcal{D} be a nearest-codeword decoder. Use triangle inequality. \square

Theorem is tight: For every \mathcal{D} there is a codeword $\mathrm{c} \in \mathcal{C}$ and $\mathrm{y} \in F^{n}$ such that $\mathrm{d}(\mathbf{y}, \mathbf{c}) \leq\lfloor(d+1) / 2\rfloor$ and $\mathcal{D}(\mathbf{y}) \neq \mathbf{c}$.

Error Correction Examples

- Binary $(n, 2, n)$ repetition code. Nearest-codeword decoding corrects up to $\lfloor(n-1) / 2\rfloor$ errors (take majority vote).
- Binary $\left(n, 2^{n-1}, 2\right)$ parity code cannot correct single errors: ($11100 \ldots 0$) is at distance 1 from codewords ($11000 \ldots 0$) and (10100 $\ldots 0$)

Error Detection

- Generalize the definition of a decoder to $\mathcal{D}: F^{n} \rightarrow \mathcal{C} \cup\left\{{ }^{\text {E }} \mathrm{E}\right.$ ' , where ' E ' means "I found errors, but don't know what they are"

Theorem

Let \mathcal{C} be an (n, M, d) code over F. There is a decoder $\mathcal{D}: F^{n} \rightarrow \mathcal{C} \cup\left\{{ }^{\prime} E\right.$ ' $\}$ that detects (correctly) every pattern of up to $d-1$ errors.
Proof. $\quad \mathcal{D}(\mathbf{y})=\left\{\begin{array}{cl}\mathbf{y} & \text { if } \mathbf{y} \in \mathcal{C} \\ ' \mathrm{E} & \text { otherwise }\end{array}\right.$.
Example: Binary ($n, 2^{n-1}, 2$) parity code can detect single errors (a single bit error maps an even parity word to an odd parity one)

Combined correction/detection

Theorem

Let τ and σ be nonnegative integers such that $2 \tau+\sigma \leq d-1$. There is a decoder $\mathcal{D}: F^{n} \rightarrow \mathcal{C} \cup\left\{{ }^{\prime} \mathrm{E}\right.$ '\} such that

- if the number of errors is τ or less, then the errors will be recovered correctly;
- otherwise, if the number of errors is $\tau+\sigma$ or less, then they will be detected.

Proof. $\quad \mathcal{D}(\mathbf{y})=\left\{\begin{array}{cl}\mathbf{c}, & \text { if there is } \mathbf{c} \in \mathcal{C} \text { such that } \mathrm{d}(\mathbf{y}, \mathbf{c}) \leq \tau \\ { }^{\mathrm{E}} \mathrm{E}, & \text { otherwise }\end{array}\right.$

Erasure Correction

- Erasure: an error of which we know the location but not the value $\left[y_{1} \ldots y_{i_{1}-1}, ?, y_{i_{1}+1} \ldots y_{i_{2}-1}, ?, y_{i_{2}+1} \ldots, ?, y_{i_{t}+1} \ldots y_{n}\right]$
- Erasure channel: $S=(F, \Phi$, Prob) with $\Phi=F \cup\{?\}$.

Theorem

Let \mathcal{C} be an (n, M, d) code over F and let $\Phi=F \cup\{?\}$. There is a decoder $\mathcal{D}: \Phi^{n} \rightarrow \mathcal{C} \cup\left\{{ }^{[} E^{\prime}\right\}$ that recovers every pattern of up to $d-1$ erasures.

Proof. On $\rho \leq d-1$ erasures, try all $|F|^{\rho}$ vectors that coincide with \mathbf{y} in non-erased locations. Find unique codeword, if any. Otherwise, fail (return ' E ').

Combined correction/erasure/detection

Theorem

Let \mathcal{C} be an (n, M, d) code over F and let $S=(F, \Phi$, Prob) be a channel with $\Phi=F \cup\{?\}$. For each number ρ of erasures in the range
$0 \leq \rho \leq d-1$, let $\tau=\tau_{\rho}$ and $\sigma=\sigma_{\rho}$ be nonnegative integers such that $2 \tau+\sigma+\rho \leq d-1$. There is a $\mathcal{D}: \Phi^{n} \rightarrow \mathcal{C} \cup\left\{{ }^{\prime} \mathrm{E}\right\}$ such that

- if the number of errors (excluding erasures) is τ or less, then all the errors and erasures will be recovered correctly;
- otherwise, if the number of errors is $\tau+\sigma$ or less, then the decoder will return ' E '.
- Full error correction "costs" twice as much as detection or erasure correction. Price list:
- full error to correct: requires 2 units of distance
- erasure to correct: requires 1 unit of distance
- full error to detect: requires 1 unit of distance
- How does distance "cost" translate to redundancy "cost"?

Summary

- (n, M, d) code over alphabet F :

$$
\mathcal{C} \subseteq F^{n}, \quad|\mathcal{C}|=M, \quad d=\min _{\mathbf{c}_{1}, \mathbf{c}_{2} \in \mathcal{C}, \mathbf{c}_{1} \neq \mathbf{c}_{2}} \mathrm{~d}\left(\mathbf{c}_{1}, \mathbf{c}_{2}\right)
$$

- n : code length
$k=\log _{|F|} M$: code dimension
$r=n-k$: code redundancy
$R=k / n$: code rate
- Maximum likelihood decoding:
- For QSC, equivalent to $\hat{c}=\arg \min _{\mathbf{c} \in \mathcal{C}} \mathrm{d}(\mathbf{y}, \mathbf{c})$ nearest codeword decoding

Summary

- Shannon: there are sequences of codes $\mathcal{C}_{i}\left(n_{i}, M_{i}\right)$ that allow
$P_{\text {err }}\left(\mathcal{C}_{i}\right) \xrightarrow{i \rightarrow \infty} 0$ while keeping $R_{i} \geq R>0$, as long as $R<C$, where C is a number that depends solely on the channel (channel capacity) Error-free communication is possible at positive information rates (he just didn't tell us how to implement this in practice)
- Maximum likelihood decoding may be too complex: sometimes we need to settle for less
- If $2 \tau+\rho+\sigma \leq d-1$, an (n, M, d) code can
- correct ρ erasures and τ full errors
- detect between $\tau+1$ and $\tau+\sigma$ errors (in addition to ρ erasures)
- Challenges: how to find good codes (codes with large d), how to represent them compactly, how to encode, how to decode

