1. Introduction to Channel Coding

Communication System

Communication System

Discrete probabilistic channel: (F, Φ, Prob)

- F: finite input alphabet, Φ : finite output alphabet
- Prob: conditional probability distribution

Prob{ y received | x transmitted } $\mathbf{x} \in F^n$, $\mathbf{y} \in \Phi^n$, $n \ge 1$

- u: message word $\in \mathcal{M}$, set of M possible messages
- $\mathbf{c} \in F^n$: codeword
- $\mathcal{E} : \mathbf{u} \xrightarrow{1-1} \mathbf{c}$ encoding
- $\mathcal{C} = \{\mathcal{E}(\mathbf{u}) \mid \mathbf{u} \in \mathcal{M}\}$ code
- $\mathbf{y} \in \Phi^n$: received word
- $\hat{\mathbf{c}}, \hat{\mathbf{u}}$: decoded codeword, message word, $\mathbf{y} \longrightarrow \hat{\mathbf{c}} \ (\longrightarrow \hat{\mathbf{u}})$ decoding

$$\mathcal{C} = \mathcal{E}(\mathcal{M}) \subseteq F^n, \quad |\mathcal{C}| = M$$

- n: code length
- $k = \log_{|F|} M = \log_{|F|} |\mathcal{C}|$: code dimension
- $R = \frac{k}{n}$: code rate ≤ 1
- r = n k: code redundancy
- We call C an (n, M) (block) code over F

Example: Memoryless Binary Symmetric Channel (BSC)

 $\begin{aligned} \mathsf{BSC}(p)\\ p &= \textit{crossover probability}\\ \text{(we can assume } p \leq 1/2\text{)} \end{aligned}$

• $F = \Phi = \{0, 1\}$

• Prob(0|1) = Prob(1|0) = p, Prob(0|0) = Prob(1|1) = 1 - p

• For $\mathbf{x} \in F^n$, $\mathbf{y} \in \Phi^n$,

 $\mathsf{Prob}\{\mathbf{y} \text{ received } \mid \mathbf{x} \text{ transmitted }\} = \prod_{j=1}^{n} \mathsf{Prob}(y_j \mid x_j) = p^t (1-p)^{n-t},$

where $t = |\{ j \mid y_j \neq x_j \}|$ (number of errors)

Memoryless q-ary Symmetric Channel (QSC)

- $\bullet \ F=\Phi, \ |F|=q\geq 2$
- For $x, y \in F$, $\operatorname{Prob}(y \mid x) = \begin{cases} 1 - p, & x = y, \\ \pi \stackrel{\Delta}{=} p/(q - 1), & x \neq y. \end{cases}$
- Assume F is an abelian (commutative) group, e.g.: $\{0, 1, \dots, q-1\}$ with addition mod q.

• Additive channel (operating in the group F^n) \mathbf{x}

• $\mathbf{e} = \mathbf{y} - \mathbf{x}$: error word statistically independent of \mathbf{x}

$$\mathbf{e} = [0...0, e_{i_1}, 0...0, e_{i_2}, 0...0, e_{i_t}, 0...0]$$

 i_1, i_2, \dots, i_t : error locations $e_{i_1}, e_{i_2}, \dots, e_{i_t}$: error values (
eq 0)

The Hamming Metric

Hamming distance

For single-letters $x, y \in F$: $d(x, y) = \begin{cases} 0, & x = y, \\ 1, & x \neq u, \end{cases}$

For vectors $\mathbf{x}, \mathbf{y} \in F^n$: $\mathsf{d}(\mathbf{x}, \mathbf{y}) = \sum_{i=0}^{n-1} \mathsf{d}(x_i, y_i)$

number of locations where the vectors differ

Example: $\mathbf{x} = (101101001)$ $\mathbf{y} = (110101110)$ $d(\mathbf{x}, \mathbf{y}) = 5$.

- The Hamming distance defines a *metric*:
 - $d(\mathbf{x}, \mathbf{y}) \geq 0$, with equality if and only if $\mathbf{x} = \mathbf{y}$
 - Symmetry $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$
 - Triangle inequality: $d(\mathbf{x}, \mathbf{y}) < d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$

• When F is an abelian group, d(x, y) = wt(x - y)

Minimum Distance

• Let \mathcal{C} be an (n, M) code over F, M > 1

$$d = \min_{\mathbf{c}_1, \mathbf{c}_2 \in \mathcal{C} : \mathbf{c}_1 \neq \mathbf{c}_2} \mathsf{d}(\mathbf{c}_1, \mathbf{c}_2)$$

is called the *minimum distance* of \mathcal{C}

- We say that C is an (n, M, d) code.
- Example: $C = \{000, 111\}$ is the (3, 2, 3) repetition code over $F_2 = \{0, 1\}$. Dimension: $k = \log_2 2 = 1$, rate: R = k/n = 1/3. In general, $C = \{00 \dots 0, 11 \dots 1\}$: (n, 2, n) repetition code, R = 1/n.
- Example: $C = \{000, 011, 101, 110\}$ is the (3, 4, 2) parity code of dimension k = 2 and rate R = 2/3 over F_2 ; in general, $C = \{(x_0, x_1, \dots, x_{n-2}, -\sum_{i=0}^{n-2} x_i)\}, (n, 2^{n-1}, 2)$ over F_2 .

Decoding

- $\mathcal{C}:(n,M,d)$ over F, used on channel $S=(F,\Phi,\mathsf{Prob})$
- A *decoder* for \mathcal{C} on S is a function

 $\mathcal{D}: \Phi^n \longrightarrow \mathcal{C}.$

• Decoding error probability of $\mathcal D$ is

$$P_{\mathrm{err}} = \max_{\mathbf{c} \in \mathcal{C}} P_{\mathrm{err}}(\mathbf{c}) \; ,$$

where

$$P_{\rm err}(\mathbf{c}) = \sum_{\mathbf{y}\,:\,\mathcal{D}(\mathbf{y})\neq\mathbf{c}} \mathsf{Prob}\{\,\mathbf{y} \text{ received} \mid \mathbf{c} \text{ transmitted}\,\}\;.$$

goal: find encoders (codes) and decoders that make $P_{\rm err}$ small

Decoding example

• **Example:** $C = \{000, 111\}, (3, 2, 3)$ binary repetition code, channel S = BSC(p). Decoder D defined by

$$\mathcal{D}(000) = \mathcal{D}(001) = \mathcal{D}(010) = \mathcal{D}(100) = 000$$

$$\mathcal{D}(011) = \mathcal{D}(101) = \mathcal{D}(110) = \mathcal{D}(111) = 111$$

(majority vote).

Error probability

$$P_{\text{err}} = P_{\text{err}}(000) = P_{\text{err}}(111) = \binom{3}{2}p^2(1-p) + \binom{3}{3}p^3$$

= $3p^2 - 3p^3 + p^3 = p - p(1-p)(1-2p)$.

• $P_{\rm err} < p$ for $p < 1/2 \Rightarrow$ coding improved message error probability but information rate is 1/3! In general, for the repetition code, we have $P_{\rm err} \rightarrow 0$ exponentially (prove!), but $R = 1/n \rightarrow 0$ as $n \rightarrow \infty$ —can we do better?

goal: find encoders (codes) and decoders that make $P_{\rm err}$ small with minimal decrease in information rate

Maximum Likelihood and Maximum a Posteriori Decoding

• C : (n, M, d), channel $S : (F, \Phi, \mathsf{Prob})$. Maximum likelihood decoder (MLD):

 $\mathcal{D}_{\mathrm{MLD}}(\mathbf{y}) = \underset{\mathbf{c} \in \mathcal{C}}{\mathrm{arg\max}} \ \mathsf{Prob}\{ \ \mathbf{y} \ \mathsf{received} \mid \mathbf{c} \ \mathsf{transmitted} \ \}, \ \forall \mathbf{y} \in \Phi^n$

With a fixed tie resolution policy, \mathcal{D}_{MLD} is well-defined for \mathcal{C} and S.

• Maximum a posteriori (MAP) decoder.

 $\mathcal{D}_{\mathrm{MAP}}(\mathbf{y}) = \operatorname*{arg\,max}_{\mathbf{c}\in\mathcal{C}} \mathsf{Prob}\{ \mathbf{c} \mathsf{ transmitted} \mid \mathbf{y} \mathsf{ received} \}, \ \forall \mathbf{y} \in \Phi^n$

But,

 $\mathsf{Prob}\{\mathbf{c} \text{ transmitted } | \mathbf{y} \text{ received } \}$

= $\operatorname{Prob}\{\mathbf{y} | \mathbf{c} \text{ transmitted}\} \cdot \frac{\operatorname{Prob}\{\mathbf{c} \text{ transmitted}\}}{\operatorname{Prob}\{\mathbf{v} | \operatorname{received}\}}$

 \implies MLD and MAP are the same when c is *uniformly distributed*

MLD on the BSC

• C: (n, M, d), channel $S: \mathsf{BSC}(p)$

 $\mathsf{Prob}\{\mathbf{y} | \mathsf{c transmitted}\} = \prod_{j=1}^{n} \mathsf{Prob}\{y_j | \mathsf{received} \mid c_j | \mathsf{transmitted}\}$

$$= p^{\mathsf{d}(\mathbf{y},\mathbf{c})} (1-p)^{n-\mathsf{d}(\mathbf{y},\mathbf{c})} = (1-p)^n \cdot \left(\frac{p}{1-p}\right)^{\mathsf{d}(\mathbf{y},\mathbf{c})}$$

where $d(\mathbf{y}, \mathbf{c})$ is the Hamming distance. Since p/(1-p) < 1 for p < 1/2, for all $\mathbf{y} \in F_2^n$ we have

$$\mathcal{D}_{\mathrm{MLD}}(\mathbf{y}) = \arg\min_{\mathbf{c}\in\mathcal{C}}\,\mathsf{d}(\mathbf{y},\mathbf{c})$$

 $\mathcal{D}_{\mathrm{MLD}} =$ nearest-codeword decoder

• True also for QSC(p) whenever p < 1 - 1/q

Capacity of the BSC

• Binary entropy function $H : [0,1] \to [0,1]$ $H(x) = -x \log_2 x - (1-x) \log_2(1-x), H(0) = H(1) = 0$

• Capacity of BSC(p) is given by C(p) = 1 - H(p)

• A special case of the *capacity of a probabilistic channel*, as defined by Shannon (1948)

Theorem (Shannon Coding Theorem for the BSC—1948)

Let S = BSC(p) and let R be a real number in the range $0 \le R < C(p)$. There exists an infinite sequence of (n_i, M_i) block codes over $F_2, i = 1, 2, \cdots$, such that $(\log_2 M_i)/n_i \ge R$ and, for MLD for those codes (with respect to S), the probability $P_{\text{err}} \to 0$ as $i \to \infty$.

Proof. By a random coding argument. Non-constructive!

Theorem (Shannon Converse Coding Theorem for the BSC-1948)

Let S = BSC(p) and let R > C(p). Consider any infinite sequence $\{C_i : (n_i, M_i)\}$ of block codes over F_2 , $i = 1, 2, \cdots$, such that $(\log_2 M_i)/n_i \ge R$ and $n_1 < n_2 < \cdots < n_i < \cdots$. Then, for any decoding scheme for $\{C_i\}$ (with respect to S), the probability $P_{\text{err}} \to 1$ as $i \to \infty$.

Proof. (Loose argument.)

$$\mathbf{e} = \begin{bmatrix} 0 \dots 0, \mathbf{e}_{i_1}, 0 \dots 0, \mathbf{e}_{i_2}, 0 \dots 0, \mathbf{e}_{i_t}, 0 \dots 0 \end{bmatrix} \qquad \underbrace{\mathbf{x} \qquad \mathbf{y} = \mathbf{x} + \mathbf{e}}_{\mathbf{e}}$$

 i_1, i_2, \dots, i_t : error locations $e_{i_1}, e_{i_2}, \dots, e_{i_t}$: error values $(\neq 0)$

Full error correction: the task of recovering all $\{i_j\}$ and $\{e_{i_j}\}$ given y

Theorem

Let C be an (n, M, d) code over F. There is a decoder $\mathcal{D} : F^n \to C$ that recovers correctly every pattern of up to $\lfloor (d-1)/2 \rfloor$ errors for every channel $S = (F, F, \mathsf{Prob})$.

Proof. Let \mathcal{D} be a nearest-codeword decoder. Use triangle inequality.

Theorem is tight: For every \mathcal{D} there is a codeword $\mathbf{c} \in \mathcal{C}$ and $\mathbf{y} \in F^n$ such that $d(\mathbf{y}, \mathbf{c}) \leq \lfloor (d+1)/2 \rfloor$ and $\mathcal{D}(\mathbf{y}) \neq \mathbf{c}$.

Error Correction Examples

- Binary (n, 2, n) repetition code. Nearest-codeword decoding corrects up to $\lfloor (n-1)/2 \rfloor$ errors (take majority vote).
- Binary $(n, 2^{n-1}, 2)$ parity code cannot correct single errors: (11100...0) is at distance 1 from codewords (11000...0) and (10100...0)

Error Detection

• Generalize the definition of a decoder to $\mathcal{D}: F^n \to \mathcal{C} \cup \{ E' \}$, where E' means *"I found errors, but don't know what they are"*

Theorem

Let C be an (n, M, d) code over F. There is a decoder $\mathcal{D}: F^n \to \mathcal{C} \cup \{ {}^{\cdot}E' \}$ that detects (correctly) every pattern of up to d-1 errors.

 $\begin{array}{ll} \textbf{Proof.} \quad \mathcal{D}(\mathbf{y}) = \left\{ \begin{array}{ll} \mathbf{y} & \text{if } \mathbf{y} \in \mathcal{C} \\ \mathbf{E}, & \text{otherwise} \end{array} \right. \\ \textbf{Example:} \quad \text{Binary } (n, 2^{n-1}, 2) \text{ parity code can detect single errors (a single bit error maps an even parity word to an odd parity one) \end{array}$

Theorem

Let τ and σ be nonnegative integers such that $2\tau + \sigma \leq d-1$. There is a decoder $\mathcal{D}: F^n \to \mathcal{C} \cup \{ E' \}$ such that

- if the number of errors is τ or less, then the errors will be recovered correctly;
- otherwise, if the number of errors is $\tau + \sigma$ or less, then they will be detected.

 $\label{eq:proof.} \textbf{Proof.} \qquad \mathcal{D}(\mathbf{y}) = \left\{ \begin{array}{cc} \mathbf{c} & \quad \text{if there is } \mathbf{c} \in \mathcal{C} \text{ such that } \mathsf{d}(\mathbf{y},\mathbf{c}) \leq \tau \\ `\mathrm{E}, & \quad \text{otherwise} \end{array} \right.$

Erasure Correction

- *Erasure*: an error of which we know the *location* but not the *value* $[y_1 \dots y_{i_1-1}, ?, y_{i_1+1} \dots y_{i_2-1}, ?, y_{i_2+1} \dots, ?, y_{i_t+1} \dots y_n]$
- *Erasure channel*: $S = (F, \Phi, \mathsf{Prob})$ with $\Phi = F \cup \{?\}$.

Theorem

Let C be an (n, M, d) code over F and let $\Phi = F \cup \{?\}$. There is a decoder $\mathcal{D} : \Phi^n \to \mathcal{C} \cup \{`E'\}$ that recovers every pattern of up to d-1 erasures.

Proof. On $\rho \leq d-1$ erasures, try all $|F|^{\rho}$ vectors that coincide with y in non-erased locations. Find unique codeword, if any. Otherwise, fail (return 'E').

Theorem

Let C be an (n, M, d) code over F and let $S = (F, \Phi, \mathsf{Prob})$ be a channel with $\Phi = F \cup \{?\}$. For each number ρ of erasures in the range $0 \le \rho \le d-1$, let $\tau = \tau_{\rho}$ and $\sigma = \sigma_{\rho}$ be nonnegative integers such that $2\tau + \sigma + \rho \le d-1$. There is a $\mathcal{D} : \Phi^n \to \mathcal{C} \cup \{`E'\}$ such that

- if the number of errors (excluding erasures) is *τ* or less, then all the errors and erasures will be recovered correctly;
- otherwise, if the number of errors is $\tau + \sigma$ or less, then the decoder will return 'E'.
- Full error correction "costs" twice as much as detection or erasure correction. Price list:
 - full error to correct: requires 2 units of distance
 - erasure to correct: requires 1 unit of distance
 - full error to detect: requires 1 unit of distance
- How does distance "cost" translate to redundancy "cost"?

• (n, M, d) code over alphabet F:

 $\mathcal{C} \subseteq F^n, \quad |\mathcal{C}| = M, \quad d = \min_{\mathbf{c}_1, \mathbf{c}_2 \in \mathcal{C}, \mathbf{c}_1 \neq \mathbf{c}_2} \mathsf{d}(\mathbf{c}_1, \mathbf{c}_2)$

• n: code length

 $k = \log_{|F|} M$: code dimension r = n - k: code redundancy R = k/n: code rate

• Maximum likelihood decoding:

```
\hat{\mathbf{c}} = \arg \max_{\mathbf{c} \in \mathcal{C}} \mathsf{Prob} \{ \mathbf{y} \; \mathsf{received} \mid \mathbf{c} \; \mathsf{sent} \; \}
```

• For QSC, equivalent to $\hat{c} = \underset{\mathbf{c} \in \mathcal{C}}{\operatorname{arg min}} d(\mathbf{y}, \mathbf{c})$ nearest codeword decoding

Summary

- Shannon: there are sequences of codes $C_i(n_i, M_i)$ that allow $P_{\mathrm{err}}(\mathcal{C}_i) \xrightarrow{i \to \infty} 0$ while keeping $R_i \ge R > 0$, as long as R < C, where C is a number that depends solely on the channel (channel capacity) *Error-free communication is possible at positive information rates* (he just didn't tell us how to implement this in practice)
- Maximum likelihood decoding may be too complex: sometimes we need to settle for less
- If $2\tau + \rho + \sigma \leq d 1$, an (n, M, d) code can
 - correct ρ erasures and τ full errors
 - *detect* between $\tau + 1$ and $\tau + \sigma$ errors (in addition to ρ erasures)
- Challenges: how to find good codes (codes with large *d*), how to represent them compactly, how to encode, how to decode