2. Linear Codes

Linear Codes

- Assume the code alphabet \mathbb{F} can be given a field structure.
- What is a field? A set with addition and multiplication operations $\{+, *\}$ with all the properties we're used to (e.g., $\mathbb{Q}, \mathbb{R}, \mathbb{C}$).
- A finite field is a field with a finite number of elements. In our case, \mathbb{F} is a finite field, of, say, $|\mathbb{F}|=q$ elements.
- We will see that $q=p^{m}$ for some prime number p and integer $m \geq 1$. We denote such a field by \mathbb{F}_{q} or $\operatorname{GF}(q)$.
- Example: $\mathbb{F}_{2}=\{0,1\}$ with XOR, AND operations.
- Much more about finite fields later!
- \mathbb{F}^{n} is a linear space over \mathbb{F} (the field of scalars). All the usual notions and properties apply: bases, sub-spaces, matrices, linear transforms, etc.
- A code $\mathcal{C}:(n, M, d)$ over \mathbb{F} is a subset of \mathbb{F}^{n}.
\mathcal{C} is called a linear code if it is a linear sub-space of \mathbb{F}^{n} over \mathbb{F}.
- $\mathbf{c}_{1}, \mathbf{c}_{2} \in \mathcal{C}, a_{1}, a_{2} \in \mathbb{F} \Rightarrow a_{1} \mathbf{c}_{1}+a_{2} \mathbf{c}_{2} \in \mathcal{C}$

Parameters of a Linear Code

- \mathcal{C} is a linear sub-space of \mathbb{F}^{n} over \mathbb{F}. Let $k \leq n$ be the dimension of this linear sub-space, and let $q=|\mathbb{F}|$.
- \mathcal{C} has a basis $\left\{\mathbf{c}_{0}, \mathbf{c}_{1}, \ldots, \mathbf{c}_{k-1}\right\}$ such that every $\mathbf{c} \in \mathcal{C}$ can be written as

$$
\mathbf{c}=\sum_{i=0}^{k-1} a_{i} \mathbf{c}_{i}, \quad a_{i} \in \mathbb{F}, 0 \leq i \leq k-1
$$

and every distinct vector of coefficients $\left[a_{0}, a_{1}, \ldots, a_{k-1}\right]$ corresponds to a different codeword. There are q^{k} such vectors.

- Therefore, \mathcal{C} has $M=q^{k}$ codewords, which explains why we called $k=\log _{q} M$ the dimension of \mathcal{C} (even when \mathcal{C} was not linear).
- $r=n-k$ is the redundancy of $\mathcal{C}, R=k / n$ its rate.
- We use the notation $[n, k, d]$ to denote the parameters of a linear code. An $[n, k, d]$ code over \mathbb{F} is an $\left(n, q^{k}, d\right)$ code over \mathbb{F}.

Generator Matrix

- A generator matrix for a linear code \mathcal{C} is a $k \times n$ matrix G whose rows form a basis of \mathcal{C}.
- Example: $G=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right), \quad \hat{G}=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right)$ are both generators of the $[3,2,2]$ parity code over \mathbb{F}_{2}.
- In general, the $[n, n-1,2]$ parity code over any F is generated by

$$
G=\left(\begin{array}{c|c}
& \\
I_{n-1} & \begin{array}{c}
-1 \\
-1 \\
\vdots \\
-1
\end{array}
\end{array}\right)
$$

where I_{n-1} is the $(n-1) \times(n-1)$ identity matrix.

- What's G for the repetition code?

$$
G=(11 \ldots 1) .
$$

Minimum Weight

- For an $[n, k, d] \operatorname{code} \mathcal{C}$,

$$
\mathbf{c}_{1}, \mathbf{c}_{2} \in \mathcal{C} \Longrightarrow \mathbf{c}_{1}-\mathbf{c}_{2} \in \mathcal{C}, \text { and } \mathrm{d}\left(\mathbf{c}_{1}, \mathbf{c}_{2}\right)=\mathrm{wt}\left(\mathbf{c}_{1}-\mathbf{c}_{2}\right) .
$$

Therefore,
$d=\min _{\mathbf{c}_{1}, \mathbf{c}_{2} \in \mathcal{C}: \mathbf{c}_{1} \neq \mathbf{c}_{2}} \mathrm{~d}\left(\mathbf{c}_{1}, \mathbf{c}_{2}\right)=\min _{\mathbf{c}_{1}, \mathbf{c}_{2} \in \mathcal{C}: \mathbf{c}_{1} \neq \mathbf{c}_{2}} \mathrm{wt}\left(\mathbf{c}_{1}-\mathbf{c}_{2}\right)=\min _{\mathbf{c} \in \mathcal{C} \backslash\{\mathbf{0}\}} \mathrm{wt}(\mathbf{c})$.
\Rightarrow minimum distance is the same as minimum weight for linear codes.

- Recall also that $\mathbf{0} \in \mathcal{C}$ and $\mathrm{d}(\mathbf{c}, \mathbf{0})=\mathrm{wt}(\mathbf{c})$.

Encoding Linear Codes

- Since $\operatorname{rank}(G)=k$, the map $\mathcal{E}: \mathbb{F}^{k} \rightarrow \mathcal{C}$ defined by

$$
\begin{aligned}
& \mathcal{E}: \mathbf{u} \mapsto \mathbf{c}=\mathbf{u} G, \quad \mathbf{u} \in \mathbb{F}^{k}
\end{aligned}
$$

is 1-1, and can serve as an encoding mechanism for \mathcal{C}.

- Applying elementary row operations and possibly reordering coordinates (columns), we can bring G to the form

$$
G=\left(I_{k} \mid A\right) \quad \text { systematic generator matrix, }
$$

where I_{k} is a $k \times k$ identity matrix, and A is a $k \times(n-k)$ matrix.

$$
\mathbf{u} \mapsto \mathbf{c}=\mathbf{u} G=(\mathbf{u} \mid \mathbf{u} A) \quad \text { systematic encoding. }
$$

- In a systematic encoding, the k information symbols from \mathbf{u} are transmitted 'as is', and $n-k$ check symbols (or redundancy symbols, or parity symbols) are appended.

Parity Check Matrix

- Let $\mathcal{C}:[n, k, d]$. A parity-check matrix ($P C M$) of \mathcal{C} is an $r \times n$ matrix H such that for all $\mathbf{c} \in \mathbb{F}^{n}$,

$$
\mathbf{c} \in \mathcal{C} \quad \Longleftrightarrow \quad H \mathbf{c}^{T}=\mathbf{0}
$$

- \mathcal{C} is the (right) kernel of H in \mathbb{F}^{n}. Therefore,

$$
\operatorname{rank}(H)=n-\operatorname{dim} \operatorname{ker}(H)=n-k
$$

- We will usually have $r=\operatorname{rank}(H)=n-k$ (no superfluous rows)
- For a generator matrix G of \mathcal{C}, we have

$$
H G^{T}=0 \Rightarrow G H^{T}=0, \text { and } \operatorname{dim} \operatorname{ker}(G)=n-\operatorname{rank}(G)=n-k=r
$$

- If $G=\left(I_{k} \mid A\right)$, then $H=\left(-A^{T} \mid I_{n-k}\right)$ is a (systematic) parity-check matrix.

Dual Code

- The dual code of $\mathcal{C}:[n, k, d]$ is

$$
\mathcal{C}^{\perp}=\left\{\mathbf{x} \in \mathbb{F}^{n}: \mathrm{x}^{T}=0 \quad \forall \mathbf{c} \in \mathcal{C}\right\}
$$

or, equivalently

$$
\mathcal{C}^{\perp}=\left\{\mathbf{x} \in \mathbb{F}^{n}: \mathbf{x} G^{T}=\mathbf{0}\right\} .
$$

- $\left(\mathcal{C}^{\perp}\right)^{\perp}=\mathcal{C}$
- G and H of \mathcal{C} reverse roles for \mathcal{C}^{\perp} :

$$
\mathcal{C}:\left\{\begin{array}{rll}
G & = & H^{\perp} \\
H & = & G^{\perp}
\end{array}\right\}: \mathcal{C}^{\perp} .
$$

- \mathcal{C}^{\perp} is an $\left[n, n-k, d^{\perp}\right]$ code over \mathbb{F}.

Examples

- $H=\left(\begin{array}{ll}11 \ldots 1)\end{array}\right)$ is a PCM for the $[n, n-1,2]$ parity code, which has generator matrix

$$
G=\left(\begin{array}{c|c}
I & -1 \\
I & \vdots \\
& -1
\end{array}\right) .
$$

On the other hand, H generates the $[n, 1, n]$ repetition code, and G is a check matrix for it \Rightarrow parity and repetition codes are dual.

- $[7,4,3]$ Hamming code over \mathbb{F}_{2} is defined by
$H=\left(\begin{array}{lllllll}0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right), \quad G=\left(\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right)$
- $G H^{T}=0$ can be verified by direct inspection

Minimum Distance and H

Theorem

Let H be a $P C M$ of $\mathcal{C} \neq\{0\}$. The minimum distance of \mathcal{C} is the largest integer d such that every subset of $d-1$ columns in H is linearly independent.

- Proof. There is a codeword \mathbf{c} of weight t in \mathcal{C} if and only if there are t I.d. columns in H (those columns that correspond to non-zero coordinates of c).
- Example: Code \mathcal{C} with

$$
H=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

All the columns are different \Rightarrow every 2 columns are linearly independent $\Rightarrow d \geq 3$.
On the other hand, $H \cdot[1110000]^{T}=\mathbf{0} \Rightarrow d=3$.

The Binary Hamming Code

- The m-th order Hamming code \mathcal{H}_{m} over \mathbb{F}_{2} is defined by the $m \times\left(2^{m}-1\right)$ PCM

$$
H_{m}=\left[\begin{array}{llll}
\mathbf{h}_{1} & \mathbf{h}_{2} & \ldots & \mathbf{h}_{2^{m}-1}
\end{array}\right],
$$

$$
m\left\{\left[\begin{array}{cccccc}
1 & 0 & 1 & \cdots & \cdots & 1 \\
0 & 1 & 1 & \cdots & \cdots & 1 \\
0 & 0 & 0 & \cdots & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \cdots & 1
\end{array}\right]\right.
$$

where \mathbf{h}_{i} is the length- m (column) binary representation of i.

- Clearly, H_{m} has full rank m.

Theorem
 \mathcal{H}_{m} is a $\left[2^{m}-1,2^{m}-1-m, 3\right]$ linear code.

Proof. [$n, k]$ parameters are immediate. No two columns of H_{m} are I.d. \Rightarrow $d \geq 3$. On the other hand, $\mathbf{h}_{1}+\mathbf{h}_{2}+\mathbf{h}_{3}=\mathbf{0}$ for all m.

The q-ary Hamming Code

$$
\text { Example: } q=3
$$

- The m-th order Hamming code $\mathcal{H}_{q, m}$ over $\mathbb{F}=\mathbb{F}_{q}, q \geq 2$, has PCM $H_{q, m}$ consisting of all distinct nonzero m-columns $\mathbf{h} \in \mathbb{F}_{q}^{m}$ up to scalar multiples, e.g.
$m\left\{\left[\begin{array}{ccccccc}1 & 0 & 1 & 2 & \cdots & \cdots & 2 \\ 0 & 1 & 1 & 1 & \cdots & \cdots & 2 \\ 0 & 0 & 0 & 0 & \cdots & \cdots & 2 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \cdots & 1\end{array}\right]\right.$
$\mathbf{h} \in H_{q, m} \Longrightarrow a \mathbf{h} \notin H_{q, m} \forall a \in \mathbb{F}_{q} \backslash\{1\}$.

Theorem

$\mathcal{H}_{q, m}$ is an $[n, n-m, 3]$ code with

$$
n=\frac{q^{m}-1}{q-1}
$$

Proof. As before, no two columns of $H_{q, m}$ are multiples of each other, i.e. dependent. One the other hand, there are I.d. triplets of columns.

Cosets and Syndromes

- Let $\mathbf{y} \in \mathbb{F}^{n}$. The syndrome of \mathbf{y} (with respect to an $(n-k) \times n$ PCM H of \mathcal{C}) is defined by

$$
\mathbf{s}=H \mathbf{y}^{T} \in \mathbb{F}^{n-k} .
$$

- The set

$$
\mathbf{y}+\mathcal{C} \triangleq\{\mathbf{y}+\mathbf{c}: \mathbf{c} \in \mathcal{C}\}
$$

is a coset of \mathcal{C} (as an additive subgroup) in \mathbb{F}^{n}.

- Since $\mathbf{0} \in \mathcal{C}$, we have $\mathbf{y} \in \mathbf{y}+\mathcal{C}$; also $\mathcal{C}=\mathbf{0}+\mathcal{C}$ is a coset itself.
- Let $\overline{\mathbf{y}} \in \mathbb{F}^{n}$. If $\overline{\mathbf{y}} \in \mathbf{y}+\mathcal{C}$, then $\overline{\mathbf{y}}-\mathbf{y} \in \mathcal{C}$, and
- $\overline{\mathbf{y}}+\mathcal{C}=\mathbf{y}+(\overline{\mathbf{y}}-\mathbf{y})+\mathcal{C}=\mathbf{y}+\mathcal{C}$,
- $H(\overline{\mathbf{y}}-\mathbf{y})^{T}=\mathbf{0} \quad \Longrightarrow H \overline{\mathbf{y}}^{T}=H \mathbf{y}^{T}$
\Longrightarrow The syndrome is invariant for all $\overline{\mathbf{y}} \in \mathbf{y}+\mathcal{C}$.
- If $\overline{\mathbf{y}}-\mathbf{y} \notin \mathcal{C}$ then $(\overline{\mathbf{y}}+\mathcal{C}) \cap(\mathbf{y}+\mathcal{C})=\phi$.
- Let $\mathbb{F}=\mathbb{F}_{q}$. There are q^{n-k} distinct, disjoint cosets of \mathcal{C} in \mathbb{F}^{n}. Cosets form a partition of \mathbb{F}^{n}.
- Given a PCM H, there is a 1-1 correspondence between the q^{n-k} cosets of \mathcal{C} in \mathbb{F}^{n} and the q^{n-k} possible syndrome values.

Syndrome Decoding of Linear Codes

- $\mathbf{c} \in \mathcal{C}$ is sent and $\mathbf{y}=\mathbf{c}+\mathbf{e}$ is received on an additive channel
- y and e are in the same coset of \mathcal{C}.
- Nearest-neighbor decoding of \mathbf{y} calls for finding the closest codeword \mathbf{c} to $\mathbf{y} \Longrightarrow$ find a vector \mathbf{e} of lowest weight in $\mathbf{y}+\mathcal{C}$: a coset leader.
- coset leaders need not be unique (when are they?)
- Decoding algorithm: upon receiving y
- compute the syndrome $\mathbf{s}=H \mathbf{y}^{T}$
- find a coset leader \mathbf{e} in the coset corresponding to s
- decode \mathbf{y} into $\hat{\mathbf{c}}=\mathbf{y}-\mathbf{e}$
- If $n-k$ is (very) small, a table containing one leader per coset can be pre-computed. The table is indexed by \mathbf{s}. On the other hand, if k is (very) small, we can go over $\mathbf{y}+\mathcal{C}$ exhaustively, and find a coset leader.
- In general, however, all known algorithms for syndrome decoding are exponential in $\min (k, n-k)$. In fact, the problem has been shown to be NP-hard.

Decoding the Hamming Code

(1) Consider \mathcal{H}_{m} over \mathbb{F}_{2}. We have

$$
n=2^{m}-1, \quad m=n-k .
$$

Given a received y,

$$
\mathbf{s}=H_{m} \mathbf{y}^{T}
$$

is an m-tuple in \mathbb{F}_{2}^{m}.
(2) if $\mathrm{s}=0$ then $\mathrm{y} \in \mathcal{C} \Longrightarrow 0$ is the coset leader of $y+\mathcal{C}$
(3) if $\mathbf{s} \neq \mathbf{0}$ then $\mathbf{s}=\mathbf{h}_{i}$ for some $i \Longrightarrow$

$$
\mathbf{e}_{i}=\left[\begin{array}{llllllll}
0, & 0, & \ldots, & 0, & \underset{\uparrow}{1}, & 0, & \ldots, & 0 \tag{0}
\end{array}\right]
$$

is the coset leader of $\mathbf{y}+\mathcal{C}$, since

$$
H_{m} \mathbf{y}^{T}=\mathbf{s}=\mathbf{h}_{i}=H_{m} \mathbf{e}_{i}, \quad \mathbf{y} \notin \mathcal{C}, \text { and } \mathrm{wt}\left(\mathbf{e}_{i}\right)=1
$$

- Every word in \mathbb{F}_{2}^{n} is at distance at most 1 from a codeword.
- Spheres of radius 1 around codewords are disjoint and cover \mathbb{F}_{2}^{n} : perfect code.
steps 1-3 above describe a complete decoding algorithm for $\mathcal{H}_{m}, \quad \forall m$.

Deriving Codes from Other Codes

- Adding an overall parity check. Let \mathcal{C} be a binary $[n, k, d]$ code with some odd-weight codewords. We form a new code $\hat{\mathcal{C}}$ by appending a 0 at the end of even-weight codewords, and a 1 at the end of odd-weight ones.
- Every codeword in $\hat{\mathcal{C}}$ has even weight.
- $\hat{\mathcal{C}}$ is an $[n+1, k, 2\lceil d / 2\rceil]$ code. If d is odd, $\hat{d}=d+1$.
- Example: The $[7,4,3]$ binary Hamming code can be extended to an $[8,4,4]$ code with PCM

$$
\hat{H}=\left(\begin{array}{llllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

corrects any pattern of 1 error, and detects any pattern of 2 .

Deriving Codes from Other Codes (cont.)

- Expurgate by throwing away codewords. E.g., select subset of codewords satisfying an independent parity check.
- Example: Selecting the even-weight sub-code of the $\left[2^{m}-1,2^{m}-1-m, 3\right]$ Hamming code yields a [$\left.2^{m}-1,2^{m}-2-m, 4\right]$ code.
- Shortening by taking a cross-section. Select all codewords c with, say, $c_{1}=0$, and eliminate that coordinate (can be repeated for more coordinates). An $[n, k, d]$ code yields an $[n-1, k-1, \geq d]$ code.

