2. Linear Codes

Linear Codes

- Assume the code alphabet \mathbb{F} can be given a *field* structure.
 - What is a *field*? A set with *addition* and *multiplication* operations $\{+,*\}$ with all the properties we're used to (e.g., $\mathbb{Q}, \mathbb{R}, \mathbb{C}$).
 - A *finite field* is a field with a finite number of elements. In our case, \mathbb{F} is a finite field, of, say, $|\mathbb{F}| = q$ elements.
 - We will see that $q=p^m$ for some prime number p and integer $m\geq 1$. We denote such a field by \mathbb{F}_q or $\mathrm{GF}(q)$.
 - Example: $\mathbb{F}_2 = \{0, 1\}$ with XOR, AND operations.
 - Much more about finite fields later!
 - \mathbb{F}^n is a *linear space* over \mathbb{F} (the field of *scalars*). All the usual notions and properties apply: bases, sub-spaces, matrices, linear transforms, etc.
- A code C: (n, M, d) over F is a subset of Fⁿ.
 C is called a linear code if it is a linear sub-space of Fⁿ over F.
 - $\mathbf{c}_1, \mathbf{c}_2 \in \mathcal{C}, \ a_1, a_2 \in \mathbb{F} \Rightarrow a_1 \mathbf{c}_1 + a_2 \mathbf{c}_2 \in \mathcal{C}$

Parameters of a Linear Code

- \mathcal{C} is a linear sub-space of \mathbb{F}^n over \mathbb{F} . Let $k \leq n$ be the dimension of this linear sub-space, and let $q = |\mathbb{F}|$.
- $\mathcal C$ has a basis $\{\mathbf c_0, \mathbf c_1, \dots, \mathbf c_{k-1}\}$ such that every $\mathbf c \in \mathcal C$ can be written as

$$\mathbf{c} = \sum_{i=0}^{k-1} a_i \mathbf{c}_i, \quad a_i \in \mathbb{F}, \ 0 \le i \le k-1,$$

and every distinct vector of coefficients $[a_0, a_1, \ldots, a_{k-1}]$ corresponds to a different codeword. There are q^k such vectors.

- Therefore, \mathcal{C} has $M=q^k$ codewords, which explains why we called $k=\log_a M$ the *dimension* of \mathcal{C} (even when \mathcal{C} was not linear).
- r = n k is the *redundancy* of C, R = k/n its *rate*.
- We use the notation [n,k,d] to denote the parameters of a linear code. An [n,k,d] code over $\mathbb F$ is an (n,q^k,d) code over $\mathbb F$.

Generator Matrix

- A generator matrix for a linear code $\mathcal C$ is a $k \times n$ matrix G whose rows form a basis of $\mathcal C$.
- Example: $G = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, $\hat{G} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ are *both* generators of the [3,2,2] parity code over \mathbb{F}_2 .
- In general, the [n, n-1, 2] parity code over any F is generated by

$$G = \left(\begin{array}{ccc} I_{n-1} & \left| \begin{array}{cc} -1 \\ -1 \\ \vdots \\ -1 \end{array} \right) ,$$

where I_{n-1} is the $(n-1) \times (n-1)$ identity matrix.

• What's *G* for the repetition code?

$$G = (1 \ 1 \ \dots \ 1)$$
.

Minimum Weight

• For an [n, k, d] code C,

$$\mathbf{c}_1,\mathbf{c}_2\in\mathcal{C} \implies \mathbf{c}_1-\mathbf{c}_2\in\mathcal{C}\,, \text{ and } \mathsf{d}(\mathbf{c}_1,\mathbf{c}_2)=\mathsf{wt}(\mathbf{c}_1-\mathbf{c}_2)\,.$$

Therefore,

$$d = \min_{\mathbf{c}_1, \mathbf{c}_2 \in \mathcal{C} : \mathbf{c}_1 \neq \mathbf{c}_2} \mathsf{d}(\mathbf{c}_1, \mathbf{c}_2) = \min_{\mathbf{c}_1, \mathbf{c}_2 \in \mathcal{C} : \mathbf{c}_1 \neq \mathbf{c}_2} \mathsf{wt}(\mathbf{c}_1 - \mathbf{c}_2) = \min_{\mathbf{c} \in \mathcal{C} \setminus \{\mathbf{0}\}} \mathsf{wt}(\mathbf{c}) \;.$$

- ⇒ minimum distance is the same as minimum weight for linear codes.
- Recall also that $0 \in \mathcal{C}$ and $d(\mathbf{c}, \mathbf{0}) = \mathsf{wt}(\mathbf{c})$.

Encoding Linear Codes

• Since $\operatorname{rank}(G) = k$, the map $\mathcal{E} : \mathbb{F}^k \to \mathcal{C}$ defined by

$$\mathcal{E}: \mathbf{u} \mapsto \mathbf{c} = \mathbf{u} G, \quad \mathbf{u} \in \mathbb{F}^k \qquad \qquad \frac{\stackrel{\blacktriangleleft_k \blacktriangleright}{\mathbf{u}}}{\mathbf{u}} \left[\begin{smallmatrix} n \\ k & G \end{smallmatrix} \right] = \frac{\longleftarrow n \longrightarrow}{\mathbf{c}}$$

is 1-1, and can serve as an encoding mechanism for \mathcal{C} .

• Applying elementary row operations and possibly reordering coordinates (columns), we can bring G to the form

$$G = (I_k \mid A)$$
 systematic generator matrix,

where I_k is a $k \times k$ identity matrix, and A is a $k \times (n-k)$ matrix.

$$\mathbf{u} \mapsto \mathbf{c} = \mathbf{u} G = (\mathbf{u} \mid \mathbf{u} A)$$
 systematic encoding.

• In a systematic encoding, the k information symbols from ${\bf u}$ are transmitted 'as is', and n-k check symbols (or redundancy symbols, or parity symbols) are appended.

Parity Check Matrix

• Let $\mathcal{C}:[n,k,d]$. A parity-check matrix (PCM) of \mathcal{C} is an $r\times n$ matrix H such that for all $\mathbf{c}\in\mathbb{F}^n$,

$$\mathbf{c} \in \mathcal{C} \iff H\mathbf{c}^T = \mathbf{0}$$
.

• \mathcal{C} is the (right) kernel of H in \mathbb{F}^n . Therefore,

$$rank(H) = n - \dim \ker(H) = n - k$$

- We will usually have r = rank(H) = n k (no superfluous rows)
- For a generator matrix G of C, we have

$$HG^T = 0 \Rightarrow GH^T = 0$$
, and $\dim \ker(G) = n - \operatorname{rank}(G) = n - k = r$

• If $G=(\ I_k\mid A\)$, then $H=(-A^T\mid I_{n-k}\)$ is a (systematic) parity-check matrix.

Dual Code

• The *dual* code of $\mathcal{C}:[n,k,d]$ is

$$\mathcal{C}^{\perp} = \{ \mathbf{x} \in \mathbb{F}^n : \mathbf{x} \, \mathbf{c}^T = 0 \ \forall \mathbf{c} \in \mathcal{C} \},$$

or, equivalently

$$\mathcal{C}^{\perp} = \{ \mathbf{x} \in \mathbb{F}^n : \mathbf{x} G^T = \mathbf{0} \}.$$

- $\bullet \ (\mathcal{C}^{\perp})^{\perp} = \mathcal{C}$
- G and H of C reverse roles for C^{\perp} :

$$\mathcal{C}: \left\{ \begin{array}{ll} G & = & H^{\perp} \\ H & = & G^{\perp} \end{array} \right\} : \mathcal{C}^{\perp}.$$

ullet \mathcal{C}^{\perp} is an $[n,n-k,d^{\perp}]$ code over $\mathbb{F}.$

Examples

• $H=(1\ 1\ \dots\ 1)$ is a PCM for the [n,n-1,2] parity code, which has generator matrix

$$G = \left(\begin{array}{ccc} & I & \left| \begin{array}{c} -1 \\ -1 \\ \vdots \\ -1 \end{array} \right) \; .$$

On the other hand, H generates the [n,1,n] repetition code, and G is a check matrix for it \Rightarrow parity and repetition codes are dual.

• [7,4,3] *Hamming code* over \mathbb{F}_2 is defined by

• $GH^T = 0$ can be verified by direct inspection

Minimum Distance and H

Theorem

Let H be a PCM of $\mathcal{C} \neq \{0\}$. The minimum distance of \mathcal{C} is the largest integer d such that every subset of d-1 columns in H is linearly independent.

- **Proof.** There is a codeword c of weight t in C if and only if there are t l.d. columns in H (those columns that correspond to non-zero coordinates of c).
- Example: Code C with

$$H = \left(\begin{array}{ccccccc} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array}\right) \ .$$

All the columns are different \Rightarrow every 2 columns are linearly independent $\Rightarrow d \ge 3$.

On the other hand, $H \cdot [1110000]^T = \mathbf{0} \implies d = 3$.

The Binary Hamming Code

• The m-th order Hamming code \mathcal{H}_m over \mathbb{F}_2 is defined by the $m \times (2^m - 1)$ PCM

$$H_m = [\mathbf{h}_1 \mathbf{h}_2 \dots \mathbf{h}_{2^m-1}],$$

where \mathbf{h}_i is the length-m (column) binary representation of i.

• Clearly, H_m has full rank m.

$$m \left\{ \left[\begin{array}{cccc} 1 & 0 & 1 & \cdots & \cdots & 1 \\ 0 & 1 & 1 & \cdots & \cdots & 1 \\ 0 & 0 & 0 & \cdots & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & 1 \end{array} \right] \right.$$

Theorem

 \mathcal{H}_m is a $[2^m - 1, 2^m - 1 - m, 3]$ linear code.

Proof. [n,k] parameters are immediate. No two columns of H_m are l.d. \Rightarrow $d \geq 3$. On the other hand, $\mathbf{h}_1 + \mathbf{h}_2 + \mathbf{h}_3 = \mathbf{0}$ for all m.

The q-ary Hamming Code

• The m-th order Hamming code $\mathcal{H}_{q,m}$ over $\mathbb{F} = \mathbb{F}_q, \ q \geq 2$, has PCM $H_{q,m}$ consisting of all distinct nonzero m-columns $\mathbf{h} \in \mathbb{F}_q^m$ up to scalar multiples, e.g.

$$\mathbf{h} \in H_{q,m} \implies a\mathbf{h} \notin H_{q,m} \ \forall a \in \mathbb{F}_q \setminus \{1\}.$$

Example: q = 3

$$m \left\{ \begin{bmatrix} 1 & 0 & 1 & 2 & \cdots & \cdots & 2 \\ 0 & 1 & 1 & 1 & \cdots & \cdots & 2 \\ 0 & 0 & 0 & 0 & \cdots & \cdots & 2 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \cdots & 1 \end{bmatrix} \right\}$$

Theorem

 $\mathcal{H}_{q,m}$ is an [n, n-m, 3] code with

$$n = \frac{q^m - 1}{q - 1}$$

Proof. As before, no two columns of $H_{q,m}$ are multiples of each other, i.e. dependent. One the other hand, there are l.d. triplets of columns.

Cosets and Syndromes

• Let $\mathbf{y} \in \mathbb{F}^n$. The syndrome of \mathbf{y} (with respect to an $(n-k) \times n$ PCM H of \mathcal{C}) is defined by

$$\mathbf{s} = H\mathbf{y}^T \in \mathbb{F}^{n-k}.$$
 $\mathbf{v} + \mathcal{C} \stackrel{\Delta}{=} \{\mathbf{v} + \mathbf{c} : \mathbf{c} \in \mathcal{C}\}$

The set

coset of
$$C$$
 (as an additive subgroup) in \mathbb{F}^n

is a *coset* of \mathcal{C} (as an additive subgroup) in \mathbb{F}^n .

- Since $0 \in \mathcal{C}$, we have $y \in y + \mathcal{C}$; also $\mathcal{C} = 0 + \mathcal{C}$ is a coset itself.
- Let $\bar{\mathbf{y}} \in \mathbb{F}^n$. If $\bar{\mathbf{y}} \in \mathbf{y} + \mathcal{C}$, then $\bar{\mathbf{y}} \mathbf{v} \in \mathcal{C}$, and
 - $\bar{\mathbf{v}} + \mathcal{C} = \mathbf{v} + (\bar{\mathbf{v}} \mathbf{v}) + \mathcal{C} = \mathbf{v} + \mathcal{C}$.
 - $H(\bar{\mathbf{v}} \mathbf{v})^T = \mathbf{0} \implies H\bar{\mathbf{v}}^T = H\mathbf{v}^T$ \implies The syndrome is invariant for all $\bar{\mathbf{y}} \in \mathbf{y} + \mathcal{C}$.
- If $\bar{\mathbf{y}} \mathbf{y} \notin \mathcal{C}$ then $(\bar{\mathbf{y}} + \mathcal{C}) \cap (\mathbf{y} + \mathcal{C}) = \phi$.
- Let $\mathbb{F} = \mathbb{F}_q$. There are q^{n-k} distinct, disjoint cosets of \mathcal{C} in \mathbb{F}^n . Cosets form a partition of \mathbb{F}^n .
- Given a PCM H, there is a 1-1 correspondence between the q^{n-k} cosets of \mathcal{C} in \mathbb{F}^n and the q^{n-k} possible syndrome values.

Syndrome Decoding of Linear Codes

- $oldsymbol{c} \in \mathcal{C}$ is sent and $\mathbf{y} = \mathbf{c} + \mathbf{e}$ is received on an additive channel
- y and e are in the same coset of C.
- Nearest-neighbor decoding of y calls for finding the closest codeword c
 to y

 find a vector e of lowest weight in y+C: a coset leader.
 - coset leaders need not be unique (when are they?)
- Decoding algorithm: upon receiving y
 - compute the syndrome $\mathbf{s} = H\mathbf{y}^T$
 - ullet find a coset leader ullet in the coset corresponding to ullet
 - decode \mathbf{y} into $\hat{\mathbf{c}} = \mathbf{y} \mathbf{e}$
- If n-k is (very) small, a table containing one leader per coset can be pre-computed. The table is indexed by s. On the other hand, if k is (very) small, we can go over $y + \mathcal{C}$ exhaustively, and find a coset leader.
- In general, however, all known algorithms for syndrome decoding are exponential in $\min(k,n-k)$. In fact, the problem has been shown to be NP-hard.

Decoding the Hamming Code

- ① Consider \mathcal{H}_m over \mathbb{F}_2 . We have $n=2^m-1, \ m=n-k$. Given a received $\mathbf{y},$ $\mathbf{s}=H_m\mathbf{y}^T$ is an m-tuple in \mathbb{F}_2^m .
- 2 if s = 0 then $y \in C \implies 0$ is the coset leader of y + C
- $\textbf{3} \text{ if } \mathbf{s} \neq \mathbf{0} \text{ then } \mathbf{s} = \mathbf{h}_i \text{ for some } i \Longrightarrow \\ \mathbf{e}_i = \begin{bmatrix} 0, & 0, & \dots, & 0, & \frac{1}{i}, & 0, & \dots, & 0 \end{bmatrix}$

is the coset leader of y + C, since

$$H_m \mathbf{y}^T = \mathbf{s} = \mathbf{h}_i = H_m \mathbf{e}_i$$
, $\mathbf{y} \notin \mathcal{C}$, and $\mathsf{wt}(\mathbf{e}_i) = 1$.

- Every word in \mathbb{F}_2^n is at distance at most 1 from a codeword.
- Spheres of radius 1 around codewords are disjoint and cover \mathbb{F}_2^n : perfect code.

steps 1–3 above describe a *complete decoding algorithm* for \mathcal{H}_m , $\forall m$.

Deriving Codes from Other Codes

- Adding an overall parity check. Let \mathcal{C} be a binary [n, k, d] code with some odd-weight codewords. We form a new code $\hat{\mathcal{C}}$ by appending a 0 at the end of even-weight codewords, and a 1 at the end of odd-weight ones.
 - Every codeword in $\hat{\mathcal{C}}$ has even weight.
 - $\hat{\mathcal{C}}$ is an $[n+1,k,2\lceil d/2\rceil]$ code. If d is odd, $\hat{d}=d+1$.
 - **Example:** The [7, 4, 3] binary Hamming code can be extended to an [8,4,4] code with PCM

Deriving Codes from Other Codes (cont.)

- Expurgate by throwing away codewords. E.g., select subset of codewords satisfying an independent parity check.
 - Example: Selecting the even-weight sub-code of the $[2^m-1,2^m-1-m,3]$ Hamming code yields a $[2^m-1,2^m-2-m,4]$ code.
- Shortening by taking a cross-section. Select all codewords \mathbf{c} with, say, $c_1=0$, and eliminate that coordinate (can be repeated for more coordinates). An [n,k,d] code yields an $[n-1,k-1,\geq d]$ code.