2. Linear Codes
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e Assume the code alphabet I can be given a field structure.
® What is a field? A set with addition and multiplication operations
{+, #} with all the properties we're used to (e.g., Q,R, C).

® A finite field is a field with a finite number of elements. In our case,
F is a finite field, of, say, |F| = ¢ elements.
® We will see that ¢ = p™ for some prime number p and integer
m > 1. We denote such a field by F, or GF(q).
® Example: Fo = {0, 1} with XOR, AND operations.
® Much more about finite fields later!
® F" is a linear space over I (the field of scalars). All the usual

notions and properties apply: bases, sub-spaces, matrices, linear
transforms, etc.

e A code C: (n,M,d) over F is a subset of F™.
C is called a linear code if it is a linear sub-space of F" over F.

® ci,co€C, a1,a3 €F = ajcy +ascs €C
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Parameters of a Linear Code

e C is a linear sub-space of F"* over F. Let k < n be the dimension of this
linear sub-space, and let ¢ = |FF|.

C has a basis {cp,c1,...,cr_1} such that every ¢ € C can be written as

k—1
C:Zaici, CL,EF,OSZSI{I—I,
=0

and every distinct vector of coefficients [ag, a1, ..., ar—_1] corresponds to
a different codeword. There are ¢* such vectors.

Therefore, C has M = ¢ codewords, which explains why we called
k =log, M the dimension of C (even when C was not linear).

e r =n — k is the redundancy of C, R = k/n its rate.

We use the notation [n, k, d] to denote the parameters of a linear code.
An [n, k,d] code over F is an (n,q", d) code over F.
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Generator Matrix

e A generator matrix for a linear code C is a k& x n matrix G whose rows
form a basis of C.

1 0 1 A 0 1 1
oExampIe.G—<011>7 G_<110)
are both generators of the [3,2,2] parity code over 5.
e In general, the [n,n — 1,2] parity code over any F' is generated by
-1

—1

G - In—l : 5
-1
where [, is the (n — 1) x (n — 1) identity matrix.

e What's (G for the repetition code?

G=(11...1).
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Minimum Weight

e For an [n, k,d] code C,

c,c0 €C = c¢1 —cy €C, and d(cq,c2) = wt(c; — ca).

Therefore,
d= min d(cy,ca) = min wt(c;—c3) = min  wt(c) .
ci,e0eC ci1#£co c1,c2€C: c1#ca cGC\{O}

= minimum distance is the same as minimum weight for linear codes.

e Recall also that 0 € C and d(c,0) = wt(c).
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Encoding Linear Codes

e Since rank(G) = k, the map £ : F¥ — C defined by

<k -—n—>

E:usc=ulG, ucFF u : c

is 1-1, and can serve as an encoding mechanism for C.

e Applying elementary row operations and possibly reordering coordinates
(columns), we can bring G to the form

G = ( I ‘ A ) systematic generator matrix,
where I}, is a k x k identity matrix, and A is a k£ x (n — k) matrix.

u—c=uG=(u|ud) systematic encoding.

e In a systematic encoding, the k information symbols from u are
transmitted ‘as is’, and n — k check symbols (or redundancy symbols, or
parity symbols) are appended.
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Parity Check Matrix

e Let C: [n,k,d]. A parity-check matrix (PCM) of C is an r x n matrix H
such that for all ¢ € F",

ceC < Hc'=o0. " H

® (C is the (right) kernel of H in F". Therefore,
r >rank(H) =n —dimker(H) =n —k

e We will usually have r» = rank(H) = n — k (no superfluous rows)

e For a generator matrix G of C, we have
HG" =0= GH" =0, and dimker(G) =n —rank(G) =n—k =r

o IfG=(1Iy|A) then H=(—AT |1, )is a (systematic) parity-check
matrix.
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Dual Code

e The dual code of C : [n, k,d] is
Ct={xecF" :xc" =0 VeceC},

or, equivalently
Ct={xeF :xGT=0}.

o (CHt=cC
e G and H of C reverse roles for C:

G = H-\ | ..
(G e

e Cisan [n,n — k,d"] code over F.
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e H=(11...1)isaPCM for the [n,n — 1,2] parity code, which has

generator matrix
—1
—1

G = I
—1
On the other hand, H generates the [n, 1, n| repetition code, and G is a
check matrix for it = parity and repetition codes are dual.

e [7,4,3] Hamming code over 5 is defined by

NEEEEE
H=| 0 1 1 0 O 1 1 |, G =

1 010 1 0 1 o 1 1 0 0 1 1

1 01 0 1 0 1

e GH™ =0 can be verified by direct inspection
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Minimum Distance and H

Let H be a PCM of C # {0}. The minimum distance of C is the largest
integer d such that every subset of d—1 columns in H is linearly
independent.

® Proof. There is a codeword c of weight ¢ in C if and only if there are ¢
I.d. columns in H (those columns that correspond to non-zero coordinates
of c). O
® Example: Code C with

0 0 0 1 1 1 1
H = 01 1 0 0 1 1 .
1 0 1 0 1 0 1

All the columns are different = every 2 columns are linearly
independent = d > 3.
On the other hand, - [1110000]T =0 = d=3.
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The Binary Hamming Code

® The m-th order Hamming code H.,,, over 101 -+ - 1

F5 is defined by the m x (2™ — 1) PCM R
m

Hm:[hlhz...h277171]7 OOO ...... 1

where h; is the length-m (column) binary
representation of 7.

® Clearly, H,, has full rank m.

Hp isa 2™ —1,2™ — 1 —m, 3| linear code.

Proof. [n, k] parameters are immediate. No two columns of H,, are l.d. =
d > 3. On the other hand, h; + hs + h3 = 0 for all m.
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The g-ary Hamming Code

Example: ¢ =3
® The m-th order Hamming code H, ,,, over 1012 ... ... 9
F=F,, ¢ > 2, has PCM H,,, consisting 8 (1) (1) é """ %
of all distinct nonzero m-columns h € Fy* m _
up to scalar multiples, e.g. :
p p & 0000 - - 1

heH,,, = ah¢ H,,, YaeF,\{1}.

Hq.m is an [n,n —m, 3| code with

Proof. As before, no two columns of H, ,,, are multiples of each other, i.e.
dependent. One the other hand, there are |.d. triplets of columns.
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Cosets and Syndromes

o Let y € F". The syndrome of y with respect to an » x n PCM H of C,
r = n—k, is defined by
s = HyT c FT. ” n

e The set A
y+C={y+c:ce(}
is a coset of C (as an additive subgroup) in F".
® Since 0 € C, we havey € y+C; alsoC =0+ C is a coset itself.

o letycF". Ifycy+C,theny —y e, and
* Hy-y)'=0 = Hy" =Hy"
= The syndrome is invariant for all y €y +C. ‘E
e lfy—y¢Cthen(y+C)N(y+C)=¢. o

o Let F =1I,. There are ¢~ " distinct, disjoint cosets of C in F". Cosets

form a partition of F™.
e Given a PCM H, there is a 1-1 correspondence between the ¢" %
of C in F" and the ¢" " possible syndrome values.

cosets
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Syndrome Decoding of Linear Codes

e c € Cissent and y = c + e is received on an additive channel
e y and e are in the same coset of C.
e Nearest-neighbor decoding of y calls for finding the closest codeword ¢
toy = find a vector e of lowest weight in y+C: a coset leader.
® coset leaders need not be unique (when are they?)

e Decoding algorithm: upon receiving y
® compute the syndrome s = Hy”
® find a coset leader e in the coset corresponding to s
® decodeyintoc=y —e

o If n —k is (very) small, a table containing one leader per coset can be
pre-computed. The table is indexed by s. On the other hand, if & is
(very) small, we can go over y + C exhaustively, and find a coset leader.

e In general, however, all known algorithms for syndrome decoding are
exponential in min(k,n — k). In fact, the problem has been shown to be
NP-hard.
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Decoding the Hamming Code

@ Consider H.,, over F5. We have
n=2"—-1, m=n—k.
Given a received y,

s:H'myT
is an m-tuple in F3".
@® ifs=0theny € C = 0 is the coset
leader of y +C
® if s # 0 then s = h; for some 1 =
e,=[0, 0, ..., 0, 1, 0, ..., 0
T

OO
OO
COOG
OO

7
is the coset leader of y + C, since
HmyT =s=h; =Hne;, y¢C, and wt(e;) = 1.
® Every word in 3 is at distance at most 1 from a codeword.

® Spheres of radius 1 around codewords are disjoint and cover F3:
perfect code.

steps 1-3 above describe a complete decoding algorithm for H,,, VYm.
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Deriving Codes from Other Codes

e Adding an overall parity check. Let C be a binary [n, k, d] code with some
odd-weight codewords. We form a new code C by appending a 0 at the
end of even-weight codewords, and a 1 at the end of odd-weight ones.

* Every codeword in C has even weight.

e Cisan[n+1,k 2[d/2]] code. If dis odd, d = d + 1.

e Example: The [7,4, 3] binary Hamming code can be extended to an
[8,4, 4] code with PCM

0O 001 11 10
. 01100110 corrects any pattern of
H = 10101010 1 error, and detects any
11111111 pattern of 2.
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Deriving Codes from Other Codes (cont.)

e Expurgate by throwing away codewords. E.g., select subset of codewords
satisfying an independent parity check.
® Example: Selecting the even-weight sub-code of the
[2™ —1,2™ — 1 — m, 3] Hamming code yields a
[2™ —1,2™ — 2 — m, 4] code.

e Shortening by taking a cross-section. Select all codewords ¢ with, say,
¢1 = 0, and eliminate that coordinate (can be repeated for more
coordinates). An [n, k,d] code yields an [n — 1,k — 1, > d] code.
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