2. Linear Codes

Linear Codes

- Assume the code alphabet \mathbb{F} can be given a *field* structure.
 - What is a *field*? A set with *addition* and *multiplication* operations $\{+, *\}$ with all the properties we're used to (e.g., $\mathbb{Q}, \mathbb{R}, \mathbb{C}$).
 - A *finite field* is a field with a finite number of elements. In our case, \mathbb{F} is a finite field, of, say, $|\mathbb{F}| = q$ elements.
 - We will see that q = p^m for some prime number p and integer m ≥ 1. We denote such a field by F_q or GF(q).
 - Example: $\mathbb{F}_2 = \{0, 1\}$ with XOR, AND operations.
 - Much more about finite fields later!
 - \mathbb{F}^n is a *linear space* over \mathbb{F} (the field of *scalars*). All the usual notions and properties apply: bases, sub-spaces, matrices, linear transforms, etc.
- A code C : (n, M, d) over \mathbb{F} is a *subset* of \mathbb{F}^n .
 - \mathcal{C} is called a *linear code* if it is a *linear sub-space* of \mathbb{F}^n over \mathbb{F} .
 - $\mathbf{c}_1, \mathbf{c}_2 \in \mathcal{C}, \ a_1, a_2 \in \mathbb{F} \Rightarrow a_1 \mathbf{c}_1 + a_2 \mathbf{c}_2 \in \mathcal{C}$

Parameters of a Linear Code

- C is a linear sub-space of Fⁿ over F. Let k ≤ n be the dimension of this linear sub-space, and let q = |F|.
- \mathcal{C} has a *basis* $\{\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{k-1}\}$ such that every $\mathbf{c} \in \mathcal{C}$ can be written as

$$\mathbf{c} = \sum_{i=0}^{k-1} a_i \mathbf{c}_i, \quad a_i \in \mathbb{F}, \ 0 \le i \le k-1,$$

and every distinct vector of coefficients $[a_0, a_1, \ldots, a_{k-1}]$ corresponds to a different codeword. There are q^k such vectors.

- Therefore, C has $M = q^k$ codewords, which explains why we called $k = \log_q M$ the *dimension* of C (even when C was not linear).
- r = n k is the *redundancy* of C, R = k/n its *rate*.
- We use the notation [n, k, d] to denote the parameters of a linear code. An [n, k, d] code over 𝔽 is an (n, q^k, d) code over 𝔽.

Generator Matrix

- A generator matrix for a linear code C is a $k \times n$ matrix G whose rows form a basis of C.
- Example: $G = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, $\hat{G} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ are *both* generators of the [3, 2, 2] parity code over \mathbb{F}_2 .
- In general, the [n, n-1, 2] parity code over any F is generated by

$$G = \begin{pmatrix} & & & & \begin{vmatrix} & -1 \\ & & I_{n-1} & & \\ & & & \vdots \\ & & & -1 \end{pmatrix} ,$$

where I_{n-1} is the $(n-1) \times (n-1)$ identity matrix.

• What's G for the repetition code?

$$G = (1 \ 1 \ \dots \ 1)$$
.

• For an [n, k, d] code \mathcal{C} ,

 $\mathbf{c}_1, \mathbf{c}_2 \in \mathcal{C} \implies \mathbf{c}_1 - \mathbf{c}_2 \in \mathcal{C} \,, \text{ and } \mathsf{d}(\mathbf{c}_1, \mathbf{c}_2) = \mathsf{wt}(\mathbf{c}_1 - \mathbf{c}_2) \,.$

Therefore,

 $d = \min_{\mathbf{c}_1, \mathbf{c}_2 \in \mathcal{C} : \mathbf{c}_1 \neq \mathbf{c}_2} \mathsf{d}(\mathbf{c}_1, \mathbf{c}_2) = \min_{\mathbf{c}_1, \mathbf{c}_2 \in \mathcal{C} : \mathbf{c}_1 \neq \mathbf{c}_2} \mathsf{wt}(\mathbf{c}_1 - \mathbf{c}_2) = \min_{\mathbf{c} \in \mathcal{C} \setminus \{\mathbf{0}\}} \mathsf{wt}(\mathbf{c}) \ .$

⇒ minimum distance is the same as minimum weight for linear codes.

• Recall also that $0 \in \mathcal{C}$ and $d(\mathbf{c}, \mathbf{0}) = wt(\mathbf{c})$.

Encoding Linear Codes

• Since $\operatorname{rank}(G) = k$, the map $\mathcal{E} : \mathbb{F}^k \to \mathcal{C}$ defined by

 $\mathcal{E}: \mathbf{u} \mapsto \mathbf{c} = \mathbf{u} G, \quad \mathbf{u} \in \mathbb{F}^k \qquad \qquad \underbrace{\overset{\mathbf{4}k \vdash}{\mathbf{u}}}_{k = G} \stackrel{n}{=} \underbrace{\overset{\mathbf{-n} \rightarrow}{\mathbf{c}}}$

is 1-1, and can serve as an encoding mechanism for C.

• Applying elementary row operations and possibly reordering coordinates (columns), we can bring G to the form

 $G = (I_k \mid A)$ systematic generator matrix,

where I_k is a $k \times k$ identity matrix, and A is a $k \times (n-k)$ matrix.

 $\mathbf{u} \mapsto \mathbf{c} = \mathbf{u} G = (\mathbf{u} \mid \mathbf{u} A)$ systematic encoding.

 In a systematic encoding, the k information symbols from u are transmitted 'as is', and n - k check symbols (or redundancy symbols, or parity symbols) are appended.

Parity Check Matrix

• Let C : [n, k, d]. A parity-check matrix (PCM) of C is an $r \times n$ matrix H such that for all $c \in \mathbb{F}^n$,

$$\mathbf{c} \in \mathcal{C} \iff H\mathbf{c}^T = \mathbf{0}.$$
 $\begin{bmatrix} r & n \\ H & H \end{bmatrix} = \begin{bmatrix} r \\ \mathbf{c}^T & \mathbf{0} \end{bmatrix}$

• \mathcal{C} is the (right) kernel of H in \mathbb{F}^n . Therefore,

 $r \geq \operatorname{rank}(H) = n - \dim \ker(H) = n - k$

• We will usually have $r = \operatorname{rank}(H) = n - k$ (no superfluous rows)

For a generator matrix G of C, we have

 $HG^T = 0 \Rightarrow GH^T = 0$, and $\dim \ker(G) = n - \operatorname{rank}(G) = n - k = r$

• If $G = (I_k \mid A)$, then $H = (-A^T \mid I_{n-k})$ is a (systematic) parity-check matrix.

$$G: k \downarrow \boxed{I_k \quad A} \qquad H: n-k \downarrow \boxed{-A^T \quad I_{n-k}}$$

Dual Code

• The *dual* code of $\mathcal{C} : [n, k, d]$ is

$$\mathcal{C}^{\perp} = \{ \mathbf{x} \in \mathbb{F}^n : \mathbf{x} \mathbf{c}^T = 0 \ \forall \mathbf{c} \in \mathcal{C} \},\$$

or, equivalently

$$\mathcal{C}^{\perp} = \{ \, \mathbf{x} \in \mathbb{F}^n \, : \, \mathbf{x} \, G^T = \mathbf{0} \, \}.$$

- $(\mathcal{C}^{\perp})^{\perp} = \mathcal{C}$
- G and H of \mathcal{C} reverse roles for \mathcal{C}^{\perp} :

$$\mathcal{C}: \left\{ \begin{array}{rrr} G &=& H^{\perp} \\ H &=& G^{\perp} \end{array} \right\} : \mathcal{C}^{\perp}.$$

• \mathcal{C}^{\perp} is an $[n, n-k, d^{\perp}]$ code over \mathbb{F} .

• $H = (1 \ 1 \ \dots \ 1)$ is a PCM for the [n, n-1, 2] parity code, which has generator matrix

$$G = \left(\begin{array}{ccc} I & \begin{vmatrix} -1 \\ -1 \\ \vdots \\ -1 \end{vmatrix} \right) \,.$$

On the other hand, H generates the [n, 1, n] repetition code, and G is a check matrix for it \Rightarrow *parity and repetition codes are dual*.

• [7,4,3] Hamming code over \mathbb{F}_2 is defined by

$$H = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}, \qquad G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

• $GH^T = 0$ can be verified by direct inspection

Theorem

Let *H* be a PCM of $C \neq \{0\}$. The minimum distance of *C* is the largest integer *d* such that every subset of d-1 columns in *H* is linearly independent.

- **Proof.** There is a codeword **c** of weight *t* in *C* if and only if there are *t* l.d. columns in *H* (those columns that correspond to non-zero coordinates of **c**).
- Example: Code C with

All the columns are different \Rightarrow every 2 columns are linearly independent $\Rightarrow d \ge 3$. On the other hand, $H \cdot [1 \ 1 \ 1 \ 0 \ 0 \ 0]^T = \mathbf{0} \Rightarrow d = 3$.

The Binary Hamming Code

• The *m*-th order Hamming code \mathcal{H}_m over \mathbb{F}_2 is defined by the $m \times (2^m - 1)$ PCM

$$H_m = \left[\mathbf{h}_1 \mathbf{h}_2 \ldots \mathbf{h}_{2^m - 1} \right],$$

where \mathbf{h}_i is the length-m (column) binary representation of i.

• Clearly, H_m has full rank m.

Theorem

 \mathcal{H}_m is a $[2^m - 1, 2^m - 1 - m, 3]$ linear code.

Proof. [n, k] parameters are immediate. No two columns of H_m are l.d. $\Rightarrow d \ge 3$. On the other hand, $\mathbf{h}_1 + \mathbf{h}_2 + \mathbf{h}_3 = \mathbf{0}$ for all m.

The q-ary Hamming Code

• The *m*-th order Hamming code $\mathcal{H}_{q,m}$ over $\mathbb{F} = \mathbb{F}_q, q \ge 2$, has PCM $H_{q,m}$ consisting of all distinct nonzero *m*-columns $\mathbf{h} \in \mathbb{F}_q^m$ up to scalar multiples, e.g.

 $\mathbf{h} \in H_{q,m} \implies a\mathbf{h} \notin H_{q,m} \; \forall a \in \mathbb{F}_q \setminus \{1\}.$

Example:
$$q = 3$$

$$m \begin{cases} 1 & 0 & 1 & 2 & \cdots & 2 \\ 0 & 1 & 1 & 1 & \cdots & 2 \\ 0 & 0 & 0 & 0 & \cdots & \cdots & 2 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \cdots & 1 \end{cases}$$

Theorem

 $\mathcal{H}_{q,m}$ is an [n, n-m, 3] code with

$$n = \frac{q^m - 1}{q - 1}$$

Proof. As before, no two columns of $H_{q,m}$ are multiples of each other, i.e. dependent. One the other hand, there are l.d. triplets of columns.

Cosets and Syndromes

- Let $\mathbf{y} \in \mathbb{F}^n$. The syndrome of \mathbf{y} with respect to an $r \times n$ PCM H of C, r = n - k, is defined by $\mathbf{s} = H \mathbf{y}^T \in \mathbb{F}^r$. $\boxed{\begin{array}{c}r & n \\ H\end{array}} = \begin{bmatrix}r \\ \mathbf{y}^T & \mathbf{s}\end{bmatrix}$
- The set

$$\mathbf{y} + \mathcal{C} \stackrel{\Delta}{=} \{\mathbf{y} + \mathbf{c} \; : \; \mathbf{c} \in \mathcal{C}\}$$

is a *coset* of \mathcal{C} (as an additive subgroup) in \mathbb{F}^n .

- Since $0 \in C$, we have $y \in y + C$; also C = 0 + C is a coset itself.
- Let $\bar{\mathbf{y}} \in \mathbb{F}^n$. If $\bar{\mathbf{y}} \in \mathbf{y} + \mathcal{C}$, then $\bar{\mathbf{y}} \mathbf{y} \in \mathcal{C}$, and • $\bar{\mathbf{y}} + \mathcal{C} = \mathbf{y} + (\bar{\mathbf{y}} - \mathbf{y}) + \mathcal{C} = \mathbf{y} + \mathcal{C}$, • $H(\bar{\mathbf{y}} - \mathbf{y})^T = \mathbf{0} \implies H\bar{\mathbf{y}}^T = H\mathbf{y}^T$ \implies The syndrome is invariant for all $\bar{\mathbf{y}} \in \mathbf{y} + \mathcal{C}$.

- Let 𝔽 = 𝔽_q. There are q^{n-k} distinct, disjoint cosets of 𝔅 in 𝔽ⁿ. Cosets form a partition of 𝔽ⁿ.
- Given a PCM *H*, there is a 1-1 correspondence between the *q^{n-k}* cosets of *C* in Fⁿ and the *q^{n-k}* possible syndrome values.

Syndrome Decoding of Linear Codes

- $\mathbf{c} \in \mathcal{C}$ is sent and $\mathbf{y} = \mathbf{c} + \mathbf{e}$ is received on an additive channel
- \mathbf{y} and \mathbf{e} are in the same coset of \mathcal{C} .
- Nearest-neighbor decoding of y calls for finding the closest codeword c to y ⇒ find a vector e of *lowest weight* in y+C: a *coset leader*.
 - coset leaders need not be unique (when are they?)
- Decoding algorithm: upon receiving y
 - compute the syndrome $\mathbf{s} = H \mathbf{y}^T$
 - find a coset leader \mathbf{e} in the coset corresponding to \mathbf{s}
 - decode **y** into $\hat{\mathbf{c}} = \mathbf{y} \mathbf{e}$
- If n k is (very) small, a table containing one leader per coset can be pre-computed. The table is indexed by s. On the other hand, if k is (very) small, we can go over y + C exhaustively, and find a coset leader.
- In general, however, all known algorithms for syndrome decoding are *exponential* in $\min(k, n k)$. In fact, the problem has been shown to be NP-hard.

Decoding the Hamming Code

1 Consider \mathcal{H}_m over \mathbb{F}_2 . We have $n = 2^m - 1, \quad m = n - k.$ Given a received $\mathbf{y},$ $\mathbf{s} = H_m \mathbf{y}^T$ is an *m*-tuple in \mathbb{F}_2^m .

2 if s = 0 then $y \in C \implies 0$ is the coset leader of y + C

3 if
$$\mathbf{s} \neq \mathbf{0}$$
 then $\mathbf{s} = \mathbf{h}_i$ for some $i \implies$
 $\mathbf{e}_i = \begin{bmatrix} 0, & 0, & \dots, & 0, & 1, & 0, & \dots, & 0 \end{bmatrix}$

is the coset leader of $\mathbf{y} + \mathcal{C}$, since $H_m \mathbf{y}^T = \mathbf{s} = \mathbf{h}_i = H_m \mathbf{e}_i$, $\mathbf{y} \notin \mathcal{C}$, and $wt(\mathbf{e}_i) = 1$.

- Every word in \mathbb{F}_2^n is at distance at most 1 from a codeword.
- Spheres of radius 1 around codewords are disjoint and cover Fⁿ₂: perfect code.

steps 1–3 above describe a *complete decoding algorithm* for \mathcal{H}_m , $\forall m$.

Deriving Codes from Other Codes

- Adding an overall parity check. Let C be a binary [n, k, d] code with some odd-weight codewords. We form a new code C by appending a 0 at the end of even-weight codewords, and a 1 at the end of odd-weight ones.
 - Every codeword in $\hat{\mathcal{C}}$ has even weight.
 - $\hat{\mathcal{C}}$ is an $[n+1, k, 2\lceil d/2 \rceil]$ code. If d is odd, $\hat{d} = d+1$.
 - **Example:** The [7, 4, 3] binary Hamming code can be extended to an [8, 4, 4] code with PCM

corrects any pattern of 1 error, and detects any pattern of 2.

Deriving Codes from Other Codes (cont.)

- *Expurgate by throwing away codewords.* E.g., select subset of codewords satisfying an independent parity check.
 - **Example:** Selecting the even-weight sub-code of the $[2^m 1, 2^m 1 m, 3]$ Hamming code yields a $[2^m 1, 2^m 2 m, 4]$ code.
- Shortening by taking a cross-section. Select all codewords c with, say, c₁ = 0, and eliminate that coordinate (can be repeated for more coordinates). An [n, k, d] code yields an [n − 1, k − 1, ≥ d] code.