
2. Linear Codes
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Linear Codes

• Assume the code alphabet F can be given a field structure.
• What is a field? A set with addition and multiplication operations
{+, ∗} with all the properties we’re used to (e.g., Q,R,C).
• A finite field is a field with a finite number of elements. In our case,

F is a finite field, of, say, |F| = q elements.
• We will see that q = pm for some prime number p and integer

m ≥ 1. We denote such a field by Fq or GF(q).
• Example: F2 = {0, 1} with xor,and operations.
• Much more about finite fields later!

• Fn is a linear space over F (the field of scalars). All the usual
notions and properties apply: bases, sub-spaces, matrices, linear
transforms, etc.

• A code C : (n,M, d) over F is a subset of Fn.
C is called a linear code if it is a linear sub-space of Fn over F.
• c1, c2 ∈ C, a1, a2 ∈ F ⇒ a1c1 + a2c2 ∈ C
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Parameters of a Linear Code

• C is a linear sub-space of Fn over F. Let k ≤ n be the dimension of this
linear sub-space, and let q = |F|.

• C has a basis {c0, c1, . . . , ck−1} such that every c ∈ C can be written as

c =

k−1∑
i=0

aici, ai ∈ F, 0 ≤ i ≤ k − 1 ,

and every distinct vector of coefficients [a0, a1, . . . , ak−1] corresponds to
a different codeword. There are qk such vectors.

• Therefore, C has M = qk codewords, which explains why we called
k = logq M the dimension of C (even when C was not linear).

• r = n− k is the redundancy of C, R = k/n its rate.

• We use the notation [n, k, d] to denote the parameters of a linear code.
An [n, k, d] code over F is an (n, qk, d) code over F.
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Generator Matrix

• A generator matrix for a linear code C is a k × n matrix G whose rows
form a basis of C.

• Example: G =

(
1 0 1
0 1 1

)
, Ĝ =

(
0 1 1
1 1 0

)
are both generators of the [3, 2, 2] parity code over F2.

• In general, the [n, n− 1, 2] parity code over any F is generated by

G =

 In−1

−1
−1

.

.

.
−1

 ,

where In−1 is the (n− 1)× (n− 1) identity matrix.

• What’s G for the repetition code?

G = (1 1 . . . 1) .
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Minimum Weight

• For an [n, k, d] code C,

c1, c2 ∈ C =⇒ c1 − c2 ∈ C , and d(c1, c2) = wt(c1 − c2) .

Therefore,

d = min
c1,c2∈C : c1 ̸=c2

d(c1, c2) = min
c1,c2∈C : c1 ̸=c2

wt(c1−c2) = min
c∈C\{0}

wt(c) .

⇒ minimum distance is the same as minimum weight for linear codes.

• Recall also that 0 ∈ C and d(c,0) = wt(c).
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Encoding Linear Codes

• Since rank(G) = k, the map E : Fk → C defined by

E : u 7→ c = uG , u ∈ Fk

is 1-1, and can serve as an encoding mechanism for C.

k

u k
n
G

=
n

c

• Applying elementary row operations and possibly reordering coordinates
(columns), we can bring G to the form

G =
(
Ik A

)
systematic generator matrix,

where Ik is a k × k identity matrix, and A is a k × (n− k) matrix.

u 7→ c = uG = (u | uA ) systematic encoding.

• In a systematic encoding, the k information symbols from u are
transmitted ‘as is’, and n− k check symbols (or redundancy symbols, or
parity symbols) are appended.
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Parity Check Matrix

• Let C : [n, k, d]. A parity-check matrix (PCM) of C is an r × n matrix H
such that for all c ∈ Fn,

c ∈ C ⇐⇒ HcT = 0 .

• C is the (right) kernel of H in Fn. Therefore,

rank(H) = n− dimker(H) = n− k

• We will usually have r = rank(H) = n− k (no superfluous rows)

• For a generator matrix G of C, we have

HGT = 0 ⇒ GHT = 0, and dimker(G) = n− rank(G) = n− k = r

• If G = ( Ik | A ), then H = (−AT | In−k ) is a (systematic) parity-check
matrix.

𝐼! 𝐴𝑘

𝑘 𝑛 − 𝑘

−𝐴% 𝐼&'!𝑛 − 𝑘

𝑘 𝑛 − 𝑘

𝐺: 𝐻:
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Dual Code

• The dual code of C : [n, k, d] is

C⊥ = {x ∈ Fn : xcT = 0 ∀c ∈ C },

or, equivalently
C⊥ = {x ∈ Fn : xGT = 0 }.

• (C⊥)⊥ = C
• G and H of C reverse roles for C⊥:

C :

{
G = H⊥

H = G⊥

}
: C⊥ .

• C⊥ is an [n, n− k, d⊥] code over F.
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Examples

• H = ( 1 1 . . . 1 ) is a PCM for the [n, n− 1, 2] parity code, which has
generator matrix

G =

 I

−1
−1

.

.

.
−1

 .

On the other hand, H generates the [n, 1, n] repetition code, and G is a
check matrix for it ⇒ parity and repetition codes are dual.

• [7, 4, 3] Hamming code over F2 is defined by

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 , G =


1 1 1 1 1 1 1
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

• GHT = 0 can be verified by direct inspection
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Minimum Distance and H

Theorem

Let H be a PCM of C ̸= {0}. The minimum distance of C is the largest
integer d such that every subset of d−1 columns in H is linearly
independent.

• Proof. There is a codeword c of weight t in C if and only if there are t

l.d. columns in H (those columns that correspond to non-zero coordinates

of c).
• Example: Code C with

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

All the columns are different ⇒ every 2 columns are linearly
independent ⇒ d ≥ 3.
On the other hand, H · [1 1 1 0 0 0 0]T = 0 ⇒ d = 3.

41 / 162



The Binary Hamming Code

• The m-th order Hamming code Hm over
F2 is defined by the m× (2m − 1) PCM

Hm = [ h1 h2 . . . h2m−1 ] ,

where hi is the length-m (column) binary
representation of i.

• Clearly, Hm has full rank m.

m

{
1 0 1 · · · · · · 1
0 1 1 · · · · · · 1
0 0 0 · · · · · · 1
...

...
...

. . .
. . .

...
0 0 0 · · · · · · 1



Theorem

Hm is a [2m − 1, 2m − 1−m, 3] linear code.

Proof. [n, k] parameters are immediate. No two columns of Hm are l.d. ⇒
d ≥ 3. On the other hand, h1 + h2 + h3 = 0 for all m.
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The q-ary Hamming Code

• The m-th order Hamming code Hq,m over
F = Fq, q ≥ 2, has PCM Hq,m consisting
of all distinct nonzero m-columns h ∈ Fm

q

up to scalar multiples, e.g.

h ∈ Hq,m =⇒ ah /∈ Hq,m ∀a ∈ Fq\{1}.

Example: q = 3

m

{
1 0 1 2 · · · · · · 2
0 1 1 1 · · · · · · 2
0 0 0 0 · · · · · · 2
...

...
...

...
. . .

. . .
...

0 0 0 0 · · · · · · 1



Theorem

Hq,m is an [n, n−m, 3] code with

n =
qm − 1

q − 1

Proof. As before, no two columns of Hq,m are multiples of each other, i.e.

dependent. One the other hand, there are l.d. triplets of columns.
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Cosets and Syndromes

• Let y ∈ Fn. The syndrome of y (with respect to an (n− k)× n PCM H
of C) is defined by

s = HyT ∈ Fn−k. 𝐻𝑛 − 𝑘

𝑛

𝒚!

𝑛

• The set
y + C ∆

= {y + c : c ∈ C}
is a coset of C (as an additive subgroup) in Fn.
• Since 0 ∈ C, we have y ∈ y + C; also C = 0+ C is a coset itself.

• Let ȳ ∈ Fn. If ȳ ∈ y + C, then ȳ − y ∈ C, and
• ȳ + C = y + (ȳ − y) + C = y + C,
• H(ȳ − y)T = 0 =⇒ HȳT = HyT

=⇒ The syndrome is invariant for all ȳ ∈ y + C.
• If ȳ − y /∈ C then (ȳ + C) ∩ (y + C) = ϕ.

• Let F = Fq. There are qn−k distinct, disjoint cosets of C in Fn. Cosets
form a partition of Fn.

• Given a PCM H, there is a 1-1 correspondence between the qn−k cosets
of C in Fn and the qn−k possible syndrome values.
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Syndrome Decoding of Linear Codes

• c ∈ C is sent and y = c+ e is received on an additive channel

• y and e are in the same coset of C.
• Nearest-neighbor decoding of y calls for finding the closest codeword c
to y =⇒ find a vector e of lowest weight in y+C: a coset leader.

• coset leaders need not be unique (when are they?)

• Decoding algorithm: upon receiving y

• compute the syndrome s = HyT

• find a coset leader e in the coset corresponding to s
• decode y into ĉ = y − e

• If n− k is (very) small, a table containing one leader per coset can be
pre-computed. The table is indexed by s. On the other hand, if k is
(very) small, we can go over y + C exhaustively, and find a coset leader.

• In general, however, all known algorithms for syndrome decoding are
exponential in min(k, n− k). In fact, the problem has been shown to be
NP-hard.
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Decoding the Hamming Code

1 Consider Hm over F2. We have
n = 2m − 1, m = n− k.
Given a received y,

s = HmyT

is an m-tuple in Fm
2 .

2 if s = 0 then y ∈ C =⇒ 0 is the coset
leader of y + C

3 if s ̸= 0 then s = hi for some i =⇒
ei = [0, 0, . . . , 0, 1, 0, . . . , 0]

↑
i

is the coset leader of y + C, since
HmyT = s = hi = Hmei , y /∈ C, and wt(ei) = 1.

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

• Every word in Fn
2 is at distance at most 1 from a codeword.

• Spheres of radius 1 around codewords are disjoint and cover Fn
2 :

perfect code.

steps 1–3 above describe a complete decoding algorithm for Hm, ∀m.
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Deriving Codes from Other Codes

• Adding an overall parity check. Let C be a binary [n, k, d] code with some
odd-weight codewords. We form a new code Ĉ by appending a 0 at the
end of even-weight codewords, and a 1 at the end of odd-weight ones.

• Every codeword in Ĉ has even weight.
• Ĉ is an [n+ 1, k, 2⌈d/2⌉] code. If d is odd, d̂ = d+ 1.
• Example: The [7, 4, 3] binary Hamming code can be extended to an
[8, 4, 4] code with PCM

Ĥ =


0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 corrects any pattern of
1 error, and detects any
pattern of 2.
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Deriving Codes from Other Codes (cont.)

• Expurgate by throwing away codewords. E.g., select subset of codewords
satisfying an independent parity check.

• Example: Selecting the even-weight sub-code of the
[2m − 1, 2m − 1−m, 3] Hamming code yields a
[2m − 1, 2m − 2−m, 4] code.

• Shortening by taking a cross-section. Select all codewords c with, say,
c1 = 0, and eliminate that coordinate (can be repeated for more
coordinates). An [n, k, d] code yields an [n− 1, k − 1,≥ d] code.
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