EQUATIONS OF MOTION

Undamped free vibrations
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2nd Newton law F(t) = ma(t)
F(t) = - kq(t) restoring elastic force
a(t) =q(t) absolute acceleration

md(t)+kq(t) = 0| = (dividing both members by m)
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t)+—q(t)=0 Definin =—
q(t)+—a(t)=0= glog=—
50(t) =0|= 2nd order, homogeneous, linear differential equation
with constant coefficients

q(t)+o

q(0)=qo; ¢(0)=¢, initial conditions

g(t)=Acos o,t+Bsin ot = A=q,; B=—1
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o, = fundamental circular frequency
Ny = oo/ 2n = fundamental frequency
To=1/ny =2n/®y = fundamental period

Indicatively:

Ny <1Hz (T, >1s) - Dynamically flexible structure
Ne >1Hz (T, <1s) - Dynamically rigid structure



Example: Arc lamp
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E =2.100.000 kgf /cm?=0.21x10" N/m?
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Mass of the pole m = 0.0252 x 27 x 7850 = 5343 kg
Itis assumed m=m¢ +m, /2 =10671kg

®y :\/E: 1/@ =1.405rad/s
m 10671

no :(00/27520.223 Hz
TO :1/n0 =4.47S

Damped free vibrations
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2nd Newton law F(t) =ma(t) ; a(t)=q(t)
F(t) =—kqg(t)-cq(t) ; -—cq(t)= damping viscous force
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m (t)+ca(t)+kg(t)=0|= (dividing both members by m)
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Damping ratio or damping coefficient

C

== 2 dkm

G(t)+28044(t) + oo (t) =0
q(0)=4q, ; 4(0)=4q,

This equation admits three distinct solutions depending on whether § <1, >1,£=1. In structural
engineering not only & <1 but, even more £ <1 . A structure with & <1 is said “under-damped”.
In this case the solution of the above equation is given by:

q(t)=e =% (a1 COSMgy1—E2 t+a,SiNmyy1—E2 t)

where a; and a, are constants depending on the initial conditions:
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Eq. (2) may be rewritten as:

q(t):Qoe’é‘”"tcos(mowll—&zt+¢) (3)
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Remarks

1. q(t) defines a damped vibratory motion for which the relative maximum and minimum values

occur every T =21/ w,1- &% = 21/ w,; they lie on the symmetric curves + Qqe =",

2. The absolute values of the relative maxima and minima correspond to a series with rate e 5"
the logarithmic decrement is defined as:

—Emgt
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3. The vibratory motion tends to vanish on increasing the time:

fimq(t)=0

t—o0

This tendence becomes faster on increasing the damping ratio &.

Forced damped vibrations
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2nd Newton law F=ma;a =
F=-kq-cq+f; f=1f(t) = external force; q = q(t).
még (t)+cq(t)+kg(t)=f(t)|= (dividing both members by m)

4(0+-=4(0)+-a(t) -

()=

() + 2600 (1) +0fa (1) = £ (1)
q(0)=q, ; 4(0) =g,
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Dynamics, guasi-statics and statics

md(t)+cq(t)+ka(t)="F(t)| Equation of dynamics

Assuming that q(t) varies slowly with time: ¢(t) ~G(t)~0=

f(t)

m

kq(t)="f(t) Equation of quasi-statics |q(t) =

Assuming that f does not depend on time: f (t)=f =

f

Equation of statics |q =

Decomposition of the equation of motion

Due to the linearity of the equation of motion its solution may be expressed as:

q(t)=q'(t)+q"(t)

The first equation defines the problem of the free vibrations with an initial perturbation. The second
equation defines the problem of the forced vibrations without an initial perturbation.

Since g'(t) tends to zero on increasing the time, sufficiently far fromt=0 g(t)=q"(t).



TIME-DOMAIN ANALYSIS

Impulsive force
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f per t<t<t+A _
fo(t)=<" ber o v Impulse: 1 =f, At.
0 elsewhere

Elementary impulsive force: t=0, At—>0, I =1 (fh - oo).

= A

f,(t)=5(t)= Dirac function

[ &(t)8(t—a)dt = o(a)

{S(I—a)_o pert=a

Dynamic response to an elementary impulsive force:
Impulse response function

h(t)=e =" 1 s wo/1-E7 t
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Impulsive force method

A generic force f(t) may be approximated by a superposition of a series of suitable impulsive forces

fi(t) (i=1,2,...): f(t)= Zo: i (1)

—

—~ Vv

Therefore, the response q(t) can be expressed as the superposition of the responses qi(t) to each
impulsive component force f,; (t): q(t)= > ;q;(t), where q;(t)=1,h(t-1,).
0

At the limit for At > 0:
Duhamel integral of the first type

q(t) = I;f(r) h(t-t)dt

This equation represent the convolution integral of f(t) and h(t): q(t)=f(t)*h(t)

—h=h(m, 0, {) ——




Step force
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0 for t<t
L=

fg for t>1

Elementary step force: t =0, fg =1.
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f,(t)=1(t)= Heaviside function

1(t 3 0 for t<a
( —a)_ 1 for t>a

Dynamic response to an elementary step force:
Step response function

g(t): 1 . 1—e 5ot Lsinmo ll—izt-i‘aZCOSO)O ll_azt
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Step force method

A generic force f(t) may be approximated by a superposition of a series of suitable step forces f; (t)

(i=1,2...): f(t);zolifgi(t).

5

f(0)
—~V

Therefore, the response q(t) can be expressed as the superposition of the responses ¢;(t) to each
step component force fy(t): q(t)= Y iq;(t), dove q;(t)=Tyi(x)g(t-1;)=
0

At the limit for At > 0:
Duhamel integral of the second type

o(t)=(0)g(t)+ [ F(x)g(t-)dr

Therefore: q(t)=f(0)-g(t)+f'(t)*g(t).

—1g=g(m, ®,, §) ——




Summary

H(t)+2?’;moh(t)+m§h(t):%S(I)
y . 1
g(t)+2§mog(t)+mf}g(t)=Hl(t)
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h(t)= - _ sinwgy1-&% t
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1 —Eampt & : 2 2
g(t)=—— |1-e | —=——sinwm,/1-E*t+a,C08m,+/1—E*t
O |

Duhamel’s integrals:

q(t) = j;f(T) h(t-1)dt
o(t)=(0)g(t)+ [;F(x)g(t-)dr
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Numerical integration

(1) +28048(1)+ola() = (1)
q(0)=q, ; 4(0)=4q,

e Instead of solving the equation of motion at any time t, it is satisfied at discrete time intervals
At. So, the dynamic balance is imposed in a finite number of points along the time axis.

The solution is searched by recursive algorithms. Knowing the solution at times 0, At, 2At, ... t,
the algorithm provides the solution at time + At.

|
| |
0 At 2At t t+At

t

An explicit integration method is a method formulated by imposing the dynamic balance at time
t. An implicit integration method is a method formulated by imposing the dynamic balance at
time t + At.

The accuracy, the stability and the burdensome of the algorithm depend on the choice of the
time interval At and by the way in which q, ¢, ¢ are assumed to vary within At.

A numerical integration method is defined as unconditionally stable if the solution to any initial
condition does not increse without limits on increasing t, for any choice of At.

e A numerical integration method is said conditionally stable if the above condition holds for At <
Algritico, Where Atgritico 1S @ stability limit.

q
q %

- TUT

Well-known methods for the numerical integration of the equation of motion are:
Finite difference method

Houbolt method

Wilson “8”” method

Newmark “B” method
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FREQUENCY-DOMAIN ANALYSIS

Elementary harmonic force

A harmonic force f(t) is defined as elementary when it has a unit amplitude. This condition is

satisfied by the real expression f(t)=sinwt and by the complex expression f(t)=e™":

f(t)=e"" =cosot+isinot

:‘e‘““z\/(sinmtﬂcoswt) (sinot—icoswt) =/sin? ot+cos? ot =1

Dynamic response to a elementary harmonic force

d(t)+2§wOQ(t)+qu(t):%f(t)zéeimt:%
q(0)=q, ; g(0)=q,

a(t)=q'(t)+q"(t)

After a sufficiently long time q'(t) ~0 and g(t)~q"(t). It follows that:

(cosot+isinot)

R(oa): 1 : 1-0° /o, ; I(co): 1 : 2@203/0)0

m e, (1—0)2/0)02) +4Ew’ o] M o, (1—032/03§) +4E% ® | wf
‘H(w)‘= 12' L ; W((D):amtg[_ 25032/0)02}

Mg \/(1—m2/(o§)2+4§(02/(o§ 1-o™ /oy
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The magnification factor N(w) is defined as the ratio between the amplitude |H(w)| of the dynamic
response and the amplitude H(0)=1/mw; =1/k of the static response:
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Periodic force

A function f(t) is defined as periodic with period T when f(t) = f(t + T) for Vte R, with T > 0. The
period, is the minimum value of T for which above condition is satisfied.

Under general conditions, a periodic function f(t) can be expanded in the following Fourier series:

a, = %J‘_T:zf (t)cosmtdt k=0,12,..

f(t)=a—2°+zl‘,k(akCOkakusinwkt) b,(:%f:zf(t)sincoktdt k=12,..

mk:kﬁ k=0,12,..
T
— A, = ai+b’
f(t):7°+zkAksin( o t+@,) (ak]
1 ¢, =arctg| &
by
A
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Dynamic response to a periodic force

10) q(®)
T ] ~ q}
AV WY
-4 _T L -;h | T + 7&
= |
.| Wer0 . W,-0
% o~ Q, )
+ t +
2 o+ %l +
L w; «<w Q‘-____._ ;i
//;\\-»l:. N> — - %
Bl + o ] ,\ h o
TN A Mo~ [ L
p BAVAY
f& + G +
w,»u) | +
1;' n [\ n nU! e —> Ql. - w&k
| i +--
UU U U *ln(u)al Qu=Qsx- N(QJQ-
L Q Fulmwd- MR
T. Te Q
1UII|’||I| JL Q|I||.9~.
@ &)' w wolwl w, We

15



Generic force

Under general conditions, a generic function f(t) can be expanded in the following Fourier integral:

F(t) =2 Flo)e™ do

:E .

Flo)=[" f(t)e™" dt

F(o) is a complex function called Fourier transform; f(t) is consequently called inverse Fourier

transform. The uniqueness of a Fourier couple, f(t) and F(®), is demonstrated under general
conditions. F(w) exists provided that:

ji‘f (t)|dt is finite.

2|F(w)] = S¢(w) =

Ak Fourier spectum

/

f periodic |T ‘ ‘ ‘
|

componet amplitudes
|
I

‘ ‘ ‘ f not periodic
o, ®

Dynamic response to a generic force

q(t)+2amoq(t)+m02q(t):%f(t)

The steady-state response q(t) to a generic force f(t) can be expressed as the integral of the
elementary component responses to the elementary component harmonic forces:

f(t)=e™ = q(t)=H(w)e™ |
f(1)=Flo)e™ =  q(t)= F(o) H(o)e™
f(t):z—lTE _Ho)e"do=

a(t) == F(0) H(0)e"do

Moreover, using the definition of Fourier transform and inverse Fourier response of the response:

q(t) =2—an._2 Q(w)e"dw

Q(m)z[iq(t)e“““dt
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Comparing the above equations:

Qo) = H(o) F(o)

Summarising, the frequency domain analysis consists of 4 steps:
h(t
f) ) qm-nr(
F—> SDOF system
©) = pe) Qe)=HE)F()

(1) Starting from f(t) its Fourier transform is calculated F(w)= [~ f(t)e ™ dt;

(2) The structural system is characterised by its complex frequency response function:
1 1
H(CO) N 2 24 2 :
m @, (1—0) /coo) + 2iEo0/ o,
(3) The Fourier transform of q(t) is determined: Q(w)=H(w) F(w);

(4) The inverse Fourier transform of Q(w) is calculated: q(t):zijw Q(w)e™'dw.
TY®

It is easy to demonstrate that:

|Qlw) = [H(w)[F(w)

St (0)=2|F(w)] = Fourier spectrum of the force =

= amplitude of the harmonic components of f(t)
Stq(®)=2|Q(w)| = Fourier spectrum of the response =
= amplitude of the harmonic components of q(t)
|H(0) =N(w)/mw; = Ratio between the amplitudes of the harmonic components of the
response and of the force

Thus: Sey(@) =|H(w)|- Sk ()

Sk [H(w)| Stq
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