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RANDOM DYNAMICS 
 

Maximum value of the response 
 
 
Definitions 

Let us consider the random stationary process Q’(t) that represents the fluctuating part of the 

response Q(t). Let Q̂  be the random variable that expresses the maximum value of Q’(t) in the 

temporal interval T. Q̂  is the set of the random occurrences of the maximum values of the sample 

functions ( j)q (t)  in T (Fig. 1). 
 

 
 

Fig. 1 
 

The evaluation of the distribution of the random variable Q̂ , i.e. of the maximum value of the 
fluctuation of the response, involves the preliminary analysis of the threshold up-crossing of the 
process Q’(t). 
 
For sake of simplicity, this treatment will be carried omitting the apex prime. Thus, Q’ is replaced 

by Q, q’ by q, and Q̂  by Q̂ . 
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Threshold up-crossing of a stationary process 

Let us consider a deterministic quantity 0   defined as threshold. Let  K ,T   be the discrete 

random variable that counts the number of the up-crossings (+) of the threshold  in the time 
interval T (Fig. 2). 
 

 
 

Fig. 2 
 
It is demonstrated (Rice 1944, 1945) that the mean value of the up-crossings of the threshold  in 
the time interval T is given by: 
 

     QQN 0
,T E K ,T T q p ,q dq

             (1) 

 
where  QQ

p q,q   is the joint density function of  Q t  and  Q t  (at the time lag  = 0). 

 
From Eq. (1) it follows that the mean number of the up-crossings of the threshold  in the unit time 
is given by: 
 

     N
N

,T
E N

T




  

         

   QQN 0
q p ,q dq


        (2) 

 
The solution of Eq. (2) is simple in the fundamental case in which  Q t  is a normal process. Since 

any stationary process  Q t  and its time derivative  Q t  are uncorrelated for  = 0, i.e. 
QQ

C (0)   

E Q(t)Q(t) 0   
 , if Q(t) is a normal process,  Q t  and  Q t  are independent (for  = 0). So: 
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     
2 2

QQQ Q 2 2
Q Q

q q
p q,q p q p q exp

2 2

         
 



   (3) 

 
Substituting Eq. (3) into Eq. (2), it follows that: 
 

 
2

Q 2N
Q

exp
2



         
 (4) 

 
where: 
 

Q
Q N

Q

1
(0)

2



   

 


 (5) 

 
is the mean number of the up-crossings of the threshold  = 0 in the unit time. This quantity is 
referred to as the expected frequency of the process. 
 
It is easy to show that the expected frequency Q  of a narrow band process is the mean number of 

the cycles made by Q(t) in the unit time (Fig. 3). 
 

 
 

Fig. 3 
 
Distribution of the maximum (independent threshold up-crossings) 

Assuming that the threshold  is high enough, the threshold up-crossings are rare and independent 
events (Fig. 4). As such, they are characterised by a Poisson distribution. 
 

 
 

Fig. 4 
 
In this case, the probability that the threshold  is up-crossed N+ = n times in the time interval T is 
given by: 
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       n

N

N N

,T
P n, ,T exp ,T

n!



 

 
     (6) 

 
Thus, due to Eq. (2): 
 

       n

N

N N

T
P n, ,T exp T

n!



 

 
      (7) 

 
where, if Q(t) is a normal process,  N   is given by Eq. (4). 

Applying Eq. (7) and Eq. (4), the probability that the threshold  is up-crossed N+ = 0 times in the 
time interval T is given by: 
 

 
2

Q 2N
Q

P 0, ,T exp T exp
2



            
 (8) 

 
But the probability that the threshold  is up-crossed N+ = 0 times in the time interval T is equal to 

the probability that the maximum value Q̂  of  Q t  in T is less or equal . Thus: 

 

 
N

ˆP Q P 0, ,T
       (9) 

 

being  Q̂
ˆP Q F      . It follows that the distribution function of the maximum is given by the 

relationship (Davenport, 1963): 
 

 
2

ˆ Q 2Q
Q

q̂
ˆF q exp T exp

2

           
 (10) 

 
from which, deriving with respect to q̂ , the density function of the maximum value is obtained: 
 

 
2 2

ˆ Q Q2 2 2Q
Q Q Q

ˆ ˆ ˆq q q
ˆP q T exp exp T exp

2 2

                       
 (11) 

 

From Eq. (11) it is possible to determine the mean value 
Q̂

  and the standard deviation 
Q̂

  of Q̂ : 

 

 ˆ ˆQ Q0
ˆ ˆ ˆq p q dq


    

 

 
 

ˆ Q QQ

Q

0.5772
2 n T

2 n T

 
    
  

 


 (12) 
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   
2

2
ˆ ˆ ˆQ Q Q0

ˆ ˆ ˆq p q dq


     

 

 
ˆ QQ

Q

1

6 2 n T

   
  




 (13) 

 

Fig. 5 shows the density function of the response process Q(t) and of its maximum Q̂  (on varying 

the non-dimensional parameter QT ). 

 

 
 

Fig. 5 
 
On increasing QT , the density function of the maximum translates towards the largest values of q 

(since 
Q̂

  increases), and its shape becomes more and more narrow and sharp (since 
Q̂

  

diminishes). In other words, on increasing QT , Q̂  tends to assume deterministic properties. 

 

Therefore, when QT  is small (e.g. in the seismic case), Q̂  is definitely a random variable. When 

QT  is large (e.g. in the wind case), Q̂  may be considered, roughly, as a deterministic quantity 

equal to the mean value 
Q̂

  of Q̂ . Using Eq. (12) this value becomes: 

 

ˆ Q QQ
g    (14) 

 
where gQ is a non-dimensional quantity referred to as the peak coefficient: 
 

 
 Q Q

Q

0.5772
g 2 n T

2 n T
  





 (15) 
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Finally, let us remember that all the above analyses refer to the fluctuating part of the response 
 Q t  (indicated by Q(t)). Considering also the mean value Q  of the response process, the actual 

maximum value is given by (Fig. 6): 
 

ˆ Q Q QQ
g      (16) 

 

 
 

Fig. 6 
 
Bilateral threshold crossings and  
absolute maximum value of a normal zero mean process 

The above analyses examined the up-crossings of  (Fig. 2). However, in the case of the normal 
zero mean processes (e.g. the seismic response), it is relevant to count both the up-crossings of  
and the down-crossings of -, i.e. the number of times in which the process out-crosses the domain 
(-, ) (Fig. 7). This problem is referred to as the bilateral threshold crossing. 
 

 
 

Fig. 7 
 
Let N- be the discrete random variable that counts the down-crossings of - in the unit time: 

N N    . Thus, setting N = N+ + N-, then N N N N
2        . From Eq. (4) it follows that: 

t 

q 
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 
2

N Q 2
Q

2 exp
2

         
          (17) 

 
Based on this new formulation, the distribution function and the density function of the maximum 

absolute value Q̂  of Q(t) are given by the relationships: 

 

 
2

Qˆ 2Q
Q

q̂
ˆF q exp 2 T exp

2

            
         (18) 

 

 
2 2

Q Qˆ 2 2 2Q
Q Q Q

ˆ ˆ ˆq q q
ˆp q 2 T exp exp 2 T exp

2 2

                          
     (19) 

 

Finally, the mean value and the standard deviation of Q̂  are given by: 

 

Qˆ QQ
g               (20) 

 

 
 QQ

Q

0.5772
g 2 n 2 T

2 n 2 T
  





         (21) 

 

 QQ̂

Q

1

6 2 n 2 T

    
  

         (22) 

 
Crossings in clumps and envelope process of a narrow band process 

Fig. 8 shows a typical sample function of a random stationary normal zero-mean narrow-band 
process. It is apparent that the up-crossings of a threshold  tend to occur in clumps. In other words, 
any time a sample function up-crosses the threshold, the up-crossing tend to repeat also in the 
following cycles. 
 

    
Fig. 8 

 
In order to understand better this concept, let us consider a new process A(t), the envelope process 
of the process Q(t), constituted by the sample functions a(t) (Fig. 9a). 
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Fig. 9 
 
Let  AN   be the discrete random variable that counts the up-crossings of the threshold  made by 

the process A(t) (Fig. 9b) in the unit time. It is demonstrated that the mean value of  AN   results: 

 

   
A

2
Q Q Q

2N N2
Q QQ

q 2 q
exp

22
 

                


 (23) 

 
where Qq  is the spectral bandwidth parameter of Q(t). 

The mean number of the up-crossings in a clump is referred to as the average clump size. A good 
approximation of this quantity is given by the relationship: 
 

 
 

A

QN

QN

cs
2 q





  
 
  

 (24) 

 
It is worth noting that cs  diminishes on increasing . Thus, on increasing , the threshold up-

crossings tend to occur independently. 
In the meanwhile, cs  is linked with the spectral bandwidth parameter Qq . When the process is 

sinusoidal, Qq  tends to 0 and cs  tends to infinite; in other words, each time the process up-crosses 

, the up-crossing repeats infinite other times. On the contrary, when the harmonic content of the 
process becomes wider, Qq  increases, cs  diminishes and the threshold up-crossings tend to 

become independent events. 
It is worth noting, however, that the limit case in which Qq  tends to 1 has no practical meaning in 

this context: it is so far from the hypothesis of a narrow band process that all the above treatment 
does not apply. 
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Distribution of the maximum (threshold up-crossings in clumps) 

The distribution of the maximum value derived above is based on the hypothesis that the threshold 
up-crossings are rare and independent events; thus they can be characterised by a Poisson 
distribution. Further to this formulation, however, it was noted that this hypothesis is not 
appropriate in the case of the narrow band processes, where the threshold up-crossings tend to occur 
in clumps. This remark is very important since the dynamic response of the structural systems are 
often narrow-band processes. Therefore, it is necessary to generalise the evaluation of the 
distribution of the maximum, developed considering independent up-crossings, to the case of up-
crossings in clumps. 
The most simple way of dealing with this problem is observing that the envelope A(t) up-crosses 
the threshold  once per each clump of up-crossings of Q(t) (Fig. 9). So, the threshold up-crossings 
of A(t) are really independent events and can be schematised by a Poisson distribution (Lin, 1967). 
Paraphrasing the above demonstration (Eq. (7)), the probability that the process A(t) up-crosses the 
threshold  AK n   times in the time interval T is given by: 
 

       
A

A A

n

N

N N

T
P n, ,T exp T

n!



 

 
      (25) 

 
where  

AN   is given by Eq. (23). Thus, the probability that A(t) up-crosses the threshold  AK = 

0 times in the time interval T coincides with the distribution function of the maximum value and is 
given by: 
 

 
2

Q
ˆ Q 2Q

Q Q

ˆ2 q q q̂
ˆF q exp T exp

2

            
 (26) 

 
Vanmarcke (1975) perfected this treatment arriving at the following expression of the distribution 
function of the maximum value: 
 

 

Q

2
Q

ˆ Q 2Q 2
Q

2
Q

ˆq q
1 exp

2 q̂
ˆF q exp T exp

2q̂
1 exp

2

                       

 (27) 

 
The comparison of Eqs. (10), (26) and (27), considering Eq. (24), points out that Eqs. (26) and (27) 
tend to Eq. (10) when cs  tends to 1; this is increasingly true on increasing the threshold and the 

maximum values considered. Moreover, it is easy to show that Eqs. (26) and (27) tend to Eq. (10) 
on increasing QT . Under this point of view, Eq. (10) provides better reasonable results in the wind 

case, less appropriate solutions in the seismic case. 
 
Finally, it is worth noting that, differently from Eq. (10), Eq. (27) does not allow the derivation of 
closed form solutions of the mean value and of the standard deviation of the maximum value. Der 
Kiureghian (1980) solved this problem semi-empirically, obtaining the following formulae: 
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 
 

ˆ Q QeQ

Qe

0.5772
2 n T

2 n T

 
    
  

 


 (28) 

 

   
Q Qe6.4

Q̂ Qe Qe

Q Qe

1.2 5.4
per T 2.1

2ln T 13 2ln T

0.65 per T 2.1

  
  
     

          
   

 (29) 

 
where Qe  is referred to as the reduced expected frequency: 

 

 0.45
Q Q Q

Qe

Q Q

1.63q 0.38 per 0.10 q 0.69

per q 0.69

      
 

 (30) 

 
Eqs. (28)-(30) apply for Q2.5 T 500   . Eq. (28) coincides with Eq. (12) for Qq 0.69 . This 

confirms that, if the process is broad band, the threshold up-crossings tend to occur independently. 
 
Bilateral threshold up-crossings (in clumps) and absolute maximum values 

Generalising Eq. (27), it is easy to show that the distribution of the absolute maximum value Q̂  is 

given by the relationship: 
 

 
Q

2
Q

Qˆ 22Q
Q

2
Q

ˆq q
1 exp

2 q̂
ˆF q exp 2 T exp

2q̂
1 exp

2

                           

 (31) 

 
Analogously, generalising Eqs. (28-30), it is easy to show that the mean value and the standard 

deviation of Q̂  are furnished by the semi-empirical formulae: 

 

 
 Q QeQ̂

Qe

0.5772
2 n 2 T

2 n 2 T

 
    
  

 


 (32) 

 

   
Q Qe6.4

Q̂ Qe Qe

Q Qe

1.2 5.4
per 2 T 2.1

2ln 2 T 13 2ln 2 T

0.65 per 2 T 2.1

  
  
     

          
   

 (33) 

 
where Qe  is the reduced expected frequency given by Eq. (30). 

 


