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EQUATIONS OF MOTION 
 
 
Shear-type system – damped forced vibrations 
 

 
 
Equation of motion of the i-th mass; 2nd Newton law: 
 

iii amF   
 

      1ii1i1iiii qqkqqkF  restoring elastic forces 

      1ii1i1iii qqcqqc   viscous damping forces 

if      external force 
 

ii qa    absolute acceleration 
 

1) 11qm       22121 qcqcc   

  22121 qkqkk  1f  
 
i)     1i1ii1ii1iiii qcqccqcqm   

  1i1ii1ii1ii qkqkkqk   if  
 
n) nn1nnnn1nnnn qkqkqcqcqm    nf  
 
In matrix form: 
 

       
   o o

t t t t

0 ; 0

  

 

Mq Cq Kq f

q q q q

 

   
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In this case M, K, C are real, symmetric, positive definite matrices; M is also diagonal. 
 
Example: Shear-Type building with 2 D.O.F. 
 

 
 

      



 3

Mass of the column per unit length 
1st order: m/kg625250050.050.0mI   

2nd order: m/kg400250040.040.0mII   
 
Mass of the beams (outside the slab) per each floor 
Main beams:  kg2250250050.760.020.0mtp   

Secundary beams: kg1500250050.740.020.0mtps   

Total mass:  kg3900081500122500mt   
 
Mass of the slab per each floor 

kg562502500151510.0ms   
 
Structural scheme 
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Mass at the 1st level 
 columns: (625  3 + 400  2.25)  9 =   24975 kg 
 beams:     =   39000  “ 
 slab:     =   56250  “ 
 sottofondo:   0.03  15  15  1700 =   11475  “ 
 pavement : 15  15  40  =     9000  “ 
 walls : 80  15  15  =   18000  “ 
 accidental load: 500  15  15  = 112500  “ 

kg271200m1   
 
Mass at the 2nd level 
 columns:  400  2.25  9  =     8100 kg 
 beams:     =   39000  “ 
 slab:     =   56250  “ 
 sottofondo:    =   11475  “ 
 pavement:     =     9000  “ 
 accidental load: 100  15  15  =   22500  “ 

kg146325m2   
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Inter-storey stiffness 
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N = number of columns = 9 
E = .3  1011 N/m2 

433
I m102083.512/5.5.J    ; 433

II m101333.212/4.4.J   

m65.5hI    ; m50.4hII   

m/N109356.0
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UNDAMPED FREE VIBRATIONS 
 
Let us consider the damped forced vibrations of a NDOF system: 
 

       
   o o

t t t t

0 ; 0

  

 

Mq Cq Kq f

q q q q

 

 
 

 
Assuming C = 0 and f = 0 it follows: 
 

   
   o o

t t 0

0 ; 0

 

 

M q K q

q q q q



 
 

 
The above equation of motion admits the solution: 
 
   t f tq   

 
where   is a vector of n constant components and f is a function of time, provided that   and f 
satisfies the following equations: 
 

    0tftf               (1) 
 

   K M 0              (2) 

 
Let us consider first Eq. (1). It represents a system of n linear homogeneous equations in the n 
unknowns i  (i = 1, 2, … n). Obviously, it involves the trivial solution 0 . 
In order to obtain non-trivial solutions, 0 , it is necessary that the determinant of the matrix of 
the coefficients is null: 
 

 D det 0   K M  

 
This leads to an algebraic equation of order n in , called characteristic equation, from which n 
roots may be obtained, called characteristic values or eigenvalues  n21 ...,,  . 
 
Since K and M are real, symmetric and positive definite matrices, then the eigenvalues n21 ...,,   
are real and positive. Let us assume, for sake of simplicity, that they are also distinct. In addition, let 
us order them in ascending order: n21 ...   . 
 
For each eigenvalue, the system (2) involves a non-trivial solution called characteristic vector or 
eigenvector  n21 ...,,   . Each eigenvector is defined unless an arbitrary factor. 
The eigenvectors are linearly independent. So they constitute a basis in the space of the Lagrangian 
coordinates. They are real. 
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Let us define as k-th modal mass and k-th modal stiffness the positive quantities: 
 

k k

Τ Τ
k k k km ; k M K        

k

k
k

m

k
  

 
It is possible to demonstrate that, for ji  : 

 

j

T
i 0M   ; 

j

T
i 0K   

 
Thus, the eigenvectors are orthogonal with respect to the matrices M and K. 
 
Let us define as modal matrix or the matrix of the eigenvectors the matrix: 
 

 n21 ...   

 
Let us define as the matrices of the modal masses and modal stiffnesses the matrices: 
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1
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Let us define as the matrix of the eigenvalues the matrix: 
 

   

1

21
k k k

n

0 0

0 0
diag k / m diag

0 0



 
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
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Since the eigenvectors are defined unless an arbitrary factor, it is possible to assume 1mk  ; thus, 

kkk  . Accordingly, the eigenvectors are said orthonormal with respect to M and K: 
 
L = I   ;   N =  
 
where I is the identity matrix. 
 

Let us assume 2
kk   and let us examine Eq. (1). It becomes: 

 
    0tftf 2

k   

 
from which: 
 
    tsinBtcosAtftf kkkkk   
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where kA , kB  are real constants. Thus, Eq. (1) represents a harmonic motion and the eigenvalue 

k  has a fundamental mechanical meaning: it is the square of the circular frequency k . 
Thus, Eq. (1) involves n linearly independent solutions: 
 
       tsinBtcosAtftt kkkkkkkk  qq  

 
The general solution of Eq. (1) is a linear combination of the n solutions defined above:: 
 

   tsinBtcosAt kkkkk

n

1
k   q  

 
where the 2n arbitrary constants kA ,  kB k 1, 2,..n  shall be set based on the initial conditions: 

The physical meaning of the eigenvector can be explained assuming: 
 

0qq  0j0 ;   

 
i.e. deformating the structure in accordance with its j-th eigenvector and leaving its free to oscillate. 
It results: 
 
  tcost jj  q  

 
Thus, the k-th eigenvector is a special pattern of the initial displacement that causes the oscillation 
of all the DOFs of the structure with the same circular frequency k. For this reason the 
eigenvectors represent proper/natural/elementary modes/shapes of vibration. Each eigenvalue is the 
square of a proper/natural/elementary circular frequency of vibration. 
 

                        
1 2 3 41 2 3 4

 
 
eigenvectors  1   2   3   4  

eigenvalues  1   2   3   4  

circular frequencies 1   2   3   4  

frequencies  1n   2n   3n   4n  

periods   1T   2T   3T   4T  
 

 n..,2,1kn/1T;2/n; kkkkk
2
k   
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Any free vibration may be regarded as a linear combination of proper/natural oscillations. More 
generally, since the set of the eigenvectors represents a basis in the space of the Lagrangian 
coordinates, q(t) may be expressed as a linear combinations of the modes k : 

 

   tpt kk

n

1
k q  

 
This expression is called principal transformation rule. 
 
 
Example: 2 D.O.F. shear-type building 
 

 
 

271200 0
(kg)

0 146325

 
  
 

M  ;    81.6941 0.7585
10 (N / m)

0.7585 0.7585

 
   

K  

 

   0detD 2MK  
 










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
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
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
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


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det

288

828

 

    
2

82828 107585.0146325107585.0271200106941.1  

 0100965.7105359.410968.3 15213410  
 

 







10

151021313
2

10968.32

100965.710968.34105359.4105359.4 
 

 

 056.956;063.187 2
2

2
1  

s/rad920.30;s/rad677.13 21   

Hz921.4n;Hz177.2n 21   

s203.0T;s459.0T 21   

 
  0MK  k

2
k   

 
k = 1 
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22   

  






 













.1.1

844.0639.0

2212

2111
21   

 

 
 








 



















.1.1

844.0639.0

1463250

0271200

.1844.0

.1639.0T  M  











3395110

0257062
 

 

257062m 1
Τ
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In order to make the eigenvectors orthonormal: 
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

056.9560

0063.187T  M  

 



 10

 
 
 

 



 11

FORCED VIBRATIONS 
 
 

Undamped forced vibrations 
 
Since the eigenvectors constitute a base in the space of Lagrangian coordinates, the displacement q 
at the time t can be expressed as a linear combination of the modes k : 

 

   tpt kk

n

1
kq  

 

   t tq p  

 

where  n       is the modal matrix and         T
n21 tp..tptpt p  is the vector of the 

principal coordinates. Eqs. (1) and (2) are referred to as the principal transformation law. 
 
Let us consider now the equation of motion: 
 

     ttt fqKqM   
 
and let us apply the principal transformation law. It follows: 
 

     ttt T1 fLpp    
 
This equation represents a set un uncoupled equations: 
 

       k ki

n
2 Τ

k k k i i
1k k

1 1
t p t t f t (k 1, 2,...n)

m m
    p f   

 

where  tΤ
k f  is the k-th modal force. It is the k-th component of the generalised forces in the 

principal system. 
 
Thus, the undamped forced vibrations of a NDOF system may be studied as the undamped forced 
vibrations of n SDOF systems. The DOF of the k-th oscillator is the k-th principal coordinate. The 
fundamental circular frequency of the k-th oscillator is the k-th principal circular frequency. The 
mass is the k-th modal mass. The external force is the k-th modal force. 
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Damped forced vibrations 

Let us consider the equation of motion: 

 
       tttt fqKqCqM    

 
and let us apply the principal transformation law: 
 
   tt pq   

 
It follows: 
 
       tttt T1 fLppp     

 
where: 
 

 CL T1  
 

Since  CT  is in general not diagonal, then also  is in general not diagonal. Thus, the equation 
of motion becomes a set of coupled differential equations: 
 

       

     n..,1kp0p;p0p

t
m

1
tptptp

0kk0kk

T
k

k
k

2
kk

n

1
k



 



  f
         (3) 

 
Obviously, the above equation is a set of decoupled equations for C = 0. 
In other words, if the structural system is damped, the principal transformation generally does not 
decouple the equations of motion.  
 
 
Decoupling conditions 

Let us assume that C is such that  is diagonal, i.e. 0k    for k   . Thus Eq. (3) is decoupled and 

may be rewritten as: 
 

       

   n..,2,1kpp;p0p

t
m

1
tptptp

0k0k0kk

T
k

k
k

2
kkkkk







 f
 

 
Setting: 
 

kkkk 2   

 
it follows: 
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       

     n..,2,1kp0p;p0p

t
m

1
tptp2tp

0k0k0kk

T
k

k
k

2
kkkkk







 f
 

 
Thus, if  is diagonal, the damped forced vibrations of a n-D.O.F. system may be studied (likewise 
the undamped vibrations) as the forced vibrations on n S.D.O.F., each characterised by a modal 
damping ratio  kkkk 2/  . 

 
The systems endowed with such a property are called classically damped. The structures which do 
not satisfy this property are not classically damped. 
 
Analogously, the damping is said to be classic if C is such that  is diagonal. The damping is not 
classic if C is such that  is not diagonal. 
 
The necessary and sufficient condition which makes  not diagonal is (Canghey e O’Kelly, 1965): 
 

  1k1
k

n

1
k a

 KMMC  

 
being ak (k = 1, … n) suitable constants. 
In particular, assuming ak = 0 for k > 2, the following sufficient (not necessary) condition results: 
 

KMC 21 aa   

 
A structural system that satisfies the above equation has a Rayleigh damping or a proportional 
damping. In such a case: 
 

1 2 k
k

k

a a

2 2


  


 

 

 
 
In reality, the structures do not possess a classical or proportional damping. Nevertheless, being the 
definition of C very uncertain or difficult to evaluate, it is usual to avoid to evaluation of C, writing 
the equations of motion in their decoupled form, giving to k  values suggested by experience. 
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Modal truncation 
 
Let us consider the principal transformation law: 
 

     tptt kk

n

1
k  pq  

 
where the k-th principal coordinate  tpk  is given by the solution of the differential equation: 
 

       2 T
k k k k k k k

k

1
p t 2 p t p t t (k 1,..n)

m
     f    

 
The modal truncation is a technique that replaces the rigorous equation of motion by the 
approximate one: 
 

   tpt kk

n

1
kq  

 
being nn  . 
 
The above equation involves two fundamental advantages: 
 
a) it allows to solve a number nn   of differential equations; 
b) it allows to calculate only the first nn   eigenvalues and eigencetors (very useful applying 

iterative algorithms). 
 
Experience shows that in most cases the choice nn   provides excellent approximations. 
 


