EQUATIONS OF MOTION

Shear-type system — damped forced vibrations
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Equation of motion of the i-th mass; 2nd Newton law:

Fi = m;a;

F, = —k; (qi - Qi ) -k (qi — Qi ) - restoring elastic forces
—C; (qi —qi ) —Ciyy (qi + Qi ) + viscous damping forces
+f1; external force

a; = (; absolute acceleration

) mg, +(c1 +¢2)d) —c2d; —
+ (kl +k2)Q1 -kyq, =1,

i) md; —ciqi + (i + i1 )di — Cindin —
—-kiqiy + (ki + ki+1)¢11 —kinqi =1

n) mnqn - cnqnfl + qun - knqnfl + knqn = fn

In matrix form:

Mg (t)+Cq(t)+Ka(t)="F(t)
a(0)=4,; 4(0)=4,




f. 0
q= q.z - 2 . M= : m;
qn fIl 0 0 mn
k; +k, -k,
K - -k, k, +k; —kj 0
B ~k,, k,;+k k,
0 -k, k,
C1+02 —C
— + - 0
C= Co Cy +C3 C3

—Cp1 CpgtCy —Cy

0 -Cp Cn

In this case M, K, C are real, symmetric, positive definite matrices; M is also diagonal.

Example: Shear-Type building with 2 D.O.F.
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Mass of the column per unit length
1st order: m; = 0.50x0.50 x2500 = 625 kg/ m

2nd order: my; = 0.40x0.40 x 2500 = 400 kg/m

Mass of the beams (outside the slab) per each floor

Main beams: my, =0.20x0.60 x7.50 x 2500 = 2250 kg
Secundary beams:  my,, =0.20x0.40 x 7.50 x 2500 = 1500 kg
Total mass: m, =2500x12 +1500 x8 =39000 kg

Mass of the slab per each floor
m, =0.10x15x15%x2500 = 56250 kg

Structural scheme
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qQ2 f; 0 m, -k,
Mass at the 1st level
— columns: (625 x3+400x2.25)x9 = 24975kg

— beams: = 39000
— slab: = 56250 «
— sottofondo: 0.03 x 15 x 15 x 1700 = 11475
— pavement : 15 x 15 x40 = 9000 *
— walls : 80 x 15 x 15 = 18000 *
— accidental load: 500 x 15 x 15 =112500
m; = 271200 kg
Mass at the 2nd level
— columns: 400 x 2.25x9 = 8100 kg
— beams: = 39000
— slab: = 56250 “
— sottofondo: = 11475 «
— pavement: = 9000 “
— accidental load: 100 x 15 x 15 = 22500

m, = 146325 kg



Inter-storey stiffness

h? h’

N N 12EJ 12EJ
f:Zkfk:Zk( )q=N q=

1 1

f

q

N = number of columns =9
E=.3x 10" N/m?

J;=.5x.5%/12=5.2083%x10" m* ; J; =4x.4°/12=2.1333x10" m*
hI :565m ) hII :450m

L2 9x12x3x10" x5.2083x 10
=

5.65°
L 9x12x3x10' x2.1333x10”
) =

450°

=0.9356x10° N/m

=0.7585x10° N/m

271200 0 8 8
M — ke : K- 16941 x 10 8 0.7585><1(8) N
0 146325 —0.7585x10%  0.7585x10



UNDAMPED FREE VIBRATIONS

Let us consider the damped forced vibrations of a NDOF system:

Mg (t)+Cq(t)+Ka(t)=F(t)
q(0)=q,:4(0)=g,

Assuming C = 0 and f =0 it follows:

Md(t)+Kq(t)=0
q(0)=q,;a(0)=4,

The above equation of motion admits the solution:
a(1)=vf (1)

where y is a vector of n constant components and f is a function of time, provided that y and f
satisfies the following equations:

f(t)+1f(t)=0 (1)

(K—-AM)y =0 2)

Let us consider first Eq. (1). It represents a system of n linear homogeneous equations in the n
unknowns vy, (1=1, 2, ... n). Obviously, it involves the trivial solution y =0.

In order to obtain non-trivial solutions, y # 0, it is necessary that the determinant of the matrix of
the coefficients is null:

D = det (K ~2M) =0

This leads to an algebraic equation of order n in A, called characteristic equation, from which n
roots may be obtained, called characteristic values or eigenvalues (k =N, A, Ay )

Since K and M are real, symmetric and positive definite matrices, then the eigenvalues A;,A,,... A,
are real and positive. Let us assume, for sake of simplicity, that they are also distinct. In addition, let
us order them in ascending order: A; <A, <...<A,.

For each eigenvalue, the system (2) involves a non-trivial solution called characteristic vector or
eigenvector (\|/ =YLV, Y, ) Each eigenvector is defined unless an arbitrary factor.

The eigenvectors are linearly independent. So they constitute a basis in the space of the Lagrangian
coordinates. They are real.




Let us define as k-th modal mass and k-th modal stiffness the positive quantities:

_ kg
my

m, =\VIM\Vk 5 Ky =\VIK\|’k Ak

It is possible to demonstrate that, for A; # A ;:

v My, =0[; [y Ky, =0

Thus, the eigenvectors are orthogonal with respect to the matrices M and K.

Let us define as modal matrix or the matrix of the eigenvectors the matrix:

Y= [‘I’l \Ifz---\l/n]

Let us define as the matrices of the modal masses and modal stiffnesses the matrices:

m 0 - 0 K 0 o 0
0 0 k 0
L =¥ "MV = diag[m, ]=| . 2 . N=W'KW¥=diag [k ]=|,
0O 0 - m, 0 0 - k,

Let us define as the matrix of the eigenvalues the matrix:

A0 0
0 A 0
A=L"'N=diag [k /m,]=diag [A,]=| . .

n

Since the eigenvectors are defined unless an arbitrary factor, it is possible to assume m, =1 thus,
k, = Ay . Accordingly, the eigenvectors are said orthonormal with respect to M and K:

L=1; N=A
where | is the identity matrix.

Let us assume Ay = wﬁ and let us examine Eq. (1). It becomes:
f(t)+w f(t)=0

from which:

f(t) = fk(t) = Ay cosoit + By sinmt



where A, , By are real constants. Thus, Eq. (1) represents a harmonic motion and the eigenvalue
Ay has a fundamental mechanical meaning: it is the square of the circular frequency .
Thus, Eq. (1) involves n linearly independent solutions:

Q(t) = Qk(t) =Wy fk(t) =Yy (Ak cos ot + By sin (okt)

The general solution of Eq. (1) is a linear combination of the n solutions defined above::

q(t) = i K \yk(Ak cos ot + By sin c)kt)
I

where the 2n arbitrary constants A, , B, (k =1, 2,..n) shall be set based on the initial conditions:

The physical meaning of the eigenvector can be explained assuming:
do=W¥; ; Uo=0

i.e. deformating the structure in accordance with its j-th eigenvector and leaving its free to oscillate.
It results:

q(t) = \IIJ COS COJt

Thus, the k-th eigenvector is a special pattern of the initial displacement that causes the oscillation
of all the DOFs of the structure with the same circular frequency wy. For this reason the
eigenvectors represent proper/natural/elementary modes/shapes of vibration. Each eigenvalue is the
square of a proper/natural/elementary circular frequency of vibration.

eigenvectors Vi Vo g U
eigenvalues A Ay A3 I
circular frequencies ®; ™, M3 0y
frequencies n, n, n; ny
periods T, T, T T,

0)13 =M N =0 /21 ;T =1/n (k:1,2,..n)



Any free vibration may be regarded as a linear combination of proper/natural oscillations. More
generally, since the set of the eigenvectors represents a basis in the space of the Lagrangian
coordinates, g(t) may be expressed as a linear combinations of the modes y :

n

q(t)= v pi(t)

1

This expression is called principal transformation rule.

Example: 2 D.O.F. shear-type building

F ———-—-—ai

L“__“—‘”—“—b

JL__L q

[271200 0 o). K| 16941 —0758S
Tl0 0 146325 B BT 07585 0.7585

} x10°  (N/m)

D= det( ) 0=

1 6941 —0.7585 10° ) 271200 0
X -® =
—-0.7585 0.7585 0 146325

~ 16941><108 ®’ -271200 ~0.7585x10° _
~0.7585x10° 0.7585x10° — @” - 271200

—_——2
= (1.6941x10° — 271200 2 ) (0.7585 x 10° — 146325 0* ) 0.7585 x 10° =
=3.968x10" " —4.5359x10" o’ +7.0965x 10" =0 =

, 45359x10° 74/(4.5359 % 10" )’ —4x3.968-10'° x 7.0965 10"

o = 0 =
2%x3968-10

ot =187.063; 5 =956.056 =

®; =13.677rad/s; m, =30.920 rad /s
n, =2.177Hz ;n, =4.921Hz

T, =0.459s; T, =0.203s

(K—miM)\yk =0

k=1



1.6941x10° — @7 x271200 —0.7585x10° vl [0
~0.7585x10° 0.7585x10% —w? x146325 | |w12| |0

\|/12 =1= —07585X108 \UAT +04848X108 :O:>\|fll =0.639

k=2

1.6941x10° — 3 x 271200 —0.7585x10° vl [0
~0.7585x10" 0.7585x10° — 3 x146325 | [y |0

Vo =1=-0.7585x10° y,, +0.6404 x10° =0 = y,, = 0.844

Vi wﬂ{o.éw —0.844}
L L.

¥ [Wl \Ifz]lelz V2

T 0.639 1.(|271200 0 0.639 -0.844
Y MY = =
-0.844 1. 0 146325 l. 1.
257062 0
= =
0 339511

m; =¥ | M¥, =257062
m, =¥ M¥, =339511

In order to make the eigenvectors orthonormal:
1 {0.639] [1.260x107°
‘Pl = — = 3
[m, 1. 1.972 %10
1 [-0.844] |-1.448x107°
‘P I — = 3
[m, 1. 1.716 x10

1.260 —1.448
Y= [‘I’l \Ifz]:{

x10° > ¥ TMY = |
1.972 1.716

TV - A - {187.063 0

0 956.056

|
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FORCED VIBRATIONS

Undamped forced vibrations

Since the eigenvectors constitute a base in the space of Lagrangian coordinates, the displacement q
at the time t can be expressed as a linear combination of the modes vy :

n

q(t) = wwipi(t)

1

q(t)="¥p(t)

where ¥ ={y, y, ...y, } is the modal matrix and p(t)= {pl(t)pz(t) . pn(t)}T is the vector of the

principal coordinates. Egs. (1) and (2) are referred to as the principal transformation law.

Let us consider now the equation of motion:

Ma(t)+ Ka(t)=f(1)

and let us apply the principal transformation law. It follows:
p(t)+Ap(t)=L""¥ (1)

This equation represents a set un uncoupled equations:

Ny 1 1
pk(t)+ooipk(t):m—‘I’ff(t):m—zi\ykifi(t) (k=1,2,..n)
k 1

k

where ‘I’if(t) is the k-th modal force. It is the k-th component of the generalised forces in the

principal system.
Thus, the undamped forced vibrations of a NDOF system may be studied as the undamped forced
vibrations of n SDOF systems. The DOF of the k-th oscillator is the k-th principal coordinate. The

fundamental circular frequency of the k-th oscillator is the k-th principal circular frequency. The
mass is the k-th modal mass. The external force is the k-th modal force.
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Damped forced vibrations

Let us consider the equation of motion:

Me(t)+Ca(t)+Ka(t)=1(t)

and let us apply the principal transformation law:

a(t)="¥p(t)

It follows:

p(t)+Tp(t)+Ap(t)= L Tf(t)
where:

r=L'v’cwy

Since W "C¥ is in general not diagonal, then also T is in general not diagonal. Thus, the equation

of motion becomes a set of coupled differential equations:

n

v ) 1
pk(t)+ZéYk(/ p/(t)+ o} pk(t)=m—\VE f(t)
T K

Pk(O):Pko;pk(O):pko (k:l,..n)

Obviously, the above equation is a set of decoupled equations for C = 0.

3)

In other words, if the structural system is damped, the principal transformation generally does not

decouple the equations of motion.

Decoupling conditions

Let us assume that C is such that I" is diagonal, i.e. v, =0 for k # /. Thus Eq. (3) is decoupled and

may be rewritten as:

. : 1

Prl)+ 7 pi(t)+ 0 pic(t) =—wi (1)
k

pi(0)=Pko s Pro = Pro (k=1,2,..n)

Setting:

Vik =280

it follows:

12



B+ 28 00 py(0+ 07 pild)=— v 1)
k

P (0)=Pro; Pro(0)=Puo (k=1,2,..n)

Thus, if T is diagonal, the damped forced vibrations of a n-D.O.F. system may be studied (likewise
the undamped vibrations) as the forced vibrations on n S.D.O.F., each characterised by a modal
damping ratio &y =y 4 /(2 (ok).

The systems endowed with such a property are called classically damped. The structures which do
not satisfy this property are not classically damped.

Analogously, the damping is said to be classic if C is such that I" is diagonal. The damping is not
classic if C is such that I is not diagonal.

The necessary and sufficient condition which makes I" not diagonal is (Canghey e O’Kelly, 1965):
C=MY  a,(M'K)"
1

being ax (k =1, ... n) suitable constants.
In particular, assuming ax = 0 for k > 2, the following sufficient (not necessary) condition results:

C=a1|\/| +32K

A structural system that satisfies the above equation has a Rayleigh damping or a proportional
damping. In such a case:

_ap a0
g1‘_2mk 2
C
I
én h\ §;<, P §l¢1
\ Q , | /_,/ i
aw,, + e = |
// : \
oA
Q3 Wy [2, L/\{“‘
Dy We W

In reality, the structures do not possess a classical or proportional damping. Nevertheless, being the
definition of C very uncertain or difficult to evaluate, it is usual to avoid to evaluation of C, writing
the equations of motion in their decoupled form, giving to &, values suggested by experience.
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Modal truncation

Let us consider the principal transformation law:
n

q(t)=wp(t)=> swipi(t)

1

where the k-th principal coordinate py (t) is given by the solution of the differential equation:

pk(t)+zgkmkpk(t)+m§pk(t):megf(t) (k=1,.n)

k

The modal truncation is a technique that replaces the rigorous equation of motion by the
approximate one:

n

q(t)= DV WP (t)

1

being n<n.

The above equation involves two fundamental advantages:

a) itallows to solve a number n < n of differential equations;

b) it allows to calculate only the first n <n eigenvalues and eigencetors (very useful applying

iterative algorithms).

Experience shows that in most cases the choice n << n provides excellent approximations.
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