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RANDOM DYNAMICS 
 

Single-Degree-Of-Freedom Systems 
 
 
Equations of motion 

The equation of motion  tq  of a S.D.O.F. system subjected to a deterministic force  tf  and to 

deterministic initial conditions 0q  and 0q  is given by: 
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Let us assume that f(t) is a sample function of a loading process F(t). Analogously, the initial 
conditions 0q  and 0q  are random occurrences of a couple of random variables 0Q  and 0Q . The 
equation of motion q(t) is the sample function of the response process Q(t) corresponding to f(t). 
 
In this case Eq. (1) is the deterministic relationship that expresses q(t) as a function of f(t), 0q  and 

0q . Analogously, the relationship that expresses Q(t) as a function of F(t), 0Q  and 0Q  assumes the 
form (Fig. 1): 
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Fig. 1 
 
Using this model the loading is random and the response is random. Instead, the structural system 
remains deterministic. This is because the loading is usually characterised by greater uncertainties 
than the structural system. Dealing with the structure as random (thus defining M, , 0 as random 
variables of which m, , 0 are random occurrences) makes the treatment much more complex. 
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Please also note that assuming the initial conditions as deterministic is equivalent to set: 
 

   0 0 0 0P Q t q Q t q 1     
   

 
Under the hypothesis of quasi-steady vibrations (i.e. loosing the memory of the initial conditions) 
the deterministic response of a S.D.O.F. system (Eq. 1) is given by: 
 

      
t

0
dthftq             (3) 

 
where  h  is the impulse response function. 
Analogously, the quasi-steady response process of a S.D.O.F. system (Eq. 2) excited by the loading 
process F(t) is given by: 
 

      
t

0
dthFtQ             (4) 

 
Let us assume that F(t) is a random stationary process. The lower integration limit in Eq. (4) is the 
time instant at which the loading application begins. Since the loading is stationary, its beginning 
occurs at t = -. It follows that Eq. (4) should be rewritten as: 
 

      


t
dthFtQ  

 
Moreover, let us observe that the function  th  is identically null for t  (Fig. 2), so also for 

t . Thus, the upper integration limit in Eq. (4) can be put equal to + without introducing any 
mistake. Thus, the equation of motion becomes: 
 

     



 dthFtQ             (5) 

 

 
 

Fig. 2 
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Mean value and fluctuation of the response 

Let us express the loading process as: 
 
   tFtF F               (6) 

 
where   tFEF   is the mean value of the loading (independent of time since F is stationary) and 

 tF  = F(t) - F . As such, it is a random stationary process with zero mean (referred to as the 
fluctuation or the fluctuating part of F) characterised, in the time domain, by the auto-covariance 
function  FFC . Since  tF  is zero mean,  FFC  coincides with the auto-correlation function 

 FFR  of F’(t) and with the auto-covariance function  FFC  of F(t). In the fundamental case in 

which F(t) is a normal process, F  and  FFC  provide a full probabilistic description of F(t). 
 
Let us consider Eq. (5) and let us apply the transformation  t . It follows that: 
 

     



 dhtFtQ             (7) 

 
The mean value of Q(t) is given by the relationship: 
 

         E Q t E F t h d E F t h d
 

 

                   

    



 dhtQE FQ            (8) 

 
Thus, likewise the mean of the loading, also the mean of the response is independent of time. 
Let us consider the complex frequency response function: 
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
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and let us remember that it is the Fourier transform of the impulse response function: 
 

   



 dtethH ti           (10) 

 
It follows that: 
 

   






 dtth

k

1

m

1
0H

2
0

         (11) 

 
Substituting Eq. (11) into Eq. (8) it results: 
 

F
Q k


              (12) 

 
So, the mean value of the response is the deterministic static response to the mean value of the loading. 
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As a consequence of this result, let us define: 
 
   tQtQ Q             (13) 

 
where   tQEQ   is the mean value of the response and  tQ  is the zero mean fluctuation of the 

response. Substituting Eq. (6) and Eq. (13) into Eq. (2a): 
 

       2 2
Q 0 Q 0 0 Q 0 F

1 1
Q t 2 2 Q t Q t F t

m m
                   

 
from which, using Eq. (12): 
 

       2
0 0

1
Q t 2 Q t Q t F t

m
                (14) 

 
In other words, the fluctuation of the response is the dynamic response to the fluctuation of the 
loading. This remark points out the opportunity of separating the initial problem into two problems: 
a static one defined by Eq. (12), and a dynamic one defined by Eq. (14). The static problem applies 
only if the mean value of F is not null (e.g. in the wind case). The dynamic problem coincides with 
the initial problem when the mean value of F is null (e.g. in the seismic case). Thanks to Eq. (7): 
 

     



 dhtFtQ           (15) 

 
Fig. 3 shows some sample functions of the fluctuating loading and corresponding response. 
 

 
Fig. 3 
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Auto-covariance function of the response 

The auto-covariance function of the response coincides with the auto-correlation function of the 
fluctuating part of the response. It is given by: 
 

              tQtQEtQtQEt,tC QQQQ      (16) 

 
Applying Eq. (15): 
 

         QQ 1 1 1 2 2 2C t, t E F t h d F t h d
 

 

                  

         212121 ddhhtFtFE   







 

 
where       12FF21 CtFtFE  . It follows that: 
 

       QQ FF 2 1 1 2 1 2C C h h d d
 

 
               (17) 

 
Thus, analogously to CFF, also CQQ depends only on the time lag . Thus, analogously to the loading 
process, also the response process is (weakly) stationary. Fig. 4 shows the auto-covariance functions 
of some loading and response processes. 
 

 
Fig. 4 

 
It is demonstrated that, if the loading process is normal and the structure is linear, also the response 
process is normal. In this case Q  and  QQC   provide a full probabilistic representation of Q(t). 
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Power spectral density of the response 

Applying the Wiener-Khintchine equations, the power spectral density of the response is given by: 
 

    i
QQ QQ

1
S C e d

2

  


   

   (18) 

 

Substituting Eq. (17) into Eq. (18) and multiplying the integrand by 1ie  2ie   1 2ie 1     : 
 

         

       
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         

  

         

  

         


          

  

  
 

 

where      2 1i
FF 2 1 FF

1
C e d S

2

    


     

   is the power spectral density of the loading. 

Thus: 
 

       1 2i i
QQ FF 1 1 2 2S S h e d h e d

   

 
         

 

where    1i *
1 1h e d H

 


     and    2i

2 2h e d H
  


    . It follows that: 

 

     2

QQ FFS H S     (19) 

 
It is worth noting that, using random dynamics in the frequency domain, the equation that links the 
power spectral density of the response with the power spectral density of the loading is real (Eq. 
19). This does not happen using deterministic dynamics, where the equation that links the Fourier 
transform of the response with the Fourier transform of the loading is complex: 
 
     Q H F     (20) 

 
The step from the complex Eq. (20) to the real Eq. (19) implies the loss (better the undetermination) 
of the phases. In the deterministic field, a function expanded by a Fourier integral is a continuous 
sum of harmonics each characterised by a given circular frequency, amplitude and phase. In the 
random field the undetermination of the phases (better their random occurrence with a uniform 
distribution between 0 and 2) gives rise to infinite functions with the same spectral density. Such 
functions are the sample functions of the process. 
 
Fig. 5 shows the power spectral densities of some loading processes and the corresponding power 
spectral densities of the response processes. 
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Fig. 5 

 
Variances and spectral moments of the response 

The knowledge of the auto-covariance function or the power spectral density of Q(t) allows the 
derivation of the variance 2

Q  through the relationships: 

 

     22
Q QQ Q QQC 0 E Q(t) S d




       
    (21) 

 
Moreover, due to the properties of the derivation of the stationary processes: 
 

QQQQ
S ( ) i S ( )               (22) 

 
2

QQQQ
S ( ) S ( )                (23) 

 
Thus: 
 

QQQQ
C (0) E Q(t)Q(t) i S ( )d 0




        

        (24) 

 
2 2 2

QQQ QQ
C (0) E Q (t) S ( )d




           
         (25) 

 
Fig. 6 summarises the main steps of the frequency domain analysis. 
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 2
F FFS d




     

  2

2 4 2 2
0

2 2
0 0

1 1
H

m
1 4

 
        

 

     2

QQ FFS H S     

 2
Q QQS d




     

 

   2
QQQQ

S S      

 2
Q QQ

S d



       

 
Fig. 6 
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Let us remember that the unilateral power spectral density QQG ( )  of Q(t) is given by: 

 

QQ QQG ( ) 2S ( ) for 0                       (26a) 

QQG ( ) 0 for 0                      (26b) 

 
Based on this definition, the first three spectral moments of the response result: 
 

2
Q,0 QQ QQ Q0

G ( )d S ( )d
 


                 (27) 

 

Q,1 QQ QQ0
G ( )d S ( )d 0

 


                   (28) 

 
2 2 2

Q,2 QQ QQ Q0
G ( )d S ( )d

 


                   (29) 

 
Distribution of the response 

If the response process is stationary and normal, the knowledge of the mean value Q  and of the 

variance 2
Q  of Q(t) provides the density function of the first order: 

 

   2

Q
Q 2

QQ

q1
p q exp

22

       
 (30) 

 
The further knowledge of the normalised auto-covariance function QQ ( )   of Q(t) provides the joint 

density function of the second order: 
 

 
 

       
 

2 2

1 Q QQ 1 Q 2 Q 2 Q

Q 1 2 2 22 2
Q QQQ QQ

q 2 q q q1
p q ,q ; exp

2 12 1

             
         

 (31) 

 
and of any other order n. 
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Dynamic response to a white process 

Let us consider the case in which the loading process F(t) is a white noise W(t) (Fig. 7): 
 

FF 0S ( ) S   (32) 

 

FF 0C ( ) 2 S ( )      (33) 

 

 
 

Fig. 7 
 
Applying Eqs. (19) and (23), the power spectral density of the displacement and of its derivative are 
given by the relationships: 
 

2

QQ 0S ( ) S H( )    (34) 

 
22 2

QQ 0QQ
S ( ) S ( ) S H( )         (35) 

 
from which, applying Eqs. (21) and (25): 
 

2 0
Q 2 3

0

S

2m


 


 (36) 

2 2 20
0 QQ 2

0

S

2m


    

  (37) 

 
It can be demonstrated that, applying Eq. (17) to Eq. (34): 
 

     2 2 2
QQ Q 0 0 02

C ( ) exp cos 1 sin 1
1

 
            

   
 (38) 

 

     
2

QQ 2 2 2
0 0 0QQ Q2 2

d C ( )
C ( ) exp cos 1 sin 1

d 1

  
              

    
    (39) 

 
It is worth noting that the white process is not realistic from a physical viewpoint since its variance 
is infinite. Nevertheless, applied as a loading process on a structure, the variance of its response has 
a finite value. Thus, it constitutes an excellent model for loadings with any uniform harmonic 
content extended beyond the fundamental circular frequency. 
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Fig. 8 shows some typical auto-covariance functions and power spectral density functions of Q(t) 
and of its first derivative with respect to time. 
 

 
 

Fig. 8 
 
Applying Eqs. (27)-(29), the spectral moments of the response result: 
 

2 0
Q,0 Q 2 3

0

S

2m


  


           (40) 

0
Q,1 2 2 2 2

0

S
2arctg

2m 1 1

      
       

       (41) 

2 0
Q,2 Q 2

0

S

2m


  

            (42) 

 
Consequently, the spectral bandwidth parameter is: 
 

1/ 22
2
Q,1

Q 2 2
Q,0 Q,2

1 2
q 1 1 1 arctg

1 1

                       

 (43) 

 
In the case 1 , Eq. (43) simplifies and assumes the form: 
 

Qq 2



  (44) 

 


