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MONTE CARLO SIMULATION 
 
The knowledge of a set of the sample functions of a random process allows to derive its power 
spectral density. On the other hand, the knowledge of a suitable model of the power spectral density 
of a random process allows to derive artificially its sample functions. This operation is known as 
simulation of a random process and falls into the broad family of the Monte Carlo methods. 
 
Monte Carlo methods to simulate a random process may be classified into two main families: 1) the 
methods based on the superposition of harmonic waves with random phase angles (random phase 
method); 2) ARMA methods based on the filtering of uncorrelated white noises (Auto-Regressive 
and/or Mobile-Average methods). Both these methods may be applied to simulate stationary and 
non-stationary random processes, as well as normal and non-normal random processes. This section 
is aimed at providing a synthetic description of the application of the random phase method to 
random stationary normal processes with zero mean. 
 
Mono-variate processes 
Let  X t  be a random stationary normal process with zero mean.  XXS   is its power spectral 

density. Using the random phase method, a generic sample function of  X t  is given by: 
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where  j j 1,..N   is the amplitude of the frequency steps into which the harmonic content of the 

process is sub-divided (with 0 );  j j 1,..N   is the central value of each step (Fig. 1a); j  is 

the j-th occurrence of the random phase  uniformly distributed between 0 and 2 (Fig. 1b): 
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Fig. 1 
 
To interpret Eq. (1), let us consider the j-th term of the sum: 
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     j XX j j j jx t 2 S sin t      (3) 

 
and let us evaluate its variance (the variance of a harmonic function with unit amplitude is 1/2). Thus: 
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Since the harmonics that constitute the sample function defined by Eq. (1) is uncorrelated with each 
other (having different circular frequencies), the variance of  X t  is the sum of the variances of its 

components. Thus (Fig. 2): 
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Fig. 2. 
 
Moreover, the amplitude of each harmonic defines the power content and the distribution of the 
sample function and of the process. Fig. 3 shows the simulation of 3 sample functions of the wind 
velocity studied in the previous section. The functions are normalised in order to have V 1  . 

 

 
Fig. 3 
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Multi-variate processes 

Let  tX  be a n-variate random stationary normal process with zero mean. Let  XS  be its power 

spectral density matrix. The random phase method allows to simulate any number of sample vectors 

 tx  of  tX . Fig. 4 shows the basic concepts of the simulation of a 3-variate process. 

 

 
Fig. 4 

 
It is possible to demonstrate that the i-th component of the sample vector  tx  of  tX  is given by: 
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where  j j 1,..N   is the amplitude of the frequency steps into which the harmonic content of the 

process is sub-divided (with 0 );  j j 1,..N   is the central value of each frequncy step (Fig. 

1a); jk  is the j,k-th occurrence of the random phase  uniformly distributed between 0 and 2. 

 
Eq. (4) may be re-written in the following matrix form: 
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where  T
1 1...11  is a vecton of n unit components,  T

j j1 j2 jn...    , D is a matrix provided 

by the relationship: 
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Eq. (6) is referred to as matrix decomposition. There are infinite possible matrices D() that satisfy 
Eq. (6) and several methods to determine such matrices. The most well-known methods are referred 
to as the Cholesky and spectral decompositions. 
 
Fig. 5 shows the simulation of 3 correlated time-histories of the wind velocity. 
 

 
Fig. 5 

 
 
Cholesky decomposition 

A square matrix A of order n that is real, symmetric, semi-positive definite can be decomposed as: 
 
A = LLT              (7) 
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where L is a lower triangular matrix whose terms are given by the recursive formulae: 
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Example 
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Spectral decomposition 

Let us consider again Eq. (7) and let us evaluate the eigenvalues and the eigenvectors of A: 
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 = 1 2 ...n is the matrix of the orthonormal eigenvectors;  = diag1, 2, .. n is the matrix 
of the eigenvalues: 
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Using Eq. (12): 
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L =    (13) 
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Example 
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The characteristic equation results: 
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