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RANDOM PROCESSES 
 
Definitions 

Let us consider an experiment whose outcome is a random function of time (the seismic motion, the 
time-history of a wind velocity, the equation of motion of a S.D.O.F. system). Each time-history 

representing one outcome of the experiment is indicated by      jx t j 1, 2,...  and is called sample 

function. The set of all the possible sample functions (Fig. 1) associated with the same physical 
phenomenon and registered in the same conditions is indicated by X(t) and is called random process 
or stochastic process or random function. 
 

 
Fig. 1 

 

Let us consider the random process X(t), and let us examine the values      j
1x t j 1, 2,...  that 

each sample function assumes at time 1tt  . The set of these values constitutes the random variable 

 1 1X X t  and is characterised by the density function  X 1 1p x , t  (written with this notation to 

remember the extraction of X at time 1t ) (Fig. 2). 
 

 
Fig. 2 

 
Assuming 1t  as variable,  tX  can be interpreted as a random variable depending on time. 
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Let      1 1 2 2 n nX t , X t ,..X t  be a family (or a vector) of n random variables extracted from  X t  

at times 1 2 nt , t ,..t . It is characterised by the joint density function of order n:  
1 2 nX X .. X 1 2 np x , x ,..x   

 X 1 1 2 2 n np x , t ; x , t ;..x , t  (Fig. 3). 

 

 
Fig. 3 

 
Since the process  X t  is a family of  random variables, it constitutes an infinite-variate random 

vector. Thus, it is characterised by a joint density function of order :  X 1 1 2 2p x , t ; x , t ;... . 

 
If the process is normal, the knowledge of the joint density functions of order 2,  X 1 1 2 2p x , t ; x , t , 

for any value of 1t  and 2t  (Fig. 4), allows to derive the joint density function for any order n. 
 

 
Fig. 4 
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Statistical averages of the first order 

Let us consider Fig. 2 and the random variable  1 1X X t . It is described by the density function 

of the first order  X 1 1p x , t . The statistical averages of the first order include all the moments of the 

random variable 1X  that can be derived from  X 1 1p x , t . 

 
The mean value of the random process is defined as: 
 

     X 1 1 1 X 1 1 1t E X t x p x , t dx



                (1) 

 
The mean square value of the random process is defined as: 
 

   
1

2 2 2
X 1 1 X 1 1 1(t ) E X t x p x , t dx




                (2) 

 
The variance of the random process is defined as: 
 

          
X

222
1 1 X 1 1 X 1 X 1 1 1t E X t t x t p x , t dx




                (3) 

 
Expanding Eq. (3) it follows: 
 

       
X

2 2 2
1 1 X 1 1 1 X 1 1 X 1 1 1t x p x , t dx 2 t x p x , t dx

 

 
       

       
X X

2 2 2
1 X 1 1 1 X 1 X 1 1t p x , t dx (t ) 2 t t 1




         

 

   
X X

2 2 2
1 X 1 1t (t ) t                (4) 

 
All the statistical averages of the first order are (deterministic) functions of the generic time 1t . 
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Statistical averages of the second order 

Let us consider the process  tX , and let us examine the values    j
1x t  and      j

2x t j 1, 2,...  

assumed by each sample function at times 1t  and 2t  (Fig. 4). The set of these values constitutes a 

couple of random variables  1 1X X t  and  2 2X X t  characterised by the joint density function 

of the second order  X 1 1 2 2p x , t ; x , t . The statistical averages of the second order include all the 

joint moments of 1X  e 2X ; they can be derived from  X 1 1 2 2p x , t ; x , t . 

 
The auto-correlation function of the process is defined as: 
 

       XX 1 2 1 2 1 2 X 1 1 2 2 1 2R t , t E X t X t x x p x , t ; x , t dx dx
 

 
            (5) 

 
The auto-covariance function of the process is defined as: 
 

           
     

XX 1 2 1 X 1 2 X 2

1 X 1 2 X 2 X 1 1 2 2 1 2

C t , t E X t t X t t

x t x t p x , t ; x , t dx dx
 

 

     

         
       (6) 

 
It follows that: 
 

       2X1X21XX21XX ttt,tRt,tC           (7) 
 
The normalised auto-covariance function of the process is defined as: 
 

   
   
XX 1 2

XX 1 2
X 1 X 2

C t , t
t , t

t t
 

 
            (8) 

 
The prefix “auto” indicates that the random variables  1X t  and  2X t  are extracted from the same 

random process  tX . 
 
From Eqs. (5), (6), (8) the following properties derive: 
 

   12XX21XX t,tRt,tR   

   12XX21XX t,tCt,tC              (9) 

   12XX21XX t,tt,t   
 
Moreover: 
 

  2
XX 1 1 X 1R t , t (t )   

   
X

2
XX 1 1 1C t , t t             (10) 

 XX 1 1t , t 1   
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Stationary processes 

A random process is defined as strongly stationary when its joint density functions of any order n 
are independent of any translation  of the origin of the axis of time: 
 

   X 1 1 X 1 1p x , t p x , t                      (11a) 

   X 1 1 2 2 X 1 1 2 2p x , t ; x , t p x , t ; x , t                      (11b) 

……             …... 

   X 1 1 2 2 n n X 1 1 2 2 n np x , t ; x , t ;..x , t p x , t ; x , t ;..x , t                     (11n) 

 
Setting 1t   , it is immediate to verify that Eq. (11) involves the following properties: 

(a) the density function of the first order is independent of time 1t ; 

(b) the joint density function of the second order depends on only the time interval  12 tt  ; 
..... ............................... 
(n)  the joint density function of order n depends on the n–1 time intervals  12 tt  ,  13 tt  , .. 

 1n tt  . 
 
A random process  tX  is defined as weakly stationary when only the Eqs. (11a, b) are satisfied. 
Considering that normal processes are characterised by only the joint density functions of the 
second order, the weakly stationary processes will be called below “simply” stationary processes. 
 
It is immediate to demonstrate that, in the class of the (weakly) stationary processes, the statistical 
averages of the first order are independent of time. From Eqs. (1, 2, 3): 
 

 X 1 Xt    
2 2
X 1 X(t )   

 2 2
X 1 Xt    

 
Analogously, again in the class of (weakly) stationary processes, the statistical averages of the 
second order depend only on the time interval 2 1t t   : 
 

   XX 1 2 XXR t , t R   

   XX 1 2 XXC t , t C   

   XX 1 2 XXt , t     

 
The interval  is referred to as the time lag. 
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The auto-correlation function of a stationary process: 
 

      rtXtXErR XX           (12) 
 
has several noteworthy properties (Fig. 5): 
 
1) Setting  = 0 in Eq. (1): 
 

   2 2
XX XR 0 E X t               (13) 

 
2)      2 2 2

XX XX X XX X XR C         . Thus, since XX ( ) 1   : 

 
 2 2 2 2 2

X X XX X X XR          

   XX XXR R 0            (14) 

 
3) For   tending to infinite, the couple of random variables  tX ,  X t    tends to become not 

correlated   0XX  
 

  2
XX Xlim R


              (15) 

 

4) Setting t t   , Eq. (12) becomes      XXR E X t X t      . The comparison with Eq. 

(12) shows that  XXR   is a symmetric function with respect to : 
 

   XX XXR R              (16) 

 

 
Fig. 5 
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The auto-covariance function of a stationary process: 
 

       XX X XC E X t X t                (17) 

 
has properties analogous to those of the auto-correlation function (Fig. 6). In particular: 
 

  2
XXX 0C             (18) 

 
 2 2

X XX XC      

  2
XX XC               (19) 

 

 XXlim C 0


             (20) 

 

   XX XXC C              (21) 

 

 
Fig. 6 

 
A necessary condition to define a process as rigorously stationary is that it has no beginning and no 
end; in other words, each sample function shall be defined for any time belonging to R. 
 
In the reality the hypothesis of stationarity is widely and reasonably applied when the nonstationary 
effects associated with the beginning of the process have a short duration in comparison with the 
length of the process itself. Based on this remark, the probabilistic concepts of stationarity and non-
stationarity are clearly linked with the deterministic concepts of transient and quasi-steady regime. 
 
In structural dynamics the hypothesis of stationarity is frequently used when the fundamental period 
of oscillation is much shorter than the duration T of the exciting force. It follows that the 
stationarity hypothesis is normally used to study wind actions (T ~ 600 – 3600 s). The same 
hypothesis is questionable (and even more often unreliable) for seismic actions (T = 15 – 30s). 
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Normal random process 

The normal random process has a fundamental role in structural dynamics. For instance it provides 
an excellent representation for wind velocity and seismic motion. A stationary random process is 
defined as normal or Gaussian if the joint density function of the second order of the random 
variables X(t1) and X(t2) is normal for any t1 and t2 along R (Fig. 7). In this case it is also normal the 
joint density function of any order n of any n-variate random vector extracted from the random 
process at n arbitrary instants. 
 

 
Fig. 7 

 
Therefore: 
 

 
2

X
X

XX

1 1 x
p x exp

22

           
        (22) 

 

 X 1 2 2 2
X XX

1
p x , x ;

2 1 ( )
  

  
 

      2 2

1 X XX 1 X 2 X 2 X

2 2
X XX

x 2 ( ) x x x
exp

2 1 ( )

           
      

     (23) 

 

 
 1 2 nX X ..X 1 2 n 1/ 2n / 2

1
p x , x ,...x ;

2 C ( )
  

 XX  

  
n n

j k j X k Xjk
1 1

1
exp C ( ) x x

2 C ( )

       
  
  XX

XX      

 (24) 
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Temporal averages of a sample function 

All the quantities and the functions defined above have been deduced through statistical averages 
carried out on the whole of the sample functions of the process; this operation involves the 
knowledge of the density functions of the process. 
 
Analogous quantities may be defined with reference to each sample function x(t) of the process, 
calculating suitable averages in the time domain. These averages are called temporal averages. 
 
The following treatment deals with stationary processes and their sample functions. It also presumes 
that the sample functions x(t) are defined on an unlimited temporal interval T   t . 
 
The (temporal) mean of a sample function is defined as: 
 

 
T / 2

T / 2T

1
x lim x t dt

T 
            (25) 

 
The mean square value of a sample function is defined as: 
 

 
T / 22 2

T / 2T

1
x lim x t dt

T 
            (26) 

 
The variance of a sample function is defined as: 
 

 
T / 2 22 2 2 2

T / 2T

1
x x lim x t x dt x x

T 
              (27) 

 
The auto-correlation function of a sample function is defined as: 
 

     
T / 2

xx T / 2T

1
r lim x t x t dt

T 
             (28) 

 
The auto-covariance function of a sample function is defined as: 
 

       
T / 2 2

xx xxT / 2T

1
c lim x t x x t x dt r x

T 
                    (29) 

 
The normalised auto-covariance function is defined as: 
 

   xx
xx 2 2

c
p

x x


 


           (30) 

 
The functions  xxr   and  xxc   have analogous properties to the functions  XXR   and  XXC  . 
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Temporal averages of a process 

The sets of the means, mean square values and variances of each sample function of a random 
stationary process constitute random variables referred to as, respectively, the temporal mean, mean 
square value and variance of a stationary process. These random variables are defined as: 
 

 
T / 2

T / 2T

1
X lim X t dt

T 
            (31) 

 

 
T / 22 2

T / 2T

1
X lim X t dt

T 
            (32) 

 

 
T / 2 22 2 2 2

T / 2T

1
X X lim X t X dt X X

T 
              (33) 

 

The quantities x  (Eq. 25), 2x  (Eq. 26) and 2 2x x  (Eq. 27) associated with each sample function 
are occurrences of these random variables. 
 
The sets of the auto-correlation, auto-covariance and normalised auto-covariance functions of each 
sample function of a random stationary process constitute random processes referred to as, 
respectively, the temporal auto-correlation, auto-covariance and normalised auto-covariance 
function of the stationary process (as functions of ). These random processes are defined as: 
 

     
T / 2

XX T / 2T

1
lim X t X t dt

T 
   R         (34) 

 

       
T / 2 2

XX XXT / 2T

1
lim X t X X t X dt X

T 
              C R     (35) 

 

   XX
XX 2 2X X


 



C
P            (36) 

 
The functions  xxr   (Eq. 27),  xxc   (Eq. 28) and  xxp   (Eq. 29) associated with each sample 

function are sample functions themselves of the new random process. 
 
It is possible to demonstrate that the statistical averages of the process identify with the statistical 
averages of the corresponding temporal averages, i.e.: 
 

 XEX              (37) 
 

2 2
X E X                 (38) 

 
2 2 2
X E X X                (39) 

 

   XX XXR E    R           (40) 
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   XX XXC E    C           (41) 

 

   XX XXE     P            (42) 

 
For instance, considering  Eq. (37), it results: 
 

 
T / 2

T / 2T

1
E X E lim X t dt

T 

          

  
T / 2 T / 2

X XT / 2 T / 2T T

1 1
lim E X t dt lim dt

T T  
         

 
This treatment has great importance especially with reference to the numeric analysis of the sample 
functions of a random process deduced, for instance, through measurements or simulations. 
 
Due to the definition of statistical average, the above equations are rigorously valid if the number of 
the available sample functions tends to infinite; this situation does not occur in the real cases and, 
even more, the number of the available sample functions is often very limited. In these cases the 
calculation of the statistical averages is critical and their evaluations is more appropriate by 
averaging the available temporal averages. 
 
 
Ergodic processes 

The ergodic processes constitute a sub-class of the stationary processes. A stationary process  X t  

is defined as ergodic when all its statistical properties can be determined from only one sample 
function  x t  of the process. Since all the statistical properties can be interpreted as statistical 

averages of temporal averages, a process can be defined as ergodic when its statistical averages 
coincide with the temporal averages: 
 

XX              (43) 
 

2 2
X X              (44) 

 
2 2 2
X X X               (45) 

 

   XX XXR   R            (46) 

 

   XX XXC   C            (47) 

 

   XX XX   P            (48) 
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Power spectral density 

Let us consider a stationary random process. The power spectral density, or more simply the power 
spectrum SXX() of the random process X(t), is defined as: 
 

    i
XX XX

1
S C e d

2

  


   

           (49) 

 
Unless the factor 1/2, it coincides with the Fourier transform of the auto-covariance function 
CXX() of X(t). The auto-covariance function is the inverse Fourier transform (unless the factor 2) 
of the power spectral density  XXS  of  X t : 

 

    i
XX XXC S e d

 


              (50) 

 
Eqs. (49) and (50) are referred to as the Wiener-Khintchine equations. 

 XXS  exists if  XXC   is absolutely integrable: 

 

 XXC d



     

 
If the random process is zero mean, the auto-covariance function  XXC   coincides with the auto-

correlation function  XXR  . So, the above equations hold also replacing  XXC   by  XXR  . 

 
The power spectral density has several noteworthy properties: 
 
1) Applying the Euler’s formula to Eq. (49): 
 

     XX XX XX

1 i
S C cos( )d C sin( )d

2 2

 

 
       

    

 
Moreover, remembering that  XXC   is a real symmetric function (of ), then: 

 

   XX XX

1
S C cos( )d

2




    

   

 
Thus,  XXS  is a real symmetric function of : 
 

XX XXS ( ) S ( )              (51) 
 
Moreover, it is a non-negative function: 
 

XXS ( ) 0              (52) 
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2) Setting in Eq. (50)  = 0: 
 

   XX XXC 0 S d



    

 
Thus, being 2

XX XC (0)   : 
 

   



dSXX

2
X            (53) 

 
This means that the variance of the process is the area under the power spectral density. 
 

3) The elementary area    dS2 XX  is the contribution to 2
X  given by the harmonic components 

of the process with circular frequency in the interval   d,  (Fig. 8). Thus, the power 
spectral density describes the power or the harmonic content of the process. 

 

 
Fig. 8 
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Power spectral density of a sample function 

Let us consider a sample function  tx  of a stationary random process and let us assume, for sake 

of simplicity, that the temporal mean x  of  tx  is null (Fig. 9). 
 

 
Fig. 9 

 
Such a function cannot be expanded in a Fourier series since, in general, it is not periodic. In 
addition, it cannot be expressed through a Fourier integral: since the stationarity excludes that x(t) 
tends to zero for t  tending to infinite, it is obvious that x(t) is not absolutely integrable. 

Thus the paradox occurs that, in the most simple case of a sample function belonging to a stationary 
process, the fundamental tools of the harmonic calculus do not apply. This shortcoming can be 
overcome by means of two alternative approaches: 
1. using more powerful mathematical tools as the generalised Fourier transforms and the Fourier-

Stieltjes integrals; 
2. developing the treatment in a “limit” form using the classical tools previously described. 
 
With this second aim, let us consider a new function  txT  defined as (Fig. 10): 
 

     
 

T

T

x t x t for t T / 2,T / 2

x t 0 elsewhere

  


        (54) 

 
In other words Tx  identifies with x in  2/T,2/T , being null outside this interval. 
 

 
Fig. 10 
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Eq. (54) may be expressed through the Fourier integral: 
 

    


 

 dex~
2

1
tx ti

TT          (55) 

 

      dtetxdtetxx~ ti2/T

2/T

ti
TT






          (56) 

 
The energy of  txT  is defined as: 
 

   dttxdttxe
2/T

2/T

22
TTx  




          (57) 

 
It is finite when T is finite. It tends to infinite when T tends to infinite. 
The power of  txT  is its energy per unit time. It is given by the relationship: 
 

 dttx
T

1

T

e
p

2/T

2/T

2Tx
Tx            (58) 

 
It is finite also when T tends to infinite. 
 
Let us consider again Eq. (55), and let us multiply both its members by  txT ; then, let us execute 

the integral over t between - and +. It results: 
 

      



 


  










dttxdex~

2

1
dttx ti2  

         





 







 dx~x~

2

1
ddtetxx~

2

1 *ti  

 

    


 







dx~

2

1
dttx 22          (59) 

 
Eq. (59) is referred to as the Parseval theorem and represents the basic integral transformation tool 
from the time domain to the frequency domain and viceversa. From this theorem it follows that the 
power of  txT  is given by: 
 

    


 



dx~

T2

1
tp

2
TTx           (60) 

 

where   T2/dx~
2

T   is the contribution to the total power given by the harmonic components 

of  txT  within   d, . Thus, the limit   T2/dx~
2

T   for T  is the contribution to 

the total power given by the harmonic components of  x t  within   d, . Applying this 

concept, the power spectral density function of the sample function  tx  is defined as: 
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    2

T
xx

T

x
s lim

2 T


 




          (61) 

 
Eq. (61) has several noteworty properties: 
 
1) The power spectral density is a real, not negative, symmetric function of : 
 

   xx xxs s             (62) 

 
2) The variance of  tx  is given by: 

 

 2
x xxs d




              (63) 

 
Demonstration: Remembering that 0x  , then 2 2

xx   . Thus: 
 

   T

T / 2 T / 22 2 2 2
x T / 2 T / 2T T

1 1
x lim x t dt lim x t dt

T T  
       

    



 


 

  dtdex~
2

1
tx

T

1
lim ti

T
2/T

2/T

2

T
 

     


 




  ddtetxx~
2

1
lim ti2/T

2/T

2
T

T
 

       
T

2

T*
T

T T

x1
lim x x d lim d 63

2 2 T

 

  


    

  


   

 
Thanks to Eq. (63), the elementary area    ds2 XX  is the contribution to 2

x  given by the 

harmonic components with circular natural frequency within the interval   d,  (Fig. 11). 
 

 
Fig. 11 

 
3) The power spectral density  xxs   is the Fourier transform (unless the factor 1/2) of the auto-

covariance function  xxc   of  tx . Thus  xxc   is the inverse Fourier transform (unless the 

factor 2) of the power spectral density  xxs   of  tx : 

 

    i
xx xx

1
s c e d

2

  


   

           (64) 
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    i
xx xx

1
c s e d

2

 


   

           (65) 

 
Analogously to Eqs. (49), (50), also the Eqs. (64), (65) are referred to as the Wiener-Khintchine 
equations. 
 

Dem:      
T / 2

xx T / 2T

1
c lim x t x t dt

T 
      

   
T / 2

T TT / 2T

1
lim x t x t dt

T 
     

     
T / 2i i

xx T TT / 2T

1
c e d lim x t x t dt e d

T

    

  

             

     T / 2 i ti t
T TT / 2T

1
lim x t e dt x t e d

T

   

 
       

     
  dexx~

T

1
lim i2/T

2/T T
*
TT

 

         
T

2

*
T xx

T T

x1
lim x x lim 2 s 64

T T 


       


   

 
Power spectral density of a process 

The set of the temporal auto-covariance functions  xxc   of each sample function  tx  of  X t  

constitutes the process  XX C . Analogously, the set of the power spectral densities  xxs   of each 

sample function  tx  constitutes the process  XXS . From Eqs. (64) and (65), it derives: 
 

    i
XX XX

1
e d

2

  


   

  CS          (66) 

 

    i
XX XX e d

 


   C S           (67) 

 
Since    XX XXC E    C , then: 

 

     XXXX ES S           (68) 
 
In other words, the power spetral density of the process is the statistical average of the power 
spectral densities of each sample function of the process. 
 



 18

Derivation of stationary processes 

The derivation of the stationary processes needs much deeper considerations than those developed 
below. At an indicative level, let  (n )X t  be the n-th derivative of X(t) with respect to time t: 

 

   
n

(n)
n

d
X t X t

dt
            (69) 

 
If X(t) is a stationary zero mean process, it can be demonstrated that: 
 

XX XX XX

d
C ( ) C ( ) C ( )

d
     


           (70) 

 
2

XX XX XX2

d
C ( ) C ( ) C ( )

d
     

             (71) 

 
Applying several times the Wiener-Khinchine equations, it follows: 
 

i
XX XXC ( ) S ( )e d

 


              (72) 

 
i

XX XXXX

d
C ( ) C ( ) i S ( )e d

d

 


      

          (73) 

 
2

2 i
XX XXXX2

d
C ( ) C ( ) S ( )e d

d

 


        

          (74) 

 
and, moreover: 
 

XXXX
S ( ) i S ( )               (75) 

 
2

XXXXS ( ) S ( )                (76) 

 
From Eqs. (72)-(76) it derives: 
 

2 2
XX X XXC (0) E X (t) S ( )d




                 (77) 

 

XXXX
C (0) E X(t)X(t) i S ( )d 0




       

        (78) 

 
2 2 2

XXXX X
C (0) E X (t) S ( )d




           
         (79) 

 
Finally, it can be demonstrated that: 
 

        XX
n2

nXnX
SS           (80) 
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and then: 
 

         n nX XnX

2 2n
XXS d S d

 

 
                (81) 

 
 
Spectral moments 

The unilateral power spectral density (or the unilateral power spectrum) XXG ( )  is the following 
function (Fig. 12): 
 

XX XXG ( ) 2S ( ) per 0                       (82a) 

XXG ( ) 0 per 0                      (82b) 
 
It is a real non negative function, defined for   0, which has the following property: 
 

2
X XX0

G ( )d


               (83) 

 

 
Fig. 12 

 
Let us define as the spectral moments (or the Vanmarcke moments) the following quantities: 
 

i
X,i XX0

G ( )d i 0,1, 2,...


               (84) 

 
In particular, the first three spectral moments have the form: 
 

2
X,0 XX XX X0

G ( )d S ( )d
 


                 (85) 

 

X,1 XX XX0
G ( )d S ( )d 0

 


                   (86) 

 
2 2 2

X,2 XX XX X0
G ( )d S ( )d

 


                   (87) 

 
The position X,1 of the barycentre of the area under GXX() is given by the relationship (Fig. 13): 
 

XX X,10
X,1

X,0XX0

G ( )d

G ( )d





   
  

 




         (88) 
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The radius of gyration of the area under GXX() is given by: 
 

1/ 2
2

XX X,20
X,2

X,0XX0

G ( )d

G ( )d





            




        (89) 

 
It will be shown later that the quantity X X,2 XX

/ 2 ( / ) / 2        , called the expected frequency 

of the process X(t), has a fundamental role in random dynamics. 
 

 
Fig. 13 

 
The radius of gyration of the area under GXX() with respect to its barycentre, X,2 , provides a 

measure of the dispersion of the area around the barycentre (Fig. 13). Thus it offers an estimate of 
the amplitude of the spectral bandwidth containing the harmonic or power content of the process. It 
is defined as: 
 

2
X,1

X,2 X,2 X X,2
X,0 X,0

1
q

 
         

         (90) 

 
where: 
 

2
X,1

X
X,0 X,2

q 1


 
 

           (91) 

 
is a non-dimensional quantity between 0 and 1, called the spectral bandwidth parameter. A small 
value of qX is typical of a process with a harmonic content in a small frequency band. A large value 
of qX is typical of a process with a harmonic content distributed over a large frequency band. The 
two limit cases qX = 0 and qX = 1 correspond, respectively, to GXX() = X,0(-X,1) and to 
GXX() = G0 = 2S0 = constant. 
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Particular random processes 

Four random processes characterised by particular properties are considered below: the sinusoidal, 
narrow band, broad band and white noise processes. They have increasingly wide spectral bandwidth. 
 
Sinusoidal random process 
A zero mean stationary random process is defined as sinusoidal (Fig. 14) if any sample function is 
given by the relationship: 
 

( j) ( j)
0x (t) Asin( t )              (92) 

 
where the phase angle ( j)  is the j-th occurrence of a random variable  uniformly distributed over 
the interval 0, 2: 
 

1
p ( ) (0 2 )

2      


          (93) 

 

 
Fig. 14 

 
The auto-covariance function coincides with the auto-correlation function and is given by: 
 

   
22

XX 0 00
C ( ) E X(t)X(t ) A sin( t )sin (t ) p( )d


                 

 
2 2

0 00

A
sin( t )sin (t ) d

2


         

   

2

XX 0

A
C ( ) cos( t)

2
             (94) 

 
Thus, the power spectral density results: 
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   
2

i i
XX XX 0

1 A
S C e d cos( )e d

2 4

    

 
       

    

   
2

XX 0 0

A
S ( )

4
                 (95) 

 
It follows that 2 2

X A / 2  . Moreover, i 2
X,i 0A / 2   . Finally, Xq 0 . 

 
Narrow band process 
A stationary random process is defined as narrow band if its power spectral density is different from 
zero only in a limited frequency range with amplitude B = 2 1  , where B/ 0   0, 0  being the 

mean value of B:  0 1 2 / 2     . A narrow band process is defined as ideal (Fig. 15) if its 

power spectral density is given by: 
 

XX 0 1 2S ( ) S for                         (96a) 

XXS ( ) 0 elsewhere                     (96b) 
 
Thus: 2

X 0 2 12S ( )    . 

 

 
Fig. 15 

 
The auto-covariance function is given by: 
 

    i
XX XX 0C S e d 2 S cos( ) d

 

 
         
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       0
XX 2 1 0 0

B
sin

2S 2
C sin sin 2S B cos

B
2

                     
  

     (97) 

 
Moreover: 
 

X,0 02S B    ;     X,1 0 02S B     ;     
2

2
X,2 0 0

B
2S B

12

 
    

 
  ;     X 2 2

00

B B
q

1212 B
 

 
 

 
The sample functions of the narrow band random process are characterised by a harmonic content 
concentrated around the central circular frequency of the harmonic band. For B tending to 0 the 
narrow band process tends to the sinusoidal process. 
 
Broad band process 
A random stationary process is defined as a broad band process if the power spectral density is 
different from zero in a wide frequency band. A broad band process is defined as ideal (Fig. 16) if 
its power spectral density is given by the relationship: 
 

XX 0S ( ) S for B                       (98a) 

XXS ( ) 0 elsewhere                     (98b) 
 
Thus: 2

X 02S B  . 

 

 
Fig. 16 

 
The auto-covariance function is given by: 
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   
Bi

XX XX 00
C S e d 2 S cos( ) d

 


         

 

   
XX 0

sin B
C 2S B

B

 
    

          (99) 

 
Moreover: 
 

X,0 02S B    ;     2
X,1 0S B    ;     

3
0

X,2

2S B

3
    ;     X

1
q

2
  

 
The sample functions of the process have irregular shape due to the width of the harmonic content. 
 
White random process 
A stationary random process is defined as a white (noise) process (Fig. 17) if its power spectral 
density is constant over the whole frequency range. It is generally indicated by the symbol W(t): 
 

XX 0S ( ) S for                      (100) 

 
Thus 2

X   ; therefore the white process is physically not realizable. However, its importance in 
structural dynamics is fundamental. Some of its properties will be discussed in the next sections. 
 

 
Fig. 17 

 
The auto-covariance function is given by: 
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 XX 0C 2 S ( )                         (101) 

 
Thanks to this expression the white process is also referred to as the delta-correlated process. 
Moreover: X,i for i    , Xq 1 . The sample functions of the white process have maximum 

irregularity due to the infinite amplitude of the spectral band. 
 
A particular linear transformation 

Let Y(t) be a stationary random process proportional to the stationary random process X(t): 
 
   taXtY                       (102) 

 
It results: 
 

     Yμ E Y t E aX t aE X t               

 

XY aμμ                       (103) 
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