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COUPLE OF RANDOM PROCESSES 
 
Definitions 

Let us consider an experiment whose result is represented by a couple of random processes X(t) and 
Y(t) (for example the components of the seismic motion at the base of 2 piers of a viaduct, the wind 
velocities registered by 2 anemometers, the dynamic response of a 2-D.O.F. system). The couple of 
the processes X(t) and Y(t) is also called a 2-variate random process. 
 

Let us consider the values    j
1x t  and      j

2y t j 1, 2,...  assumed by the sample functions 
   jx t  and    jy t  of X(t) and Y(t) for 1tt   and 2t t  (Fig. 1). The set of these values constitutes 

the couple of random variables  1 1X X t  and  2 2Y Y t . They are characterised by the joint 

density function of the second order  XY 1 1 2 2p x , t ; y , t . From this it is immediate to derive the 

marginal density functions of the first order of  1X t  and  2Y t : 

 

 

 
Fig. 1 
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   X 1 1 XY 1 1 2 2 2p x , t p x , t ; y , t dy



   (1) 

 

   Y 2 2 XY 1 1 2 2 1p y , t p x , t ; y , t dx



   (2) 

 
From the marginal density functions of the first order, it is immediate to derive the statistical 
averages of the first order already defined for each random process. 
 
Statistical averages of the second order 

The statistical averages of the second order are the joint indexes of  1 1X X t  e  2 2Y Y t ; they 

can be derived from the joint density function of the second order  XY 1 1 2 2p x , t ; y , t . 

 
The cross–correlation function of  X t  and  Y t  is defined as: 

 

       XY 1 2 1 2 1 2 XY 1 1 2 2 1 2R t , t E X t Y t x y p x , t ; y , t dx dy
 

 
            (3) 

 
The cross–covariance function is defined as: 
 

           
     

XY 1 2 1 X 1 2 Y 2

1 X 1 2 Y 2 XY 1 1 2 2 1 2

C t , t E X t t Y t t

x t y t p x , t ; y , t dx dy
 

 

     

         
       (4) 

 
It derives: 
 

       XY 1 2 XY 1 2 X 1 Y 2C t , t R t , t t t             (5) 

 
The normalised cross-covariance function is defined as: 
 

   
   
XY 1 2

XY 1 2
X 1 Y 2

C t , t
t , t

t t
 

 
            (6) 

 
The prefix “cross” indicates that  1X t  and  2Y t  are extracted from different processes (although 

associated with the same experiment). Eqs. (3), (4) and (6) involve the following properties: 
 

   XY 1 2 YX 2 1R t , t R t , t  

   XY 1 2 YX 2 1C t , t C t , t             (7) 

   XY 1 2 YX 2 1t , t t , t    

 
Two random processes  X t  and  Y t  are defined as not correlated if: 

 

 XY 1 2 X 1 Y 2 1 2R t , t (t ) (t ) t , t    R           (8) 
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 XY 1 2 1 2C t , t 0 t , t  R             (9) 

 
Two random processes  X t  and  Y t  are defined as orthogonal if: 

 

 XY 1 2 1 2R t , t 0 t , t  R           (10) 

 
Stationary processes 

A couple of random processes is defined as weakly stationary if the density functions of the first 
order and the joint density functions of the second order are independent of any translation  of the 
origin of the axis of time: 
 

   X 1 1 X 1 1p x , t p x , t                      (11a) 

   Y 2 2 Y 2 2p y , t p y , t                      (11a) 

   XY 1 1 2 2 XY 1 1 2 2p x , t ; y , t p x , t ; y , t                      (11b) 

 
Assigning 1t   , it is immediate to show that Eq. (11) involves the following properties: 

(a) the density function of the first order is independent of 1t ; 

(b) the joint density function of the second order depends on only the time interval  12 tt  . 
 
Thus, the statistical averages of the first order are independent of time. The statistical averages of 
the second order depend on only the time lag 2 1t t   : 

 

   XY 1 2 XYR t , t R   

   XY 1 2 XYC t , t C   

   XY 1 2 XYt , t     

 
The cross-correlation function of two (weakly) stationary processes: 
 

     XYR E X t Y t                (12) 

 
has several noteworthy properties (Fig. 2): 
 
1) Setting  = 0 in Eq. (12): 
 

     XYR 0 E X t Y t              (13) 

 
2)      XY XY X Y XY X Y X YR C            . Thus, since XY 1  , it follows that: 

 
 X Y X Y XY X Y X YR            R        (14) 

 
3) For   tending to infinite the couple of random variables  X t ,  X t    tends to become not 

correlated  XY 0  . Thus: 
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 XY X Ylim R


               (15) 

 

4) Setting t t   , Eq. (11) becomes      XYR E X t Y t      . Thus it results: 

 

   XY YXR R              (16) 

 

 
Fig. 2 

 
The cross-covariance function of two (weakly) stationary processes: 
 

       XY X YC E X t Y t                (17) 

 
has properties analogous to the cross-correlation function (Fig. 3): 
 

       XY X YC 0 E X t Y t             (18) 

 
 X Y XY X YC        R          (19) 

 
 XYlim C 0


             (20) 

 

   XY YXC C              (21) 
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Fig. 3 

 
If  X t  and  Y t  are not correlated then, due to Eq. (9): 

 

 XYC 0  R            (22) 

 
If  X t  and  Y t  are orthogonal then, due to Eq. (10): 

 

 XYR 0  R            (23) 

 
 
Bi-variate normal process 

Two random stationary processes X(t) and Y(t) have a bi-variate normal distribution if their joint 
density function of the second order is given by the relationship: 
 

 

      

XY 2
X Y XY

222 2
Y X X Y XY X y X y

2 2 2
X Y XY

1
p x, y;

2 1 ( )

x 2 ( ) x y y
exp

2 1 ( )

  
   

              
       

    (24) 

 

where X  and Y  are the means of X(t) and Y(t), 2
X  e 2

Y  are the variances, XY ( )   is the 
normalised cross-covariance function. 
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Cross-power spectral density 

Let us consider a couple of stationary random processes. The cross-power spectral density, or more 
simply the cross-power spectrum, SXY() of X(t) andY(t), is defined as: 
 

    i
XY XY

1
S C e d

2

  


   

           (25) 

 
Unless the factor 1/2, it coincides with the Fourier transform of the cross-covariance function 
CXY(). Thus, the cross-covariance function is the inverse Fourier transform (unless the factor 2) 
of the cross-power spectral density SXY(): 
 

    i
XY XYC S e d

 


              (26) 

 
Also the Eqs. (25) and (26) are known as the Wiener-Khintchine equations. 
SXY() exists if CXY() is absolutely integrable: 
 

 XYC d



     

 
If X(t) and Y(t) are zero mean, the cross-covariance function  XYC   coincides with the cross-

correlation function  XYR  . So, the above equations hold also replacing  XYC   by  XYR  . 

Since CXY() is in general a non symmetric function, SXY() is in general a complex function. As 
such it can be expressed as: 
 

     C Q
XY XY XYS S iS               (27) 

 
where  C

XY XYS ( ) Re S ( )    is referred to as the co-spectrum and  Q
XY XYS ( ) Im S ( )    is referred 

to as the quad-spectrum. Let us rewrite CXY() as: 
 

         XY XY XY XY XY

1 1
C C C C C

2 2
                     (28) 

 
where the two terms in the brackets are, respectively, symmetric and anti-symmetric functions of . 
Let us execute the Fourier transform of both terms. It follows: 
 

     C i
XY XY XY

1
S C C e d

4

  


                (29) 

 

     Q i
XY XY XY

1
S C C e d

4

  


                (30) 

 

     C
XY XY XY

1
S C C cos d

4




                 (31) 

 

     Q
XY XY XY

1
S C C sin d

4




                 (32) 
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Eqs. (29) and (30) demonstrate that  C

XYS   is the Fourier transform (unless the factor 4) of the 

symmetric part of  XYC  ;  Q
XYS   is the Fourier transform (unless the factor 4) of the anti-

symmetric part of  XYC  . Thus, XYS ( )  is real if XYC ( )  is symmetric. 

Eqs. (31) and (32) lead to the relationships: 
 

   C C
XY XYS S              (33) 

 
   Q Q

XY XYS S               (34) 

 
So,  C

XYS   and  Q
XYS   are, respectively, symmetric and anti-symmetric functions of . 

Dealing with  YXS   in an analogous way it results: 

 
   C C

XY YXS S              (35) 

 

   Q Q
XY YXS S               (36) 

 
from which it derives: 
 

   *
XY YXS S              (37) 

 
where S* is the complex conjugate of S. 
 
 
Coherence, correlation and dependence 

The coherence function of two stationary processes X(t) and Y(t) is defined as: 
 

   
   
XY

XY

XX YY

S

S S


  

 
          (38) 

 
The real and the imaginary part of the coherence function are referred to as, respectively, the co-
coherence and the quad-coherence: 
 

     
   

C
XYC

XY XY

XX YY

S
Re ( )

S S


     

 
        (39) 

     
   

Q
XYQ

XY XY

XX YY

S
Im ( )

S S


     

 
        (40) 

 
Thus: 
 

C Q
XY XY XY( ) ( ) i ( )                  (41) 

 
Once introduced the coherence function, the cross-power spectral density assumes the form: 



 8

 

XY XX YY XYS ( ) S ( )S ( ) ( )               (42) 

 
which shows that the cross-power spectral density is known through the knowledge of the power 
spectral densities of each process and through the coherence function. 
 
The coherence function may be interpred as the frequency domain counter-part of the normalised 
cross-correlation function of the processes X(t) and Y(t). It can be proved that: 
 

XY0 ( ) 1               (43) 

 
In particular, when: 
 

XY ( ) 1    

 
the processes X(t) and Y(t) are referred to as perfectly not correlated at the circular frequency . If 
such a condition is satisfied for any , then the two processes are referred to as totally or identically 

coherent and      XY XX YYS S S     

 
Instead, when: 
 

XY ( ) 0    

 
the two processes X(t) and Y(t) are referred to as not correlated at the circular frequency . If such 
a condition is satisfied for any , then the two processes are referred to as totally or identically 
incoherent and SXY() = 0; consequently, CXY() = 0. 
 
Two stationary processes X(t) and Y(t) are defined as statistically independent if: 
 

     XY 1 1 2 2 X 1 1 Y 2 2p x , t ; y , t p x , t p y , t  

 
for any t1 and t2. It is easy to show that two independent random processes are also not correlated. 
The opposite is generally not true; however, if X(t) and Y(t) are normal processes, then the not 
correlation implies the independence. 
 


