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RANDOM VARIABLES 
 
Definitions 

A variable is defined as random, or stochastic, when it describes mathematically, in accordance 
with probability laws, the numerical outcomes of experiments related to random phenomena. 
A continuous random variable can assume continuous values on the real axis. 
A discrete random variable can assume values in a discrete set of numbers. 
A mixed random variable can assume both continuous and discrete values. 
The following notes focus on continuous random variables. 
 
Distribution function 

The distribution function, also called cumulative distribution,  XF x , is the probability that the 

random variable X assumes values less or equal to x: 
 

   XF x P X x               (1) 

 
This function is always defined on the whole real axis   x ; x is called the state variable. 
The distribution function has several noteworthy properties. In particular: 
 

     XF P X P 0 0       

   XF P X 1      

     1 2 X 2 X 1P x X x F x F x     

 
     1 2 X 1 X 2P x X x 0 F x F x     . So,  xFX  is a not decreasing function. 

 

   
 
 
Density function 

The density function  xpX , or simply the density of a random variable X, is the prime derivative 
of the distribution function with respect to x: 
 

   
dx

xdF
xp X

X   
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Since  xFX  is a not decreasing function,  xpX  is not negative: 
 

 Xp x 0  

 
Remembering that   0FX  , the application of the fundamental theorem of the integral calculus 
provides the relationship: 
 

    


x
xX dpxF  

 

    
 
It derives: 
 

      2x

1x x1X2X dxxpxFxF  

 
and then: 
 

   2

1

x

1 2 Xx
P x X x p x dx     

 2

Xp x dx 1



  

 
which represent fundamental properties of the density function. 
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Indexes of a random variable 

The distribution function  xFX  and the density function  xpX  give a complete description of X. 
The indexes of a random variable are quantities that provide a synthetic description of the random 
variable. Indexes are framed into 3 classes: 
 
(1) Position indexes – provide the position of the distribution, i.e. the position of the values of x 

assumed by X; the most important position index is the mean value. 
(2) Variability indexes – characterise the variability of the values assumed by X; they comprehend 

the mean square value, the variance, the standard deviation and the coefficient of variation. 
(3) Shape indexes – provide an information on the shape of the distribution; they comprehend the 

skewness and the kurtosis. 
 
Let us define as the mean value of the random variable X the quantity: 
 

 X Xxp x dx



    

 

 
 

Let us define as root mean square value of the random variable X the quantity: 
 

 2 2
X Xx p x dx




    

 
Let us define as variance of the random variable X the quantity: 
 

   22
X x Xx p x dx




    

 
Developing the above equations: 
 

2 2 2
X X X     

 

The standard deviation X  is the square root of the variance 2
X . It defines the dispersion of X 

around X . Let us define as coefficient of variation the nondimensional ratio: 
 

X

X
XV




  
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It exists provided that the mean value is different from zero. 
Let us define as skewness the non-dimensional quantity: 
 

   dxxpx
1

X
3

X3
X

1 






  

 
If  xpX  is symmetric, X  lies on its symmetry axis and 01  . 
 

    
 
Let us define as kurtosis the non-dimensional coefficient: 
 

   dxxpx
1

X
4

X4
X

2 






  

 
If X is a normal random variable, 32  . 

 

    
 
 
Normal distribution 

A continuous random variable X has normal distribution if its density function has the form: 
 

 
2

X
X

XX

x1 1
p x exp

22

           
 

 
The distribution function,    XF x P X x  , is given by the expression: 
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 
2

x

X

1 1 u
F x exp du

22 

           
  

 
The following figure shows some qualitative diagrams of the normal distribution and its most 
important properties. 
 

 
 
The reduced or standard normal random variable is defined as: 
 

X

XX
Z




  

 
Thus the mean value and the standard deviation of Z are 0 and 1, respectively. 
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COUPLE OF RANDOM VARIABLES 
 

Definitions 

A couple of random variables X, Y is called a bi-variate random variable or a 2-component vector. 
 
Joint distribution function 

Let us consider a couple of random variables X, Y. The joint distribution function  y,xFXY  is the 

probability that X  x, Y  y: 
 

   XYF x, y P X x, Y y    

 
It is always defined on the bi-dimensional space  x    ,  y    . 

 
The marginal distribution functions of X and Y,  xFX  e  yFY , are the distribution functions of 

each variable X and Y. In general, the knowledge of XF  and YF  does not allow to determine XYF . 

Instead, given XYF , it is possible to derive XF  e YF : 
 

     X XYF x P X x, Y F x,       

 

     Y XYF y P X , Y y F , y      

 
The joint distribution function has some relevant properties: 
 

     XYF , y P X , Y y P 0 0       

     XYF x, P X x, Y P 0 0       

      00PY,XP,FXY    

    1Y,XP,FXY    

 y,xFXY  is a not decreasing function of x, y. 
 
Joint density function 

The joint density function  XYp x, y , or simply the joint density of the random variables X and Y, 

is given by: 
 

   2
XY

XY

F x, y
p x, y

x y




 
 

 
The application of the bi-dimensional form of the fundamental theorem of the integral calculus 
gives rise to the expression: 
 

     


x y
XYXY dd,py,xF  
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By virtue of the above equation it results: 
 

   2

1 1

x y2

1 2 1 2 XYx y
P x X x , y Y y p x, y dxdy        

 

 XYp x, y dxdy 1
 

 
   

 

  
 
Moreover: 
 

   



 dyy,xpxp XYX  

 

   



 dxy,xpyp XYY  

 
The density functions  xpX  and  ypY  of X and Y are called herein marginal density functions. 
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Independent random variables 

Two random variables X and Y are defined as independent if the events  X x  and  Y y  are 

independent for any x and y, i.e. if      P X x, Y y P X x P Y y     . It follows: 

 
     yFxFy,xF YXXY   

 
     ypxpy,xp YXXY   

 
These equations are necessary and sufficient conditions of independence. 
 
 
Indexes of a couple of random variables 

The joint distribution function  y,xFXY  and the joint density function  y,xpXY  give a complete 
probabilistic description of X and Y. The indexes are quantities that provide a synthetic information 
on the couple of random variables. They can be framed into two classes: 
 
(1) Indexes of X, Y dealt with separately – They are the same indexes of each random variable. 
(2) Indexes of X, Y dealt with together – They express the probabilistic link between X and Y; they 

comprehend the correlation, the covariance and the coefficient of correlation. 
 
The correlation of X, Y is defined as: 
 

 XY XYR xyp x, y dxdy
 

 
    

 
The covariance of X, Y is defined as: 
 

    XY X Y XYC x y p x, y dxdy
 

 
     

 
Expanding the above equations it follows: 
 

XY XY X YC R    
 
If 0X   or 0Y  , then XYXY RC  . Moreover, if X = Y, then 2

XX XR   , 2
XX XC   . 

The normalised covariance of X, Y, called also the coefficient of correlation, is defined as: 
 

YX

XY
XY

C


  
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It should be remembered that X, Y are independent if: 
 

     ypxpy,xp YXXY   
 
These variables are not correlated if: 
 

YXXYR   
 

0C XYXY   
 
If X, Y are independent, they are also not correlated. It follows: 
 

   







 dyyypdxxxpR YXXY  

 
which implies the independence of X and Y. The inverse statement is generally not true: if X, Y are 
not correlated, not necessarily they are also independent (this occurs only if X, Y are normal 
random variables). Thus, the condition of independence is stronger that the condition of not 
correlation. 
 
The normalised covariance XY  expresses the degree of correlation between X and Y. We already 

noted that 0XY   if X and Y are not correlated. It is easy to demonstrate that: 
 

XY1 1     

 
It is possible to demonstrate that: 
 

XY

XY

1 Y aX b, a 0

1 Y aX b, a 0

      
      

 

 
Tis equations is equivalent to the position: 
 

X Y
XY

X Y

X Y
1 X Y

 
       

 
   

 
The above equations explain the difference between independence and not correlation. The 
statistical dependence involves any functional link between X and Y. The correlation involves a 
functional link of the linear type. Thus, the correlation is a particular case of the independence. 
 
The following figure shows some typical examples of the statistical link between X, Y. If 1XY   

(a) X and Y are proportional; if 1XY   (b) X and Y are inversely proportional. For intermediate 

values of   between 0 and 1 (c), (d) X and Y tend to be roughly proportional or inversely 

proportional. The scattering is complete for 0XY  ; it is worth noting that XY  may be equal to 
zero also in the presence of a strong functional link of not linear type (f). 
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Bi-variate normal distribution 

Two random variables X, Y have a bi-variate normal distribution if  y,xpXY  has the form: 
 

 

       
 

XY 2
X Y XY

222 2
Y X X Y XY X y X y

2 2 2
X Y XY

1
p x, y

2 1

x 2 x y y
exp

2 1

 
  

             
    

 

 

where X  and Y  are the mean values of X and Y, 2
X  and 2

Y  are the variances of X and Y, XY  
is the coefficient of correlation. 
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The above equations is often represented by the curves provided by the intersection of the joint 
density function with the planes   Ky,xpXY   parallel to the plane x, y: 
 

 
 

K
1

xy2yx
2
XY

XY
22





 

 

 
 
For 1XY   these curves degenerate into the linear relationships xy  . 
 
It is relevant to remember that, if X, Y are statistically independent, then they are not correlated; the 
inverse statement is in general not true. In the particular case that X, Y have a bi-variate normal 
distribution, this statement is correct. Thus, if X, Y are not correlated, they are also independent. 
Setting 0XY  , the bi-variate normal density function becomes: 
 

 
22

yx
XY

X yX Y

y1 1 x 1 1
p x, y exp exp

2 22 2

                              
 

 
     ypxpy,xp YXXY  ,    yp,xp YX  being marginal normal distributions. In other words, in 

this case, 0XY   is a necessary and sufficient condition of statistical independence. 
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RANDOM VECTORS 
 

Definitions 

A vector that lists n random variables is a n-variate random vector. The probabilistic representation 

of the n-variate random vector  T
n21 x..xxX  implies the knowledge of the joint distribution of 

all the random variables  jX j 1,...n  (n-th order distribution). If X is normal, its complete 

probabilistic representation involves the knowledge of the joint distribution of all the possible 
couples of random variables  i jX , X i, j 1,...n  composing the vector (2nd order distributions). 

 
Joint distribution function 

The joint distribution function    
1 2 nX X ...X 1 2 nF F x , x ,...xX x  of the vector  T

n21 x..xxX  is the 

probability that 1 1 2 2 n nX x , X x ,...X x   : 
 

     
1 2 nX X ...X 1 2 n 1 1 2 2 n nF F x , x ,...x P X x , X x ,...X x    X x  

 
The joint distribution function of some of the random variables that compose the vector can be 
derived from the above equation setting as equal to infinite all the other variables. For instance: 
 

   
1 2 1 2 nX X 1 2 X X ...X 1 2F x , x F x , x , ,...    

 
Moreover, the following properties apply: 
 

 
1 2 nX X ...X 1 2 j nF x , x ,.., x ,.., x 0     for j = 1, ...n 

 
 

1 2 nX X ...XF , , ... 1     

 
 

1 2 nX X ...X 1 2 nF x , x ,..x  is a not decreasing function of n21 x..,x,x . 

 
Joint density function 

Generalising to the vector X the considerations already developed with reference to the couple of 
random variables X,Y, the joint density function of X is given by the relationship: 
 

   
1 2 n

1 2 n

n
X X ...X 1 2 n

X X ...X 1 2 n
1 2 n

F x , x ,...x
p x , x ,...x

x x ... x




  
 

 

   1 2 n

1 2 n 1 2 n

x x x

X X ...X 1 2 n X X ...X 1 2 n 1 2 nF x , x ,...x ... p , ,... d d ...d
  

          

 
   nbnnab22a2b11a1 xXx...,xXx,xXxP  

  1b 2b nb

1 2 n
1a 2a na

x x x

X X ... X 1 2 n 1 2 nx x x
... p x , x , ... x dx dx ...dx     

 
It follows that: 
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 
1 2 nX X ... X 1 2 n 1 2 n... p x , x ,...x dx dx ...dx 1

  

  
    

 
The joint density function of some of the random variables composing the random vector can be 
derived from  n21nX...2X1X x...,x,xp  integrating between - and + with respect to all the other 

variables. For instance: 
 

    n3n321nX...3X2X1X212X1X dx...dxx...x,x,xp......x,xp 







  

 
Independent random vectors 

A random vector is composed by independent random variables if the following properties apply: 
 

         
1 2 n 1 2 n i

n

X X ...X 1 2 n X 1 X 2 X n X i
i 1

F x , x ,...x F x F x ...F x F x


   

 

       
1 2 n 1 2 n i

n

X X ...X 1 2 n X 1 X 2 X n X i
i 1

p x , x ,...x p x p x ...p x p (x )


   

 
Indexes of a random vector 

Using the indexes introduced for a couple of random variables, a random vector  T
n21 x..xxX  

is characterised, in synthetic form, by the vector of the mean values X  and by the matrix of the 

correlations XR  or of the covariances XC . 
 
The mean vector, called also the vector of the mean values, is defined as: 
 

   
1 2 n

T

X X XE ...    X X  

 
Its components are the mean values of the random variables that compose the random vector X, 
i.e.    Xi iE X i 1,...n   . 

The correlation matrix is defined as: 
 

 




















nXnX2XnX1XnX

nX2X2X2X1X2X

nX1X2X1X1X1X

R..RR

R..RR

R..RR

E


T
X XXR  

 

The on-diagonal terms are the mean square values of each random variable  
i i i

2
X X XR   ; the off-

diagonal terms are the correlations of all the possible couples of the random variables. 
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The covariance matrix is defined as: 
 

   




















nXnX2XnX1XnX

nX2X2X2X1X2X

nX1X2X1X1X1X

T

C..CC

C..CC

C..CC

E
XXX -XXC   

 

The on-diagonal terms are the variances of each random variable  
i i i

2
X X XC   ; the off-diagonal 

terms are the covariances of all the couples of random variables. Expanding the above equations it 
follows that: 
 

T
XXXX CR   

 

XR  and XC  are symmetric matrices. It is possible to show that they are also semi-positive defined. 

XR  is diagonal if all the couples of different random variables  i jX , X i j  are orthogonal, i.e. 

i jX XR 0  (i,j, ij). XC  is diagonal of all the couples of different random variables  jiX,X ji   

are not correlated, i.e. 
i jX XC 0  (i,j, ij). 

 
It is demonstrated later that, if X is a normal vector, then the knowledge of X  and XR  or XC  is 
enough to determine the joint distributions of any order. 
 
 
n-variate normal distribution 

Let us consider a n-variate random vector  T
n21 X...XXX . Let  T

nX2X1X ... X  be 

the mean vector and   T
E     X X XC X X   be the covariance matrix. X has a n-variate 

normal distribution if its joint density function  n21nX...2X1X x...xxp  has the form: 

 

 
 1 2 nX X ... X 1 2 n 1/ 2n / 2

1
p x , x ,...x

2


 XC
  

j k

n n

j k j X k Xjk
1 1

1
exp x x

2

     
  

  X
X

C
C

 

 
where XC  is the modulus of the determinant of XC  e 

jkXC  is the j,k-th co-factor of XC  (i.e. the 

determinant of the matrix obtained by cancelling the j-th row and the k-th column of XC , multiplied 

by   kj1  ). In matrix form: 
 

 
 

   T 1
1/ 2n / 2

1 1
p exp

22
     

  XX X X

X

x X C X
C

   

 
Thus, the knowledge of the first order statistical mean  X  and of the second order statistical mean 

 XC  of X is enough to derive the joint density function of order n. 


