MONTE CARLO SIMULATION

The knowledge of a set of the sample functions of a random process allows to derive its power
spectral density. On the other hand, the knowledge of a suitable model of the power spectral density
of a random process allows to derive artificially its sample functions. This operation is known as
simulation of a random process and falls into the broad family of the Monte Carlo methods.

Monte Carlo methods to simulate a random process may be classified into two main families: 1) the
methods based on the superposition of harmonic waves with random phase angles (random phase
method); 2) ARMA methods based on the filtering of uncorrelated white noises (Auto-Regressive
and/or Mobile-Average methods). Both these methods may be applied to simulate stationary and
non-stationary random processes, as well as normal and non-normal random processes. This section
is aimed at providing a synthetic description of the application of the random phase method to
random stationary normal processes with zero mean.

Mono-variate processes
Let X(t) be a random stationary normal process with zero mean. S,, (®) is its power spectral

density. Using the random phase method, a generic sample function of X(t) is given by:
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where Ao, (j =1,..N) is the amplitude of the frequency steps into which the harmonic content of the
process is sub-divided (with ®>0); mj(j :1,..N) is the central value of each step (Fig. 1a); o, is
the j-th occurrence of the random phase @ uniformly distributed between 0 and 27 (Fig. 1b):
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To interpret Eq. (1), let us consider the j-th term of the sum:



X (1) =2,/Sxx (mj)A(oj Sin(cojt+(pj) (3)

and let us evaluate its variance (the variance of a harmonic function with unit amplitude is 1/2). Thus:

Since the harmonics that constitute the sample function defined by Eq. (1) is uncorrelated with each
other (having different circular frequencies), the variance of X(t) is the sum of the variances of its

components. Thus (Fig. 2):
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Moreover, the amplitude of each harmonic defines the power content and the distribution of the
sample function and of the process. Fig. 3 shows the simulation of 3 sample functions of the wind
velocity studied in the previous section. The functions are normalised in order to have o, =1.
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Multi-variate processes

Let X(t) be a n-variate random stationary normal process with zero mean. Let S, () be its power

spectral density matrix. The random phase method allows to simulate any number of sample vectors
x(t) of X(t). Fig. 4 shows the basic concepts of the simulation of a 3-variate process.
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It is possible to demonstrate that the i-th component of the sample vector x(t) of X(t) is given by:

X (t)= zi ji Dy (o)) JAo;sin(ot+g, ) (i=12.n) (4)

where Ao, (j =1, ..N) is the amplitude of the frequency steps into which the harmonic content of the
process is sub-divided (with ®>0); a)j(j =1,..N) is the central value of each frequncy step (Fig.
1a); @y, is the j,k-th occurrence of the random phase ® uniformly distributed between 0 and 2.

Eq. (4) may be re-written in the following matrix form:

X(t):ZZN:jD((oj) Ao, Sin((ojlt+(pj) (5)

where 1={1 1...1}T is a vecton of n unit components, ¢; = {(pjl Py - (pjn}T, D is a matrix provided
by the relationship:



D(0)D" () = Sy () (6)

Eq. (6) is referred to as matrix decomposition. There are infinite possible matrices D(w) that satisfy
Eq. (6) and several methods to determine such matrices. The most well-known methods are referred
to as the Cholesky and spectral decompositions.

Fig. 5 shows the simulation of 3 correlated time-histories of the wind velocity.
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Cholesky decomposition
A square matrix A of order n that is real, symmetric, semi-positive definite can be decomposed as:
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where L is a lower triangular matrix whose terms are given by the recursive formulae:
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Spectral decomposition

Let us consider again Eq. (7) and let us evaluate the eigenvalues and the eigenvectors of A:
(A-Al)y=0 (11)

Y = [y 2 ...yn] is the matrix of the orthonormal eigenvectors; A = diag{\1, A2, ..An} is the matrix
of the eigenvalues:

¥Y'¥¢=1; YA¥Y=A (12)
Using Eq. (12):
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The characteristic equation results:
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