INTRODUCTION TO STRUCTURAL DYNAMICS

Structural mechanics frequently deals with static problems, i.e. problems which are independent of
time. In these cases we are usua to consider an equilibrium configuration reached by increasing
slowly forces and displacements. In other words, we consider that the evolution from the unloaded
and undeformed configuration to the loaded and deformed configuration occurs through a series of
equilibrium configurations.
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In reality, everey physical phenomenon concerning structural mechanics depends on time.
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We can deal with a problem as static when the time dependence is slow, as in the case of the snow
accumulation, or when it islimited to asmall time interval (the application of permanent |oads).

We shall deal with a problem as dynamic when rapid time variations occur, as in the case of wind
and seismic actions.



SINGL E-DEGREE-OF-FREEDOM-SYSTEMS

Undamped free vibrations
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2nd Newton law F=ma
=-kq restoring elastic force; q = q(t)
a=g absolute acceleration

mi(t) + ka( t) = §= (dividing both members by m)

k - k
t)+—q(t)= 0= Def 2=
o] )+mq() = Defining & = —

d(t) + w3a(t) = 0= 2nd order, homogeneous, linear differential equati
with constant coefficients

q(O): do ; q(0)= (o initial conditions
q(t) = A cosuyt + B sinwyt = q(0) = A = q,

G(t) = —wp A sin wyt + wy B coswypt = (0) = B = o = B:%

q(t) = g coswyt +%sin wot 9,= 0= q( 1) = q, cosv,
0

a b . D>0 a(tyh

Yo

T2y | T =2y

W, = fundamental circular frequency
Ng = W /211= fundamental frequency
T, =1/ny = 211/ W, = fundamental period

Indicatively:

Ny < 1Hz(To > 15) - Dynamically flexible structure
ng > 1Hz(T0 < 15) - Dynamically rigid structure



Example: Arc lamp

m; = 8000 kg

/
m f o}
e o
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hp:30m
h=30m
~

E=2.100.000 kgf/crh= 0.24 10 N/f
J=9027x10"*m*

— 2
o0 A =0.0252m
mm k=L= T = E_s1063n/m
a fh”
3E)

Mass of the polen, = 0.0252¢< 2% 7858 5343 |
It is assumedn=m; +m,/2=10671 kg

Wo :\/E = JLO%: 1405rad/s
m 10671

Ng =Wy /211= 0223Hz
To=1/ny = 447s



Example: Single-storey reinforced concrete building

Frame stepi=3m
Slab depth =20 cm

E Beam 30x150 cm
_ I Columns 30100 cm
< Shear-type model
9m| 16m | 9m
" 3am
m m = 2500x 0.2x 34x 2.7 (slab)
+2500%x34%x 03x 15 (beam)
+2x2500% 525x 0.3x 1/2 (columns/2)
k =880875kg
/ \

1 3_1 3 4
J,=—b,h; =—x03x%x(1)° = 0025m
P52 T 15 (1)

12 EJp _,.12x0.3x 16'x 0.025
X =2x

k=2 =0.833% 1® N/
h3 (6)3 n

Wp = \/% = 3076rad/s;ny =49H,;T, = 0204s

Considering a distributed vertical load with mag®0 kg/nf =
m = 880875 +1000x 34x 3=1900875kg

Wp = \/% = 2094rad/s;ny = 333H,; T, = 030s



Damped freevibrations
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2nd Newton law F=ma ;a=¢q
F=-kq—-og ; -cq= damping viscous force

mg(t) + co( § + ko § = (= (dividing both members by m)
c K K
g(t)+—qg(t)+—q(f)=0 — =
a(t)+—a(t)+—a(y 0
C CE?_\/_ _ C

m Jmmzjk Nﬁ

¢ = damping ratio or damping coefficient

(1) + 2o, )+l )= O

a(0=a ;9= @

Eq. (1) admits three distinct solutions depending vamether & <1, >1,§ =1. In structural
engineering not only <1 but, even mor€ < 1. A structure withg <1 is said “underdamped”. In
this case the solution of Eq. (1) is given by:

q(t)=e_aw°t(alcoswo 1- €2 t+a, SiNgy 1 €2 t) )

wherea, anda, are constants depending on the initial conditions:

a, = to + & Woo

W/ 1- &2

a1 =(p,

Eq. (2) may be rewritten as:

(1) = Qo coslwopy1-27 t+9)

2
Qo= |+ Qo +EWodo | . ¢ = —arctg Qo + & Wedo

Wy 1‘52 000%\/1‘52

3)



a(t) 4y >0

Yo

T=2 o,

B =anfiE

Remarks

1. q(t) defines a damped vibratory motion for which thiatree maximum and minimum values

occur everyT = 211/ wy+/1- &2 ; they lie on the symmetric curvesQ,e s,

2. The absolute values of the relative maxima andmméncorrespond to a series with rafé“®;
the logarithmic decrement is defined as:

_ Qe ™ _ _ 21§
6—fn|:(20e—_am(ﬁy :>6—E(.00T— 1_&2
3. The vibratory motion tends to vanish on increashrgtime:
timq(t) =0

This tendence becomes faster on increasing theidgmgdioé.

4. In the typical casé€ <<1, Eq. (2) becomes:

q(t) Oe ™ (al cosw,t + a, sincoot)

=0, q, D%"’CCQO

Furthermore:T 0211/ wy=T,; & O 21€

5. Inthe limit cas€& = 0, EqQ. (2) becomes:

q(t) = a, coswyt + a, sinwgt
g =0o; a=(ol/uy
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Table F.2 —Approximate values of logarithmic decrement of structural damping in the fundamental mode,

&
Structural type structural damping,
reinforced concrete buildings 0,10
steel buildings 0,05
mixed siructures concrete + steel 0,08
reinforced concrete towers and chimneys ] 0,03
uniined welded steel stacks without external thermal insulation 0,012
uniined welded stesl stack with external thermal insulation 0,020
hib<18 0,020
steel stack with one liner with external thermal
insulation® 20shib<24 | 0,040
hib 226 0,014
hib <18 0,020
steel stack with two or more liners with external
thermal insulation @ 20<hib<24 | 0,040
hib > 26 0.025
steel stack with internal brick liner 0,070
steel stack with internal gunite 0,030
coupled stacks without liner 0,015
guyed steel stack without liner 0.04
welded 0,02
steel bridges ; -
+ lattice steel towers high resistance bolts 0,03
ordinary bolts 0,05
composite bridges 0,04
. prestressed without cracks 0.04
concrete bridges
with cracks 0,10
Timber bridges 0,06 -0,12
Bridges, aluminium afloys 0,02
Bridges, glass or fibre reinforced plastic 0.04 - 0,08
parallel cables 0,006
cables
spiral cables 0,020
NOTE1 The values for timber and plastic composites are indicative only. In cases where
aerodynamic effects are found to be significant in the design, more refinded figures are
needed through specialist advice (agreed if appropriate with the competent Authority.
NOTE2  For cable supported bridges the values given in Table F.2 need to be factored by 0,75

2 For intermediate values of h/b, linear interpolation may be used




For ced damped vibrations
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2nd Newton lawF=me;a=§

F=-kg-cog+f; f=1(t) = external force; q = q(t).

mg(t)+ co( § + ko § = f( 9| = (dividing both members by m)
.. C . Kk f

t)+—=¢g(t)+—q(t)=—(t
9+ a9+ a()=—()=
. 1

() + 20§+l § = 1(9
a(0=q ;a(9=T7g
Motion induced by arigid-basetranslation - Seismic motion

m
R

K g

M m s ﬂ
- -

k
Cc
() ()

2nd Newton lawF = me q
F=—kg-a 1
a=¢+ 0 (absolute acceleration)

mla()+ ()] + o §+ ke )= 0= SRR
ma (1) + col §+ ke )=~ mi(}] =

G(t)+ 2&w,a( §+wial §=-u }
q(0)=a ;09(0=Tg

f = —mu = equivalent apparent force

(4)



f( 1)

B . ) _1
a( )+ 2ea( §+wpa( §=— )

q(0)=a ;09(9=Tg

Eq. (5) defines the general problem of the dampecetl vibrations of a S.D.O.F. system. Due to
linearity, the solution may be expressed as:

a(t)=a'(t)+q'(t) (6)
Thus:

400+ (9 Za( )+ Foya( Y rak o Jrofa( =2 () o
q(0+d(9=q ;d(9+d4( 9="g

Let us assume thaf(t) is the solution of the problem:

g (t)+28w,d( ) +wid( =0 -
q(0)=q :d(9=7

Replacing Eq. (5) into Eq. (4):

e Py 2 _i

T ()+ 20 ()+eia(= 2 1() o
q'(0)=0;4d(9=0

Eq. (8) edefines the problem of the free vibratiam an initial perturbation. Eq. (9) defines the
problem of the forced vibrations without initialrpgrbation.

It was demonstrated that, far, fimq (t) = 0=

to o

Thus, for 0§ t=1 exists such as, fot>t |q(t)| <eg, with € arbitrarily small. Thus, fort >t

a(t)=4(t).

The following sections assunée< 1.



SINGL E-DEGREE-OF-FREEDOM-SYSTEMS

Time-domain analyisis

Impulsive force

An impulsive forcefh(t) is a force with a constant valdg over a short intervalAt, being nul in
the remaining time.

A
fh

-~ VY

T |AT
o

fL (1) = f, per 1< t<T+AT
" - 0 elsewhere

Such a force has an impulse f,, At.
An elementary impulsive force is a impulsive foot@racterised by the parameters 0, At - O,
| :1(]?,1 — 00)

~V

f,(t) = 5(t) = Dirac’ function

{6(t—a)=0 pert#a

[” &(t) 8(t -a)dt = £(a)

The equation of motion q(t) of a S.D.O.F. systerhjetted to an elementary impulsive force is
denoted by the symbol h(t).



The action of an elementary impulsive force is eglant to the effect of an initial velocity,. The
value of ¢, is obtained by equating the impulse | with the reatam Q = mg,. It follows that
Jo=1/m.

Thus, the equation of motion h(t):

(1) + 20, h( ) + w2 h( g:%a( )

h(0)=h(0=0

may be solved by studyng the problem:

h(t) + 28 woh(t) + w3h(t) = 0
h(0)=0;h(0)=1/m

It results:

h(t) = e _t sinwg/1- &% t 1)

MWy 1- &2

h(t) is defined as impulse response function.

Thanks to linearity, the response q(t) to a forcénain impulse | applied at tinteresults:

q(t) = Ih(t-1) 2)




Impulsive force method
A generic force f(t) may be approximated by a sppsition of a series of suitable impulsive forces

, ...):f(t)DZo:ifhi(t).

fu(t) (1=1,2

—~+V

Ty ;
Therefore, the response ((t) can be expressedeasugierposition of the responsrq;z{t) to each

impulsive component forcg, (t):

ot) DZO:iCIi (t), whereq;(t) =1, h(t-7) =
=Fhi(Ti)AT h(t_Ti):f(Ti)AT h(t_Ti):>
Q(t)D%if(Ti)h(t_Ti)AT

This expression is rigorous at the limit fat — O:
3)

qt) = L;f('[) h(t-1)dt

Due to Eq. (3) q(t) is the convolution integralf@j and h(t)

(4)

o(t) =f (t) On(t)
where * denotes the convolution product. Eq. (3I$® called Duhamel’s integral.




Numerical integration

(Y

G( 1)+ 2800,0( ) +wiq( 9=
q(0)=a ;09(0=Tg

* Instead of solving the equation of motion at amyetit, it is satisfied at discrete time intervals
At. So, the dynamic balance is imposed in a finiteber of points along the time axis.

» The solution is searched by recursive algorithmeowing the solution at times 0f, 2At, ... t,
the algorithm provides the solution at timét+

|
0 At 2At t At

t

An explicit integration method is a method formathby imposing the dynamic balance at time
t. An implicit integration method is a method foriaied by imposing the dynamic balance at
time t +At.

The accuracy, the stability and the burdensoménefalgorithm depend on the choice of the
time intervalAt and by the way in whicky, ¢, § are assumed to vary withixt.

* A numerical integration method is defined as undomuhlly stable if the solution to any initial
condition does not increse without limits on inieg t, for any choice dft.

* A numerical integration method is said conditiopaliable if the above condition holds fisr<
Atcritico, WhereAtcritico |S a Stablllty ||m|t

y [l
U




SINGL E-DEGREE-OF-FREEDOM-SYSTEMS

Frequency domain analysis

Elementary harmonic force

A harmonic force f(t) is defined as elementary whihas a unit amplitude. This condition is
satisfied by the real expressicf)ﬁt) =sinwt and by the complex expressib(t) —e':

f(t) =e™ = coswt + isinwt =

‘ei‘*":\/(sinwﬁ icoso } ( sim t icom )t=4/ sfw ¢ com =

Observation: the elementary harmonic functsamwt may be regarded as the projection on the axis

y of the ordinates of a vecta with unit modulus, rotating around the origin ofCartesian
reference system (X, y) with uniform angular vetpcd and nil initial phase.

Interpreting (X, y) as an Argand-Gauss plane, thetorZ is associated with a complex number z
whose real and imaginary parts are respectivelyptbgectionson xandy o : z=x + iy, X =

Re(z) = cosat, y = Im(z) = sinwt; thus, z = cosat + isinwt. Using Euler’s formulaz = e'*.

yA o Ya Zl=1 Ya
c .
n 7 = ice Z = @wt
2
-\
/ sin ot
T2 wt X
sin wt
2=we coswt | z* = giwt
(1) + 2800,a( O+ o §=— f( == 4 =2 (coso t isim )
° ° m m m (1)
a(0)=a ;o 9=74

Since f(t) is a complex quantity, thus also q(@yasnplex and may be written as:

q(t) = x(®) + i y() (@)

where the real functions x(t) = Re[q(t)] and y(t)ns{q(t)] are, respectively, the solutions of tineot
problems:



x(t)+26030>‘<(t)+w§><(t):%COS‘*’t (3)
x(0)=x,=Re( @) ;¥ §="%= R¢ g
(1) +280,y(t) +wly(1) :%sinwt )
y(0) =y, =1Im(q,); ¥(0) = ¥, = Im( )

The response y(t) to the real elementary harmaricef f(t) = sinwt is the imaginary part of the
response ((t) to the complex elementary harmomi:efb(t) —e':

g(t)+2&w,a( ) +wig( Y= é‘*":r—i( coso t isimo X

a(0=q ;a(9=74

(5)

The solution of Eg. (5) is the sum of the integqé(lt) of the homogeneous associated equation and
of any particular integradq"(t) of the complete equation:

q(t)=a'(t)+a'(t) (6)

From Eq. (2) it results:

a(t)=x(t) +iy(t) x(t)=x(t)+ x"(t§

q'(t) =x"(t) +iy"(t) y(t)=y'(t) +y'(t

where x'(t) and y'(t) are the integrals of the homogeneous equatioriassd with Egs. (3) and
(4), respectively:

x'(t) =% (axl COSWg 1= E2 t +a,, SiNwg/1— &2 t)

y/(t) = e a, coswoy1- 2 t + 2y, sinaoy/1- €2 t)

The integration constants depend on the initiabdams.

It is easy to demonstrate that an expressioq(’(tf) is given by:

a(1)= H()e ¢

Substituting Eq. (7) into Eq. (5):

~oPH ()& + %0y, TwH(w)ed + H(w)/éd =%/éd:>



_ 1 1
- 2 2
moy 1_(*)72+2i§£
(,00 (-00

H(w)

H(w) is the complex frequency response function and bearewritten as:
H(co) = R(co)+i I(co)
H(w) = |H(w)e“

where:

_ 1 1-w? /Wl
Rl)=ReH(o)] = MG (1-w? /) + 48 w?

1 - 20 W/ wy,
m 2 2
D (1- 02/ ) +48% 0P/

() = Im[H(w)] =

1 () 2Lw/ w,
w) =arctg ——4 = arc
b(e) J R(w) ({ 1—w2/co§]
Ya Ya
z = é“ = cosux + i sinut z=H@) =R +il (w) =
H(w)| e¥@

3 } | H@w)!

2} /, = S

IR SRy

N, '\wt V\llJ(w)

g | . |-

X X

Re(z) = R(w)

cosuxt

Neglecting the initial transient stage of the motibe. q'(t) = 0= q(t) = q"(t) =

q(t) = H(w)e™

(8)

9)

(10)

(11)

(12)

(13)

(14)

(15)



Eq. (15) provides the steady-state response ofDaOF-. subjected to the complex elementary
harmonic forcef (t) = e'*; H(w) is the ratio between the time-dependent responddaaice. Thus
it has the meaning of the inverse of a dynamitrsss.

Substituting Eq. (10) into Eq. (15):

a(t) =|H(w)|e!lervla] (16)

Thus,|H(co)| is the amplitude of the dynamic responq;éw) is the phase delay of the response q(t)

with respect to the force(t) = e’ .

Ya q (t) = | He)| gl
©) = g
O f(t) = €
S,
Y(w)
wt R
X
f(t)=e'“ = q(t) :|H(w)|ei[°“w(‘*’)]
1 1
H(w) = —=
M 2 ? 2
g
Wy )
28 %
W(w) = arctg] - zg
1-=
Wy
for k=0= f(t)=1= static force with unit amplitude
1 1
p(0)=0; [H(0)=H(0)=—F ===
mwy K

q(t)= 1 ~ = static response to a unit static force
mwj

The magnification factoN(w) is defined as the ratio between the amplitpdlém)| of the dynamic
response and the amplitucHiiO) of the static response:
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force

In conclusion:q(t) = @Z

ey

dynamic magnification
of response amplitude

(a0

{005

Q.S. | D.

' Deamplification N ~> 0
|—>Ampllf|cat|on N ~> %3¢

—— > Quasi-static N ~ 1

»StaticN=1

static response

3<€

w
m|>:i A[H

FNE]

dynamic phase delay

Q.

02 04 06 08 10 12

(17)



Real elementary harmonic force f(t) =&in

(0 + Zeoa( +@la( )= () 1 9=a . { 9="g

f(t)=e"*|= cosut + isinat f(t)=sinwt
a(t)=a'(t)+a'(t) a(t)=a'(t)+a'(t)
a(t) =x(t )+Iy() q(t)=y(t)
X(t):e‘f ot(ax1 COSWo1-E2 t+ay, s|n(,k)o\/:|_7§2 )

y(t):e—i ot(ay1 coswo\/ﬁuayz smgoo\/TEZ )

()= (e (0= mH(e)e] -

- lm[|H(w)|e{“+w( ] =
H(esinfut + (o]

In steady-state conditions;(t)=0= q(t) =q"(t)=
q(t) = H(w)e™ q(t) =|H(w) sin[et + (o]

f(t) = Fsinwt| =
q(t) = F|H(c)| sinfoat + y(c)

The following figure shows how the steady-statemegis approached after a transient vibration.

q(t)

Transient ~ Quasi-steady

r



Example: Arc lamp

‘ k =21063 N/m
m = 10671 kg

Wy = 1.405 rad/s
Ny, =0.223 Hz

Vibrodyne <> f(t) = Fsinct F =100 N

w=0= N(w)=1= Q= 0.00475m = 475mm

Ww=wy = N(w)=1/2§ = &=001= N =50= Q= 0237m
& = 005= N =100=> Q = 0475m
£ = 002= N =250= Q= 1187m
€= 001= N =500= Q = 237m

w=10rad/s= N(w)= 0142= Q = 674x10™*m = 0674mm

Example: Single-storey R.C. building

k = 0.8333x 10° N/m
| m = 88087.5 kg

Wy = 30.76 rad/s
Ng=4.9Hz

<(O~>  f(t)= Fsinut F =1000 N

w=0=N(w)=1=Q=12%x10"m
W=wy= &£=005=>N=10=>Q=12x10"*m
£=002=N=25=Q=30x10"m



Periodic force

A function f(t) is defined as periodic with periddwhen f(t) = f(t + T) forOtOR, with T > 0. The
minimum period, or simply the period, is the minimwalue of T for which above condition is
satisfied.

Under very general conditions, a periodic functi@ihcan be expanded according to the following
Fourier series:

00

=22+%" (a, cosw, t+ i sin, } (18)

1

where:

2 ¢TI2
ak:?j_mf(t)cosm(tdw k=0,1,2,

b, _—j t)sin tdt k=1,2, .. (19)

(q(=k2?n k=012, ...c0

The mean value of f(t) iay /2:

The Fourier series:

70 Z:: (akcosmk t+ sirw)

may be rewritten as:

f(t)=%+ikAksin( 0t +0,) (20)
1

where:

A, =yag + b

= arct{ J (21)

|
= =



l T/2 l T12 L

W, = 40T, T,=T/2

A,

VIRV,

+

£y

Moreover, the Fourier series may be rewritten uivegfollowing exponential complex notation:

(=308 @ =120
1

C\ :%jTIZ f(t)e ™ dt

-T/2

(22)

(23)



Rewriting Eq. (22) as:

f(t)=c0+zk(cke“"“t+ C, e“‘*"‘) (24)

1

the correspondence with Eq. (20) is apparent. Eeahharmonic term in Eq. (20) corresponds to a
couple of complex harmonic terms in Eq. (24). Intipafar:

Co=a9/2; |ck|:‘c_k‘=Ak/2=1/af+q2/2;

c e'“*" is the complex conjugate af ™«
$+i Asin(wt+o,) = ¢ +i (c e+ ¢ e“‘*“t)
2 - k (’ok - k k Zk
——

(1) Ry (1)

—
]
1
ey

YA
= Ckeiwkt
= N
£ N
3 h 5 6} x
72 T2 £ ©
AT - » Re() 2 - &
t eZ) =
] et
AKT lCl(lI
al2=A A, A,/2 Ao (A2
A, Ad2) | | | (A2
! ! ! ! ! ! ! >
W W W © -, Wy W W

= speculare

4

>
—_—

N
!

T >
W W W

10



Dynamic response to a periodic force

(1) + Zeaa( ) + oo Y= 1(

The steady-state response q(t) to a periodic fdigg=Y f,(t) may be expressed as the
superposition of the respons«w(t) to the component elementary harmonic resporig(ets), i.e.

q(t) = 2, a (1)

f(t)=e4 = G (t)=H (@) e«
f(t)=ce™ = a(t)=cH(w,) e

fi () zgkfk(t) zgkckewt = (25)
()= (=2 6 H(a) e 26)

The structural system operates a filtering effetated to its complex frequency response function.
R = 2|ck| is the amplitude of the k-th component harmon'rcédk(t). The amplitude of the k-th

component harmonic respongg(t) to f,(t) is given by:

Qx = 2 ||H(wy ) = Re|H(wx ) = ReH(0) N(wy ) =
Fe /Mmooy IN(od) = Qx = Qo N )

where Qg = R, /mw? is the amplitude of the static response to acstaice F, .

11
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Generic force

A generic forcef (t) may be dealt with as a periodic force with period, oo .

f

Let us consider the complex exponential Fourigeser

f(t) =ikcke“"‘t
1,102 i
Ce :?I_lef (t)e ™ dt

w =k2r/T

AssumingAw= Wy — W =21/ T =1/T = Aw/2n=

T/2

f(t) =2kew$j_mf (n)e *ndh =

T/2

— 1< it —iwyn
_E;ke Ao [ f(n)e™dy
ForT - o, A —» 0, wtends to become a continuos variabie

%Tji e [jif(r])eiw”dn]dco

and the exponential Fourier series tends to becbmEourier integral:

f(t)=—=[" Flwe™ dw (27)

 f(t)e ™ dt (28)

—00

F(w) is a complex function called Fourier transforift) is consequently called inverse Fourier
transform. The uniqueness of a Fourier couplg) and F(w), is demonstrated under wide
conditions.F(w) exists provided that:

[ 7] (1))t is finite.
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It can be shown that:

F(w)=¢img; f(t)=f, = F(w) =f5(w)

Tooo

I6d = Iad IF@)] = | F(e)]
T ' AJ2=1g| HMMM%
Xk
|‘||I||!||I||‘| |
W, () w
20l 2IF@) = (o) =
A f Fourier spectum
]
f periodic ‘ ‘ ‘ ‘ ‘ fn_ot;mcb\___\g
‘ componet amplitude
|
| W, W | ()

(Y

G( 1)+ 28w,a( §+wgq( =

3|~

The steady-state response q(t) to a generic fb('t)ecan be expressed as the integral of the
elementary component responses to the elementargatent harmonic forces:

(29)

(30)

urier transfoamd inverse Fourier response of the response:

(31)

(32)

14



Comparing Egs. (30) and (32):

Q(0) = H(w) F(w) (33)

Eq. (33) is the basic relationship betwefe{h) and q(t) in the frequency domain.

Summarising, the frequency domain analysis conefsissteps:

(1) Starting fromf (t) its Fourier transform is calculatee(wo) = [~ f(t)e™ dt;

(2) The structural system is characterised by its cemfiequency response function:
_ 1 1 :
H((,o) B 2 27,2 - '
LSS (1—w /coo) +2i€w/ w,
(3) The Fouriem ofg(t) is determined: Q(w) = H(w) F(w);

(4) The inverse Fourier transform o®(w) is calculatedg(t) = %TJL’; Qw)e“do.

It is easy to demonstrate that:

|Q(w) =|H(w)|F(w) (34)

Si (w)=2|F(w)| = Fourier spectrum of the force =
= amplitude of the harmonic componentsf §f)
Sq(w)=2|Q(w) = Fourier spectrum of the response =
= amplitude of the harmonic componentsaff)
|H(co)| =N(w)/mw? = Ratio between the amplitudes of the harmonicpmments of the
response and of the force

Thus: S (@) =|H(0)| (B ()

St [H(w)] Stq

15



SINGL E-DEGREE-OF-FREEDOM-SYSTEMS

Response spectrum analysis

G( 1)+ 2&ea( ) +ofo ) =

(
q(0)=¢(0)=0

f(t) = short duration action

a(9=f b & L]

f q
M > W/\
| Tt ' \V

The response spectrum S is a diagram that furnasnegximum value of the dynamic response (the

displacement, the velocity, the acceleration, ...adsinction of the structural parameters, for a
given loading history.

(Y

Response spectrum of the displacement:

Ry

fixed f(t)/m= s,

Sd:‘q(t)




Let us define:

fo = |f (t]max
gs =f,/k = displacement due th,

f, =ka, f > . >

The equivalent static forck, is a force that statically applied on the strugteauses the maximum
displacement due to the effective dynamic action.

f =k =kS
eq |q|max d feq |ql'nax: Sd

The dynamic magnification fact@, or more simply the dynamic factor, is the non-gimsional
ratio:

B:%:_ = feq :Bfo |q|max:BqS

B < 1= dynamics reduce the response
B = 1= quasi-static behaviour
B > 1= dynamics amplify the response



Seismic response spectrum

G(t)+2Zaya( ) +uho( §=-u )
q(0)=¢(0)=0 1

=/

Response spectrum of the relative displacement

Sa=la(t) e Sd
d :|u(t)|max

Afe— LN T

Response spectrum of the relative velocity

S =6t S,

T =2T/wW,

Response spectrum of the absolute acceleration

Sa=la(V)+o(t),, S

a=|u(t),

max




Spostamento q cm

El Centro earthquake (component N-S) 18 May 1940

g
£ of
S
384 1 =33.12 cm/sec
01 ~
B
s
5] d.=l21.34 cm ' .
0 5 10 15 20 25 30
Tempo, sec
Dynamic response of S.D.O.F. systems to the ElrGeatthquake
(a) (b)
To=0.5sec, [ =0.02 To=2sec, {=0
55, ) ﬂ25.17 cm
1 6.78cm 1 v VU\“’UUVUUUUV
254 J
o To=1sec, {=0.02 To=2sec, {=0.02
O.WWW
5l 1916cm 18.97 cm
5 To=2sec, { =0.02 To=2sec,{=0.05
_ | 13.64 cm
oANMAANA A A,
| VVVY U VVVYVV
_25_' | 18_9'37 cm‘ |
0 10 20 30 0 10 20 30
Tempo, sec Tempo, sec



Response spectrd € 2%)

50

[{o] ™
0 [Te)
100} @ S
[&)
8 75 e
E [Te)
£ o )
3
W sl

Sa, g

(c)

To. SEC

Response spectrum of the relative pseudo-velocity
Sy = WS

Response spectrum of the absolute pseudo-acceterati
Spa = (,0% Sd

It is possible to show that, fdy<<1:
Spv =Sy (a)
Spa = Sa (b)

Thus, the knowledge of any spectrum amogdSsand S allows to derive the other two.

S p

5> lo

deamplification

static and }

quasi-static regime



a) For & <<1 any response cycle, in particular that correspundo reaching|q|max

represented by a harmonic with circular frequeogy

a(t) Ofdl,,,, siney, t=
a(t) Olq|, wy sinw, t=| __ cosy,
S0, = §,

b) For ¢ = 0the equation of motion results:

a(t)+efa()=-u(9=
[a(9)+u(9|=ca( 9=
(9 +u(9],, =wfla(9],,=

Therefore, for << 1S, =’ S,

Response spectrum of the absolute pseudo-acceterati
for the El Centro earthquaké<= 0, 2, 5, 10, 20 %

4

Sa/9

, can be



v



Eurocode 8 — Seismic actions

FE=mS(TE)

se(T,é)=a{ (B, - 1}

S.(TE)=asB,

S.(T.E)=a3\B,

S.(T.£)=asiB,

LT

— —kl

—

n=,007(002+¢&) >07

k2
To| | To
T LT

for0<T<Ty

forTg <T<Te

for T <T<Tp

for T, <T

(£=0.05=n= )

Soll S Bo K1 K2 Kg(s) Ke(s) Ko(s)
A 1.0 2.5 1.0 2.0 0.10 0.40 3.0
B 1.0 2.5 1.0 2.0 0.15 0.60 3.0
C 0.9 2.5 1.0 2.0 0.20 0.80 3.0
Soil A: rocky or very compact
Soil B: mean consistency
Soil C: soft
Italian Code: zone 1. a=0.35g
zone 2: a=0.25g
zone 3: a=0.15g
zone 4: a =0.05g




Example: Arc lamp

Zone 2= a = 0.25 g = 2.45 nfis
Soil B:>8=:LBO= 25, klzl,k2=2,TB = OlES,Tcz O&TD =3

w, =1.405rad/:, n,=0.223Hz, To = 4.47 ssm=10671kg
£=0.02=n= 1.3z

T,>T,=S,=0.297a= 0.728 m#

F. =mS, =10671x 0728=7772N

|q|, . = F/k=7772/21063= 037m

Base bending momeni = R,h =7772x30=233160Nm
Maximum stresss = M@ /2/J = 233160x 0275 /9027x107* =
= 71030243N /m? = 724kgf /cm?

Example: Single-storey r.c. building

Zone 2= a = 0.25 g = 2.45 nfls
SoilB=S=1B,=25k, =1k, =2 Tz = 015 Tc= 06Ty, =3

w, =20.94rad/y, n,=3.33Hz, T,=0.30s, m=10671kg
£=0.05=>n=1

Ty <T,<T.=S,=2.5a= 6.125mF

F. =mS, =1900875x 6125= 1164285N

|q|, . =Fe/k=1164285/0833x10° = 0014m

Base bending momemtl =6EJ | ¢ _ /=
=6x 03x10" x 0025x 0014/6° = 1750000Nm



N-DEGREES-OF-FREEDOM-SYSTEMS

Equations of motion

Shear-type system — damped forced vibrations

% My Qn
7 ¢T]j7 =
| n
[ I S
}J
L F m, | G

cﬁj V.

2

:EZ ‘ My r’iL
| Cz D_I .
L m

c‘,_ﬂj '

/77777 7

)

Equation of motion of the i-th mass; 2nd Newton:law

R =ma

F =-k; (qi - qi_l)— ki,,l(qi - qi+1)— restoring elastic forces
— G (qi - qi—l) - Ci+1(qi + qi+1) + viscous damping forces
+f; external force

a; =¢; absolute acceleration

1) my, +(cp+ )8y —Co; -
+(k1+k2)Q1‘k2Q2 =f;

) Mg —Gdiq +(Ci +Ci+1)qi —Cinlis —
- ki + (ki + ki+l)qi —KiaQin =1,

n) Mpln =~ Crlpna +Crln — knqn—l + knQn = fn



In matrix form:

Md(t)+Ca(t)+Ka(t)=f(t)

q(0)=gq,;4(0) =g,

0 m, - O
, M = . :2 .
0 0 e mp

k1+k2
-k, k2+k3 -Kj 0
K kpqgtk Kn
-k, Kn
CG+C -
{cz cz+c3 —Cs3 0
-Ch1 Cha*tC, —Cp
-C, Cn

In this caseM, K, C are real, symmetric, positive definite matrickkijs also diagonal.



Example: Shear-Type building with 2 D.O.F.

g
a | ! N
40 i ||
—T T H‘) N
7 7, 75’;{.‘ —X
| P §
. | |
0.50 | loso  osp | 3
_.4’. { " S—— ,},L
Zi G e M (L \SL AE}Z")L
L H*s50 J{ 7. 50 I
) e ]
LJ.‘ - i 11§ s 7—‘_“‘: —N X
T ' 71 ]
= - |
‘ )lf:"? SO ‘ 0!
7z b ‘ ;\0
S - E— 1 ™
ol i ] % I,
1 | ~
v ’
: T 0
i L‘j

Ll L L L '
‘_,,L S —— U — ,‘.;‘ N S

Mass of the column per unit length
1st order: m, = 050x 050x 2500=625kg/m

2nd order:  m; = 040x 040x2500=400kg/m

Mass of the beams (outside the slab) per each floor

Main beams: my, = 020x 060x 750x 2500= 2250kg
Secundary beams: my,, = 020x 040x 750x 2500=1500kg
Total mass: m, =2500%x12+1500x 8 = 39000kg

Mass of the slab per each floor
mg = 010x15%15x 2500=56250kg



Structural scheme

?L 44 2 qL
> T T ]—>
v ]
rﬁw\,fg\
"1 H«;vwv,,,f:{ri’_‘. . q"l
—1 T e——y
P

7777777777777
f
q= {ql} ; f ={ l}
a2 f2
0 m2 - k2 k2

Mass at the 1st level
— columns: (625 3 +400x 2.25)x9 = 24975 kg

- beams: = 39000 *
- slab: = 56250 “
— sottofondo: 0.0% 15x 15x 1700 = 11475 *
- pavement : 1% 15x 40 = 9000 *
- walls : 80x 15x 15 = 18000 *
— accidental load: 508 15x 15 =112500 *

m, = 271200kg

Mass at the 2nd level

- columns: 40 2.25x 9 = 8100 kg
- beams: = 39000 *
- slab: = 56250 *“
- sottofondo: = 11475 *
- pavement: = 9000 *
— accidental load: 108 15x 15 = 22500 *

m, =146325g



Inter-storey stiffness

£ 9 9
—> T 1——> A— T—
W 3

o
_ - _/_
N N 12EJ 12EJ
f=>f = k( H3 jq:N 3 q=
1 1
k:f_:leg‘]
q h

N = number of columns =9
E = .3x 10" N/m?

J, = 5x5%/12=52083x10°m* ;J, = 4x 4°/12=21333x10°m*
h, =565m ; h, = 450m

_ 9x12x3x10" x5.2083x10™°

K il =0.9356x10° N/m
5.65
1 -3
K, = 9x12><3><10:<32.1333><10 ~0.7585%x10° N /m
450

271200 0 _ 16941x10° - 0.7585x10°
M = kg ; K=
0 14632 -0.7585x10°  0.7585x1C?



Example: Shear-Type single-storey building with ..

N

T g 9
N PRI I I TP ‘_T“t"“‘“W:T— —
N/ S

Mass of the column per unit length:
m, = 040x 040x2500=400kg/m

Mass of the beams (outside the slab):
Main beams (per unit length): my, = 020x 060x 2500=300kg/m

Secundary beams (per unit lengthin,; = 020x 050x 2500=250kg/m
Total mass: m, = 300%15x 6+ 250x15= 30750kg

Mass of the slab of each floor: mg = 010x15x15x 2500=56250kg



Structural scheme

ry

%

erhy,
ol 1,

O = center of mass

\

uO fXO
Jo =4 Vo ’ fo: fyo

8o mﬁo

m 0 O
M={0 m O

0 0 |
Massm
- columns: 40x 3x 9 = 10800 kg
- beams: = 30750 *
- slab: = 56250 “
— sottofondo: = 11475 *
- pavement: = 9000 *
— accidental load: = 22500 “

m =140775kg

Rotatory mass moment of inertia |

1=y, =140775, 4375 = 527906 2kg m?
A 228

~

A = surface area = 1515 = 225 M
J, = polar moment of inertia 3, +J, = 2x15x15°/12=84375m*



Kinematic of therigid body

O 1]710! A
b
ui = uo _¢oyi
Vi :Vo +¢0Xi
9 =9,

Trandlational stiffness of columns

1 -3
k=k, =k, = 12"3"1012'1333"10 = 0.4258x10" N/m
S 565

It is assumed that the torsional stiffness of calans negligible.



Equilibrium equations with respect to O

fxo :%ifxi :Z kX| uj = Z kXI( ¢oyi)=

N

Z.m3,+2( X'y'+fylx) lei(_kxiuiyi"'kyivixi):

_Zikm - ¢, y| +Z K/ =

1

uoz kX|Y| +¢ Z le| +Voz kyl +¢02|kyixi2

In matrix form:

N N
Zi KyiX; 0 _Zi K ¥
fXO ! N Nl uO
fyo = 0 Zi kyi Zi kyl)g Vo
1 1
My, N N N i),O_J
fo _Zi Ka¥i Zi K/i X Zi (Kq yi2 + K/i X,z) o
| 7 1 1 J
Ko
In this case:
Nk 0 —k\i\iy\
fXO Nl uO
fot= 0 Nk k> X A
1
mSo N N N ¢o
KNy KYx kYL (e +y?) | e
R T 1 J
Ko
9 O 0

K,=0.4258 10x| 0 9  -75/ ( N, m, rg
0 -7.5 658.2



N-DEGREES-OF-FREEDOM-SYSTEMS

Damped forced vibr ations

Mg (t)+Cq(t)+Ka(t)=F(t)

Undamped free vibrations

Mg(t)+Kq(t)=0 (1a)
a(0)=a,:a(0)=¢, (1b)

Let us search the solution of Eq. (1) in the claEdhe functions:
a(t) =wf (t) 2

where | is a vector of n constant components and f isnatfan of time which is common, unless
a factor, to all the degrees of freedom. SubstituEq. (2) into Eq. (1a) it results:

MWf (t) +Kyf (t)=0 ®3)

This expression can be rewritten as:

Zn:jm”wji"(t)+2n:jwf(t):o (i=1,2,..n) (4)
Thus:
: Zn:jkij‘le
—:8= : (i=1,2,..n) (5)
Zl:jmijwj

Since the first member of Eq. (5) is a scalar gtyamtdependent of index i, and the second member
is independent of time t, then both members areléqaa constank. Therefore, Eq. (5) reduces to
a couple of equations:

f(t)+Af(t)=0 (6)

Zj(k”—)\m”)tp]=0 (i:]., 2,...n) (7)

From Eq. (7) it results:

(K-AM)w=0 (8)




which represents a system of n linear homogeneguegtiens in the n unknowng, (i=1, 2, ... n).
Obviously, it involves the trivial solutiop =0.

In order to obtain non-trivial solutiong) # 0, it is necessary that the determinant of the mati
the coefficients is null:

D=det(K -AM) =0 9)

This leads to an algebraic equation of order i ,ircalled characteristic equation, from which n
roots may be obtained, called characteristic vatuesgenvaluegA =A;,A,,... A,).

SinceK andM are real and symmetric matrices, then the eigemlegal,,A,,...A,, are real. Let us
assumeh; <A, <...<A,.

M is also positive definite. If alsk is positive definite, then the eigenvalues areamy real but
also positive0<A; <A, <...<A,.

If K is semi-positive definite, then the eigenvalues ot negative (thus null eigenvalues may
exist).

For each eigenvalue, the system (8) involves atnaial solution called characteristic vector or
eigenvect0|(L|J =y, P, ,...L|Jn). Each eigenvector is defined unless an arbitraciof.

The eigenvectors are linearly independent (for Kny matrices if the eigenvalues are distinct;
can be transformed as such when eigenvalues atgla@andK, M are real, symmetric matrices).
Thus, they constitute a basis in the space of tgrdngian coordinates. The eigenvectors of real
and symmetric matrices are real.

Let us consider the k-th eigenvaldg and the corresponding eigenvectar. From Eq. (8):

Ky, =AMy, = "IJIKLIJk :?\kllJfMlle (10)

Let us define as k-th modal mass and k-th modihesis the quantities:

my = lIJIM Py ; k= "IJIKLIJk (12)

From Eqg. (10) it results:

k
A = —%
k m, (12)

SinceM is positive definite, them, > 0. If K is positive definite, theik, > 0.



Distinct eigenvalues
In structural engineering, usually, all eigenvalaesdistinct, i.eA; #A; for [i # j. From Eq. (8):

Ky, =AMU;, ; Ky =AM U (13)
Pre-multiplying Eq. (13a) bypT and Eq. (13b) by :
quTKqu :)‘il-pjTM g ijTKqu :)\jl-pjTM Y =

(‘“TK"’J')T = (M ‘“J)T =
quTKqu :)‘qujTM U,

Subtracting member to member:
(A =A)wTMy; =0

from which, sinceA; #A;:

WM, =0|; [w'Ky, =0 (i#]) (14)

Thus, the eigenvectors related to distinct eigare@hre orthogonal with respect to matrigeand
K. Furthermore, using Eq. (11):

'~|JjTM P, =m, 6|j ; ijTKLpi =k 6|j (15)

Let us define as modal matrix:

w=[y,0,..0,) (16)

From Eq. (15) it results:

L =w'MW¥ =diagm,]=| | : (17)
0O O m,
k, O 0
3 T . 3 0 kz 0
N=W'KW=diag [k]=|. . : (18)
0 0 - Kk

whereL is the matrix of the modal masses @hik the matrix of the modal stiffnesses. Moreover,
from Eq. (12):



A, 0 - 0O

0
A=L"N=diag [k /m]= diag [A] =] .
0 0 - A,
is the matrix of the eigenvaluds, N, A are diagonal matrices.

Since the eigenvectors are defined unless an ampitactor, it is possible to assumg, =1; thus,
due to Eq. (12)k, =A. In this case, Eg. (15) becomes:

quTMq—'i =9 ; quTKqu =\ 9 (20)

and the eigenvectors are said to be orthonormél regpect taV and K. Moreover, due to Egs.
a7), (18), (19):

L=l ; N=A (21)

wherel is the identity matrix.



K positive definite
In structural engineering, usually, all the eigdnea are positive. Thus, let us assukye= ooﬁ and

let us examine Eq. (6). It becomes:

f(t)+w?f(t)=0 (22)
from which:
f(t)=f(t) = A, coswyt + By sinwyt (23)

where A, , B, are real constants. Thus, the eigenvalyehas a fundamental mechanical meaning:
it is the square of the circular frequenwy.
Thus, Eq. (1) involves n linearly independent sohd analogous to Eq. (2):

a(t) = gk (t) = Wi Fic(t) = Y (A cosut + By sinaxt) (24)

The general solution of Eq. (1) is then a lineanbmation of the n solutions provided by Eq. (24):

n

q(t)=> Wy (Ay coswyt + By sinwt) (25)

1

where the 2n arbitrary constams, , B, ( k=1, 2,..n) shall be set based on the initial conditions:

n

A(t) = X« Wi @ (= Ay sinaxt + By cosuyt)

n

1
Q(O)zzn:kll—'kAk =qo ; Q(O):Zkll—'k Bk =0 =
1 1

n
DAL Ay s Y Bwy =g, =
1 1

n

ZkAkl-lJiMl-lJi :ngllJi i kakBkllJiMllJi :CInglJi:>
1

1
AWTMY; =g, MW ; B Y My =q My =

%/_/ %f_/
mj m
1 . 1 . .
A=—q My | | Bi=——q My (i=12.n) (26)
mi mi(’q

Finally, if the eigenvectors are orthonormal, ne.=1, if:

A :sz g,

1
| B == qg'My]| (i=1,2.. 27
quw (i n) (27)

The physical meaning of the eigenvector can beagx@il assuming:



Qo =Y; ; Go=0 (28)

i.e. deformating the structure in accordance wgh-th eigenvector and leaving its free to ostalla
Substituting Eq. (28) into Eq. (26) it results:

Ai=p MY =8 ; B =0 (29)
Thus, substituting Eq. (29) into Eq. (25):
n
q(t) =" « Wi By cosuxt =
1
a(t) = ; coswit (30)

It follows that the k-th eigenvector is that spé@attern of the initial displacement which causes
the oscillation of all the DOFs of the structurghwihe same circular frequenay. For this reason
the eigenvectors represent proper/natural/elementades/shapes of vibration. Each eigenvalue is
the square of a proper/natural/elementary cirduémuency of vibration.

W1 W | Ws Wy

Y, P Y3 P,
eigenvalues A Ao A3 Ay
circular frequencies wy W, W3 Wy
frequencies n, n, ng n,
periods T, T, T T,

W =Ny N = /21 T =1/ (k= 1,2,..n)

Based upon Eq. (25) any free vibration may be dmghias a linear combination of proper/natural
oscillations. More generally, since the set of ¢éigenvectors represents a basis in the space of the

Lagrangian coordinateg(t) may be expressed as a linear combinationseofrtbdesy , :

n

q(t)=> Wi pk(t) (31)

1

This expression is called principal transformatiole.



Example: 2 D.O.F. shear-type building

F_ -~-A--az

L

K

271200 0
M0 146329 (9

1.6941 - 0.758
x10¢  (N/m)
-0.7585 0.7585

D=defK -’M)=0=

16941 -0.7585 271200 0
D:de{{ }xlos—mz{ Jj:

-0.7585 0.7585 0 14632
_ gof 16941 10% — w* (271200 -0.7585x10° _
-0.7585x1(0° 0.7585x10° — w? (271200

——52
= (1.6941x10° - 2712002 (0.7585% 10° ~146328542) - 0.7585x1C° =
= 3968x10'° w* ~ 45359x 10" w” + 7.0965x 10" = 0 =

7 _ 45359x10° 14/ (45359x10°%)° - 4x 3068110%° x 7.006510'° R
2x 396810

w? =187063; w5 = 956056 =

w; = 13677rad/s; w, = 30920rad/s
n, = 2177Hz ;n, = 4921Hz

T, = 0459s; T, = 0203s

(K - M )w, =0

k=1

1.6941x10° - w] x 271200 -0.7585x10° Wy, (0
- 0.7585x10° 0.7585x10° - w? x146325 |W12| |0

P, =1= —0.7585x10° Y, +0.4848x10° = 0= Yy, = 0639



k=2

1.6941x10° - w5 x 271200 -0.7585x10° Wyl [0
- 0.7585%x10° 0.7585x10° - w2 x146325 W[ {o}

P, =1= -0.7585x10° s »; + 0.6404x10° = 0= ,; = 0844

Wi Wa| [0639 - 0844
|1 1.

w:[“’“‘”]{wu Wa

WMWY = 0639 1.][271200 0O 0639 - 0844]
|- 0844 1. 0 146325 1. 1. |

257062 0
= =
0 33951

m, =W IM W, = 257062
m, =Y MW, =339511

In order to make the eigenvectors orthonormal:
w o 1 { 0539} _[1260x1073

m L 1972x107
w = 1 {— 0844} _ |- 1448x1073

T m, 1L 1716x107

w-[w " ]_ 1260 - 1448 10 o WMWY = |
CLFER2IT 9972 1716 B

Wi - p | 187063 0
0 956056



Example: 3 D.O.F. shear type building

1———*.\_
! 0
P~ }%
My
140775 O 0 0.3832x108 0 0
M=| 0 140775 0 - K = 0 0.3832x10% -0.3193x10°
0 0 527906 0 -0.3193x10°% 0.2802x10'°
0.3832x10% — w? 140775 0 0
D =de 0 0.3832x108 — w? 140775 -0.3193x10°8

0 -0.3193x10° 0.2802x10" - w” (527906
= (0.3832x10° - 14077507 ) |(0.3832x 10° - 1407752 )0
(0.2802x101° - 52790620%) - 0.319310° x 0.319310°| =0 =

w? = 272207
7.4316x10" w* - 5.9675x 10" w? +1.0635x10' =0 =

p_ 59675x10" | (59675x104)° - 4 7.4316r1.0" x 1.0635710” R

2x7.431610"
, 266984

“ “\536005

Wi =266984; w5 =272207; w3 = 536005

w; = 16340rad/s; w, = 16499rad/s; w; = 23152rad/s
n, = 2601Hz ;n, = 2626Hz ; n; = 3685Hz

T, = 0385s; T, = 0381s; T, = 0271s

(K - M )w, =0

k=1
2
0.3832x10° - w? (140775 0 0 Wy, [0
0 0.3832x10° - w3 (140775 -0.3193x1¢ Pt =40
0 -0.3193x10° 0.2802x10'° - w? 5279062 (W13] |0

P =0;Pyp =1=-0.3193x10° Py, +1.3926%10° ;3= 0= Y3 = 0.0229



=~
I
\V]

0.3832x10° - w? 140775 0 0 Wy [0
0 0.3832x10° - w? (140775 -0.3193x1(° Pyt =40
0 -0.3193x10° 0.2802x10' - w3 (5279062 (W23 (O
Por =1, =0;P23=0
k=3
2
0.3832x10° - w? 140775 0 0 Vsl (O
0 0.3832x10° - w? (140775 -0.3193x10 Pa =40
0 -0.3193x10° 0.2802x10'° - w3 5279062 (Vs3] (O

Pz =0;Ps =1= -0.3193x10° - 0276x10° P33 =0= P43 = —1.1567

W1 Yo Y3 0 1 0
qJ:[l-lJll-lJZ L|-'3]: Wor Wor Was|=| 1 0 1
Wi Wi Was 00229 0 -1.1567

T

| +—>}
\ | | ’
] | |
1st mode 2nd mode
ma 0 07 [143543 0O 0
Y'MWY=0 m, O|=| 0 140775 O
0 0 ms 0 0 720392

In order to make the eigenvectors orthonorgigl - Y, // my :
0 2665x107° 0

Y =| 2639x10° 0 3726x1074
6.044x107° 0O - 4309x107*
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594m

First mode
Primo modo

nq=10T3Hz

Third mode
Terzo modo

Nn3=129Hz

7 59.40 _ 338
B BT 55071 816
___'_{}—
‘ 5255 [ 191
wn ot
M 3 o€ 185m :
".‘ w m
X =
% <l
W °la
305 m ] <2
VAN NI
] |2
% 5
PH <z
1.3 m \) 50
VA g —4215m
Second mode
Secondo moda
3911 np=4.15Hz
00 m
N l -~ —4132m
Be(m)-Cp  z(m) Mi(kg)
3300 m
—— 320
3050 m 4152 m 238
* X,
—7—  § ANTENNA-MAST 150 b Ve
9743 m 4366m |
7 150
A |
‘\ 6.5 m !
|
i |
-
=
2000 m w
N
w 1
- |
L'J 1
& 5
1500 m > |
N @) i
o
0 ;
g ;
1000 m o !
g |
)
Nam o 72400
|
o
L ": L1 HAm 93900 B
T DIAMETRO . i
DIAMETER M (kg/m) n=026Hz  n,-053Hz

n;=0.96Hz

C

ny=1.54Hz
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N-DEGREES-OF-FREEDOM-SYSTEMS

Undamped forced vibrations

Since the eigenvectors constitute a base in theesplaLagrangian coordinates, the displacengent
at the time t can be expressed as a linear conntxinat the modes, :

n

q(t)=> kwipc(t) 1)

1

a(t)=wp(t) 2)

where W ={, W, ...y, } is the modal matrix ang(t) ={p(t) po(1)..p,(t)}" is the vector of the

principal coordinates. Egs. (1) and (2) are retkteeas the principal transformation law. Based on
Egs. (1) and (2) the principal coordinates haveptioperty that, when the system oscillates on-he i
th principal mode, only the principal coordingigevaries with time, being null all the others.

Due to the property that the eigenvectors are tipeiadependentW is non singular and the
principal transformation may be inverted. In parér, pre-multiplying Eq. (2) by#'™™ (and
assumingm, =1):

p(t)=¥"™Mq(t) (3)

Let us consider now the equation of motion:

V() Kal) =110 @

and let us apply the principal transformation law:
MWwp(t)+Kwp(t)=f(t) (5)
Then, let us pre-multiply b T :

YIMWp(t)+ WKW p(t)=wTf(t)=
Lp(t)+Np(t)=wTt(t)

Finally, let us pre-multiply by ™:

p(t)+L*Np(t) =L Wi (t) =
p(t)+ Ap(t)=L™wTt(t) (6)

Eq. (6) represents a set un uncoupled equations:

Bu()+ip ()= WIF (=3 W f (1) (k=L2.n ™




where lPif(t) is the k-th modal force. It is the k-th componeftthe generalised forces in the

principal system.

Thus, the undamped forced vibrations of a n-D.Onlay be studied as the undamped forced
vibrations of n S.D.O.F.s. The D.O.F. of the k-gritlator is the k-th principal coordinate. The
fundamental circular frequency of the k-th osaitais the k-th principal circular frequency. The
mass is the k-th modal mass. The external forteei&-th modal force.

As far as concern the initial conditions:
q(0)=1a,;9(0)=q,

the initial conditions related to the principal cdimates can be found by applying the principal
transformation law:

Wp(0)=qo; wp(0)=q o=
WTMWp(0)=¥TMg,; WIMWP(0)=¥TMg =
p(0)=L"W™Mqo; p(0)=L®M¢g, =
Pc(0)=pwo; Pk(0)=pw (k=1,..n)

— @ —
— @ —>
— @ —>
— @ —>

e Wt (t) p (1) Wif(t) p (1)
f(t) q(t) m,, o m, ,w,

q(0) =4, p.(0) = py P (0) = P

q(0)=a, (D P:(0) = By b (0)=ho

q(t)=ikwkpk(t) 3)




Example: 2-D.0.F. shear-type building
a. (1)
15(t) a. (1)

1

pl(t)+ w; pl(t) =m_L|—'If(t) = LUnla(t) P10 =P10=0
1

pz(t)"' w5 pz(t) =milb$f(t) = llJ21|5(t) 7P20=P2 =0
2

() + 20 h(t) + w2 (1) :%6(0 'h(0)=h(0)= 0=

h(t):e'z“)‘)t;sinmO 1-82t
MWg4/1- &2
p.(t) = Yadl i ot
Wy

p,(t)= Val i, w,t
W3

Using the principal transformation law:
{%(t)} Pir Yo { pa(t )}
=
q,(t) Wi Was||Pa(t)
(Esm w1t+—smc02t]

: (llJnU—'lz sin ot + Yo Wy Sinooth

W,




TIME-DOMAIN ANALYSIS

S.D.O.F.

n-D.O.F.

q(t)=h(t)*f (t) :j;h(t ~1)f (1)dt

h = impulse response matrix




FREQUENCY-DOMAIN ANALYSIS

S.D.O.F.

n-D.O.F
® ._H,_eia)i' ¢ CHEE ..EZ"_._.. L
i .q-' 1) L.Q" iyt LbQFZjHij.Fj'
?'ze,iwt 4 + ® — ———)-
Dy e - ) -E—-—‘b ¢ —
_L # 2 ¢ —>

S.D.O.F.
Q) = H(e) F(c)

H = complex frequency response function

_®
P

_uq

_-’

BCE

| %R*r-

n-D.O.F.
Q) = H () F ()

H = complex frequency response matrix

R
P q-ff

| Q:-H-F

TF




Damped forced vibrations

Let us consider the equation of motion:

M g(t)+Cq(t) +K g(t) =f(t) (1)

and let us apply the principal transformation law:

a(t) = wp(t) @)
It follows:

Mwp(t)+Cwp(t)+KWp(t)=f(t)

Then, let us pre-multiply by’ " :

WIMWp(t)+wTcwp(t)+ W KWp(t) =¥ (t) =
Lp(t)+wTcwp(t)+Np(t)= w T (t)

Finally, let us pre-multiply byt 7. It follows:

L2 p(t)+L "W TCcwp(t)+L Np(t) =L Wi (t) =

p(t)+rp(t)+Ap(t)=L"wT(t) (3)
where:
r=L?'y’cy (4)

Since W 'CW is in general not diagonal, then alSas in general not diagonal. Thus, Eq. (3) is in
general a set of coupled differential equations:

D (0)+ 3 Vi P() 0 pil) == i 1(1)
1 k

Pk(0)=Pwo : Pk(0) = Pro (k=1.n)

(5)

Obviously, Eg. (5) is a set of decoupled equatfon€ = 0.
In other words, if the structural system is dampghd, principal transformation generally does not
decouple the equations of motion.

It is possible to show that, considering an inigiatturbation, the motion tends to disappear, due t
damping, through the contribution of all the vilwatmodes (not only ify ;).



Decoupling conditions

Let us assume thé&t is such thar is diagonal, i.ey,, =0 for k#/. Thus Eq. (3) is decoupled and
may be rewritten as:

B (1) + Vi P (1) + @2 pk(t):mikmz f(t)

(6)

Pk (0)=Pro s Pro =Pro (k=12 .n)
Setting:
Yik = 2& 0y (7)
it follows:
pi(t)+ 28, 0 pi(t)+ 0 pic(t) = wi (1)

my (8)
P(0)=Pro i Pro(0) = Pro (k=122.n)

Thus, ifl" is diagonal, the damped forced vibrations of a.@6-B. system may be studied (likewise
the undamped vibrations) as the forced vibrationsnd5.D.O.F., each characterised by a modal
damping ratio , = VY /(Zwk).

It is possible to show that, in this case, if tlygstem is initially deformed on the j-th oscillation
mode and left free to vibrate, it retains this shapvibration on passing the time and all its 0.

exhibit a motion with circular frequenay; = \/A; and damping;; =y /(200,-).

The systems endowed with such a property are caléssically damped. The structures which do
not satisfy this property are not classically dachpe

Analogously, the damping is said to be classi€ 16 such thaf is diagonal. The damping is not
classic ifC is such thal is not diagonal.

The necessary and sufficient condition which mdkest diagonal is (Canghey e O’Kelly, 1965):
n —

c=MY  a(mx)" )
1

being a (k =1, ... n) suitable constants.
In particular, assuming.& 0 for k > 2, the following sufficient (not nesasy) condition results:
C=a;M +a,K (10)

A structural system that satisfies Eq. (10) hasaglétgh damping or a proportional damping. In
such a case:



Fr=LtWTcY =LY (oM +a,K )¥ =
—a, L'WY CW+a, LYKy =

—a,; LML +a, L *N=a;l +a, A=

a a, W
1+2k

=28, 0 Ty +a, W =& =
Yik = 28wy =ay ta, w, = &k 200 5

e

In reality, the structures do not possess a clalssrcproportional damping. Nevertheless, being the
definition of C very uncertain or difficult to evaluate, it is @$uo avoid to evaluation &, writing
the equations of motion in their decoupled fornvjrgg to &, values suggested by experience.



Classically damped systems

{Mq(t)+CQ(t)+Kq(t)=f(t) (1)
q(0)=a,; q(0)=4q,

q(t):LIJp(t):> (2)
pi(t)+ 28,0 (1) st pi(t) = - 0T 1(1) -

Pk(0) = Pro 5 Pro(0) = P (k=1.n)

Time-domain analysis

Assuming for sake of simplicitp,, = pyxo =0 (k =1, ..n) and using the Duhamel integral (*):
p ()= [ h, (t-D)wif (1) (k=1,..1) (4)

wherey| f(t) is the k-th modal force and:

hp, (1) = 78t sinwy/1-82t (k=1..n) (5)

1
mkwkwll_zi

is the k-th modal response impulse function.

(*) Inthe case of a S.D.O.F.:
G( 1) + 28,01 () +wf o 9=

a(t) =] h(t-1)f(7)ct
_e—Eq)t 1
n(t)= Mwg/1- &2

(9

1
m

SinW,|1- &5t



The modal response impulse matrix isxamdiagonal matrix whose k-th term is the k-th nmoda
response impulse function:

hu(t) O 0

o (t)= 0 hp%(t) 0 ©)
0 0 - hy ()

Using Eq. (6) the vector of the principal coordaghas the form:
p(t)=] h, (t-1)u;f (1)cr (7)
Using the principal transformation law:
a(t)=[ h,(t-T)w'f ()ct (8)
Now, let us remember that, whatever the damping Ineay
a(t)=[ h(t-1)f (1)ar ©)
Comparing Egs. (8) and (9) it results:
h(t)=wh,(t) T (10)

which provides a simple rule to evaluate the respadmpulse matrix. Obviously, this expression
applies if and only if damping is classic.

10



{Mq(t)+Cq(t)+Kq(t)=f(t)

q(0)=d,; (0) =4,

q(t) = wp(t)=

Pr(t) + 28, 0y pic(t) + 00} pk(t):mikl-l-’?(— f(t)
Pk(0)=Pro ; Pro(0) = Pro (k=1 .n)

Freguency-domain analysis

Let us apply the Fourier transform of both memizéiiSqg. (3). It results (*):
P(t)=H, (0)W,F(w) (k=1, .. 1
wherey | F(w) is the Fourier transform of the k-th modal foroela

1 1

2 2
M@, 19 40k, 2
w (,Ok

H, (@)= (k=1, .. n)
is the k-th modal complex frequency response foncti

(*) Inthe case of a S.D.O.F.:
1
a(t) + 28 o 4 (1) + wF o(t) = — £(1)

Qle)=H(w) F(o)
H(e) = —

0 1-2 42 2
W (V]

0

(1)

(@)

3)

(11)

(12)
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The modal complex frequency response matrix is<enmrmatrix whose k-th term is the k-th modal
complex frequency response function:

h(w) 0 0
H p((x)) _ O szz((,o) 0 13
0 0 H, ()

Using Eqg. (13) the Fourier transform of the veabthe principal coordinates has the form:
P(w) =H , (o) W TF(w) (14)
Using the principal transformation law:

Qw) =wP(«) =

Ql) =9 H, () TF(e) 4o
Now, let us remember that, whatever the damping Ineay

Q(e) =H(w) F(oo) (16)
Comparing Egs. (15) and (16) it follows:

H(w) = WH, (o)W’ (17)

which provides a simple rule to evaluate the comptequency response matrix. Obviously this
expression applies if and only if damping is classi

12



M odal truncation

Let us consider the principal transformation law:

a()=wp(t)= Y Wipi (1) (18)

1

where the k-th principal coordinam((t) is given by the solution of the differential eqoat
pk(t)+zzkwkpk(t)+w§pk(t):miklp;f(t) (k=1.n (19)
The modal truncation is a technique that replalsesigorous Eq. (18) by the approximate equation:
q(t) D% WP (1) (20)

beingn<n.

Eq. (20) involves two fundamental advantages:

a) it allows to solve a numbdai < n of differential equations (19);

b) it allows to calculate only the firsh <n eigenvalues and eigencetors (very useful applying

iterative algorithms).

Experience shows that in most cases the chioice n provides excellent approximations.
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