Diámetro Confiabilidad de una Red

Clase 2

Pablo Romero

Miércoles 21 de octubre, Universidad Nacional de Asunción, Paraguay.

Contenidos

- Conceptos
- Confiabilidad Clásica

3 Diámetro Confiabilidad de Redes

Agenda

- Conceptos

Sistemas Binarios Coherentes Estocásticos

SBS

Un Sistema Binario Estocástico es una terna (T, ϕ, p) , siendo:

- ① $T = \{1, ..., m\}$ los m componentes del sistema,
- ② $p = (p_1, ..., p_m)$ sus respectivas probabilidades de operación de cada componente, que son independientes, y
- \bullet $\phi: \{0,1\}^m \to \{0,1\}$ la estructura, que determina si el sistema funciona o no.

Un SBS es monótono si ϕ es monótona creciente. Un SBS es coherente si además $\phi(\vec{0})=0, \ \phi(\vec{1})=1$ y no presenta componentes irrelevantes. Su *confiabilidad* se define como $r=P(\phi(X)=1)=E(\phi(X)),$ donde $X=(X_1,\ldots,X_m)$ y X_1,\ldots,X_m son variables aleatorias independientes de Bernoulli, con $P(X_i=1)=p_i$.

SBS Coherente

Sistema en Corte y en Operación

Un estado $x \in \{0,1\}^m$ de un SBS es de *corte* si $\phi(x) = 0$, y es *operativo* si $\phi(x) = 1$.

Un estado operativo x es *minimal* si $\phi(y) = 0$ siempre que y < x. Un estado de corte y es *minimal* si $\phi(x) = 1$ siempre que x > y.

Los estados de corte minimales determinan completamente a la estructura de un SBS monótono.

Medida Clásica

Medida Clásica

Si G=(V,E) es una red y $K\subseteq V$ son sus *terminales*, elegimos un orden arbitrario a las aristas $E=\{1,\ldots,m\}$ y definimos $\phi(X)=1$ si el grafo G=(V,X) verifica que todo par de terminales $u,v\in K$ están comunicados. La *medida de confiabilidad clásica* es $R=P(\phi(X)=1)$.

Medidas de Confiabilidad

Diámetro Confiabilidad de una Red (DCR)

DCR

Si G=(V,E), $K\subseteq V$ son los *terminales* y d es un entero positivo llamado *diámetro*, análogamente se define $\phi(X)=1$ si el grafo G=(V,X) verifica que $d_X(u,v)\leq d$ para todo par de terminales $u,v\in K$. La *diámetro confiabilidad de una red* es $R=P(\phi(X)=1)$.

Agenda

- Conceptos
- 2 Confiabilidad Clásica

3 Diámetro Confiabilidad de Redes

Casos Especiales

Sea G = (V, E) un grafo y $K \subseteq V$ conjunto terminal.

- Caso general: "K-terminal".
- ② "All-terminal": K = V
- **3** "Source-Terminal": $K = \{s, t\}$.

Identidades

Las siguientes identidades brindan la confiabilidad:

$$R_{K,G}(p) = \sum_{x:\phi(x)=1} P(X=x);$$

$$R_{K,G}(p) = P(\bigcup_{x:\phi(x)=1;\phi(y)=0,\forall y< x} \{X=x\});$$

$$R_{K,G} = (1 - p_e)R_{K,G-e} + p_eR_{K',G*e},$$

siendo G * e la arista-contracción de G y K' el nuevo conjunto terminal.

El problema es que las identidades implican una cantidad exponencial de operaciones.

Confiabilidad de Grafos Elementales

Calculemos la confiabilidad all-terminal de grafos elementales:

$$R_{C_n}(p) = p^n + n(1-p)p^{n-1},$$

 $R_{P_n}(p) = p^{n-1}$

Si T_n es un árbol de n nodos también:

$$R_{T_n}(p) = p^{n-1}$$

En algunos grafos, el cálculo de la confiabilidad es eficiente.

Confiabilidad y Combinatoria

Sea G = (V, E), con |E| = m, |V| = n, $K \subseteq V$ y $p_e = p$. Consideremos la partición: $E_i = \{ H \subseteq E : |H| = m - i : \phi(H) = 1 \}$ y $F_i = |E_i|$. Aplicando la regla de la suma se consigue que:

$$R_{K,G}(p) = \sum_{i=0}^{m} F_i p^{m-i} (1-p)^i$$

Luego, el problema homogéneo se reduce a uno combinatorio (hallar los cardinales F_i).

Preliminar de Comp<u>lejidad</u>

Ball sintetiza en 1986 condiciones suficientes par asegurar intratabilidad de un SBS:

Teorema

El cómputo de confiabilidad de un SBS monótono es \mathcal{NP} -Difícil si alguna de las siguientes condiciones es cierta:

- 1 El reconocimiento de configuración operativa de mínimo cardinal es \mathcal{NP} -Completa.
- 2 El reconocimiento de corte de mínimo cardinal es \mathcal{NP} -Completo.
- 3 El conteo de configuraciones operativas de mínimo cardinal es $\#\mathcal{P}$ -Completo.
- **4** El conteo de cortes de mínimo cardinal es #P-Completo.
- **5** El cálculo general de los coeficientes F_i es $\#\mathcal{P}$ -Completo.

Veamos que la confiabilidad clásica es \mathcal{NP} -Difícil.

Complejidad de Confiabilidad con dos terminales

- Hallar camino de largo mínimo (Algoritmo de Dijkstra).
- 2 Hallar corte mínimo (Algoritmo de Ford-Fulkerson).
- 3 Contar caminos de largo mínimo (Algoritmo de Ball-Provan).
- 4 Hallar la cantidad de cortes mínimos es $\#\mathcal{P}$ -Completo (Ball-Provan, 1983).

Complejidad de Confiabilidad K-Terminal

1 Hallar $H \subseteq E$ de mínimo cardinal que comunique al conjunto K. Es el Problema de Steiner en Grafos, y pertenece a la lista inicial de 21 problemas \mathcal{NP} -Completos de Karp. Luego, la evaluación de la medida clásica de confiabilidad K-terminal es un problema \mathcal{NP} -Difícil.

Complejidad de Confiabilidad All-Terminal

- 1 Arbol recubridor de un grafo conexo (Kruskal).
- 2 Hallar el corte de mínimo cardinal (Ford-Fulkerson).
- 3 Contar árboles recubridores (Kirchhoff).
- Hallar la cantidad de cortes mínimos (Ball-Provan, 1983).
- **5** Con vector F es posible calcular los cortes s t de mínimo cardinal. Luego, el cálculo de la confiabilidad All-Terminal es \mathcal{NP} -Difícil.

Agenda

1 Conceptos

Confiabilidad Clásica

3 Diámetro Confiabilidad de Redes

Diámetro Confiabilidad de una Red (DCR)

DCR

Si G=(V,E), $K\subseteq V$ son los *terminales* y d es un entero positivo llamado *diámetro*, análogamente se define $\phi(X)=1$ si el grafo G=(V,X) verifica que $d_X(u,v)\leq d$ para todo par de terminales $u,v\in K$. La *diámetro confiabilidad de una red* es $R=P(\phi(X)=1)$.

Como la DCR generaliza el problema clásico, su cálculo de confiabilidad es un problema NP-Difícil.

DCR - **Ejemplos**

- 1 La DCR en grafos elementales (ciclos y caminos) se calcula directamente.
- 2 En árboles, la DCR es el producto de las operaciones de las aristas que unen terminales (o 0 si alguno de esos caminos tiene más de *d* aristas).
- 3 Si K = V y d = 2 en un bipartito completo, la DCR es el producto de la operación de todas las aristas.
- 4 Hay casos más elaborados: escaleras y abanicos (Tesis Dr. Pablo Sartor).

Pregunta: ¿Existe un modo eficiente de hallar la DCR de completos/bipartitos en general?

DCR - Preguntas

- 1 ¿Si fijamos |K| = k y d, tendremos casos de cómputo eficiente? (Clase 3)
- 2 ¿Existen otras familias de grafos con cómputo eficiente de la DCR? (Clase 4)
- 3 ¿Podremos, al menos, hallar la DCR aproximadamente en cualquier instancia? (Clase 5)